WO2022228452A1 - 体声波谐振器、滤波器及电子设备 - Google Patents

体声波谐振器、滤波器及电子设备 Download PDF

Info

Publication number
WO2022228452A1
WO2022228452A1 PCT/CN2022/089488 CN2022089488W WO2022228452A1 WO 2022228452 A1 WO2022228452 A1 WO 2022228452A1 CN 2022089488 W CN2022089488 W CN 2022089488W WO 2022228452 A1 WO2022228452 A1 WO 2022228452A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
layer
top electrode
void
electrically connected
Prior art date
Application number
PCT/CN2022/089488
Other languages
English (en)
French (fr)
Inventor
庞慰
郝龙
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022228452A1 publication Critical patent/WO2022228452A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator

Definitions

  • Embodiments of the present invention relate to the field of semiconductors, and in particular, to a bulk acoustic wave resonator, a filter having the resonator, and an electronic device.
  • filter devices such as filters and duplexers based on, for example, Film Bulk Acoustic Resonators (FBARs) have become more and more popular in the market.
  • FBARs Film Bulk Acoustic Resonators
  • ESD anti-electrostatic discharge
  • the thicknesses of the top and bottom electrodes of the resonator will gradually decrease, which will increase the connection loss of the electrodes, that is, the resistance of the electrodes will increase.
  • the increase in the resistance of the electrodes will lead to a decrease in the Q value of the resonator.
  • the present invention is proposed to improve the Q value of the resonator and suppress the frequency drift phenomenon of the resonator caused by temperature changes when the thickness of the top electrode of the resonator is relatively thin.
  • a bulk acoustic wave resonator including a substrate, an acoustic mirror, a bottom electrode, a top electrode, and a piezoelectric layer.
  • the edge of the upper side of the top electrode surrounding the effective area of the resonator is further provided with a conductive layer, and the conductive layer is electrically connected to the top electrode in the electrical connection area on the upper side of the top electrode.
  • the resonator further includes a temperature compensation layer, and in the horizontal direction, the distance between the outer end of the temperature compensation layer and the effective area is not less than -1 ⁇ m.
  • Embodiments of the present invention also relate to a filter comprising the above-described bulk acoustic wave resonator.
  • Embodiments of the present invention also relate to an electronic device including the above-mentioned filter or resonator.
  • FIG. 1A is a schematic top view of a bulk acoustic wave resonator in the prior art
  • Figure 1B is an exemplary cross-sectional view taken along A-A' in Figure 1A;
  • FIG. 2 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • 3A-3C are exemplary cross-sectional views taken along line BB' in FIG. 2 according to an exemplary embodiment of the present invention, wherein no void layer or non-conductive dielectric layer is provided in the stacked structure, and the temperature The complementary layer is arranged in the bottom electrode;
  • 4A-4D are exemplary cross-sectional views taken along BB' in FIG. 2 according to an exemplary embodiment of the present invention, wherein a void layer or a non-conductive dielectric layer is provided in the laminated structure, and the temperature compensation the layer is disposed in the bottom electrode;
  • Fig. 5 is a graph exemplarily showing experimental data of the structure shown in Fig. 4A;
  • FIG. 6 is an exemplary cross-sectional view taken along B-B' in FIG. 2 , wherein the temperature compensation layer is disposed in the top electrode, according to an exemplary embodiment of the present invention
  • Fig. 7 is an exemplary cross-sectional view taken along B-B' in Fig. 2 according to an exemplary embodiment of the present invention, wherein the temperature compensation layer is disposed in the piezoelectric layer;
  • FIG. 8 is an exemplary cross-sectional view taken along B-B' in FIG. 2 , wherein the acoustic mirror is a Bragg reflector structure according to an exemplary embodiment of the present invention.
  • FIG. 9 is a schematic top view of a bulk acoustic wave resonator according to still another exemplary embodiment of the present invention.
  • Substrate, optional materials are single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc., or single crystal piezoelectric lining such as lithium niobate, lithium tantalate, potassium niobate, etc. end.
  • Bottom electrode (electrode pin or electrode electrical connection edge), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • Acoustic mirror which can be a cavity, or a Bragg reflection layer (for example, Fig. 8) and other equivalent forms.
  • Piezoelectric layer which can be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, single crystal lithium niobate, single crystal lead zirconate titanate (PZT), single crystal Potassium niobate, single crystal quartz film, or single crystal lithium tantalate and other materials can also be polycrystalline piezoelectric materials (corresponding to single crystal, non-single crystal materials), optional, such as polycrystalline aluminum nitride, Zinc oxide, PZT, etc., can also be a rare earth element doped material containing a certain atomic ratio of the above materials, for example, can be doped aluminum nitride, and doped aluminum nitride contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium
  • Top electrode (electrode pin or electrode electrical connection edge), its material can be the same as the bottom electrode, and the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or above metals composite or its alloys, etc.
  • the top and bottom electrode materials are generally the same, but can also be different.
  • Conductive layer the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys.
  • the surface dielectric layer of the top electrode, the material can be AlN, SiN, SiO 2 , Al 2 O 3 .
  • Air gap or void layer above the piezoelectric layer which can also be other non-conductive dielectric layers that function as air gaps.
  • the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys.
  • the dielectric layer on the surface of the conductive layer, the material can be AlN, SiN, SiO 2 , Al 2 O 3 .
  • Interlayer electrode the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys, etc.
  • the temperature compensation layer 114 is provided In the case of the bottom electrode, the interlayer electrode 112 together with the bottom electrode 102 constitutes the bottom electrode. In the case where the temperature compensation layer is not arranged in the bottom electrode, there is no arrangement of the interlayer electrode.
  • Etch the barrier layer It can be any material as long as it can block the etching process.
  • Temperature compensation layer the temperature coefficient of the material is required to be opposite to the temperature coefficient of the piezoelectric layer material selected.
  • the temperature compensation layer should have a positive temperature coefficient.
  • Its material can be selected from silicon dioxide (SiO 2 ), doped silicon dioxide (such as F-doped), polysilicon, borophosphate glass (BSG), chromium (Cr) or tellurium oxide (TeO(x)) and other positive materials. Temperature drift coefficient of the material.
  • the seed layer can be selected from materials such as aluminum nitride, zinc oxide, and PZT, and includes a rare earth element doped material or silicon nitride with a certain atomic ratio of the above materials.
  • the connection loss is reduced, that is, the connection resistance of the top electrode is reduced.
  • the frequency drift caused by temperature changes can be controlled by providing a temperature compensation layer. effective suppression.
  • FIG. 1A shows a top view of a conventional resonator structure, and the cross-sectional view of the resonator in Fig. 1A is cut along the AA' direction, as shown in Fig. 1B.
  • FIG. 1B shows a sandwich structure of a common resonator, which includes a substrate 101 , a bottom electrode 102 , an acoustic mirror 103 , a piezoelectric layer 104 , a top electrode 105 , and a dielectric layer 107 on the surface of the top electrode.
  • the dielectric layer 107 may not be provided.
  • FIG. 2 is a top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • a conductive layer 106 is added to the top electrode of the conventional resonator, and the conductive layer 106 is only provided in the edge portions of the electrically connected side and the non-electrically connected side of the top electrode.
  • 3A is an exemplary cross-sectional view taken along line BB' in FIG. 2 according to an exemplary embodiment of the present invention, wherein no void layer or non-conductive dielectric layer is provided in the stacked structure, but the bottom electrode is A temperature compensation layer 114 is provided in the middle.
  • FIG. 3A compared with the common resonator shown in FIG. 1B , there are more conductive layers 106 layers, dielectric layers 111 on the surface of the conductive layers, interlayer electrodes 112 , etching barrier layers 113 and temperature compensation layers 114 of the temperature compensation layer 114 . layer, seed layer 115.
  • the temperature compensation structure composed of the temperature compensation layer 114, the etching barrier layer 113 and the seed layer 115 is only exemplary, and only the temperature compensation layer 114 may be provided, or the temperature compensation layer 114 and the seed layer 115 or The etching barrier layer 113 is within the protection scope of the present invention.
  • FIG. 3B is identical to the structure of FIG. 3A, except that certain regions are specifically shown in FIG. 3B.
  • e corresponds to the effective area of the resonator
  • f corresponds to the overlapping area of the non-electrically connected side of the conductive layer 106 at the top electrode 105 and the electrically connected side of the bottom electrode 102
  • g indicates the electrical connection at the top electrode 105.
  • the overlapping area of the connection side and the non-electrically connected side of the bottom electrode 102 (corresponding to the "electrical connection area" in the electrical connection between the conductive layer 106 and the top electrode 105 in the electrical connection area on the upper side of the top electrode).
  • the effective area e of the resonator is the overlapping area in the thickness direction of the resonator between the acoustic mirror 103 and the laminated structure (top electrode, bottom electrode and piezoelectric layer) at the boundary of the void of the suspended structure .
  • the distance between the outer edge of the temperature compensation layer 114 and the boundary of the effective area e in the horizontal direction is a; on the non-electrically connected side of the top electrode 105, the temperature The distance between the outer edge of the supplementary layer 114 and the boundary of the effective area e in the horizontal direction is b.
  • the outer edge of the temperature compensation layer 114 is outside the boundary of the effective area e, the value of a or b is positive, the outer edge of the temperature compensation layer 114 is inside the boundary of the effective area e, and the value of a or b is negative.
  • the values of a and b can be positive, 0, or negative.
  • the distance between the outer end of the temperature compensation layer 114 and the effective area is not less than -1 ⁇ m.
  • the values of a and b are less than 0 (the step on the edge of the temperature compensation layer 114 will be within the effective area e, due to the existence of this step, the crystal orientation of the piezoelectric layer at the step will be changed, and the film quality will be poor, which will cause As a result, the performance of the resonator is degraded, and the Q value of the resonator will become smaller. Therefore, in an optional embodiment, as shown in FIG. 3A , the values of a and b are greater than 0.
  • FIG. 3C is identical to the structure of FIG. 3A except that certain regions are specifically shown in FIG. 3C.
  • the dimensions of w1 and w2 shown in FIG. 3C are the width dimensions of the suspended portion of the conductive layer 106 , wherein w1 is the width dimension of the suspended portion at the electrical connection side of the top electrode, and w2 is the suspended portion at the non-electrically connected side of the top electrode.
  • the values of w1 and w2 affect the Q value of the resonator and are related to the specific stack thickness of the resonator, and both are larger than the Q value of ordinary resonators.
  • the contact portion of the conductive layer 106 and the top electrode 105 that is, the interval corresponding to the distance f in FIG. 3C, the laminated structure of which is different from that of the inner side of the resonator, resulting in an acoustic impedance mismatch interface, It is conducive to the reflection of the transverse acoustic wave back into the resonator at this interface, thereby improving the Q value.
  • this part of the conductive layer increases the thickness of the local top electrode, thereby helping to reduce the overall resistance of the top electrode; on the other hand, the suspended part of the conductive layer 106 , that is, the interval corresponding to the distance w2 in Fig.
  • 3C is equivalent to a cantilever beam structure, which will resonate under the excitation of the acoustic wave in the interval corresponding to the distance f in Fig. 3C, thereby binding part of the acoustic wave energy leaking to the interval f in the suspended structure. , further reducing the acoustic wave energy that continues to propagate from the f interval to the outside of the resonator, thereby further improving the Q value.
  • the inner side of the conductive layer 106 is a suspended structure, that is, the interval corresponding to the distance w1 in FIG. 3B , and its function is similar to that of the interval w2.
  • parasitic capacitances exist in the g region and the f region in FIG. 3B. Due to the parasitic capacitance, the electromechanical coupling coefficient Kt is reduced compared to ordinary resonators. To reduce parasitic capacitance, the present invention proposes additional embodiments.
  • FIG. 4A is an exemplary cross-sectional view taken along line BB' in FIG. 2 , wherein a void layer or non-conductive dielectric layer 108 is provided in the stack structure, and a bottom electrode is A temperature compensation layer 114 is provided. As mentioned above, by disposing the temperature compensation layer 114, the frequency drift caused by the temperature change can be effectively suppressed.
  • FIG. 4A compared with the common resonator shown in FIG. 1B , there are more conductive layers 106 layers, dielectric layers 111 on the surface of the conductive layers, interlayer electrodes 112 , etching barrier layers 113 and temperature compensation layers 114 of the temperature compensation layer 114 . layer, seed layer 115.
  • FIG. 4B is identical to the structure of FIG. 4A, except that certain regions are specifically shown in FIG. 4B.
  • e corresponds to the effective area of the resonator
  • f corresponds to the overlapping area of the non-electrically connected side of the top electrode 105 and the electrically connected side of the bottom electrode 102 of the conductive layer 106
  • g represents the electrical connection at the top electrode 105
  • the overlapping area of the side and the non-electrically connected side of the bottom electrode 102 (corresponding to the "electrical connection area" in the electrical connection between the conductive layer 106 and the top electrode 105 in the electrical connection area on the upper side of the top electrode).
  • the effective area e of the resonator is between the acoustic mirror 103 and the laminated structure (top electrode, bottom electrode and piezoelectric layer) and the inner edge of the void layer 108 at the boundary of the void of the suspended structure in the resonator overlapping area in the thickness direction.
  • the top electrode 105 is provided with a convex structure formed by the convex layer 109 on the piezoelectric layer, and the concave structure 110 as shown in FIG. 4A , the top electrode is provided with a bridge structure based on the electrical connection side In the void layer 108 on the left side in FIG. 4A , the top electrode is provided with a cantilever structure on the non-electrically connected side, which defines the void layer 108 on the right side in FIG. 4A . In an optional embodiment, the convex structure and/or the concave structure may not be provided.
  • the distance between the outer edge of the temperature compensation layer 114 and the inner edge of the void layer 108 in the horizontal direction is c; on the non-electrically connected side of the top electrode 105, The distance between the outer edge of the warm compensation layer 114 and the inner edge of the void layer 108 in the horizontal direction is d.
  • c and d may be equal.
  • the outer edge of the temperature compensation layer 114 is outside the inner edge of the void layer 108 , the value of c or d is positive, the outer edge of the temperature compensation layer 114 is inside the inner edge of the void layer 108 , and the value of c or d is negative.
  • FIG. 5 is a graph of experimental data exemplarily showing the structure shown in FIG. 4A .
  • the ordinate is the Q value of the resonator
  • the number on the abscissa is the value of c and d (set c and d to be equal in Figure 5)
  • the different data in each group of numbers is the width of different raised structures
  • the width of the recessed structure is a fixed value.
  • FIG. 4C is identical to the structure of FIG. 4A, except that certain regions are specifically shown in FIG. 4C.
  • the dimensions of w1 and w2 shown in FIG. 4C are the width dimensions of the suspended portion of the conductive layer 106 , wherein w1 is the width dimension of the suspended portion at the electrical connection side of the top electrode, and w2 is the suspended portion at the non-electrically connected side of the top electrode.
  • the values of w1 and w2 affect the Q value of the resonator and are related to the specific stack thickness of the resonator, and both are larger than the Q value of ordinary resonators.
  • the lamination structure is different from the lamination inside the resonator, thereby generating an acoustic impedance mismatch interface, It is conducive to the reflection of the transverse acoustic wave back into the resonator at this interface, thereby improving the Q value.
  • this part of the conductive layer increases the thickness of the local top electrode, thereby helping to reduce the overall resistance of the top electrode; on the other hand, the suspended part of the conductive layer 106 , that is, the interval corresponding to the distance w2 in Fig.
  • the inner side of the conductive layer 106 is a suspended structure, that is, the interval corresponding to the distance w1 in FIG. 4B , and its function is similar to that of the interval w2.
  • a void layer 108 is provided, in which a void layer 108 is provided.
  • m and k are the distance or area of the void layer 108 on the left side (top electrode electrical connection side) beyond the area g in FIG. 4D
  • j is the void layer excess area on the right side (top electrode non-electrically connected side) in FIG. 4D The distance or area of f.
  • the inner end of the void layer or the non-conductive dielectric layer 108 is flush with the inner end of the electrical connection region g or is in the electrical connection region
  • the inner side of the inner end of g (the k region), and/or the outer end of the void layer or non-conductive dielectric layer 108 is flush with the non-electrically connected edge of the bottom electrode (combined with 102 and 112) or at the bottom electrode
  • the values of m, k and j are all not less than 0, further, all are greater than 0, and in a further embodiment, all are not less than 1 ⁇ m.
  • the void layer 108 on the non-electrically connected side of the top electrode extends across the entire overlap region f, and the void layer 108 on the electrically connected side of the top electrode extends across the entire overlap region g.
  • the predetermined position overlaps with the region g or f in FIG. 4B in the projection direction parallel to the thickness direction, at this time, the above m, k and j Any of the values can be negative, and it can also play a role in reducing the parasitic capacitance of the resonator, but the effect is not as obvious as the structure shown in Figure 4D.
  • the arrangement position of the void layer 108 in the thickness direction in addition to that shown in FIG. 4A , can also be arranged between the piezoelectric layer 104 and the bottom electrode 102 , or arranged in the piezoelectric layer 104 , which are all in accordance with the present invention. Modified embodiments are within the protection scope of the present invention.
  • the temperature compensation layer 114 may be disposed in the bottom electrode, or may be disposed in other positions of the laminated structure composed of the bottom electrode, the piezoelectric layer and the top electrode, for example, as shown in FIG. 6 , it may be disposed on the top electrode , arranged in the piezoelectric layer or the like as shown in FIG. 7 .
  • the thickness of the void layer 108 also has specific requirements.
  • the thickness of the void layer 108 is selected to be range, further in within the scope of, and further, in In the range.
  • the conductive layer 106 and the top electrode 105 are etched in the same step, the conductive layer and the top electrode are not etched in two separate steps. Therefore, the etching will not stop at the top electrode 105. If The size of w1 or w2 in FIG. 3C and FIG. 4C is too small. When performing etching on the top electrode, if there is a deviation in the alignment of the lithography, the top electrode will be cut off, resulting in the failure of signal transmission and affecting the performance of the resonator. . The values of w1 and w2 in FIG. 3C and FIG. 4C should not be too large. Too large values may lead to the collapse of the suspended part of the conductive layer 106.
  • too large values of w1 and w2 in FIG. 3C and FIG. 4C may also affect the frequency in the later stage. adjust.
  • the values of w1 and w2 in FIG. 3C and FIG. 4C are in the range of 0.2 ⁇ m-20 ⁇ m. This value also applies to other exemplary embodiments of the invention.
  • f represents the contact width between the conductive layer and the top electrode on the non-electrically connected side of the top electrode.
  • the f value should not be too small, and if too small, the contact area between the conductive layer 106 and the top electrode 105 at the non-electrically connected edge of the top electrode is small, and the conductive effect is deteriorated.
  • the f value should not be too large, and the area occupied by the resonator will increase if it is too large.
  • the increase of the f value is equivalent to the increase of the parallel capacitance between the top electrode and the bottom electrode, and the electromechanical coupling coefficient of the resonator will decrease.
  • the f value is in the range of 0.2 ⁇ m-10 ⁇ m.
  • the value of o is the lateral distance from the edge of the acoustic mirror 103 to the beginning of the floating position of the conductive layer 106 on the electrical connection side of the top electrode. In one embodiment of the present invention, the value of o is 0.2 ⁇ m. -10 ⁇ m range.
  • the conductive portion 106 may be partially disconnected instead of being arranged in a ring shape.
  • the sum of the lengths of the disconnected locations is not greater than 90% of the perimeter of the active area of the entire resonator.
  • the scheme shown in FIG. 9 can also be applied to the embodiments described above with reference to the illustrations.
  • each numerical range except that it is clearly indicated that it does not include the endpoint value, can be the endpoint value, and can also be the median value of each numerical range, and these are all within the protection scope of the present invention. .
  • upper and lower are relative to the bottom surface of the base of the resonator.
  • the side close to the bottom surface is the lower side, and the side away from the bottom surface is the upper side.
  • inner and outer are relative to the center of the effective area of the resonator in the horizontal or radial direction, one side or one end of a component close to the center is the inner or inner end, and the component The side or end away from the center is the outer or outer end.
  • being located inside the position means being between the position and the center in the horizontal or radial direction, and being outside of the position means being further away from the position in the horizontal or radial direction than the position center.
  • BAW resonators may be used to form filters or electronic devices.
  • the electronic equipment here includes but is not limited to intermediate products such as RF front-end, filter and amplifier modules, and terminal products such as mobile phones, WIFI, and drones.
  • a bulk acoustic wave resonator comprising:
  • the edge of the upper side of the top electrode surrounding the effective area of the resonator is further provided with a conductive layer, and the conductive layer is electrically connected to the top electrode in the electrical connection area on the upper side of the top electrode;
  • the resonator further includes a temperature compensation layer, and in the horizontal direction, the distance between the outer end of the temperature compensation layer and the effective area is not less than -1 ⁇ m.
  • a void layer or non-conductive dielectric layer at least a portion of which is below the electrical connection region in a projection parallel to the thickness direction of the resonator.
  • the outer end of the void layer or the non-conductive dielectric layer is flush with or outside the electrically non-connecting side of the bottom electrode;
  • the outer end of the void layer or the non-conductive dielectric layer is flush with the outer end of the electric connection region or is outside the outer end of the electric connection region.
  • the outer end of the void layer or the non-conductive dielectric layer is at least 1 ⁇ m outside the non-electrically connected side of the bottom electrode;
  • the inner end of the void layer or the non-conductive dielectric layer is at least 1 ⁇ m inside the inner end of the electrical connection region;
  • the inner end of the void layer or the non-conductive dielectric layer is at least 1 ⁇ m inside the inner end of the electrical connection region.
  • the inner end of the void layer or non-conductive dielectric layer is flush with or inboard of the outer edge of the void;
  • At least a portion of the boundary of the active area of the resonator is defined by the inner end of the void layer or non-conductive dielectric layer.
  • the suspended structure is an annular suspended structure
  • the suspended structure is disposed on the electrical connection side of the top electrode and a part of the non-electrically connected side of the top electrode.
  • the outer edge of the void is inboard of the edge of the acoustic mirror in the horizontal direction of the resonator;
  • the outside edge of the void is outside the edge of the acoustic mirror in the horizontal direction of the resonator.
  • a filter comprising the resonator of any of 1-20.
  • An electronic device comprising the filter according to 21 or the resonator according to any one of 1-20.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及一种体声波谐振器,包括基底;声学镜;底电极;顶电极;和压电层,其中:所述顶电极上侧的围绕谐振器的有效区域的边缘还设置有导电层,所述导电层与所述顶电极在顶电极上侧的电连接区域内电连接;所述谐振器还包括温补层,在水平方向上,所述温补层的外端与有效区域之间的距离不小于-1μm。本发明还涉及一种体声波谐振器的制造方法、一种滤波器以及一种电子设备。

Description

体声波谐振器、滤波器及电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器,一种具有该谐振器的滤波器,以及一种电子设备。
背景技术
随着当今无线通讯技术的飞速发展,小型化便携式终端设备的应用也日益广泛,因而对于高性能、小尺寸的射频前端模块和器件的需求也日益迫切。近年来,以例如为薄膜体声波谐振器(Film Bulk Acoustic Resonato r,简称FBAR)为基础的滤波器、双工器等滤波器件越来越为市场所青睐。一方面是因为其插入损耗低、过渡特性陡峭、选择性高、功率容量高、抗静电放电(ESD)能力强等优异的电学性能,另一方面也是因为其体积小、易于集成的特点所致。
但是,随着谐振器的频率不断增大,谐振器的顶电极和底电极的厚度会逐渐变小,这会使得电极的连接损耗越来越大,即电极的电阻增大。而电极的电阻增大,会导致谐振器的Q值降低。
此外,还希望抑制谐振器因为温度变化引起的频率漂移现象。
发明内容
为在谐振器的顶电极的厚度较薄的情况下,提高谐振器的Q值,以及抑制谐振器因为温度变化引起的频率漂移现象,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括基底、声学镜、底电极、顶电极和压电层。所述顶电极上侧的围绕谐振器的有效区域的边缘还设置有导电层,所述导电层与所述顶电极在顶电极上侧的电连接区域内电连接。所述谐振器还包括温补层,在水平方向上,所述温补层的外端与有效区域之间的距离不小于-1μm。
本发明的实施例也涉及一种滤波器,包括上述体声波谐振器。
本发明的实施例还涉及一种电子设备,包括上述的滤波器或者谐振器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1A为现有技术中的体声波谐振器的俯视示意图;
图1B为沿图1A中的A-A’截得的示例性截面图;
图2为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图;
图3A-3C为根据本发明的一个示例性实施例的沿图2中的B-B’截得的示例性截面图,其中在叠层结构中并未设置空隙层或不导电介质层,温补层设置在底电极中;
图4A-4D为根据本发明的一个示例性实施例的沿图2中的B-B’截得的示例性截面图,其中在叠层结构中设置有空隙层或不导电介质层,温补层设置在底电极中;
图5为示例性示出图4A所示结构的实验数据的图表;
图6为根据本发明的一个示例性实施例的沿图2中的B-B’截得的示例性截面图,其中温补层设置在顶电极中;
图7为根据本发明的一个示例性实施例的沿图2中的B-B’截得的示例性截面图,其中温补层设置在压电层中;
图8为根据本发明的一个示例性实施例的沿图2中的B-B’截得的示例性截面图,其中声学镜为布拉格反射层结构;以及
图9为根据本发明的还一个示例性实施例的体声波谐振器的俯视示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。发明的一部分实施例,而并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
首先,本发明的附图中的附图标记说明如下:
101:基底,可选材料为单晶硅、氮化镓、砷化镓、蓝宝石、石英、碳化硅、金刚石等,也可以是铌酸锂、钽酸锂、铌酸钾等单晶压电衬底。
102:底电极(电极引脚或电极电连接边),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
103:声学镜,可为空腔,也可采用布拉格反射层(例如图8)及其他等效形式。
104:压电层,可以为单晶压电材料,可选的,如:单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅(PZT)、单晶铌酸钾、单晶石英薄膜、或者单晶钽酸锂等材料,也可以为多晶压电材料(与单晶相对应,非单晶材料),可选的,如多晶氮化铝、氧化锌、PZT等,还可是包含上述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等。
105:顶电极(电极引脚或电极电连接边),其材料可与底电极相同,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。顶电极和底电极材料一般相同,但也可以不同。
106:导电层,材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的符合或其合金等。
107:顶电极的表面介质层,材料可以是AlN、SiN、SiO 2、Al 2O 3
108:压电层上方空气隙或空隙层,其也可以为其他起到空气隙作用的不导电介质层。
109:压电层上方凸起层:材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的符合或其合金等。
110:凹陷结构。
111:导电层表面介质层,材料可以是AlN、SiN、SiO 2、Al 2O 3
112:夹层电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等,在本发明中,在温补层114设置在底电极中的情况下,夹层电极112与底电极102一起构成底电极。在温补层并未设置在底电极中的情况下,不存在夹层电极的设置。
113:刻蚀阻挡层。可以是任何材料,只要可以对刻蚀工艺有阻挡即可。
114:温补层:要求其材料的温度系数与具体选用的压电层材料温度系数相反,例如,压电层为氮化铝时,温补层应具有正温度系数。其材料可选二氧化硅(SiO 2)、掺杂二氧化硅(如F掺杂)、多晶硅、硼磷酸盐玻璃(BSG)、铬(Cr)或碲氧化物(TeO(x))等正温漂系数的材料。
115:种子层,可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料或氮化硅。
在本发明中,通过在顶电极增加厚度(设置导电层)来降低其连接损耗即降低顶电极的连接电阻,此外,在本发明中,通过设置温补层可对温度变化引起的频率漂移进行有效抑制。
图1A示出了为常规谐振器结构的俯视图,将图1A中的谐振器沿着A A’方向剖开,可以得到其剖面图,如图1B所示。图1B中示出了普通谐振器的三明治结构,其中包含基底101、底电极102、声学镜103、压电层104、顶电极105,顶电极表面介质层107。如本领域技术人员能够理解的,也可以不设置介质层107。
图2为本发明的一个示例性实施例的体声波谐振器的俯视图。在图2中,在常规谐振器的顶电极增加了一层导电层106,该导电层106仅在顶电极电连接边和非电连接边的边缘部分区域设置。
图3A为根据本发明的一个示例性实施例的沿图2中的B-B’截得的示例性截面图,其中在叠层结构中并未设置空隙层或不导电介质层,但底电极中设置有温补层114。通过设置温补层114可对温度变化引起的频率漂移进行有效抑制。
如图3A所示,相对于图1B所示的普通谐振器多了导电层106层和导电层表面介质层111层以及夹层电极112、温补层114的刻蚀阻挡层113、温补层114层、种子层115。
在本发明中,温补层114、刻蚀阻挡层113以及种子层115组成的温补结构仅仅是示例性的,可以仅仅设置温补层114,也可以设置温补层114与种子层115或刻蚀阻挡层113,均在本发明的保护范围之内。
图3B与图3A的结构一致,只是对于某些区域在图3B中专门示出。在图3B中,e对应于谐振器的有效区域,f对应于导电层106在顶电极1 05的非电连接边以及底电极102的电连接边的重合区域,g表示在顶电极105的电连接边以及底电极102的非电连接边的重合区域(对应于导电层106与顶电极105在顶电极上侧的电连接区域内电连接中的“电连接区域”)。如图3B所示,谐振器的有效区域e为声学镜103与叠层结构(顶电极、底电极和压电层)在悬空结构的空隙的边界之间在谐振器的厚度方向上的重叠区域。
如图3A所示,在顶电极105的电连接边,温补层114的外边缘在水平方向上与有效区域e的边界之间的距离为a;在顶电极105的非电连接边,温补层114的外边缘在水平方向上与有效区域e的边界之间的距离为b。温补层114的外边缘在有效区域e的边界的外侧,a或b的值为正,温补层114的外边缘在有效区域e的边界的内侧,a或b的值为负。a与b的值可以为正值、0或负值。在本发明的一个实施例中,在水平方向上,温补层114的外端与有效区域之间的距离不小于-1μm。在a与b的值小于0时(温补层114边缘的台阶会在有效区域e以内,由于这个台阶存在,台阶处的压电层的晶向会发生改变,成膜质量比较差,这会导致谐振器性能下降,谐振器的Q值会变小,因此在一个可选的实施例中,如图3A所示,a与b的值大于0。
图3C与图3A的结构一致,只是对于某些区域在图3C中专门示出。图3C中所示的w1和w2的尺寸为导电层106的悬空部分的宽度尺寸,其中w1为顶电极的电连接边处悬空部分的宽度尺寸,w2为顶电极的非电连接边处的悬空部分的宽度尺寸。w1和w2的值会影响谐振器的Q值,并且与谐振器的具体叠层厚度有关,且均比普通谐振器Q值大。此时,在顶电极的非电连接边,导电层106与顶电极105接触部分,即图3C中距离f对应区间,其层叠结构与谐振器内侧层叠不同,从而产生一个声阻抗不匹配界面,有利于横向声波在此界面反射回谐振器内部,从而提高Q值,同时该部分导电层增加了局部顶电极的厚度,从而有利于降低顶电极的整体电阻;另一方面,导电层106悬空部分,即图3C中距离w2对应区间,相当于一个悬臂梁结构,它会在图3C中的距离f对应区间的声波激励下产生谐振,从而将泄露到f区间的一部分声波能量束缚在悬空结构内,进一步减少从f区间继续向谐振器外侧传播的声波能量,从而进一步提高Q值。在顶电极的电连接边,导电层106内侧为悬空结构,即图3B中距离 w1对应区间,其作用与距离w2区间的作用相似。
在图3B中的g区域和f区域,存在寄生电容。因为寄生电容,相比于普通谐振器,机电耦合系数Kt会降低。为了减少寄生电容,本发明提出了另外的实施例。
图4A为根据本发明的一个示例性实施例的沿图2中的B-B’截得的示例性截面图,其中在叠层结构中设置了空隙层或不导电介质层108,底电极中设置有温补层114。如前所述,通过设置温补层114可对温度变化引起的频率漂移进行有效抑制。
如图4A所示,相对于图1B所示的普通谐振器多了导电层106层和导电层表面介质层111层以及夹层电极112、温补层114的刻蚀阻挡层113、温补层114层、种子层115。
图4B与图4A的结构一致,只是对于某些区域在图4B中专门示出。在图4B中,e对应于谐振器的有效区域,f对应于导电层106在顶电极105的非电连接边以及底电极102的电连接边的重合区域,g表示在顶电极105的电连接边以及底电极102的非电连接边的重合区域(对应于导电层106与顶电极105在顶电极上侧的电连接区域内电连接中的“电连接区域”)。如图4B所示,谐振器的有效区域e为声学镜103与叠层结构(顶电极、底电极和压电层)以及空隙层108的内边缘在悬空结构的空隙的边界之间在谐振器的厚度方向上的重叠区域。
在图4A中,顶电极105设置有由压电层上的凸起层109形成的凸起结构,以及如图4A所示的凹陷结构110,顶电极在电连接边设置有基于桥结构形成的在图4A中的左侧的空隙层108,顶电极在非电连接边设置有悬翼结构,该悬翼结构限定了在图4A中的右侧的空隙层108。在可选的实施例中,也可以不设置凸起结构和/或凹陷结构。
如图4A所示,在顶电极105的电连接边,温补层114的外边缘在水平方向上与空隙层108的内边缘之间的距离为c;在顶电极105的非电连接边,温补层114的外边缘在水平方向上与空隙层108的内边缘之间的距离为d。在一个可选的实施例中,c与d可以相等。温补层114的外边缘在空隙层108的内边缘的外侧,c或d的值为正,温补层114的外边缘在空隙层108的内边缘的内侧,c或d的值为负。
图5为示例性示出图4A所示结构的实验数据图表。图5中,纵坐标 为谐振器的Q值,横坐标的数字为c与d的值(图5中设定c与d相等),每组数字当中的不同数据为不同凸起结构的宽度,凹陷结构的宽度为固定值。
可以看到当c、d的值小于或者等于-2μm的时候,Q值较小,而且Q值随凸起结构的宽度的变化趋势不明显,当c、d的值等于-1μm的时候谐振器Q值略小但是还可以接受,其随着凸起结构宽度变化仍然周期性变化,当其值大于1μm的时候谐振器性能基本没有变化,所以为了得到更高的Q值需要定义c与d必须要大于或者等于-1μm,进一步大于或者等于1μm。
图4C与图4A的结构一致,只是对于某些区域在图4C中专门示出。图4C中所示的w1和w2的尺寸为导电层106的悬空部分的宽度尺寸,其中w1为顶电极的电连接边处悬空部分的宽度尺寸,w2为顶电极的非电连接边处的悬空部分的宽度尺寸。w1和w2的值会影响谐振器的Q值,并且与谐振器的具体叠层厚度有关,且均比普通谐振器Q值大。此时,在顶电极的非电连接边,导电层106与顶电极105接触部分,即图4C中距离f对应区间,其层叠结构与谐振器内侧层叠不同,从而产生一个声阻抗不匹配界面,有利于横向声波在此界面反射回谐振器内部,从而提高Q值,同时该部分导电层增加了局部顶电极的厚度,从而有利于降低顶电极的整体电阻;另一方面,导电层106悬空部分,即图4C中距离w2对应区间,相当于一个悬臂梁结构,它会在图4C中的距离f对应区间的声波激励下产生谐振,从而将泄露到f区间的一部分声波能量束缚在悬空结构内,进一步减少从f区间继续向谐振器外侧传播的声波能量,从而进一步提高Q值。在顶电极的电连接边,导电层106内侧为悬空结构,即图4B中距离w1对应区间,其作用与距离w2区间的作用相似。
在本发明的一个实施例中,如图4A-4D所示,为去除图3B的g区域和f区域的寄生电容,提高因寄生电容导致降低的机电耦合系数,设置了空隙层108,其中的m和k为在图4D中左侧(顶电极电连接边)的空隙层108超出区域g的距离或区域,j为图4D中的右侧(顶电极非电连接边)的空隙层超出区域f的距离或区域。
如图4D所示,在水平方向上,在顶电极105的电连接边,空隙层或不导电介质层108的内端与所述电连接区域g的内端齐平或处于所述电连 接区域g的内端的内侧(k区域),和/或所述空隙层或不导电介质层108的外端与所述底电极(102和112共同构成)的非电连接边齐平或者处于底电极的非电连接边的外侧(m区域);和/或在水平方向上,在顶电极的非电连接边,空隙层或不导电介质层108的内端与所述电连接区域f的内端齐平或处于所述电连接区域f的内端的内侧(j区域),和/或所述空隙层或不导电介质层108的外端与所述电连接区域f的外端齐平或者处于电连接区域f的外端的外侧。
在本发明的一个有利的实施例中,m、k和j的值均不小于0,进一步的,均大于0,在更进一步的实施例中,均不小于1μm。
在图4B所示的结构中,在顶电极非电连接边的空隙层108延伸过整个重合区域f,在顶电极电连接边的空隙层108延伸过整个重合区域g。
如能够理解的,只要在预定位置设置了空隙层108,该预定位置在平行于厚度方向的投影方向上与图4B中的区域g或f存在重叠,此时,以上的m、k和j的值中任一个可以为负值,也可以对降低谐振器的寄生电容起到作用,只不过效果没有图4D所示的结构明显。
空隙层108在厚度方向上的布置位置,除了如图4A所示之外,还可以布置在压电层104与底电极102之间,或者布置在压电层104内,这些均为本发明的变型实施例,在本发明的保护范围之内。
在本发明中,温补层114可以设置在底电极中,也可以设置在由底电极、压电层和顶电极构成的叠层结构的其他位置,例如如图6所示可以设置在顶电极中,如图7所示设置在压电层中等。
此外,为了达到更好的技术效果,在本发明的一个实施例中,空隙层108的厚度也有特定的要求。例如,选择空隙层108的厚度在在
Figure PCTCN2022089488-appb-000001
Figure PCTCN2022089488-appb-000002
的范围内,进一步的在
Figure PCTCN2022089488-appb-000003
的范围内,更进一步的,在
Figure PCTCN2022089488-appb-000004
的范围内。
另外,在导电层106和顶电极105是在同一步刻蚀的情况下,刻蚀导电层以及顶电极并未使用两步单独刻蚀工艺,因此,刻蚀不会停止在顶电极105,如果图3C和图4C中的w1或者w2的尺寸过小,在对顶电极执行刻蚀时,如果光刻对准存在的偏差会使得顶电极被刻断,导致信号没法传输,影响谐振器性能。图3C和图4C中的w1、w2值也不宜过大,过大会有可能导致导电层106的悬空部分塌陷,另外,图3C和图4C中的w1、 w2值过大还可能影响后期的频率调节。综合考虑,在本发明的一个实施例中,图3C和图4C中的w1、w2值在0.2μm-20μm的范围内。对于该取值也适用于本发明的其他示例性实施例。
如图3B和图4B所示,f表示在顶电极的非电连接边,导电层与顶电极的接触宽度。f值不宜过小,过小就相当于导电层106与顶电极105的在顶电极的非电连接边处接触面积小,导电效果变差。f值不能太大,大了之后谐振器占的面积会增大。另外f值增大相当于顶电极与底电极间的并联电容增大,谐振器的机电耦合系数会变小。在本发明的一个可选实施例中,f值在0.2μm-10μm的范围内。
图3C和图4C中o值为,在顶电极电连接边,声学镜103的边缘到导电层106的悬空位置起始处的横向距离,在本发明的一个实施例中,o值在0.2μm-10μm的范围内。
在图9所示的实施例中,在顶电极的非电连接边,导电部106可以局部断开,而非环形布置。在一个可选的实施例中,断开位置的长度之和不大于整个谐振器的有效区域的周长的90%。图9所示的方案也可以应用到以上参照图示说明的实施例中。
需要指出的是,在本发明中,各个数值范围,除了明确指出不包含端点值之外,除了可以为端点值,还可以为各个数值范围的中值,这些均在本发明的保护范围之内。
在本发明中,上和下是相对于谐振器的基底的底面而言的,对于一个部件,其靠近该底面的一侧为下侧,远离该底面的一侧为上侧。
在本发明中,内和外是相对于谐振器的有效区域的中心在水平方向或者径向方向上而言的,一个部件的靠近该中心的一侧或一端为内侧或内端,而该部件的远离该中心的一侧或一端为外侧或外端。对于一个参照位置而言,位于该位置的内侧表示在水平方向或径向方向上处于该位置与该中心之间,位于该位置的外侧表示在水平方向或径向方向上比该位置更远离该中心。
如本领域技术人员能够理解的,根据本发明的体声波谐振器可以用于形成滤波器或电子设备。
这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
基于以上,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;和
压电层,
其中:
所述顶电极上侧的围绕谐振器的有效区域的边缘还设置有导电层,所述导电层与所述顶电极在顶电极上侧的电连接区域内电连接;
所述谐振器还包括温补层,在水平方向上,所述温补层的外端与有效区域之间的距离不小于-1μm。
2、根据1所述的谐振器,其中,在水平方向上,所述温补层的外端处于所述电连接区域的内侧边缘的外侧。
3、根据2所述的谐振器,其中,在顶电极的非电连接边,在水平方向上,所述温补层的外端在处于所述电连接区域的外侧边缘的外侧。
4、根据2所述的谐振器,其中,所述导电层的内端的至少一部分底面与所述顶电极的上表面之间存在空隙或不导电介质材料层,所述有效区域的边界的至少一部分由所述空隙或不导电介质材料层的外侧边缘限定。
5、根据1所述的谐振器,还包括:
空隙层或不导电介质层,在平行于谐振器的厚度方向的投影中,所述空隙层或不导电介质层的至少一部分处于所述电连接区域的下方。
6、根据5所述的谐振器,其中,所述导电层的内端的至少一部分底面与所述顶电极的上表面之间存在空隙或不导电介质材料层。
7、根据6所述的谐振器,其中,所述导电层的内端的至少一部分底面与所述顶电极的上表面之间存在空隙而形成悬空结构。
8、根据5所述的谐振器,其中,所述空隙层或不导电介质层的厚度在
Figure PCTCN2022089488-appb-000005
的范围内。
9、根据8所述的谐振器,其中,所述空隙层或不导电介质层的厚度在
Figure PCTCN2022089488-appb-000006
的范围内
10、根据5所述的谐振器,其中,在水平方向上,所述温补层的外端 处于所述有效区域的边界的外侧,且与有效区域的边界之间的距离不小于1μm。
11、根据5所述的谐振器,其中:
在水平方向上,在顶电极的电连接边,所述空隙层或不导电介质层的外端与所述底电极的非电连接边齐平或者处于底电极的非电连接边的外侧;和/或
在水平方向上,在顶电极的非电连接边,所述空隙层或不导电介质层的外端与所述电连接区域的外端齐平或者处于电连接区域的外端的外侧。
12、根据11所述的谐振器,其中:
在顶电极的电连接边,在水平方向上,所述空隙层或不导电介质层的外端处于底电极的非电连接边的外侧至少1μm;和/或
在顶电极的电连接边,在水平方向上,所述空隙层或不导电介质层的内端处于所述电连接区域的内端的内侧至少1μm;和/或
在顶电极的非电连接边,在水平方向上,所述空隙层或不导电介质层的内端处于所述电连接区域的内端的内侧至少1μm。
13、根据5所述的谐振器,其中:
所述空隙层或不导电介质层的内端与所述空隙的外侧边缘齐平或处于所述空隙的外侧边缘的内侧;以及
谐振器的有效区域的边界的至少一部分由所述空隙层或不导电介质层的内端限定。
14、根据7所述的谐振器,其中,在所述顶电极的电连接边和/或顶电极的非电连接边设置所述悬空结构。
15、根据14所述的谐振器,其中:
所述悬空结构为环形悬空结构;或
所述悬空结构设置在所述顶电极的电连接边,以及顶电极的部分非电连接边。
16、根据15所述的谐振器,其中,所述悬空结构在所述顶电极的非电连接边周向上断续设置,且断开位置的长度之和不大于整个谐振器的有效区域的周长的90%。
17、根据7所述的谐振器,其中,所述悬空结构的宽度在0.2μm-20μm的范围内。
18、根据7所述的谐振器,其中,所述顶电极的非电连接边设置有所述悬空结构,且所述导电层与所述非电连接边的接触部分的宽度在0.2μm-10μm的范围内。
19、根据7所述的谐振器,其中,所述空隙的外侧边缘与声学镜的边缘之间存在的横向距离在0.2μm-10μm的范围内。
20、根据19所述的谐振器,其中:
所述空隙的外侧边缘在谐振器的水平方向上处于所述声学镜边缘的内侧;或者
所述空隙的外侧边缘在谐振器的水平方向上处于所述声学镜边缘的外侧。
21、一种滤波器,包括根据1-20中任一项所述的谐振器。
22、一种电子设备,包括根据21所述的滤波器或根据1-20中任一项所述的谐振器。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (22)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    顶电极;和
    压电层,
    其中:
    所述顶电极上侧的围绕谐振器的有效区域的边缘还设置有导电层,所述导电层与所述顶电极在顶电极上侧的电连接区域内电连接;以及
    所述谐振器还包括温补层,在水平方向上,所述温补层的外端与有效区域之间的距离不小于-1μm。
  2. 根据权利要求1所述的谐振器,其中,在水平方向上,所述温补层的外端处于所述电连接区域的内侧边缘的外侧。
  3. 根据权利要求2所述的谐振器,其中,在顶电极的非电连接边,在水平方向上,所述温补层的外端在处于所述电连接区域的外侧边缘的外侧。
  4. 根据权利要求2所述的谐振器,其中,所述导电层的内端的至少一部分底面与所述顶电极的上表面之间存在空隙或不导电介质材料层,所述有效区域的边界的至少一部分由所述空隙或不导电介质材料层的外侧边缘限定。
  5. 根据权利要求1所述的谐振器,还包括:
    空隙层或不导电介质层,在平行于谐振器的厚度方向的投影中,所述空隙层或不导电介质层的至少一部分处于所述电连接区域的下方。
  6. 根据权利要求5所述的谐振器,其中,所述导电层的内端的至少一部分底面与所述顶电极的上表面之间存在空隙或不导电介质材料层。
  7. 根据权利要求6所述的谐振器,其中,所述导电层的内端的至少一部分底面与所述顶电极的上表面之间存在空隙而形成悬空结构。
  8. 根据权利要求5所述的谐振器,其中,所述空隙层或不导电介质层的厚度在
    Figure PCTCN2022089488-appb-100001
    的范围内。
  9. 根据权利要求8所述的谐振器,其中,所述空隙层或不导电介质层 的厚度在
    Figure PCTCN2022089488-appb-100002
    的范围内
  10. 根据权利要求5所述的谐振器,其中,在水平方向上,所述温补层的外端处于所述有效区域的边界的外侧,且与有效区域的边界之间的距离不小于1μm。
  11. 根据权利要求5所述的谐振器,其中:
    在水平方向上,在顶电极的电连接边,所述空隙层或不导电介质层的外端与所述底电极的非电连接边齐平或者处于底电极的非电连接边的外侧;和/或
    在水平方向上,在顶电极的非电连接边,所述空隙层或不导电介质层的外端与所述电连接区域的外端齐平或者处于电连接区域的外端的外侧。
  12. 根据权利要求11所述的谐振器,其中:
    在顶电极的电连接边,在水平方向上,所述空隙层或不导电介质层的外端处于底电极的非电连接边的外侧至少1μm;和/或
    在顶电极的电连接边,在水平方向上,所述空隙层或不导电介质层的内端处于所述电连接区域的内端的内侧至少1μm;和/或
    在顶电极的非电连接边,在水平方向上,所述空隙层或不导电介质层的内端处于所述电连接区域的内端的内侧至少1μm。
  13. 根据权利要求5所述的谐振器,其中:
    所述空隙层或不导电介质层的内端与所述空隙的外侧边缘齐平或处于所述空隙的外侧边缘的内侧;以及
    谐振器的有效区域的边界的至少一部分由所述空隙层或不导电介质层的内端限定。
  14. 根据权利要求7所述的谐振器,其中,在所述顶电极的电连接边和/或顶电极的非电连接边设置所述悬空结构。
  15. 根据权利要求14所述的谐振器,其中:
    所述悬空结构为环形悬空结构;或
    所述悬空结构设置在所述顶电极的电连接边,以及顶电极的部分非电连接边。
  16. 根据权利要求15所述的谐振器,其中,所述悬空结构在所述顶电极的非电连接边周向上断续设置,且断开位置的长度之和不大于整个谐振器的有效区域的周长的90%。
  17. 根据权利要求7所述的谐振器,其中,所述悬空结构的宽度在0.2μm-20μm的范围内。
  18. 根据权利要求7所述的谐振器,其中,所述顶电极的非电连接边设置有所述悬空结构,且所述导电层与所述非电连接边的接触部分的宽度在0.2μm-10μm的范围内。
  19. 根据权利要求7所述的谐振器,其中,所述空隙的外侧边缘与声学镜的边缘之间存在的横向距离在0.2μm-10μm的范围内。
  20. 根据权利要求19所述的谐振器,其中:
    所述空隙的外侧边缘在谐振器的水平方向上处于所述声学镜边缘的内侧;或者
    所述空隙的外侧边缘在谐振器的水平方向上处于所述声学镜边缘的外侧。
  21. 一种滤波器,包括根据权利要求1-20中任一项所述的谐振器。
  22. 一种电子设备,包括根据权利要求21所述的滤波器或根据权利要求1-20中任一项所述的谐振器。
PCT/CN2022/089488 2021-04-30 2022-04-27 体声波谐振器、滤波器及电子设备 WO2022228452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110479872.0 2021-04-30
CN202110479872.0A CN115276589A (zh) 2021-04-30 2021-04-30 体声波谐振器、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2022228452A1 true WO2022228452A1 (zh) 2022-11-03

Family

ID=83745655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089488 WO2022228452A1 (zh) 2021-04-30 2022-04-27 体声波谐振器、滤波器及电子设备

Country Status (2)

Country Link
CN (1) CN115276589A (zh)
WO (1) WO2022228452A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080042780A1 (en) * 2006-08-16 2008-02-21 Samsung Electronics Co., Ltd Resonator and fabrication method thereof
CN111010130A (zh) * 2019-12-19 2020-04-14 诺思(天津)微系统有限责任公司 带温补层和电学层的体声波谐振器、滤波器及电子设备
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备
CN111034037A (zh) * 2017-08-17 2020-04-17 Rf360欧洲有限责任公司 具有介电翼片的高q体声谐振器
CN111049490A (zh) * 2019-12-31 2020-04-21 诺思(天津)微系统有限责任公司 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
CN111245394A (zh) * 2019-12-16 2020-06-05 诺思(天津)微系统有限责任公司 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080042780A1 (en) * 2006-08-16 2008-02-21 Samsung Electronics Co., Ltd Resonator and fabrication method thereof
CN111034037A (zh) * 2017-08-17 2020-04-17 Rf360欧洲有限责任公司 具有介电翼片的高q体声谐振器
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备
CN111245394A (zh) * 2019-12-16 2020-06-05 诺思(天津)微系统有限责任公司 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备
CN111010130A (zh) * 2019-12-19 2020-04-14 诺思(天津)微系统有限责任公司 带温补层和电学层的体声波谐振器、滤波器及电子设备
CN111049490A (zh) * 2019-12-31 2020-04-21 诺思(天津)微系统有限责任公司 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备

Also Published As

Publication number Publication date
CN115276589A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2021219050A1 (zh) 谐振器组件及其制造方法、半导体器件、电子设备
WO2021042741A1 (zh) 压电层具有插入结构的体声波谐振器、滤波器和电子设备
JP4688070B2 (ja) 圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法
WO2022083352A1 (zh) 体声波谐振器及组件、滤波器、电子设备
WO2022028401A1 (zh) 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
CN111193489B (zh) 体声波谐振器、滤波器和电子设备
WO2020134803A1 (zh) 电极厚度不对称的体声波谐振器、滤波器和电子设备
CN114070233A (zh) 降低寄生模式的体声波谐振器、滤波器及电子设备
CN114070248A (zh) 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
WO2022228385A1 (zh) 具有加厚电极的体声波谐振器、滤波器及电子设备
WO2020134804A1 (zh) 顶电极连接部设有延伸结构的谐振器、滤波器和电子设备
CN116896346A (zh) 一种体声波谐振器、形成方法、滤波器、通信设备及终端
CN114696773A (zh) 体声波谐振器及制造方法、滤波器及电子设备
WO2022001860A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
CN117013979B (zh) 一种体声波谐振器及其制备方法、滤波器和电子设备
WO2022001861A1 (zh) 设置插入层以提升功率的体声波谐振器、滤波器及电子设备
WO2022135252A1 (zh) 带温补层的体声波谐振器、滤波器及电子设备
WO2022228452A1 (zh) 体声波谐振器、滤波器及电子设备
CN117176101A (zh) 一种体声波谐振器及其制备方法、滤波器和电子设备
CN115622526A (zh) 一种体声波谐振器及其制备方法
WO2022062912A1 (zh) 具有声阻层的体声波谐振器及其组件和制造方法、滤波器和电子设备
WO2022228486A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
CN114844481A (zh) 体声波谐振器、滤波器及电子设备
CN115241622B (zh) 谐振器、滤波器及电子设备
WO2022083712A1 (zh) 体声波谐振器及组件、滤波器、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 21/12/2023)