WO2022028402A1 - 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备 - Google Patents

带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备 Download PDF

Info

Publication number
WO2022028402A1
WO2022028402A1 PCT/CN2021/110252 CN2021110252W WO2022028402A1 WO 2022028402 A1 WO2022028402 A1 WO 2022028402A1 CN 2021110252 W CN2021110252 W CN 2021110252W WO 2022028402 A1 WO2022028402 A1 WO 2022028402A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
electrode
acoustic
assembly
bottom electrode
Prior art date
Application number
PCT/CN2021/110252
Other languages
English (en)
French (fr)
Inventor
庞慰
张巍
张孟伦
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022028402A1 publication Critical patent/WO2022028402A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type

Definitions

  • Embodiments of the present disclosure relate to the field of semiconductors, and in particular, to a bulk acoustic wave resonator assembly and a method for manufacturing the same, a filter having the resonator assembly, and an electronic device.
  • filter devices such as filters and duplexers based on, for example, Film Bulk Acoustic Resonators (FBARs) have become more and more popular in the market.
  • FBARs Film Bulk Acoustic Resonators
  • ESD anti-electrostatic discharge
  • the top electrode 104 of the resonator 100 in the dashed frame is connected to the bottom electrode 102 of the resonator 200 through a conductive via v.
  • the conductive via v is connected to the top of the resonator 100.
  • connection width of the electrode 104, the width of the conductive via v, the width of the top electrode 104 of the resonator 100 and the width of the bottom electrode 102 of the resonator 200 all have certain requirements, generally the total length is >5 ⁇ m, which will lead to the introduction of relatively large connecting lines. Large electrical losses, especially for high-frequency resonators, can degrade insertion loss by more than 0.1dB when the electrode thickness is ⁇ 1000A.
  • the present disclosure is made to alleviate or solve at least one aspect of the above-mentioned problems in the prior art.
  • a bulk acoustic wave resonator assembly comprising:
  • the at least two resonators are bulk acoustic wave resonators and are stacked on one side of the substrate in the thickness direction of the substrate, the at least two resonators include a first resonator and a second resonator , the second resonator is above the first resonator, the first resonator has a first top electrode, a first piezoelectric layer, a first bottom electrode and a first acoustic mirror, and the second resonator has a second top electrode, a second piezoelectric layer, a second bottom electrode and a second acoustic mirror,
  • An acoustic decoupling layer in the form of a cavity is arranged between the first top electrode and the second bottom electrode, and the acoustic decoupling layer serves as the second acoustic mirror;
  • At least one electrode is provided with an acoustic boundary structure along the boundary of the active area of the corresponding resonator.
  • At least two resonators stacked adjacently from bottom to top in the thickness direction of the component are bulk acoustic wave resonators, the at least two resonators include a first resonator and a second resonator Two resonators, where:
  • An acoustic decoupling layer in the form of a cavity is disposed between the top electrode of the first resonator and the bottom electrode of the second resonator, the acoustic decoupling layer serving as an acoustic mirror of the second resonator;
  • At least one electrode is provided with an acoustic boundary structure along the boundary of the active area of the corresponding resonator.
  • Embodiments of the present disclosure also relate to a method of manufacturing a bulk acoustic wave resonator assembly, comprising:
  • Step 1 Form a first structure for a first bulk acoustic wave resonator on the surface of the substrate, the first bulk acoustic wave resonator including a first acoustic mirror, a first bottom electrode, a first piezoelectric layer, a first top electrode;
  • Step 2 setting a patterned sacrificial material layer on the first structure formed in step 1;
  • Step 3 forming a second structure for a second bulk acoustic wave resonator on the structure of step 2, the second bulk acoustic wave resonator includes a second acoustic mirror, a second bottom electrode, a second piezoelectric layer and a second top electrode , the sacrificial material layer is located between the first top electrode and the second bottom electrode in the thickness direction of the substrate;
  • Step 4 releasing the sacrificial material layer to form a cavity that constitutes a second acoustic mirror of the second bulk acoustic wave resonator
  • At least one of the first top electrode, the second top electrode, the first bottom electrode, and the second bottom electrode is provided with an acoustic boundary structure along the effective area of the corresponding bulk acoustic wave resonator.
  • Embodiments of the present disclosure further relate to a filter comprising the above-described bulk acoustic wave resonator assembly.
  • Embodiments of the present disclosure also relate to an electronic device comprising the above-mentioned filter or the above-mentioned resonator assembly.
  • FIG. 1 is a schematic cross-sectional view of an electrical connection between two adjacent bulk acoustic wave resonators in an existing design
  • FIG. 2 is a schematic top view of a bulk acoustic wave resonator assembly according to an exemplary embodiment of the present disclosure
  • FIG. 3A is a schematic cross-sectional view of a BAW resonator taken along line AA' in FIG. 2 , wherein the upper and lower resonators are provided with wing bridges and raised and recessed parts, according to an exemplary embodiment of the present disclosure , and the top electrode of the lower resonator is electrically connected to the bottom electrode of the upper resonator;
  • 3B is a schematic cross-sectional view of a bulk acoustic wave resonator taken along line BB' in FIG. 2 , wherein the upper and lower resonators are provided with wing bridge portions and raised and recessed portions, according to an exemplary embodiment of the present disclosure , and the top electrode of the lower resonator is electrically connected to the bottom electrode of the upper resonator;
  • 3C is a schematic cross-sectional view of a BAW resonator taken along line CC' in FIG. 2 , wherein the upper and lower resonators are provided with wing bridges and raised and recessed parts, according to an exemplary embodiment of the present disclosure , and the top electrode of the lower resonator is electrically connected to the bottom electrode of the upper resonator;
  • 3D is a diagram illustrating a comparison of insertion loss curves of the structure of FIG. 3A with respect to the structure of FIG. 1;
  • FIG. 4-8 are schematic cross-sectional views of a bulk acoustic wave resonator taken along line AA' in FIG. 2, wherein the upper and lower resonators are provided with wing bridges and protrusions, according to various exemplary embodiments of the present disclosure a concave part, the top electrode of the lower resonator is electrically connected with the bottom electrode of the upper resonator;
  • FIG. 9 is a schematic cross-sectional view of a BAW resonator taken along line AA' in FIG. 2 according to still another exemplary embodiment of the present disclosure, wherein the non-electrode connection ends of the top electrodes of the upper and lower resonators are provided There is a cantilever, and the top electrode of the lower resonator is electrically connected to the bottom electrode of the upper resonator;
  • FIG. 10 is a schematic cross-sectional view of a bulk acoustic wave resonator taken along the line AA' in FIG. 2 according to still another exemplary embodiment of the present disclosure, wherein the non-electrode connection ends of the top electrodes of the upper and lower resonators are provided There are convex and concave parts, and the top electrode of the lower resonator is electrically connected with the bottom electrode of the upper resonator;
  • FIG. 11 is a schematic cross-sectional view of a BAW resonator taken along line AA' in FIG. 2 , wherein the upper and lower resonators are provided with wing bridges and raised recesses according to yet another exemplary embodiment of the present disclosure the top electrode of the lower resonator is electrically isolated from the bottom electrode of the upper resonator;
  • FIG. 12 is a schematic cross-sectional view of a bulk acoustic wave resonator taken along line AA' in FIG. 2 , wherein the upper and lower resonators are provided with wing bridges and raised recesses according to still another exemplary embodiment of the present disclosure the top electrode of the lower resonator is electrically isolated from the bottom electrode of the upper resonator;
  • FIG. 13A-13H exemplarily show structural schematic diagrams of the fabrication process of the structure shown in FIG. 3A;
  • Figures 14A and 14B illustrate schematic structural diagrams of a method of making the structures shown in Figures 7-8;
  • 15 is a schematic cross-sectional view of a bulk acoustic wave resonator assembly according to an exemplary embodiment of the present disclosure.
  • the electrode of the bottom electrode of the lower resonator is an outer lead.
  • the electrode of the top electrode of the upper resonator is an outer lead.
  • Substrate, optional materials are single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • the acoustic mirror 103 may be a cavity, or a Bragg reflection layer or other equivalent forms.
  • the acoustic mirror 201 is a cavity, which constitutes an acoustic decoupling layer.
  • the bottom electrode can be made of molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys, etc.
  • Piezoelectric layer which can be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, single crystal lithium niobate, single crystal lead zirconate titanate (PZT), single crystal Potassium niobate, single crystal quartz film, or single crystal lithium tantalate and other materials can also be polycrystalline piezoelectric materials (corresponding to single crystal, non-single crystal materials), optional, such as polycrystalline aluminum nitride, Zinc oxide, PZT, etc., can also be a rare earth element doped material containing a certain atomic ratio of the above materials, for example, can be doped aluminum nitride, and doped aluminum nitride contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (La), cerium (Ce), praseodymium (Pr), neody
  • the top electrode can be made of the same material as the bottom electrode, and the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • the top and bottom electrode materials are generally the same, but can also be different.
  • 105,205 Cantilever or cavity between top electrode and piezoelectric layer.
  • 107, 207 Recessed structure.
  • FIG. 2 is a schematic top view of a BAW resonator assembly according to an exemplary embodiment of the present disclosure
  • the AA' line corresponds to the non-electrode connections through the top electrodes of the upper and lower resonators and the bottom electrodes
  • the BB' line corresponds to the cross-section through the electrode connection end of the top electrode of the upper resonator and the non-electrode connection end of the bottom electrode of the upper resonator
  • the C-C' line corresponds to the passage through the lower resonator Section of the electrode connection end of the top electrode and the non-electrode connection end of the bottom electrode of the lower resonator.
  • 3A is a schematic cross-sectional view of a bulk acoustic wave resonator taken along line A-A' in FIG. 2 according to an exemplary embodiment of the present disclosure.
  • a process layer may also be disposed on the top electrode of the resonator, the process layer may cover the top electrode, and the role of the process layer may be a mass adjustment load or a passivation layer.
  • the material of the passivation layer can be a dielectric material, such as silicon dioxide, aluminum nitride, silicon nitride, and the like.
  • two resonators are formed at the same horizontal position of the substrate S, and the two resonators have different spatial positions in the vertical direction or in the thickness direction of the substrate.
  • FIG. 15 is a schematic cross-sectional view of a bulk acoustic wave resonator assembly according to an exemplary embodiment of the present disclosure. As shown in FIG.
  • the resonator assembly includes a first resonator, a second resonator and a third resonator stacked in the thickness direction, and the top electrode 104 of the first resonator and the bottom electrode 202 of the second resonator are between
  • the acoustic decoupling layer 301 constitutes the acoustic mirror of the third resonator.
  • component structures shown in other embodiments of the present disclosure may also be stacked.
  • the effective area of the upper resonator is the overlapping area of the top electrode 204 , the piezoelectric layer 203 , the bottom electrode 202 and the cavity 201 in the thickness direction.
  • the lower resonator is the overlapping area of the cavity 201 , the top electrode 104 , the piezoelectric layer 103 , the bottom electrode 102 , and the acoustic mirror 101 in the thickness direction.
  • the effective area of the top third resonator is the overlapping area of the top electrode 304, the piezoelectric layer 303, the bottom electrode 302 and the cavity 301 in the thickness direction
  • the effective area of the second resonator in the middle is The area is the overlapping area of the cavity 301, the top electrode 204, the piezoelectric layer 203, the bottom electrode 202 and the cavity 201 in the thickness direction
  • the effective area of the lowermost first resonator is the cavity 201, the top electrode 104, the pressure
  • the upper resonator and the lower resonator are acoustically separated by the cavity 201, that is, the cavity 201 constitutes an acoustic decoupling layer between the upper and lower resonators, thus completely avoiding the Acoustic coupling problems that can result from adjacent stacking of two resonators.
  • the cavity 201 as the acoustic decoupling layer can achieve complete acoustic decoupling of the upper and lower resonators, so the performance of the resonators is better.
  • the cavity 201 is directly surrounded by the top electrode 104 of the lower resonator and the bottom electrode 202 of the upper resonator (in other embodiments, the structure defining the position of the cavity also includes the upper resonator and/or the lower resonator.
  • piezoelectric layer such as the structure shown in FIGS. 3A-3C, the overall structure is stable and reliable, and the processing technology is simple.
  • the cavity 201 is disposed between the bottom electrode of the upper resonator and the top electrode of the lower resonator in the thickness direction of the resonator, not only including at least a part of the upper and lower boundaries of the cavity by
  • the case where the lower surface of the bottom electrode of the upper resonator is defined by the upper surface of the top electrode of the lower resonator also includes a process layer (such as a passivation layer) provided on the upper surface of the top electrode of the lower resonator, so that the process layer defines The case of at least a portion of the lower boundary of the cavity 201 .
  • the spatial positions of the plurality of resonators in the vertical direction or in the thickness direction of the substrate are different, and therefore, filtering can be greatly reduced.
  • the area of the resonator for example, can be reduced from the area P1 shown in FIG. 1 to the area P2 shown in FIG. 3A in the case where two resonators are also provided.
  • the bottom electrode 202 of the upper resonator and the top electrode 104 of the lower resonator are electrically connected to each other at the non-electrode connection end.
  • the bottom electrode of the upper resonator is directly connected to the top electrode of the lower resonator
  • the bottom electrode of the upper resonator is directly electrically connected to the top electrode of the lower resonator, and the length of the connection portion is shorter than that in FIG. 1, that is,
  • the transmission path is shortened and the transmission loss is reduced; in addition, the transmission loss is further reduced when the thickness of the electrical signal output through the metal is the sum of the thickness of the top electrode of the lower resonator and the bottom electrode of the upper resonator.
  • the length of the transmission path formed by the bottom electrode of the upper resonator and the top electrode of the lower resonator at the non-connecting end of the electrodes is d, which may be less than 5 ⁇ m.
  • the transmission loss is reduced because the current transmission path to the lower resonator is shortened, for example, can be less than 5 ⁇ m, the thickness of the top electrode 104 of the lower resonator and the thickness of the bottom electrode 202 of the upper resonator It can be thinned, which is conducive to further miniaturization of the resonator.
  • the bottom electrode of the upper resonator and the top electrode of the lower resonator are electrically connected to each other, it is possible to reduce the circuit transmission path loss to the bottom electrode of the upper resonator and the current transmission path loss to the top electrode of the lower resonator.
  • the electrode film thicknesses of the bottom electrode of the upper resonator and the top electrode of the upper resonator can be further reduced simultaneously.
  • the thickness of the top electrode 104 is less than and/or in the case where the resonant frequency of the upper resonator is greater than 0.5 GHz
  • the thickness of the bottom electrode 202 is less than
  • the thickness of the top electrode 104 can be designed to be less than And/or when the resonant frequency of the upper resonator is greater than 3 GHz
  • the thickness of the bottom electrode 202 of the upper resonator may also be less than
  • the thinning of the thickness of the electrode refers to the thinning of the thickness of the part of the electrode within the effective area of the resonator.
  • FIG. 3D is a graph illustrating a comparison of insertion loss curves of the structure of FIG. 3A with respect to the structure of FIG. 1 .
  • FIG. 3D is a comparison of the insertion loss curve (solid line) using the structure of FIG. 3A of the present disclosure and the insertion loss curve (dotted line) of the traditional structure of FIG. 1 in the 3.5G frequency band. It can be seen that using FIG. 3A of the present disclosure After the structure, the insertion loss is increased by about 0.1dB due to the reduction of electrode loss.
  • the bottom electrode of the upper resonator and the top electrode of the lower resonator may be electrically connected to each other only at part of the non-electrode connection ends; alternatively, the bottom electrode of the upper resonator and the top electrode of the lower resonator may be electrically connected to each other only at the electrode connection ends connection; or the bottom electrode of the upper resonator and the top electrode of the lower resonator can be electrically connected to each other only at all or part of the non-electrode connection ends; or the bottom electrode of the upper resonator and the top electrode of the lower resonator are not only at the electrode connection end They are electrically connected to each other, and are also electrically connected to each other at the non-electrode connection end.
  • the height of the cavity is
  • the maximum width of the effective area of the resonator is greater than 100 ⁇ m
  • the stress of the lower resonator can be controlled to bend in the direction of the lower air cavity, and/or the stress of the upper resonator can be controlled to make the cavity 201 bend. It is bent toward the upper air cavity, and the top electrode of the final formed lower resonator is concave downward, and/or the bottom electrode of the upper resonator is convex upward.
  • a support can be added between the upper and lower resonators in the cavity 201, and the support can be connected to the lower resonator.
  • the top or top electrode of the upper resonator is in contact, and the height of the support is less than or equal to the height of the cavity, which means that the top of the support is in contact with the bottom or bottom electrode of the upper resonator, and the height of the support is less than the height of the cavity means that the top of the support is in contact with The upper resonator is not in contact.
  • the top of the support member is in contact with the upper resonator, which plays a supporting role.
  • a support can be added between the upper and lower resonators in the cavity 201, and the support can be connected to the lower resonator.
  • the top or top electrode of the upper resonator is in contact, and the height of the support is less than or equal to the height of the cavity, which means that the top of the support is in contact with the bottom or bottom electrode of the upper resonator, and the height of the support is less than the height of the cavity means that the top of the support is in contact with The upper resonator is not in contact.
  • the top of the support member is in contact with the upper resonator, which plays a supporting role.
  • the work of the resonator mainly uses the piezoelectric ⁇ inverse piezoelectric effect to convert the elastic energy of the longitudinal vibration and the electric energy of the applied electric field to each other, and the energy loss during the working process consists of three parts: (1) The heat loss of the internal vibration of the piezoelectric layer , (2) electrode loss, (3) transverse wave dissipation loss: the first loss reduction requires the improvement of the piezoelectric material itself, such as the use of single crystal aluminum nitride with low loss; the second loss is generally only in high At high frequencies (>3GHz), the thin electrode thickness plays a major role; in order to reduce the transverse wave dissipation loss, as shown in FIG. 3A, an acoustic boundary structure is provided in the resonator assembly according to the present disclosure.
  • the top electrode 204 of the upper resonator is formed with a concave structure 207, and the resonance frequency of the part where the concave structure 207 is provided is higher than the resonance frequency of the effective area of the upper resonator, so the resonance frequency below the effective area can be suppressed.
  • Shear wave loss, the degree of suppression is proportional to the width d207 of this structure.
  • the top electrode of the upper resonator is also provided with a protruding structure 206, and the resonant frequency of the part where the protruding structure 206 is arranged is lower than the resonant frequency of the effective area of the upper resonator, so the shear wave loss above the resonant frequency of the effective area can be suppressed, suppressing
  • the extent varies periodically with the width d206 of the raised structure, and its width needs to be appropriately selected.
  • the acoustic impedance of this part is different from the effective area, so that part of the shear wave capability can be reflected and energy loss can be reduced.
  • the top electrode 204 of the upper resonator is also provided with a cantilever 205, and the cantilever 205 forms a gap structure between the top electrode of the upper resonator and the piezoelectric layer (the gap can also be provided with a dielectric material), which changes the pressure.
  • the electric field on the surface of the electric layer 203 further changes the local vibration form of the piezoelectric layer 203 , thereby suppressing the overflow of shear wave energy, and the suppression degree changes periodically with the width d205 of the cantilever 205 .
  • the top electrode of the lower resonator is provided with a concave structure 107, a raised structure 106, and a cantilever 105, and the cantilever 105 forms a gap structure between the top electrode of the lower resonator and the piezoelectric layer (the gap can also be provided with a dielectric material) .
  • the working principles of the concave structure 107 , the convex structure 106 and the cantilever 105 are the same as above, and will not be repeated here.
  • the convex and concave portions include both convex and concave portions as an example for illustration, but, as can be understood by those skilled in the art, the convex and concave portions may also include only protrusions or only concave portions. sunken.
  • the convex in the convex and concave portion in which the convex and the concave are provided at the same time, the convex is located outside the concave, but the present disclosure is not limited thereto, and the convex may also be located inside the concave. All of the above are within the protection scope of the present disclosure.
  • the boundary of the cavity 201 is laterally outside the inner edge of the cantilever 105, and for the cantilever 105, in FIG. 3A, the inner edge of the cantilever 105 and the acoustic
  • the lateral distance between the boundaries of the mirrors 101 is taken as the width d105 of the cantilever 105, as shown in FIG. 3A.
  • a wing bridge portion refers to a structure having cantilevered wings and/or bridge portions, and in the structure shown in FIG. 3A , both the top electrodes 104 and 204 are provided with wing bridge portions.
  • FIG. 3B is a schematic cross-sectional view of a bulk acoustic wave resonator taken along line BB' in FIG. 2 according to an exemplary embodiment of the present disclosure
  • the upper and lower resonators are Wing bridges and raised recesses are also provided, and the top electrode 104 of the lower resonator is electrically connected to the bottom electrode 202 of the upper resonator.
  • FIG. 3B it can be seen that the electrode connections of the top electrode 204 are provided with bridges.
  • FIG. 3C is a schematic cross-sectional view of the BAW resonator taken along the line CC' in FIG. 2 according to an exemplary embodiment of the present disclosure
  • the upper and lower resonators are provided with wing bridges and The recessed portion is raised, and the top electrode 104 of the lower resonator is electrically connected with the bottom electrode 202 of the upper resonator.
  • a bridge portion is provided at the electrode connection portion of the lower resonator.
  • the outer edge of the wing bridge portion 105 disposed on the bottom electrode is outside the edge of the bottom electrode 102 in the lateral direction, which is beneficial to prevent the formation of the top electrode 104, piezoelectric
  • the vertical structure of layer 103, bottom electrode 102 which can degrade resonator performance.
  • FIG. 4-8 are schematic cross-sectional views of a bulk acoustic wave resonator taken along line AA' in FIG. 2, wherein the upper and lower resonators are provided with wing bridges and protrusions, according to various exemplary embodiments of the present disclosure In the recessed portion, the top electrode of the lower resonator is electrically connected with the bottom electrode of the upper resonator.
  • the non-electrode connection end of the top electrode 104 is provided with a bridge portion 105
  • the non-electrode connection end of the top electrode 204 is provided with a cantilever 205
  • the acoustic boundary structure includes bridges 105 disposed in the top electrode 104 and cantilevers 205 in the top electrode 204 .
  • the inner edges of the bridge portion 105 and the cantilever 205 are located inside the boundary of the cavity 201 in the lateral direction.
  • the lateral distance between the inner edge of the cantilever 105 and the boundary of the acoustic mirror 101 is used as the width d105 of the cantilever 105; for the bridge 205, in FIG. 4, Taking the lateral distance between the inner edge of the bridge portion 205 and the boundary of the cavity 201 as the width d205 of the bridge portion 205, in FIG. 4, since the outer edge of the bridge portion 205 is outside the boundary of the cavity 201, the bridge portion The width d205 of 205 is the distance in the lateral direction from the inner edge of the bridge portion 205 to the boundary of the acoustic mirror 101 , rather than the actual width of the bridge portion 205 .
  • the non-electrode connection end of the top electrode 104 is provided with a protruding structure 106 and a concave structure 107
  • the non-electrode connection end of the top electrode 204 is provided with a convex structure 206 and a concave structure 207
  • the acoustic boundary structure includes a protruding structure 106 , a recessed structure 107 , a cantilever 105 disposed at the non-electrode connecting end of the top electrode 104 , and a bridge portion 205 at the non-electrode connecting end of the top electrode 204 .
  • a raised structure 206 and a recessed structure 207 is provided with a raised structure 206 and a recessed structure 207 .
  • the outer edges of the raised and recessed structures provided by the top electrode define the boundaries of the effective area of the corresponding resonator. As shown in FIG. 5 , the outer edges of the raised and recessed structures are located inside the boundaries of the cavity 201 in the lateral direction. The bridge 205 and the inner edge of the cantilever 105 are located inside the boundary of the cavity 201 in the lateral direction.
  • the lateral distance between the inner edge of the cantilever 105 and the boundary of the acoustic mirror 101 is used as the width d105 of the cantilever 105; for the bridge 205, in FIG. 5, Taking the lateral distance between the inner edge of the bridge portion 205 and the boundary of the cavity 201 as the width d205 of the bridge portion 205, in FIG. 5, since the outer edge of the bridge portion 205 is outside the boundary of the cavity 201, the bridge portion The width d205 of 205 is the distance between the inner edge of the bridge portion 205 in the lateral direction and the boundary of the cavity 201 and not the actual width of the bridge portion 205 .
  • the outer edge of the bridge portion 205 is outside the boundary of the cavity 201 in the lateral direction, which is beneficial to prevent the formation of the top electrode 204, the piezoelectric layer 203, the bottom electrode outside the effective area of the upper resonator 202 forms a vertical structure that affects the performance of the upper resonator.
  • the depressions, protrusions and cantilevers are all located in the top electrode region, the depression and protrusion structures can also be formed on the bottom electrode at similar positions.
  • the bottom electrode is provided with a convex and a concave structure.
  • the non-electrode connection end of the top electrode 104 is provided with a raised structure 106 and a recessed structure 107, and a bridge portion 105, while the non-electrode connection end of the top electrode 204 is provided with a raised structure 206 and a recessed structure 207, and the bridge portion 205 .
  • the acoustic boundary structure includes raised and recessed structures and bridges disposed in the top electrode.
  • the outer edges of the convex and concave structures provided on the top electrode, or the inner edges of the bridge portion, define the boundaries of the effective area of the corresponding resonator. As shown in FIG. 6 , the outer edges of the convex and concave structures are located inside the boundary of the cavity 201 in the lateral direction, and the inner edges of the bridges 105 and 205 are located inside the boundary of the cavity 201 in the lateral direction.
  • the lateral distance between the inner edge of the bridge portion 105 and the boundary of the acoustic mirror 101 is used as the width d105 of the bridge portion 105; for the bridge portion 205, in FIG. 6, Taking the lateral distance between the inner edge of the bridge portion 205 and the boundary of the cavity 201 as the width d205 of the bridge portion 205, in FIG. 6, since the outer edge of the bridge portion 205 is outside the boundary of the cavity 201, the bridge portion The width d205 of 205 is the distance between the inner edge of the cantilever 205 and the boundary of the cavity 201 in the lateral direction rather than the actual width of the bridge 205 .
  • the non-electrode connection end of the top electrode 104 is provided with a raised structure 106 and a recessed structure 107, and a bridge portion 105, while the non-electrode connection end of the top electrode 204 is provided with a raised structure 206 and a recessed structure 207, and the cantilever 205 ; in addition, the bottom electrode 202 of the upper resonator is provided with a raised structure 208 and a recessed structure 209 .
  • FIG. 7 the non-electrode connection end of the top electrode 104 is provided with a raised structure 106 and a recessed structure 107, and a bridge portion 105, while the non-electrode connection end of the top electrode 204 is provided with a raised structure 206 and a recessed structure 207, and the cantilever 205 ; in addition, the bottom electrode 202 of the upper resonator is provided with a raised structure 208 and a recessed structure 209 .
  • FIG. 7 the non-electrode connection
  • the acoustic boundary structures include convex and concave structures, bridges and cantilevers provided at the non-electrode connection ends of the top electrodes 104 and 204 , and non-contact structures provided at the bottom electrode 202 of the upper resonator.
  • the raised and recessed structure of the electrode connection end include convex and concave structures, bridges and cantilevers provided at the non-electrode connection ends of the top electrodes 104 and 204 , and non-contact structures provided at the bottom electrode 202 of the upper resonator.
  • the outer edges of the convex and concave structures provided on the top electrode, or the inner edges of the bridges or cantilevers define the boundaries of the effective area of the corresponding resonator.
  • the outer edges of the convex and concave structures of the top electrode are located at the inner side of the boundary of the cavity 201 in the lateral direction, and the inner edges of the bridges or cantilevers 105 and 205 are located at the inner side of the cavity 201 in the lateral direction. the inside of the border.
  • the lateral distance between the inner edge of the bridge portion 105 and the boundary of the acoustic mirror 101 is used as the width d105 of the bridge portion 105; for the cantilever 205, in FIG. 7, Taking the lateral distance between the inner edge of the cantilever 205 and the boundary of the cavity 201 as the width d205 of the cantilever 205, in FIG. 7, because the outer edge of the cantilever 205 is inside the boundary of the cavity 201, the bridge portion The width d205 of 205 is the actual width of the cantilever 205 .
  • the bottom electrode 102 of the lower resonator is provided with a convex structure 108 and a concave structure 109 .
  • the outer edge of the protruding structure 108 of the bottom electrode 102 is flush with the outer edge of the protruding structure 108 of the top electrode 104
  • the bottom electrode 102 The inner edge of the recessed structure 109 of the top electrode 104 is flush with the inner edge of the recessed structure 107 of the top electrode 104 .
  • the concave structures of one electrode may be in the lateral direction of the other electrode.
  • the inner side of the recessed structure, and the raised structure of one electrode may be inside the raised structure of the other electrode.
  • FIG. 9 is a schematic cross-sectional view of a bulk acoustic wave resonator taken along line AA' in FIG. 2 according to still another exemplary embodiment of the present disclosure, in FIG. 9 , non-electrodes of the top electrodes of the upper and lower resonators The connection ends are respectively provided with suspension wings 105 and 205, and the top electrode of the lower resonator is electrically connected to the bottom electrode of the upper resonator.
  • the inner edges of the flaps 105 and 205 are located inside the boundary of the cavity 201 in the lateral direction.
  • FIG. 10 is a schematic cross-sectional view of a bulk acoustic wave resonator taken along line AA' in FIG. 2 according to still another exemplary embodiment of the present disclosure, wherein the non-electrode connection ends of the top electrodes of the upper and lower resonators are respectively Protruding structures 106 and 206 and recessed structures 107 and 207 are provided, and the top electrode of the lower resonator is electrically connected to the bottom electrode of the upper resonator.
  • the outer edges of the convex and concave structures disposed on the top electrode define the boundary of the effective area of the corresponding resonator.
  • the outer edges of the convex and concave structures of the top electrode are located inside the boundary of the cavity 201 in the lateral direction.
  • the bottom electrode 202 of the upper resonator and the top electrode 104 of the lower resonator are electrically connected to each other.
  • the present disclosure is not limited thereto, and the bottom electrode 202 of the upper resonator and the top electrode 104 of the lower resonator may also be electrically isolated from each other.
  • FIG. 11 is a schematic cross-sectional view of a bulk acoustic wave resonator taken along line A-A' in FIG. 2 according to yet another exemplary embodiment of the present disclosure.
  • FIG. 11 at least a part of the end of the non-electrode connection end of the bottom electrode 202 of the upper resonator in the circumferential direction is provided on the upper surface of the piezoelectric layer 103, and the end of the at least part is in the horizontal direction
  • the top electrode 104 of the lower resonator is electrically isolated from the bottom electrode 102 of the upper resonator.
  • FIG. 12 is a schematic cross-sectional view of a bulk acoustic wave resonator taken along line AA' in FIG. 2 , wherein the upper and lower resonators are provided with bridges and protrusions according to still another exemplary embodiment of the present disclosure
  • the acoustic boundary structure of the recessed portion, in FIG. 12 the end of a part of the non-electrode connection end of the bottom electrode 202 of the upper resonator in the circumferential direction (for example, see the left end in FIG. 12 ) is provided on the piezoelectric layer 103
  • the end of the other part of the non-electrode connection end of the bottom electrode 202 in the circumferential direction eg, the right end in FIG. 12
  • the top electrode 104 of the lower resonator Electrically isolated from the bottom electrode 202 of the upper resonator.
  • the effective area of the upper resonator is A2, and the effective area of the lower resonator is A1.
  • the active areas A1 and A2 are both inside the boundary of the cavity 201 in the lateral direction.
  • the regions between the inner edges of the raised-recessed structures, for the lower and upper resonators, are region I1 and region I2, respectively.
  • the boundary of the effective area A2 is inside the boundary of the effective area A1, and the boundary of the area I2 is inside the boundary of the area I1. If the boundary of the effective area A2 exceeds the boundary of the effective area A1 in the lateral direction, or the boundary of the area I2 exceeds the boundary of the area I1 in the lateral direction, the transverse acoustic wave loss of the upper resonator will increase, and the Q of the upper resonator will increase. value decreases. Therefore, in a further embodiment, the present disclosure restricts the boundaries of the active area A2 and the area I2 to the inner side of the boundaries of the active area A1 and the area I1, respectively, which helps to further improve the Q value of the upper resonator.
  • FIG. 3A The fabrication process of the structure shown in FIG. 3A is exemplarily described below with reference to FIGS. 13A-13G .
  • Step 1 As shown in FIG. 13A, the lower resonator is fabricated by the conventional FBAR process, including fabrication of the first sacrificial material layer corresponding to the acoustic mirror 101, the bottom electrode 102, and the piezoelectric layer 103; then fabrication on the piezoelectric layer 103
  • the second sacrificial material layer may be the same material as the first sacrificial material layer, such as phosphosilicate glass, etc., the first sacrificial material layer and the second sacrificial material layer are in removed in subsequent steps.
  • passivation layers, frequency adjustment, etc. which are not related to the idea of the present patent, are not shown.
  • Step 2 As shown in FIG. 13B , deposit an electrode metal layer for forming the top electrode 104 of the lower resonator on the structure of Step 1 by sputtering or evaporation process, and then deposit the electrode metal layer corresponding to the top electrode 104 The etching is performed through photolithography and etching processes to pattern the top electrode metal layer for forming the top electrode 104 .
  • Step 3 On the structure of Step 2, deposit a raised structure 106 on the metal layer of the top electrode 104 by means of a lift-off process, and deposit a top electrode metal material at a position other than the recessed structure 107 to make The recessed structure 107 is finally formed into the pattern structure of the top electrode 104 as shown in FIG. 13C .
  • Step 4 depositing a third sacrificial material layer for forming the cavity 201, the material of the third sacrificial material layer is PSG (phosphosilicate glass), amorphous silicon, BSG (borosilicate glass), BPSG (borophosphosilicate glass) , USG (Silicic Acid Glass), etc., for the quality of the film layer of the subsequent upper resonator, the surface of the deposited third sacrificial material layer can be flattened by CMP (chemical mechanical polishing) method to obtain as shown in Figure 13D Structure.
  • CMP chemical mechanical polishing
  • Step 5 The bottom electrode 202 and the piezoelectric layer 203 of the upper resonator are fabricated on the structure formed in step 4, and then, a fourth sacrificial material layer corresponding to the gap defined by the cantilever 205 is fabricated on the piezoelectric layer 203 to form As shown in FIG. 13E , the fourth sacrificial material layer may be the same material as the first sacrificial material layer, such as phosphosilicate glass, etc., and the first sacrificial material layer and the fourth sacrificial material layer are removed together in subsequent steps.
  • Step 6 The top electrode 204 of the upper resonator is fabricated on the structure formed in Step 5 to form the structure shown in FIG. 13F .
  • Step 7 depositing the protruding structure 206 through a lift-off process, and depositing a top electrode metal material at a position other than the recessed structure 207 to form the recessed structure 207, and finally forming the top electrode 104 as shown in FIG. 13G graphic structure.
  • Step 8 Remove all sacrificial material layers to form the structure shown in FIG. 3A.
  • the previous steps 1-4 are the same as above.
  • protrusions corresponding to the recessed structures 209
  • recessed structures corresponding to the protruding structures 208
  • a bottom electrode metal layer for the bottom electrode 202 is deposited on the structure of FIG. 14A, and the bottom electrode metal layer is planarized using a CMP process to form the structure shown in FIG. 14B.
  • steps 5-8 above are similar to steps 5-8 above.
  • the fabrication process of the structure shown in FIG. 8 is similar to the fabrication process of the structure shown in FIG. 7 , except that a raised structure 108 and a recessed structure 109 are fabricated on the lower surface of the bottom electrode of the lower resonator, which is similar to that shown in FIG. 14A-
  • step 14B the protrusions corresponding to the recessed structures 209 and the recessed structures corresponding to the raised structures 208 are formed.
  • the protrusions corresponding to the protrusions are formed.
  • the recesses of the structures 108 and the protrusions corresponding to the recessed structures 109 are the same as those for manufacturing the structure shown in FIG. 7 .
  • the fabrication process of the structure shown in FIG. 9 can be obtained by omitting the above-mentioned steps 3 and 7.
  • the fabrication process of the structure shown in FIG. 10 can be obtained by omitting the previous steps 1 and 5.
  • each numerical range except that it is explicitly stated that it does not include the endpoint value, may be the endpoint value, but also the middle value of each numerical range, and these are all within the protection scope of the present disclosure. .
  • upper and lower are relative to the bottom surface of the base of the resonator, and for a component, the side close to the bottom surface is the lower side, and the side away from the bottom surface is the upper side.
  • inner and outer are relative to the center of the effective area of the resonator (ie, the center of the effective area) in the lateral direction or the radial direction, and one side or one end of a component close to the center of the effective area is the inner side or inner end, and the side or end of the part away from the center of the active area is the outer or outer end.
  • being located inside the position means being between the position and the center of the active area in the lateral or radial direction, and being located outside of the position means being farther from the position in the lateral or radial direction than the position Effective regional center.
  • BAW resonators may be used to form filters or electronic devices.
  • the electronic equipment here includes but is not limited to intermediate products such as RF front-end, filter and amplifier modules, and terminal products such as mobile phones, WIFI, and drones.
  • a bulk acoustic wave resonator assembly comprising:
  • the at least two resonators are bulk acoustic wave resonators and are stacked on one side of the substrate in the thickness direction of the substrate, the at least two resonators include a first resonator and a second resonator , the second resonator is above the first resonator, the first resonator has a first top electrode, a first piezoelectric layer, a first bottom electrode and a first acoustic mirror, and the second resonator has a second top electrode, a second piezoelectric layer, a second bottom electrode and a second acoustic mirror,
  • An acoustic decoupling layer is arranged between the first top electrode and the second bottom electrode, and the acoustic decoupling layer serves as the second acoustic mirror;
  • At least one electrode is provided with an acoustic boundary structure along the boundary of the active area of the corresponding resonator.
  • the acoustic boundary structure includes a wing bridge.
  • the first top electrode or the first bottom electrode is provided with a first wing bridge portion, and/or the second top electrode or the second bottom electrode is provided with a second wing bridge portion.
  • the inner edge of the wing bridge portion is horizontally inward of the boundary of the acoustic decoupling layer.
  • the first top electrode is provided with a first wing bridge portion, and the second top electrode is provided with a second wing bridge portion;
  • the inner edge of one of the first wing bridge portion and the second wing bridge portion is located outside the inner edge of the other wing bridge portion of the first wing bridge portion and the second wing bridge portion in the horizontal direction.
  • the inner edge of the first wing bridge portion is horizontally inward of the boundary of the first acoustic mirror.
  • the non-electrode connection end of the first bottom electrode is located outside the boundary of the acoustic mirror
  • the outer edge of the first wing bridge portion is located outside the non-electrode connection end of the first bottom electrode in the horizontal direction.
  • the wing bridge portion includes a bridge portion disposed at the non-electrode connection end of the second top electrode;
  • the inner edge of the bridge portion is horizontally inside the boundary of the acoustic decoupling layer, and the outer edge of the bridge portion is horizontally outside the boundary of the acoustic decoupling layer.
  • the acoustic boundary structure includes raised and recessed portions comprising protrusions and/or depressions.
  • the first top electrode or the first bottom electrode is provided with a first protrusion and/or a first recess
  • the second top electrode or the second bottom electrode is provided with a second protrusion and/or a second recess.
  • the outer edges of the raised recesses define the boundaries of the active area of the corresponding resonator.
  • the inner edge of the first protrusion is horizontally outside the inner edge of the second protrusion; and/or
  • the inner edge of the first recess is located outside the inner edge of the second recess in the horizontal direction.
  • the inner edge of the first protrusion is horizontally outside the inner edge of the second protrusion; and/or
  • the inner edge of the first recess is located outside the inner edge of the second recess in the horizontal direction.
  • the outer edge of the raised and recessed portion is horizontally inside the boundary of the acoustic decoupling layer.
  • the first top electrode and the second bottom electrode are electrically connected to each other.
  • the acoustic boundary structure includes a first wing bridge portion disposed at the electrode non-connecting end of the first top electrode;
  • the second bottom electrode is electrically connected to the first top electrode at the first wing bridge portion.
  • the first top electrode and the second bottom electrode are electrically isolated from each other.
  • the acoustic boundary structure includes a first wing bridge portion disposed at the electrode non-connecting end of the first top electrode;
  • At least a part of the end of the non-electrode connection end of the second bottom electrode in the circumferential direction is disposed on the upper surface of the first piezoelectric layer, and the end of the at least part of the second bottom electrode is in the horizontal direction of the first piezoelectric layer.
  • the outside of the wing bridge is disposed on the upper surface of the first piezoelectric layer, and the end of the at least part of the second bottom electrode is in the horizontal direction of the first piezoelectric layer.
  • the end of a part of the non-electrode connection end of the second bottom electrode in the circumferential direction is provided on the upper surface of the first piezoelectric layer, and the non-electrode connection end of the second bottom electrode is arranged in the circumferential direction.
  • An end of a portion is horizontally inside the boundary of the acoustic decoupling layer.
  • the first resonator has a first effective area
  • the second resonator has a second effective area
  • the boundary of the first effective area is outside the boundary of the second effective area in the horizontal direction.
  • a bulk acoustic wave resonator assembly comprising:
  • At least two resonators stacked adjacently from bottom to top in the thickness direction of the component are bulk acoustic wave resonators, the at least two resonators include a first resonator and a second resonator Two resonators, where:
  • An acoustic decoupling layer is provided between the top electrode of the first resonator and the bottom electrode of the second resonator, and the acoustic decoupling layer acts as an acoustic mirror of the second resonator;
  • At least one electrode is provided with an acoustic boundary structure along the boundary of the active area of the corresponding resonator.
  • the at least two resonators include a first resonator, a second resonator, and a third resonator stacked in a thickness direction;
  • a first acoustic decoupling layer is provided between the top electrode of the first resonator and the bottom electrode of the second resonator, and a second acoustic decoupling layer is provided between the top electrode of the second resonator and the bottom electrode of the third resonator , the second acoustic decoupling layer constitutes the acoustic mirror of the third resonator.
  • the boundary of the second acoustic decoupling layer is horizontally outside the boundary of the first acoustic decoupling layer.
  • a method of manufacturing a bulk acoustic wave resonator assembly comprising:
  • Step 1 Form a first structure for a first bulk acoustic wave resonator on the surface of the substrate, the first bulk acoustic wave resonator including a first acoustic mirror, a first bottom electrode, a first piezoelectric layer, a first top electrode;
  • Step 2 setting a patterned sacrificial material layer on the first structure formed in step 1;
  • Step 3 forming a second structure for a second bulk acoustic wave resonator on the structure of step 2, the second bulk acoustic wave resonator includes a second acoustic mirror, a second bottom electrode, a second piezoelectric layer and a second top electrode , the sacrificial material layer is located between the first top electrode and the second bottom electrode in the thickness direction of the substrate;
  • Step 4 releasing the sacrificial material layer to form a cavity that constitutes a second acoustic mirror of the second bulk acoustic wave resonator
  • At least one of the first top electrode, the second top electrode, the first bottom electrode, and the second bottom electrode is provided with an acoustic boundary structure along the effective area of the corresponding bulk acoustic wave resonator.
  • a filter comprising the bulk acoustic wave resonator assembly of any of 1-22.
  • An electronic device comprising the filter according to 24 or the bulk acoustic wave resonator assembly according to any one of 1-22.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本公开涉及一种体声波谐振器组件,包括:基底;至少两个谐振器,所述至少两个谐振器为体声波谐振器且在基底的一侧在基底的厚度方向上叠置,所述至少两个谐振器包括第一谐振器和第二谐振器,第二谐振器在第一谐振器的上方,第一谐振器具有第一顶电极、第一压电层、第一底电极和第一声学镜,第二谐振器具有第二顶电极、第二压电层、第二底电极和第二声学镜,其中:第一顶电极与第二底电极之间设置有空腔形式的声学解耦层,所述声学解耦层作为所述第二声学镜。本公开还涉及一种体声波谐振器组件的制造方法,一种滤波器以及一种电子设备。

Description

带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备 技术领域
本公开的实施例涉及半导体领域,尤其涉及一种体声波谐振器组件及其制造方法,一种具有该谐振器组件的滤波器,以及一种电子设备。
背景技术
随着当今无线通讯技术的飞速发展,小型化便携式终端设备的应用也日益广泛,因而对于高性能、小尺寸的射频前端模块和器件的需求也日益迫切。近年来,以例如为薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR)为基础的滤波器、双工器等滤波器件越来越为市场所青睐。一方面是因为其插入损耗低、过渡特性陡峭、选择性高、功率容量高、抗静电放电(ESD)能力强等优异的电学性能,另一方面也是因为其体积小、易于集成的特点所致。
不过,现实中对于滤波器件的尺寸存在进一步减小的需要。
另外,在现有设计中,体声波谐振器通过串并联组合形成滤波器,需要在一个基底上形成多个谐振器,各个谐振器分立在基底不同水平位置,通过水平金属引线相连,如图1所示,其中虚框内为谐振器100的顶电极104通过导电通孔v连接到谐振器200的底电极102,为了保证电信号传输和制作工艺限制,导电通孔v与谐振器100的顶电极104的连接宽度,导电通孔v的宽度,谐振器100的顶电极104的宽度以及谐振器200的底电极102的宽度均有一定要求,一般总长度>5μm,这导致连接线会引入较大的电学损耗,尤其是对于高频谐振器,在电极厚度<1000A时,会使得插入损耗恶化0.1dB以上。
此外,现实应用中仍存在进一步抑制横向振动模式的声波以增加谐振器的并联谐振阻抗Rp从而提升谐振器的Q值的需求。
发明内容
为缓解或解决现有技术中的上述问题的至少一个方面,提出本公开。
根据本公开的实施例的一个方面,提出了一种体声波谐振器组件,包括:
基底;
至少两个谐振器,所述至少两个谐振器为体声波谐振器且在基底的一侧在基底的厚度方向上叠置,所述至少两个谐振器包括第一谐振器和第二谐振器,第二谐振器在第一谐振器的上方,第一谐振器具有第一顶电极、第一压电层、第一底电极和第一声学镜,第二谐振器具有第二顶电极、第二压电层、第二底电极和第二声学镜,
其中:
第一顶电极与第二底电极之间设置有空腔形式的声学解耦层,所述声学解耦层作为所述第二声学镜;
至少一个电极沿对应谐振器的有效区域的边界设置有声学边界结构。
本公开的实施例还涉及一种体声波谐振器组件,包括:
在所述组件的厚度方向上自下而上相邻叠置的至少两个谐振器,所述至少两个谐振器为体声波谐振器,所述至少两个谐振器包括第一谐振器和第二谐振器,其中:
第一谐振器的顶电极与第二谐振器的底电极之间设置有空腔形式的声学解耦层,所述声学解耦层作为所述第二谐振器的声学镜;且
至少一个电极沿对应谐振器的有效区域的边界设置有声学边界结构。
本公开的实施例也涉及一种体声波谐振器组件的制造方法,包括:
步骤1:在基底的表面上形成用于第一体声波谐振器的第一结构,所述第一体声波谐振器包括第一声学镜、第一底电极、第一压电层、第一顶电极;
步骤2:在步骤1形成的第一结构上设置图形化的牺牲材料层;
步骤3:在步骤2的结构上形成用于第二体声波谐振器的第二结构,第二体声波谐振器包括第二声学镜、第二底电极、第二压电层以及第二顶电极,所述牺牲材料层在基底的厚度方向上位于第一顶电极与第二底电极之间;
步骤4:释放所述牺牲材料层以形成空腔,所述空腔构成第二体声波谐振器的第二声学镜,
其中:
第一顶电极、第二顶电极、第一底电极、第二底电极中的至少一个电 极沿对应体声波谐振器的有效区域设置有声学边界结构。
本公开的实施例又涉及一种滤波器,包括上述的体声波谐振器组件。
本公开的实施例也涉及一种电子设备,包括上述的滤波器或者上述的谐振器组件。
附图说明
以下描述与附图可以更好地帮助理解本公开所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为现有设计中的相邻两个体声波谐振器之间电连接的示意性截面图;
图2为根据本公开的一个示例性实施例的体声波谐振器组件的示意性俯视图;
图3A为根据本公开的一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,其中上下谐振器设置有翼桥部和凸起凹陷部,且下谐振器的顶电极与上谐振器的底电极电连接;
图3B为根据本公开的一个示例性实施例的沿图2中的B-B’线截得的体声波谐振器的示意性截面图,其中上下谐振器设置有翼桥部和凸起凹陷部,且下谐振器的顶电极与上谐振器的底电极电连接;
图3C为根据本公开的一个示例性实施例的沿图2中的C-C’线截得的体声波谐振器的示意性截面图,其中上下谐振器设置有翼桥部和凸起凹陷部,且下谐振器的顶电极与上谐振器的底电极电连接;
图3D为示例性说明图3A的结构相对于图1的结构的插损曲线比较图;
图4-8为根据本公开的不同示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,其中上下谐振器设置有翼桥部和凸起凹陷部,下谐振器的顶电极与上谐振器的底电极电连接;
图9为根据本公开的再一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,其中上下谐振器的顶电极的非电极连接端设置有悬翼,下谐振器的顶电极与上谐振器的底电极电连接;
图10为根据本公开的还一个示例性实施例的沿图2中的A-A’线截 得的体声波谐振器的示意性截面图,其中上下谐振器的顶电极的非电极连接端设置有凸起凹陷部,下谐振器的顶电极与上谐振器的底电极电连接;
图11为根据本公开的又一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,其中上下谐振器设置有翼桥部和凸起凹陷部,下谐振器的顶电极与上谐振器的底电极电学隔离;
图12为根据本公开的还一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,其中上下谐振器设置有翼桥部和凸起凹陷部,下谐振器的顶电极与上谐振器的底电极电学隔离;
图13A-13H示例性示出了图3A所示结构的制作过程的结构示意图;
图14A和14B示例性示出了制作图7-8中所示结构的方法的结构示意图;
图15为根据本公开的一个示例性实施例的体声波谐振器组件的示意性截面图。
具体实施方式
下面通过实施例,并结合附图,对本公开的技术方案作进一步具体的说明。下述参照附图对本公开实施方式的说明旨在对本公开的总体公开构思进行解释,而不应当理解为对本公开的一种限制。
本公开中的附图标记说明如下:
10:下谐振器的底电极的电极对外引线。
20:上谐振器的顶电极的电极对外引线。
S:基底,可选材料为单晶硅、氮化镓、砷化镓、蓝宝石、石英、碳化硅、金刚石等。
101,201:声学镜,声学镜103可为空腔,也可采用布拉格反射层及其他等效形式。声学镜201为空腔,其构成声学解耦层。
102,202:底电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
103,203:压电层,可以为单晶压电材料,可选的,如:单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅(PZT)、单晶铌酸钾、单晶石英薄膜、或者单晶钽酸锂等材料,也可以为多晶压电材料(与单晶相对应,非单晶材料),可选的,如多晶氮化铝、氧化锌、PZT等,还可是包含上 述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等。
104,204:顶电极,其材料可与底电极相同,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。顶电极和底电极材料一般相同,但也可以不同。
105,205:悬翼或者顶电极与压电层之间的空腔。
106,206:凸起结构。
107,207:凹陷结构。
图2为根据本公开的一个示例性实施例的体声波谐振器组件的示意性俯视图,在图2中,A-A’线对应于通过上下谐振器的顶电极的非电极连接端以及底电极的非电极连接端的截面,B-B’线对应于通过上谐振器的顶电极的电极连接端以及上谐振器的底电极的非电极连接端的截面,C-C’线对应于通过下谐振器的顶电极的电极连接端以及下谐振器的底电极的非电极连接端的截面。
图3A为根据本公开的一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图。
虽然没有示出,谐振器的顶电极上还可以设置有工艺层,工艺层可以覆盖顶电极,工艺层的作用可以是质量调节负载或钝化层。钝化层的材料可以为介质材料,如二氧化硅、氮化铝、氮化硅等。
此外,在图3A所示结构中,在基底S的同一水平位置形成两个谐振器,该两个谐振器在竖向方向或者在基底的厚度方向上的空间位置不同。
如本领域技术人员能够理解的,还可以叠置三个谐振器或者更多的谐振器。图15为根据本公开的一个示例性实施例的体声波谐振器组件的示意性截面图。如图15所示,谐振器组件包括在厚度方向上叠置的第一谐振器、第二谐振器和第三谐振器,第一谐振器的顶电极104与第二谐振器的底电极202之间具有声学解耦层201(本实施例中为空腔),第二谐振器的顶电极204与第三谐振器的底电极302之间具有声学解耦层301(本实施例中为空腔),声学解耦层301构成第三谐振器的声学镜。如能够理 解的,也可以叠置本公开的其他实施例中示出的组件结构。
在图3A所示的结构中,示出了上下两个谐振器,其中上谐振器的有效区域为顶电极204、压电层203、底电极202以及空腔201在厚度方向上的重叠区域。下谐振器为空腔201、顶电极104、压电层103、底电极102、声学镜101在厚度方向上的重叠区域。
相应的,在图15中,最上的第三谐振器的有效区域为顶电极304、压电层303、底电极302以及空腔301在厚度方向上的重叠区域,中间的第二谐振器的有效区域为空腔301、顶电极204、压电层203、底电极202以及空腔201在厚度方向上的重叠区域,最下的第一谐振器的有效区域为空腔201、顶电极104、压电层103、底电极102以及空腔101在厚度方向上的重叠区域。
在图3A所示的结构中,上谐振器与下谐振器通过空腔201在声学上分开,即该空腔201构成了上下谐振器之间的声学解耦层,从而完全避免了因为上下两个谐振器相邻叠置可能导致的声学耦合问题。
采用空腔201作为声学解耦层,能够做到上下谐振器的完全声学解耦,所以谐振器的性能更优。进一步的,在空腔201直接由下谐振器的顶电极104和上谐振器的底电极202包围而成(其他实施例中定义空腔位置的结构还包括上谐振器和/或下谐振器的压电层),例如图3A-3C所示的结构,的情况下,整体结构稳定可靠且加工工艺简单。
如本领域的技术人员能够理解的,空腔201在谐振器的厚度方向上设置在上谐振器的底电极与下谐振器的顶电极之间,不仅包括了空腔的上下边界的至少一部分由上谐振器的底电极的下表面与下谐振器的顶电极的上表面限定的情形,也包括了下谐振器的顶电极的上表面设置了工艺层(例如钝化层)从而该工艺层限定空腔201的下边界的至少一部分的情形。这些均在本公开的保护范围之内。
在图3A所示的结构中,因为在基底S的同一水平位置形成多个谐振器,多个谐振器在竖向方向或者在基底的厚度方向上的空间位置不同,因此,可以极大降低滤波器的面积,例如,在同样设置两个谐振器的情况下,可以从图1中所示的面积P1减小为图3A中所示的面积P2。
如图3A所示,上谐振器的底电极202与下谐振器的顶电极104在非 电极连接端彼此电连接。在上谐振器的底电极直接与下谐振器的顶电极相连的情况下,上谐振器的底电极与下谐振器的顶电极直接电学相连,连接部长度相较于图1中变短,即缩短了传输路径,降低传输损耗;另外,电学信号输出通过金属厚度为下谐振器的顶电极与上谐振器的底电极厚度之和,传输损耗也会进一步降低。通过降低电学损耗,最终滤波器的插入损耗得以优化。如图3A所示,上谐振器的底电极与下谐振器的顶电极在电极非连接端形成的传输路径的长度为d,其可以小于5μm。
采用图例如3A-3C的结构,因为到下谐振器的电流传输路径变短,例如可以小于5μm,降低了传输损耗,下谐振器的顶电极104的厚度以及上谐振器的底电极202的厚度可以变薄,有利于谐振器的进一步小型化。在上谐振器的底电极与下谐振器的顶电极彼此电连接的情况下,可以在降低到上谐振器的底电极的电路传输路径损耗以及到下谐振器的顶电极的电流传输路径损耗的同时,可以进一步同时减小上谐振器的底电极以及上谐振器的顶电极的电极膜层厚度。相应的,在下谐振器的谐振频率大于0.5GHz的情况下,顶电极104的厚度小于
Figure PCTCN2021110252-appb-000001
和/或在上谐振器的谐振频率大于0.5GHz的情况下,底电极202的厚度小于
Figure PCTCN2021110252-appb-000002
在进一步的实施例中,在下谐振器的谐振频率在大于3GHz的情况下,顶电极104的厚度可以设计为小于
Figure PCTCN2021110252-appb-000003
和/或在上谐振器的谐振频率大于3GHz的情况下,上谐振器的底电极202的厚度也可以小于
Figure PCTCN2021110252-appb-000004
如能够理解的,在本公开中,电极的厚度的变薄,是指电极在谐振器的有效区域内的部分的厚度变薄。
图3D为示例性说明图3A的结构相对于图1的结构的插损曲线比较图。图3D为3.5G频段采用本公开图3A的结构后的插损曲线图(实线)与采用图1的传统结构的插损曲线(虚线)的比对,可以看到,采用本公开图3A的结构后,插损因电极损耗降低而提升大约0.1dB。
对于上谐振器的底电极与下谐振器的顶电极彼此电连接的情况,在图3A所示的结构中,上谐振器的底电极与下谐振器的顶电极的非电极连接端彼此连接。但是,除了如图3A所示的连接方式之外,还可以有其他的连接方式。例如,上谐振器的底电极与下谐振器的顶电极可以仅在部分非电极连接端彼此电连接;或者,上谐振器的底电极与下谐振器的顶电极 可以仅在电极连接端彼此电连接;或者上谐振器的底电极与下谐振器的顶电极可以仅在全部或部分的非电极连接端彼此电连接;或者上谐振器的底电极与下谐振器的顶电极不仅在电极连接端彼此电连接,而且在非电极连接端彼此电连接。这些均在本公开的保护范围之内。
对于谐振器有效区域最大宽度与空腔高度的比较大时可能发生上下谐振器在空腔内因弯曲等原因接触的情况,如空腔高度为
Figure PCTCN2021110252-appb-000005
谐振器有效区域最大宽度大于100μm时,为了在上下谐振器有效区域内保证空腔201的完整形成,可以控制下谐振器应力使其往下空气腔方向弯曲,和/或控制上谐振器应力使其往上空气腔方向弯曲,最终形成的下谐振器的顶电极向下凹,和/或上谐振器的底电极则向上凸。
虽然控制应力可以降低上下谐振器相互接触的几率,但当谐振器面积较大时,可在空腔201中在上谐振器与下谐振器之间增加支撑件,此支撑件可与下谐振器的顶部或顶电极接触,且支撑件的高度要小于等于空腔高度,等于意味着支撑件顶端与上谐振器的底部或底电极接触,支撑件的高度小于空腔高度意味着支撑件顶端与上谐振器不接触,当因谐振器弯曲导致空腔局部厚度减小时,支撑件顶端才上谐振器接触,起支撑作用。
虽然控制应力可以降低上下谐振器相互接触的几率,但当谐振器面积较大时,可在空腔201中在上谐振器与下谐振器之间增加支撑件,此支撑件可与下谐振器的顶部或顶电极接触,且支撑件的高度要小于等于空腔高度,等于意味着支撑件顶端与上谐振器的底部或底电极接触,支撑件的高度小于空腔高度意味着支撑件顶端与上谐振器不接触,当因谐振器弯曲导致空腔局部厚度减小时,支撑件顶端才上谐振器接触,起支撑作用。
谐振器工作主要是利用压电\反压电效应将纵向振动的弹性能与外加电场的电能进行相互转换,而工作过程中能量损耗由三部分构成:(1)压电层内部振动的热损耗,(2)电极损耗,(3)横向波耗散损耗:其中第一种损耗降低需要对压电材料本身进行提升,如采用损耗小的单晶氮化铝;第二种损耗一般只有在高频(>3GHz)时,电极厚度很薄才会起主要作用;为了降低横向波耗散损耗,如图3A所示,在根据本公开的谐振器组件中设置有声学边界结构。
在图3A中,上谐振器的顶电极204形成有凹陷结构207,设置凹陷 结构207的部分的谐振频率要高于上谐振器的有效区域的谐振频率,因此可以抑制有效区域的谐振频率以下的横波损耗,抑制程度与此结构的宽度d207成正比。上谐振器的顶电极也设置有凸起结构206,设置凸起结构206的部分的谐振频率低于上谐振器的有效区域的谐振频率,因此可以抑制有效区域的谐振频率以上的横波损耗,抑制程度与此凸起结构的宽度d206成周期变化,需要适当选取其宽度,另外,此部分的声学阻抗与有效区域不同,从而可以对一部分横波能力进行反射,降低能量损耗。上谐振器的顶电极204还设置有悬翼205,悬翼205在上谐振器的顶电极与压电层之间形成了一个空隙结构(该空隙也可以设置介电材料),这改变了压电层203表面的电场,进而改变了压电层203局部的振动形态,从而抑制了横波能量的外溢,抑制程度与此悬翼205的宽度d205成周期变化。适当选取d205\d206\d207的值,此三个边界结构可以提升整个频率内上谐振器的Q值。
下谐振器的顶电极设置有凹陷结构107、凸起结构106、悬翼105,悬翼105在下谐振器的顶电极与压电层之间形成了空隙结构(该空隙也可以设置介电材料)。凹陷结构107、凸起结构106、悬翼105作用原理同上,不再赘述。
在本公开的实施例中,以凸起凹陷部包括同时包括凸起和凹陷为例做了说明,但是,如本领域技术人员能够理解的,凸起凹陷部也可以仅包括凸起或者仅包括凹陷。此外,在图示的实施例中,同时设置凸起和凹陷的凸起凹陷部中,凸起位于凹陷的外侧,但是本公开不限于此,凸起也可以位于凹陷的内侧。以上这些均在本公开的保护范围之内。
在本公开的一个实施例中,空腔201的边界在横向方向上处于悬翼105的内边缘的外侧,且对于悬翼105而言,在图3A中,以悬翼105的内边缘与声学镜101的边界之间的横向距离作为悬翼105的宽度d105,如图3A所示。适当选取d105\d106\d107的值,此三个边界结构可以提升下谐振器的Q值。
在本公开中,翼桥部表示具有悬翼和/或桥部的一种结构,在图3A所示的结构中,顶电极104和204均设置有翼桥部。
图3B为根据本公开的一个示例性实施例的沿图2中的B-B’线截得 的体声波谐振器的示意性截面图,在图3B中,与图3A中相似,上下谐振器也设置有翼桥部以及凸起凹陷部,且下谐振器的顶电极104与上谐振器的底电极202电连接。在图3B中,可以看到,顶电极204的电极连接部设置有桥部。
图3C为根据本公开的一个示例性实施例的沿图2中的C-C’线截得的体声波谐振器的示意性截面图,在图3C中,上下谐振器设置有翼桥部和凸起凹陷部,且下谐振器的顶电极104与上谐振器的底电极202电连接。在图3C中,在下谐振器的电极连接部设置有桥部。
在图3A-3C中,设置在底电极的翼桥部105的外边缘在横向方向上处于底电极102的边缘的外侧,这有利于防止在下谐振器的有效区域外形成顶电极104、压电层103、底电极102的垂直结构,该垂直结构会降低谐振器性能。
需要指出的是,在本公开中,不同实施例中相同的附图标记具有相同的定义或含义,因此,以上参照图3A-3C所做的对参数或者部件或结构的描述,也适用于后续实施例中相同的参数、部件或结构。
图4-8为根据本公开的不同示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,其中上下谐振器设置有翼桥部和凸起凹陷部,下谐振器的顶电极与上谐振器的底电极电连接。
如图4所示,顶电极104的非电极连接端设置有桥部105,而顶电极204的非电极连接端设置有悬翼205。在图4所示的实施例中,声学边界结构包括设置在顶电极104中的桥部105以及顶电极204中的悬翼205。如图4所示,桥部105和悬翼205的内边缘在横向方向上位于空腔201的边界的内侧。
对于悬翼105而言,在图4中,以悬翼105的内边缘与声学镜101的边界之间的横向距离作为悬翼105的宽度d105;对于桥部205而言,在图4中,以桥部205的内边缘与空腔201的边界之间的横向距离作为桥部205的宽度d205,在图4中,因为桥部205的外边缘在空腔201的边界的外侧,所以桥部205的宽度d205为桥部205的内边缘到声学镜101的边界在横向方向上的距离,而非桥部205的实际宽度。
如图5所示,顶电极104的非电极连接端设置有凸起结构106和凹 陷结构107,而顶电极204的非电极连接端设置有凸起结构206和凹陷结构207。在图5所示的实施例中,声学边界结构包括设置在顶电极104的非电极连接端的凸起结构106、凹陷结构107、悬翼105,以及在顶电极204的非电极连接端的桥部205,、凸起结构206和凹陷结构207。
如图5所示,顶电极设置的凸起和凹陷结构的外边缘限定对应谐振器的有效区域的边界。如图5所示,凸起和凹陷结构的外边缘在横向方向上位于空腔201的边界的内侧。桥部205和悬翼105的内边缘在横向方向上位于空腔201的边界的内侧。
对于悬翼105而言,在图5中,以悬翼105的内边缘与声学镜101的边界之间的横向距离作为悬翼105的宽度d105;对于桥部205而言,在图5中,以桥部205的内边缘与空腔201的边界之间的横向距离作为桥部205的宽度d205,在图5中,因为桥部205的外边缘在空腔201的边界的外侧,所以桥部205的宽度d205为桥部205的内边缘在横向方向上与空腔201的边界之间的距离而非桥部205的实际宽度。
如图5所示,桥部205的外边缘在横向方向上处于空腔201的边界的外侧,这有利于防止在上谐振器的有效区域之外形成顶电极204、压电层203、底电极202形成的垂直结构,该垂直结构影响上谐振器的性能。
虽然在上述图示的实施例中,凹陷、凸起、悬翼均在顶电极区域,但也可以在相似位置在底电极上形成凹陷、凸起结构。图7和图8所示实施例中,底电极设置有凸起和凹陷结构。
如图6所示,顶电极104的非电极连接端设置有凸起结构106和凹陷结构107,以及桥部105,而顶电极204的非电极连接端设置有凸起结构206和凹陷结构207,以及桥部205。在图6所示的实施例中,声学边界结构包括设置在顶电极中的凸起和凹陷结构以及桥部。
如图6所示,顶电极设置的凸起和凹陷结构的外边缘,或者桥部的内边缘,限定对应谐振器的有效区域的边界。如图6所示,凸起和凹陷结构的外边缘在横向方向上位于空腔201的边界的内侧,桥部105和205的内边缘在横向方向上位于空腔201的边界的内侧。
对于桥部105而言,在图6中,以桥部105的内边缘与声学镜101的边界之间的横向距离作为桥部105的宽度d105;对于桥部205而言, 在图6中,以桥部205的内边缘与空腔201的边界之间的横向距离作为桥部205的宽度d205,在图6中,因为桥部205的外边缘在空腔201的边界的外侧,所以桥部205的宽度d205为悬翼205的内边缘在横向方向上与空腔201的边界之间的距离而非桥部205的实际宽度。
如图7所示,顶电极104的非电极连接端设置有凸起结构106和凹陷结构107,以及桥部105,而顶电极204的非电极连接端设置有凸起结构206和凹陷结构207,以及悬翼205;此外,上谐振器的底电极202设置有凸起结构208以及凹陷结构209。在图7所示的实施例中,声学边界结构包括设置在顶电极104和204的非电极连接端的凸起和凹陷结构、桥部和悬翼,以及设置在上谐振器的底电极202的非电极连接端的凸起和凹陷结构。
如图7所示,顶电极设置的凸起和凹陷结构的外边缘,或者桥部或悬翼的内边缘,限定对应谐振器的有效区域的边界。如图7所示,顶电极的凸起和凹陷结构的外边缘在横向方向上位于空腔201的边界的内侧,桥部或悬翼105和205的内边缘在横向方向上位于空腔201的边界的内侧。
对于桥部105而言,在图7中,以桥部105的内边缘与声学镜101的边界之间的横向距离作为桥部105的宽度d105;对于悬翼205而言,在图7中,以悬翼205的内边缘与空腔201的边界之间的横向距离作为悬翼205的宽度d205,在图7中,因为悬翼205的外边缘在空腔201的边界的内侧,所以桥部205的宽度d205为悬翼205的实际宽度。
图8所示结构与图7所示结构的区别在于,在图8中,下谐振器的底电极102设置有凸起结构108以及凹陷结构109。在图8中,为增加下谐振器的顶电极与底电极的结构对称性,底电极102的凸起结构108的外边缘与顶电极104的凸起结构108的外边缘齐平,底电极102的凹陷结构109的内边缘与顶电极104的凹陷结构107的内边缘齐平。
此外,在本公开中,虽然没有示出,在一个谐振器的底电极与顶电极均设置有凸起结构和凹陷结构的情况下,在横向方向上,一个电极的凹陷结构可以在另一个电极的凹陷结构的内侧,且一个电极的凸起结构可以在另一个电极的凸起结构的内侧。
在图8中,对于宽度d105以及d205采用上面参照附图3A-7的定义 或说明。
图9为根据本公开的再一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,图9中,上下谐振器的顶电极的非电极连接端分别设置有悬翼105和205,下谐振器的顶电极与上谐振器的底电极电连接。在图9中,悬翼105和205的内边缘在横向方向上位于空腔201的边界的内侧。
图10为根据本公开的还一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,其中上下谐振器的顶电极的非电极连接端分别设置有凸起结构106和206,以及凹陷结构107和207,下谐振器的顶电极与上谐振器的底电极电连接。如图10所示,顶电极设置的凸起和凹陷结构的外边缘,限定对应谐振器的有效区域的边界。如图10所示,顶电极的凸起和凹陷结构的外边缘在横向方向上位于空腔201的边界的内侧。
在以上的图3A-图10所示的实施例中,上谐振器的底电极202与下谐振器的顶电极104彼此电连接。但是本公开不限于此,上谐振器的底电极202与下谐振器的顶电极104也可以彼此电学隔离。
图11为根据本公开的又一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图。在图11中,上谐振器的底电极202的非电极连接端沿周向方向上的至少一部分的端部设置于压电层103的上表面,且所述至少一部分的端部在水平方向上处于顶电极104的声学边界结构(翼桥部和凸起凹陷部)的外侧。因此,图11中,下谐振器的顶电极104与上谐振器的底电极102电学隔离。
图12为根据本公开的还一个示例性实施例的沿图2中的A-A’线截得的体声波谐振器的示意性截面图,其中上下谐振器设置有包括翼桥部和凸起凹陷部的声学边界结构,在图12中,上谐振器的底电极202的非电极连接端沿周向方向上的一部分的端部(例如参见图12中的左端)设置于压电层103的上表面,底电极202的非电极连接端沿周向方向上的另外一部分的端部(例如图12中的右端)在水平方向上处于空腔201的边界的内侧,下谐振器的顶电极104与上谐振器的底电极202电学隔离。
在图9-12中,对于105-107,以及205-207的表述,以及对于d105、 d106和d107,以及d205、d206和d207,采用上面参照附图3A-7的定义或说明。
在本公开中,如图3A-3C、4-12中所示,上谐振器的有效区域为A2,下谐振器的有效区域为A1。在如图所示的实施例中,有效区域A1和A2在横向方向上均在空腔201的边界的内侧。
在图3A-3C、4-8以及10-12中,在凸起凹陷结构的内边缘之间的区域,对于下谐振器和上谐振器,分别为区域I1和区域I2。
在可选的实施例中,如图3A-3C、4-8以及10-12所示,有效区域A2的边界在有效区域A1的边界的内侧,区域I2的边界在区域I1的边界的内侧。如果有效区域A2的边界在横向方向上超出有效区域A1的边界,或者区域I2的边界在横向方向上超出区域I1的边界,会导致上谐振器的横向声波损耗将增大,上谐振器的Q值降低。因此,在进一步的实施例中,本公开将有效区域A2和区域I2的边界分别限制在有效区域A1和区域I1的边界的内侧,这有助于进一步提高上谐振器的Q值。
下面参照图13A-13G示例性说明图3A所示结构的制作过程。
步骤1:如图13A所示,以常规FBAR工艺制作下谐振器,包括对应于声学镜101的第一牺牲材料层、底电极102、压电层103的制作;之后在压电层103上制作对应于悬翼105限定的空隙的第二牺牲材料层,第二牺牲材料层可以是与第一牺牲材料层相同的材料,如磷硅玻璃等,第一牺牲材料层和第二牺牲材料层在后续步骤中一起去除。在图13A-13G中,钝化层、频率调节成等与本专利思想关系不大的膜层并未示出。
步骤2:如图13B所示,在步骤1的结构上以溅射或蒸镀工艺等沉积用于形成下谐振器的顶电极104的电极金属层,接着,对顶电极104对应的电极金属层通过光刻及刻蚀工艺执行刻蚀,图形化用于形成顶电极104的顶电极金属层。
步骤3:在步骤2的结构上,通过剥离(lift-off)工艺等方式在顶电极104的金属层上沉积凸起结构106,以及通过在凹陷结构107以外的位置沉积顶电极金属材料,制作凹陷结构107,最后形成如图13C所示的顶电极104的图形结构。
步骤4:沉积用于形成空腔201的第三牺牲材料层,第三牺牲材料层 的材料如PSG(磷硅玻璃)、非晶硅、BSG(硼硅玻璃)、BPSG(硼磷硅玻璃)、USG(硅酸玻璃)等,为了后续上谐振器的膜层质量,可以利用CMP(化学机械抛光)法对沉积的第三牺牲材料层的表面进行平坦化处理,以得到如图13D所示的结构。第三牺牲材料层最后将被去除以形成空腔201,将上下谐振器在声学上隔离。
步骤5:在步骤4形成的结构上制作上谐振器的底电极202、压电层203,接着,在压电层203上制作对应于悬翼205限定的空隙的第四牺牲材料层,以形成如图13E所示的结构,第四牺牲材料层可以是与第一牺牲材料层相同的材料,如磷硅玻璃等,第一牺牲材料层和第四牺牲材料层在后续步骤中一起去除。
步骤6:在步骤5形成的结构上制作上谐振器的顶电极204,形成如图13F所示的结构。
步骤7:通过剥离(lift-off)工艺等方式沉积凸起结构206,以及通过在凹陷结构207以外的位置沉积顶电极金属材料,制作凹陷结构207,最后形成如图13G所示的顶电极104的图形结构。
步骤8:去除所有牺牲材料层,形成如图3A所示的结构。
以上对图3A所示结构的制作过程也可以适用于图3B-3C、4-6所示结构,仅需在将悬翼替换为桥部的情况下,对顶电极的形状略加改变。
对于图7所示结构的制作过程,前面的步骤1-4与上述相同。之后,如图14A所示,在对应于空腔201的第三牺牲材料层上制作凸起(对应于凹陷结构209)、凹陷结构(对应于凸起结构208)。之后,在图14A的结构上沉积用于底电极202的底电极金属层,以及使用CMP工艺对该底电极金属层进行平坦化,形成如图14B所示的结构。后续步骤与上述步骤5-8类似。
对于图8所示结构的制作过程,其与图7所示结构的制作过程相似,仅仅多了在下谐振器的底电极的下表面制作凸起结构108和凹陷结构109,其类似于图14A-14B中形成对应于凹陷结构209的凸起、对应于凸起结构208的凹陷结构,可以在前面的步骤1中,在形成对应于声学镜101的第一牺牲材料层时,形成对应于凸起结构108的凹陷以及对应于凹陷结构109的凸起。其他步骤与制造图7所示结构的步骤相同。
对于图9所示结构的制作过程,则可以通过省略上述步骤3以及步骤7而获得。
对于图10所示结构的制作过程,则可以通过省略前面的步骤1和步骤5而获得。
需要指出的是,在本公开中,各个数值范围,除了明确指出不包含端点值之外,除了可以为端点值,还可以为各个数值范围的中值,这些均在本公开的保护范围之内。
在本公开中,上和下是相对于谐振器的基底的底面而言的,对于一个部件,其靠近该底面的一侧为下侧,远离该底面的一侧为上侧。
在本公开中,内和外是相对于谐振器的有效区域的中心(即有效区域中心)在横向方向或者径向方向上而言的,一个部件的靠近有效区域中心的一侧或一端为内侧或内端,而该部件的远离有效区域中心的一侧或一端为外侧或外端。对于一个参照位置而言,位于该位置的内侧表示在横向方向或径向方向上处于该位置与有效区域中心之间,位于该位置的外侧表示在横向方向或径向方向上比该位置更远离有效区域中心。
如本领域技术人员能够理解的,根据本公开的体声波谐振器可以用于形成滤波器或电子设备。这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
基于以上,本公开提出了如下技术方案:
1、一种体声波谐振器组件,包括:
基底;
至少两个谐振器,所述至少两个谐振器为体声波谐振器且在基底的一侧在基底的厚度方向上叠置,所述至少两个谐振器包括第一谐振器和第二谐振器,第二谐振器在第一谐振器的上方,第一谐振器具有第一顶电极、第一压电层、第一底电极和第一声学镜,第二谐振器具有第二顶电极、第二压电层、第二底电极和第二声学镜,
其中:
第一顶电极与第二底电极之间设置有声学解耦层,所述声学解耦层作为所述第二声学镜;
至少一个电极沿对应谐振器的有效区域的边界设置有声学边界结构。
2、根据1所述的组件,其中:
所述声学边界结构包括翼桥部。
3、根据2所述的组件,其中:
第一顶电极或第一底电极设置有第一翼桥部,和/或第二顶电极或第二底电极设置有第二翼桥部。
4、根据3所述的组件,其中:
所述翼桥部的内边缘在水平方向上处于所述声学解耦层的边界的内侧。
5、根据4所述的组件,其中:
第一顶电极设置有第一翼桥部,第二顶电极设置有第二翼桥部;
第一翼桥部和第二翼桥部中的一个翼桥部的内边缘在水平方向上位于第一翼桥部和第二翼桥部中的另一个翼桥部的内边缘的外侧。
6、根据4所述的组件,其中:
第一翼桥部的内边缘在水平方向上处于第一声学镜的边界的内侧。
7、根据6所述的组件,其中:
第一底电极的非电极连接端位于声学镜的边界的外侧;且
第一翼桥部的外边缘在水平方向上位于第一底电极的非电极连接端的外侧。
8、根据4所述的组件,其中:
所述翼桥部包括设置在第二顶电极的非电极连接端的桥部;
所述桥部的内边缘在水平方向上处于所述声学解耦层的边界的内侧,且所述桥部的外边缘在水平方向上处于所述声学解耦层的边界的外侧。
9、根据1-8中任一项所述的组件,其中:
所述声学边界结构包括凸起凹陷部,所述凸起凹陷部包括凸起和/或凹陷。
10、根据9所述的组件,其中:
第一顶电极或第一底电极设置有第一凸起和/或第一凹陷,和/或第二顶电极或第二底电极设置有第二凸起和/或第二凹陷。
11、根据8所述的组件,其中:
所述凸起凹陷部的外边缘限定对应谐振器的有效区域的边界。
12、根据9所述的组件,其中:
第一凸起的内边缘在水平方向上位于第二凸起的内边缘的外侧;和/或
第一凹陷的内边缘在水平方向上位于第二凹陷的内边缘的外侧。
13、根据10所述的组件,其中:
第一凸起的内边缘在水平方向上位于第二凸起的内边缘的外侧;和/或
第一凹陷的内边缘在水平方向上位于第二凹陷的内边缘的外侧。
13、根据9所述的组件,其中:
所述凸起凹陷部的外边缘在水平方向上处于所述声学解耦层的边界的内侧。
14、根据1-13中任一项所述的组件,其中:
第一顶电极与第二底电极彼此电连接。
15、根据14所述的组件,其中:
所述声学边界结构包括设置在第一顶电极的电极非连接端的第一翼桥部;
所述第二底电极在所述第一翼桥部电连接到所述第一顶电极。
16、根据1-13中任一项所述的组件,其中:
第一顶电极与第二底电极彼此电学隔离。
17、根据16所述的组件,其中:
所述声学边界结构包括设置在第一顶电极的电极非连接端的第一翼桥部;
所述第二底电极的非电极连接端沿周向方向上的至少一部分的端部设置于第一压电层的上表面,且所述至少一部分的端部在水平方向上处于所述第一翼桥部的外侧。
18、根据17所述的组件,其中:
所述第二底电极的非电极连接端沿周向方向上的一部分的端部设置于第一压电层的上表面,所述第二底电极的非电极连接端沿周向方向上的另外一部分的端部在水平方向上处于所述声学解耦层的边界的内侧。
19、根据1-18中任一项所述的组件,其中:
第一谐振器具有第一有效区域,第二谐振器具有第二有效区域,第一有效区域的边界在水平方向上处于第二有效区域的边界的外侧。
20、一种体声波谐振器组件,包括:
在所述组件的厚度方向上自下而上相邻叠置的至少两个谐振器,所述至少两个谐振器为体声波谐振器,所述至少两个谐振器包括第一谐振器和第二谐振器,其中:
第一谐振器的顶电极与第二谐振器的底电极之间设置有声学解耦层,所述声学解耦层作为所述第二谐振器的声学镜;且
至少一个电极沿对应谐振器的有效区域的边界设置有声学边界结构。
21、根据1或20所述的组件,其中:
所述至少两个谐振器包括在厚度方向上叠置的第一谐振器、第二谐振器和第三谐振器;
第一谐振器的顶电极与第二谐振器的底电极之间具有第一声学解耦层,第二谐振器的顶电极与第三谐振器的底电极之间具有第二声学解耦层,第二声学解耦层构成第三谐振器的声学镜。
22、根据21所述的组件,其中:
第二声学解耦层的边界在水平方向上处于第一声学解耦层的边界的外侧。
23、一种体声波谐振器组件的制造方法,包括:
步骤1:在基底的表面上形成用于第一体声波谐振器的第一结构,所述第一体声波谐振器包括第一声学镜、第一底电极、第一压电层、第一顶电极;
步骤2:在步骤1形成的第一结构上设置图形化的牺牲材料层;
步骤3:在步骤2的结构上形成用于第二体声波谐振器的第二结构,第二体声波谐振器包括第二声学镜、第二底电极、第二压电层以及第二顶电极,所述牺牲材料层在基底的厚度方向上位于第一顶电极与第二底电极之间;
步骤4:释放所述牺牲材料层以形成空腔,所述空腔构成第二体声波谐振器的第二声学镜,
其中:
第一顶电极、第二顶电极、第一底电极、第二底电极中的至少一个电极沿对应体声波谐振器的有效区域设置有声学边界结构。
24、一种滤波器,包括根据1-22中任一项所述的体声波谐振器组件。
25、一种电子设备,包括根据24所述的滤波器或根据1-22中任一项所述的体声波谐振器组件。
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行变化,本公开的范围由所附权利要求及其等同物限定。

Claims (24)

  1. 一种体声波谐振器组件,包括:
    基底;
    至少两个谐振器,所述至少两个谐振器为体声波谐振器且在基底的一侧在基底的厚度方向上叠置,所述至少两个谐振器包括第一谐振器和第二谐振器,第二谐振器在第一谐振器的上方,第一谐振器具有第一顶电极、第一压电层、第一底电极和第一声学镜,第二谐振器具有第二顶电极、第二压电层、第二底电极和第二声学镜,
    其中:
    第一顶电极与第二底电极之间设置有空腔形式的声学解耦层,所述声学解耦层作为所述第二声学镜;
    至少一个电极沿对应谐振器的有效区域的边界设置有声学边界结构。
  2. 根据权利要求1所述的组件,其中:
    所述声学边界结构包括翼桥部。
  3. 根据权利要求2所述的组件,其中:
    第一顶电极或第一底电极设置有第一翼桥部,和/或第二顶电极或第二底电极设置有第二翼桥部。
  4. 根据权利要求3所述的组件,其中:
    所述翼桥部的内边缘在水平方向上处于所述声学解耦层的边界的内侧。
  5. 根据权利要求4所述的组件,其中:
    第一翼桥部的内边缘在水平方向上处于第一声学镜的边界的内侧。
  6. 根据权利要求5所述的组件,其中:
    第一底电极的非电极连接端位于声学镜的边界的外侧;且
    第一翼桥部的外边缘在水平方向上位于第一底电极的非电极连接端的外侧。
  7. 根据权利要求4所述的组件,其中:
    所述翼桥部包括设置在第二顶电极的非电极连接端的桥部;
    所述桥部的内边缘在水平方向上处于所述声学解耦层的边界的内侧, 且所述桥部的外边缘在水平方向上处于所述声学解耦层的边界的外侧。
  8. 根据权利要求1-7中任一项所述的组件,其中:
    所述声学边界结构包括凸起凹陷部,所述凸起凹陷部包括凸起和/或凹陷。
  9. 根据权利要求8所述的组件,其中:
    第一顶电极或第一底电极设置有第一凸起和/或第一凹陷,和/或第二顶电极或第二底电极设置有第二凸起和/或第二凹陷。
  10. 根据权利要求9所述的组件,其中:
    所述凸起凹陷部的外边缘限定对应谐振器的有效区域的边界。
  11. 根据权利要求9所述的组件,其中:
    第一凸起的内边缘在水平方向上位于第二凸起的内边缘的外侧;和/或
    第一凹陷的内边缘在水平方向上位于第二凹陷的内边缘的外侧。
  12. 根据权利要求8所述的组件,其中:
    所述凸起凹陷部的外边缘在水平方向上处于所述声学解耦层的边界的内侧。
  13. 根据权利要求1-12中任一项所述的组件,其中:
    第一顶电极与第二底电极彼此电连接。
  14. 根据权利要求13所述的组件,其中:
    所述声学边界结构包括设置在第一顶电极的电极非连接端的第一翼桥部;
    所述第二底电极在所述第一翼桥部电连接到所述第一顶电极。
  15. 根据权利要求1-12中任一项所述的组件,其中:
    第一顶电极与第二底电极彼此电学隔离。
  16. 根据权利要求15所述的组件,其中:
    所述声学边界结构包括设置在第一顶电极的电极非连接端的第一翼桥部;
    所述第二底电极的非电极连接端沿周向方向上的至少一部分的端部设置于第一压电层的上表面,且所述至少一部分的端部在水平方向上处于所述第一翼桥部的外侧。
  17. 根据权利要求16所述的组件,其中:
    所述第二底电极的非电极连接端沿周向方向上的一部分的端部设置于第一压电层的上表面,所述第二底电极的非电极连接端沿周向方向上的另外一部分的端部在水平方向上处于所述声学解耦层的边界的内侧。
  18. 根据权利要求1-17中任一项所述的组件,其中:
    第一谐振器具有第一有效区域,第二谐振器具有第二有效区域,第一有效区域的边界在水平方向上处于第二有效区域的边界的外侧。
  19. 一种体声波谐振器组件,包括:
    在所述组件的厚度方向上自下而上相邻叠置的至少两个谐振器,所述至少两个谐振器为体声波谐振器,所述至少两个谐振器包括第一谐振器和第二谐振器,其中:
    第一谐振器的顶电极与第二谐振器的底电极之间设置有空腔形式的声学解耦层,所述声学解耦层作为所述第二谐振器的声学镜;且
    至少一个电极沿对应谐振器的有效区域的边界设置有声学边界结构。
  20. 根据权利要求1或19所述的组件,其中:
    所述至少两个谐振器包括在厚度方向上叠置的第一谐振器、第二谐振器和第三谐振器;
    第一谐振器的顶电极与第二谐振器的底电极之间具有第一声学解耦层,第二谐振器的顶电极与第三谐振器的底电极之间具有第二声学解耦层,第二声学解耦层构成第三谐振器的声学镜。
  21. 根据权利要求20所述的组件,其中:
    第二声学解耦层的边界在水平方向上处于第一声学解耦层的边界的外侧。
  22. 一种体声波谐振器组件的制造方法,包括:
    步骤1:在基底的表面上形成用于第一体声波谐振器的第一结构,所述第一体声波谐振器包括第一声学镜、第一底电极、第一压电层、第一顶电极;
    步骤2:在步骤1形成的第一结构上设置图形化的牺牲材料层;
    步骤3:在步骤2的结构上形成用于第二体声波谐振器的第二结构,第二体声波谐振器包括第二声学镜、第二底电极、第二压电层以及第二顶 电极,所述牺牲材料层在基底的厚度方向上位于第一顶电极与第二底电极之间;
    步骤4:释放所述牺牲材料层以形成空腔,所述空腔构成第二体声波谐振器的第二声学镜,
    其中:
    第一顶电极、第二顶电极、第一底电极、第二底电极中的至少一个电极沿对应体声波谐振器的有效区域设置有声学边界结构。
  23. 一种滤波器,包括根据权利要求1-21中任一项所述的体声波谐振器组件。
  24. 一种电子设备,包括根据权利要求24所述的滤波器或根据权利要求1-21中任一项所述的体声波谐振器组件。
PCT/CN2021/110252 2020-08-06 2021-08-03 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备 WO2022028402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010785118.5A CN114070248A (zh) 2020-08-06 2020-08-06 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
CN202010785118.5 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022028402A1 true WO2022028402A1 (zh) 2022-02-10

Family

ID=80119963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110252 WO2022028402A1 (zh) 2020-08-06 2021-08-03 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备

Country Status (2)

Country Link
CN (1) CN114070248A (zh)
WO (1) WO2022028402A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114793102A (zh) * 2022-04-13 2022-07-26 苏州汉天下电子有限公司 体声波谐振器组、制备方法及体声波滤波器、通信器件
CN115276600A (zh) * 2022-09-01 2022-11-01 武汉敏声新技术有限公司 一种薄膜体声波谐振器及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117478094A (zh) * 2022-07-28 2024-01-30 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法、滤波器及电子设备
CN115225051A (zh) * 2022-09-20 2022-10-21 深圳新声半导体有限公司 谐振器结构、用于制作谐振器结构的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009482A (zh) * 2006-01-25 2007-08-01 三星电子株式会社 射频模块及其制造方法和包括射频模块的多射频模块
US20070176710A1 (en) * 2006-01-30 2007-08-02 Tiberiu Jamneala Impedance transforming bulk acoustic wave baluns
US20120218056A1 (en) * 2011-02-28 2012-08-30 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US20120218058A1 (en) * 2011-02-28 2012-08-30 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
CN204481097U (zh) * 2015-01-29 2015-07-15 河南易炫电子科技有限公司 一种用于无线通信的具有桥接器的耦合谐振滤波器
CN111193485A (zh) * 2018-11-14 2020-05-22 天津大学 具有粗糙面的体声波谐振器、滤波器和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009482A (zh) * 2006-01-25 2007-08-01 三星电子株式会社 射频模块及其制造方法和包括射频模块的多射频模块
US20070176710A1 (en) * 2006-01-30 2007-08-02 Tiberiu Jamneala Impedance transforming bulk acoustic wave baluns
US20120218056A1 (en) * 2011-02-28 2012-08-30 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US20120218058A1 (en) * 2011-02-28 2012-08-30 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
CN204481097U (zh) * 2015-01-29 2015-07-15 河南易炫电子科技有限公司 一种用于无线通信的具有桥接器的耦合谐振滤波器
CN111193485A (zh) * 2018-11-14 2020-05-22 天津大学 具有粗糙面的体声波谐振器、滤波器和电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114793102A (zh) * 2022-04-13 2022-07-26 苏州汉天下电子有限公司 体声波谐振器组、制备方法及体声波滤波器、通信器件
CN115276600A (zh) * 2022-09-01 2022-11-01 武汉敏声新技术有限公司 一种薄膜体声波谐振器及其制备方法
CN115276600B (zh) * 2022-09-01 2023-12-08 武汉敏声新技术有限公司 一种薄膜体声波谐振器及其制备方法

Also Published As

Publication number Publication date
CN114070248A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2022028402A1 (zh) 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
WO2022028401A1 (zh) 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
US20100148637A1 (en) Acoustic resonator and its fabricating method
WO2021042741A1 (zh) 压电层具有插入结构的体声波谐振器、滤波器和电子设备
CN113193846B (zh) 一种带混合横向结构特征的薄膜体声波谐振器
CN112117986A (zh) 谐振器制造方法
CN115694412A (zh) 一种集成电容体声波谐振器、滤波器及制造方法
WO2022148387A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2022083352A1 (zh) 体声波谐振器及组件、滤波器、电子设备
JP2007129776A (ja) 薄膜圧電共振器、薄膜圧電デバイスおよびその製造方法
WO2022062910A1 (zh) 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
WO2022001860A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
WO2022228385A1 (zh) 具有加厚电极的体声波谐振器、滤波器及电子设备
WO2024087628A1 (zh) 选择凸起结构的角度以提升性能的体声波谐振器
WO2022228486A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
WO2022001861A1 (zh) 设置插入层以提升功率的体声波谐振器、滤波器及电子设备
CN112039487B (zh) 带导热结构的体声波谐振器及其制造方法、滤波器及电子设备
CN114070255A (zh) 叠置体声波谐振器组件及制造方法、滤波器及电子设备
WO2022028403A1 (zh) 具有混合叠置单元的半导体结构及电子设备
WO2024021844A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2022228384A1 (zh) 体声波谐振器、滤波器及电子设备
WO2022135252A1 (zh) 带温补层的体声波谐振器、滤波器及电子设备
WO2022228452A1 (zh) 体声波谐振器、滤波器及电子设备
WO2024021933A1 (zh) 压电层下侧设置凸起或凹陷的体声波谐振器及制造方法
WO2022083712A1 (zh) 体声波谐振器及组件、滤波器、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21852135

Country of ref document: EP

Kind code of ref document: A1