CN102751101A - 一种铂/石墨烯纳米复合材料及其制备方法与应用 - Google Patents

一种铂/石墨烯纳米复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN102751101A
CN102751101A CN2012102396023A CN201210239602A CN102751101A CN 102751101 A CN102751101 A CN 102751101A CN 2012102396023 A CN2012102396023 A CN 2012102396023A CN 201210239602 A CN201210239602 A CN 201210239602A CN 102751101 A CN102751101 A CN 102751101A
Authority
CN
China
Prior art keywords
rgo
composite material
nano composite
platinum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102396023A
Other languages
English (en)
Other versions
CN102751101B (zh
Inventor
翟茂林
张琦璐
张有为
彭静
李久强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201210239602.3A priority Critical patent/CN102751101B/zh
Publication of CN102751101A publication Critical patent/CN102751101A/zh
Application granted granted Critical
Publication of CN102751101B publication Critical patent/CN102751101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种铂/石墨烯纳米复合材料及其制备方法与应用。本发明以γ射线或电子束辐射诱导一步还原氧化石墨与铂金属前驱体,得到了铂负载量为1.0~15wt%的Pt/RGO纳米复合材料。Pt纳米粒子均匀分布在RGO片层上,其平均直径为1.8nm,粒径分布在2nm以内。铂金属纳米粒子的负载可以提高氧化石墨的还原程度、产物的导电性和石墨烯片层的表面利用率。相较于氧化石墨和单纯的石墨烯,本方法所制备的纳米复合材料应用在超级电容器电极材料上时有更高的比电容和更好的大电流倍率性。

Description

一种铂/石墨烯纳米复合材料及其制备方法与应用
技术领域
本发明涉及一种铂/石墨烯纳米复合材料及其制备方法与应用。
背景技术
超级电容器是性能介于传统电容器和电池之间的一种新型储能装置,兼有电池高比能量和传统电容器高比功率的特点。此外,超级电容器还具有循环寿命长、能瞬间大电流充放电、工作温度范围宽等优点,因此,它在信息存储、通讯工程、电动汽车等领域有着独特的应用优势和广阔的应用前景。超级电容器根据储能机理的不同,可分为电化学双电层电容器(Electric double layer capacitors)和法拉第准电容器(Faradicpseudocapacitors)。双电层电容器的储能是基于碳电极/电解液界面上双电层的电荷分离,其充放电过程是一个单纯的静电过程,没有电化学反应发生;准电容器的工作原理则是基于金属氧化物或导电聚合物的表面快速、可逆的法拉第反应产生的准电容来进行充放电。
碳材料具有高比表面积、高性价比、结构稳定等优点,是电化学双电层电容器最常用的电极材料。但一般碳材料(如碳纳米管)的比电容较低,因此寻找新型碳材料或其复合材料来提高超级电容器的比电容成为研究热点。石墨烯是一种由碳原子以sp2杂化轨道组成二维蜂窝状六角晶格的平面薄膜,它只有一个碳原子厚度,是目前已知最薄的一种材料。石墨烯具有优异的导电性,热稳定性和机械性能,同时石墨烯纳米片还具有高的化学稳定性、比表面积和宽的电化学窗口,作为超级电容器的电极材料具有广阔的应用前景。
氧化石墨还原法是目前制备石墨烯成本最低且最容易实现规模化生产的石墨烯制备方法。它是将天然石墨(Graphite)与强酸和强氧化物质反应生成氧化石墨(GraphiteOxide,GO),然后经过超声分散并加入还原剂去除GO表面的含氧基团,如羧基、环氧基和羟基,得到还原氧化石墨烯(Reduced Graphite Oxide,RGO)【中国发明专利,ZL201010587400.9】。一般的化学法还原过程中需要用到有毒的强还原剂肼和硼氢化钠或是要求在高温或强腐蚀性条件下进行【a.Y.Si,E.T.Samulski,Nano Lett,2008,8,1679-1682;b.中国发明专利,ZL201010251395.4】,这些都限制了石墨烯的规模化生产。
发明内容
本发明的目的是提供一种简单、适合宏量制备铂/石墨烯(Pt/RGO)纳米复合材料的方法。
本发明所提供的制备Pt/RGO的方法,包括下述步骤:
1)将氧化石墨(GO)分散于溶剂中进行超声剥离处理,得到氧化石墨溶液;其中,所述溶剂选自下述任意至少一种:乙二醇、丙三醇、N-甲基吡咯烷酮(NMP)、N,N-甲基甲酰胺(DMF)、去离子水和离子液体的水溶液;
2)向步骤1)所述氧化石墨溶液中加入氯铂酸,得到混合溶液;
3)采用γ-射线或电子束对步骤2)所述混合溶液进行辐照,过滤,得到Pt/RGO纳米复合材料。
上述方法步骤1)中,GO与溶剂的配比可为0.5~2.5mg∶1mL。所述超声剥离处理的时间为20~60min,所采用的超声功率为650~1200W。
上述方法步骤1)中,所述离子液体的水溶液中的离子液体选自下述任意一种:1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)、1-丁基-3-甲基咪唑硝酸盐(BMIMNO3)、1-烯丙基-3-甲基咪唑氯盐(AMIMCl)和1-乙基-3-甲基咪唑醋酸盐(EMIMAc);所述离子液体的水溶液的浓度为0.04~0.5mol/L。
上述方法步骤2)中,所述氯铂酸浓度为1~5mmol/L。
上述方法步骤3)中,混合溶液的吸收剂量可为20~1000kGy。所述γ-射线具体可为60Coγ-射线;所述电子束具体可为电子加速器产生的电子束。
由于碱性条件有利于GO的还原,碱性越强越有利,所以在对GO溶液进行辐照前,还包括用碱(如0~2mol/LNaOH溶液)调节GO溶液pH值至4~13的步骤。
为了保证还原效果,在对步骤2)所述混合溶液进行辐照前,还包括向混合溶液中通入惰性气体(如氮气、氩气)除掉溶液中氧的步骤。
本发明方法还包括如下步骤:将所述Pt/RGO依次用乙醇和去离子水超声洗涤后再过滤,重复上述洗涤-过滤的操作,直至除去步骤1)中引入的溶剂;然后将产物干燥得到Pt/RGO纳米复合材料。
所述干燥的温度可为60~120℃,时间为12~48h。
上述方法制备得到的铂/石墨烯(Pt/RGO)纳米复合材料也属于本发明的保护范围。本发明所提供的Pt/RGO纳米复合材料中,其中,铂负载量(即铂在复合材料中的质量分数)为1.0~15.0wt%,负载的铂纳米粒子的粒径为1~3nm。
本发明的目的之二是提供一种超级电容器用电极材料。
本发明所提供的超级电容器用电极材料由Pt/RGO纳米复合材料(活性组分)、导电剂和粘合剂组成;其中,所述Pt/RGO纳米复合材料、导电剂和粘结剂的质量比依次为(80~90)∶(5~15)∶5。
所述导电剂可选自下述任意一种:乙炔黑、导电炭黑(Super P)和科琴黑(如ECP);所述粘合剂可选自下述任意一种:聚偏氟乙烯(PVDF),聚四氟乙烯(PTFE)和羧甲基纤维素(CMC)。
本发明的再一个目的是提供一种超级电容器用电极及其制备方法。
本发明所提供的超级电容器用电极是按照包括下述步骤的方法制备得到的:
1)将组成电极材料的Pt/RGO纳米复合材料、导电剂及粘合剂混合,再用分散剂分散均匀,涂抹在集流体(如镍集流体)上;
2)待电极材料干燥后,成型、再次干燥,得到超级电容器用电极。
步骤1)中所述分散剂具体可为N-甲基吡咯烷酮(NMP)。
步骤2)中,成型前后所述干燥的温度可为60~120℃,时间为4~24h。
对上述电极的电化学性能(比电容)进行测定,方法如下:
将上述电极在电解液中抽真空浸泡2个小时后,组装三电极体系,测定其电化学性能。
三电极体系可选用下述任意一种:碱性体系(KOH溶液为电解液,Hg/HgO电极为参比电极);中性体系(Li2SO4溶液为电解液,Ag/AgCl电极为参比电极);酸性体系(H2SO4溶液为电解液,硫酸亚汞电极为参比电极)。
所述电解液的浓度可以选用下述任意一种:1mol/L,2mol/L和6mol/L。
可以用有机电解液代替水相电解液测定较宽电化学窗口下的比电容,所述有机电解液可选用下述任意一种:四氟硼酸四乙基铵/碳酸丙烯酯(Et4NBF4/PC),四乙基铵四氟硼酸盐/乙腈(Et4NBF4/AN)或四氟硼酸四乙基铵/碳酸乙烯酯(Et4NBF4/EC)(支持电解质/有机溶剂)。
可以将模拟电容器取代三电极体系测定样品的比电容,在电解液性质和浓度相同的条件下测得的性能与三电极体系所测定的结果相当。
所述电化学性能表征包括循环伏安曲线、交流阻抗、和恒电流充放电性能。
循环伏安曲线的扫速为1,2,5,10,20,30,40,50,75,100,150,200,300,400,500mV/s。
恒电流充放电性能测定的电流密度为0.05,0.1,0.2,0.4,0.6,0.8,1,1.5,2,3,4,5,7.5,10,15,20,30,40,50,75,100A/g。
交流阻抗谱的频率范围为20kHz~0.01Hz。
以上电极制备的电容器,其比容量达到155F/g,在20A/g电流下比电容保持72%。
上述方法制备的超级电容器电极可应用于电动汽车、电子、家电设施等领域。
本发明制备Pt/RGO纳米复合材料的方法与现有制备方法相比,具有如下优点:
1)本发明方法未涉及有毒的化学试剂,仅使用多元醇作为溶剂,绿色环保,因而安全性强;通过γ-射线或电子束引发的溶剂电子和还原性自由基作为还原剂,且溶剂本身还可同时作为氧化性自由基清除剂和控制纳米粒子粒径大小的保护剂,体系成分简单,使用的溶剂成本低廉易得。
2)本发明方法采用的辐射法利用γ-射线或电子束高能量,高穿透性的特点高效、均匀地同步还原氯铂酸和GO,所采用的制备装置简单,反应条件温和,操作简单,重复性好,适用性强,可进行宏量制备,有良好的工业前景。
3)采用本发明制备的Pt/RGO纳米复合材料中铂纳米粒子具有1.8nm的平均粒径和2nm以内范围的粒径分布;且Pt纳米粒子高度分散在RGO纳米片层上。通过金属纳米粒子的协同还原作用,提高了GO的还原程度及其还原产物的导电性,使产品的比电容和大电流倍率性都有所提高。另外,在Pt纳米粒子负载量为1.5wt%时即有明显的性能改善,低负载量可以降低生产成本,提高产品的利用率。另一方面,通过石墨烯孔径尺寸的保护效应和溶剂产生的简单阴离子的配位作用使负载的Pt纳米粒子有1~3nm的粒径大小和均匀的分布。因此,以Pt纳米粒子为活性物质,石墨烯为载体时,Pt/RGO纳米复合材料还能用于燃料电池催化剂、甘油催化氧化等多种催化反应,大大拓宽了这种复合材料的应用领域。
附图说明
图1为实施例1制备的Pt/RGO的TEM电镜照片(标尺为50nm)、XRD电子衍射图以及铂纳米粒子的粒径分布直方图(统计300个纳米粒子)。
图2为GO、RGO和Pt/RGO的X射线光电子能谱(XPS)中C1s谱图。
图3为GO、RGO和Pt/RGO的比电容随着电流密度变化曲线图,电流密度范围为0.1~20A/g。
具体实施方式
下面通过具体实施例对本发明的方法进行说明,但本发明并不局限于此。
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1、制备Pt/RGO纳米复合材料
1)将100mg的GO超声分散在50mL的乙二醇溶液中,在常温条件下用超声波处理器超声剥离分散1h(超声功率650W)。
2)再加入1.773mL 19.72g/L氯铂酸的乙二醇溶液和48mL 0.52mol/L氢氧化钠的乙二醇溶液,充分混合均匀,混合溶液pH为12。
3)随后,将混合液体转移至辐照管中,通氩气30min除去体系中的氧气,密封管口后于60Coγ-射线在室温下进行辐照,剂量率为300Gy/min,吸收剂量为300kGy。辐照完毕后,将样品用孔径0.45μm的聚丙烯(PP)膜过滤。过滤后的滤饼用乙醇淋洗,每次洗涤时用超声波处理5分钟然后将超声后的溶液再过滤,如此反复数次,以去除残留的乙二醇溶剂;将洗涤后的产物在鼓风烘箱中60℃干燥24小时得到粉末状的Pt/RGO纳米复合材料。
作为空白,将没有加入氯铂酸的混合液体按上述同样的方法制备得到RGO。
图1的Pt/RGO的TEM电镜照片显示辐照还原后,Pt纳米粒子均匀负载在RGO片层上,电子衍射图为对称六边形结构,为典型RGO的衍射图像。Pt纳米粒子的平均粒径为1.8nm,粒径分布狭窄,控制在2nm的范围内。通过等离子体原子发射光谱(ICP-AES)测定样品中铂含量为1.5wt%。
图2为GO、RGO和Pt/RGO的X射线光电子能谱(XPS)中C1s及其拟合谱图。对比图2上和图2中可以看出GO在碱性条件下辐照还原300kGy后,含氧基团被部分移除,碳氧比从2.6升高到4.2。从图2下可以知,加入氯铂酸前驱体协同还原后,GO的还原程度进一步提高,含氧基团量更少,碳氧比(该参数表明氧化石墨烯的还原程度,碳氧比越高,还原越彻底)达到6.6。这说明辐照过程中产生的还原性自由基可以将GO还原,而Pt纳米粒子的存在可以进一步促进GO片层上含氧基团的还原反应。
实施例2、以Pt/RGO纳米复合材料为活性组分的电极材料及电化学性能测试
Pt/RGO纳米复合材料比电容的测量:将25.5mg实施例1制备的Pt/RGO纳米复合材料与3mg乙炔黑及1.5mg PVDF混合,用研钵混合均匀,再用NMP使混合物分散,均匀涂抹在泡沫镍集流体上,60℃干燥4小时,再用压片机将电极片压平,进一步60℃干燥12小时。将干燥好的电极片称重后,在6M KOH电解液中真空浸泡2个小时。然后将工作电极与Hg/HgO参比电极以及石墨辅助电极组装成三电极体系。在不同电流密度下(0.05,0.1,0.2,0.4,0.6,0.8,1,1.5,2,3,4,5,7.5,10,15,20,30,40,50,75,100A/g),测定恒电流充放电性能,在不同扫速下(1,2,5,10,20,30,40,50,75,100,150,200,300,400,500mV/s)测定循环伏安曲线(电化学窗口为-1~0V)。
作为空白,用GO和RGO为活性组分,按上述同样的方法测定比电容。
图3为GO、RGO和Pt/RGO的比电容随电流密度变化曲线图,电流密度范围为0.1~20A/g。对比3条曲线可以看出,在100mA/g的电流密度下,GO、RGO和Pt/RGO的比电容分别为108F/g,127F/g和155F/g。而随着电流密度升高,GO和RGO的比电容都有大幅度的降低,在20A/g的大电流密度下保持率分别为20%和16%,而Pt/RGO纳米复合材料的大电流性能有明显改善,比电容保持了72%。这说明辐照300kGy后,相较于原始的GO,通过含氧基团的移除,RGO的比电容有所提高,但RGO片层上的缺陷使得RGO的电导率很低,所以在大电流密度下,材料的表面利用率降低。而在负载了Pt纳米粒子之后,RGO的还原程度进一步提高,使其比电容有所提高。另外,Pt纳米粒子填补了RGO片层上的缺陷,使得其导电性提高,所以其大电流密度下的比电容可以维持在较高的水平。
实施例3、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤3)中改用电子加速器产生的电子束辐射诱导引发产生溶剂电子和还原性自由基作为还原剂,得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为10wt%,碳氧比为5.2。与实施例2的方法一致,测得Pt/RGO纳米复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO纳米复合材料的性能与实施例1的产品性能相当。
实施例4、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤1)中改选丙三醇为溶剂,还原得到的RGO和Pt/RGO,与实施例2复合材料的方法一致,其中Pt/RGO中Pt的负载量为1.0wt%,碳氧比为7.0。测得Pt/RGO纳米复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO纳米复合材料的性能与实施例1的产品性能相当。
实施例5、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤1)中改选NMP为溶剂,还原得到的RGO和Pt/RGO,与实施例2复合材料的方法一致,其中Pt/RGO中Pt的负载量为2.5wt%,碳氧比为6.2。测得Pt/RGO纳米复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO纳米复合材料的性能与实施例1的产品性能相当。
实施例6、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤1)中改选DMF为溶剂,还原得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为3.0wt%,碳氧比为5.8。与实施例2复合材料的应用方法一致,测得Pt/RGO纳米复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO纳米复合材料的性能与实施例1的产品性能相当。
实施例7、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤1)中改选去离子水(离子液体BMIMPF6为添加剂,浓度为0.04mol/L)为溶剂,还原得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为10wt%,碳氧比为7.2。与实施例2复合材料的方法一致,测得Pt/RGO纳米复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO纳米复合材料的性能与实施例1的产品性能相当。
实施例8、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤1)中改选去离子水(离子液体BMIMNO3为添加剂,浓度为0.15mol/L)为溶剂,还原得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为10.8wt%,碳氧比为6.8。与实施例2复合材料的方法一致,测得Pt/RGO纳米复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO纳米复合材料的性能与实施例1的产品性能相当。
实施例9、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤1)中改选去离子水(离子液体AmimCl为添加剂,浓度为0.25mol/L)为溶剂,还原得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为12wt%,碳氧比为6.5。与实施例2复合材料的方法一致,测得Pt/RGO纳米复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO纳米复合材料的性能与实施例1的产品性能相当。
实施例10、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤1)中改选去离子水(离子液体EMImAc为添加剂,浓度为0.5mol/L)为溶剂,还原得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为11.5wt%,碳氧比为7.0。与实施例2复合材料的方法一致,测得Pt/RGO纳米复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO纳米复合材料的性能与实施例1的产品性能相当。
实施例11、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,在步骤1)中改选乙二醇与水体积比为1∶1的混合溶液为溶剂,还原得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为2.5wt%,碳氧比为6.8。与实施例2复合材料的方法一致,测得Pt/RGO复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO复合材料的性能与实施例1的产品性能相当。
实施例12、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,调节辐照前混合溶液的pH为4.5,得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为14wt%,碳氧比为5.7。与实施例2复合材料的方法一致,测得Pt/RGO复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO复合材料的比电容性能与实施例1的性能相当,但大电流密度下,比电容的保持率低。
实施例13、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,调节剂量为25kGy,得到RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为4.5wt%,碳氧比为3.9。与实施例2复合材料的方法一致,测得Pt/RGO复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO复合材料的比电容性能与实施例1的性能相当,但大电流密度下,比电容下降速度快,20A/g电流密度时比电容保持42%。
实施例14、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,调节剂量为50kGy,得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为1.9wt%,碳氧比为4.2。与实施例2复合材料的应用方法一致,测得Pt/RGO复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO复合材料的比电容性能与实施例1的性能相当。
实施例15、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,调节剂量为100kGy,得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为1.6wt%,碳氧比为4.8。与实施例2复合材料的方法一致,测得Pt/RGO复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO复合材料的比电容性能与实施例1的性能相当。
实施例16、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,调节剂量为200kGy,得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为1.5wt%,碳氧比为5.9。与实施例2复合材料的应用方法一致,测得Pt/RGO复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO复合材料的比电容性能与实施例1的性能相当。
实施例17、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,调节剂量为400kGy,得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为1.2wt%,碳氧比为7.0。与实施例2复合材料的方法一致,测得Pt/RGO复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO复合材料的比电容性能与实施例1的性能相当。
实施例18、制备Pt/RGO纳米复合材料
与实施例1的还原方法一致,调节剂量为500kGy,得到的RGO和Pt/RGO,其中Pt/RGO中Pt的负载量为1.0wt%,碳氧比为7.2。与实施例2复合材料的方法一致,测得Pt/RGO复合材料的电化学性能。该实施例所述制备RGO及Pt/RGO复合材料的比电容性能与实施例1的性能相当。

Claims (10)

1.一种制备铂/石墨烯纳米复合材料的方法,包括下述步骤:
1)将氧化石墨分散于溶剂中进行超声剥离处理,得到氧化石墨溶液;其中,所述溶剂选自下述任意至少一种:乙二醇、丙三醇、N-甲基吡咯烷酮、N,N-甲基甲酰胺、去离子水和离子液体的水溶液;
2)向步骤1)所述氧化石墨溶液中加入氯铂酸,得到混合溶液;
3)采用γ-射线或电子束对步骤2)所述混合溶液进行辐照,过滤,得到所述铂/石墨烯纳米复合材料。
2.根据权利要求1所述的方法,其特征在于:步骤1)中,所述氧化石墨与溶剂的配比为0.5~2.5mg∶1mL;所述超声剥离处理的时间为20~60min,所述超声剥离处理中采用的超声功率为650~1200W;
步骤1)中,所述离子液体的水溶液中的离子液体选自下述任意一种:1-丁基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑硝酸盐、1-烯丙基-3-甲基咪唑氯盐和1-乙基-3-甲基咪唑醋酸盐;所述离子液体的水溶液的浓度为0.04~0.5mol/L;
步骤2)中,所述氯铂酸浓度为1~5mmol/L;
步骤3)中,所述混合溶液的吸收剂量为20~1000kGy;所述γ-射线为60Coγ-射线;所述电子束为电子加速器产生的电子束。
3.根据权利要求1或2所述的方法,其特征在于:步骤3)前还包括:
1)向所述混合溶液中通入氮气或者惰性气体除掉溶液中氧的步骤;
和/或2)调节所述混合溶液的pH值至4~13的步骤。
4.根据权利要求1-3中任一项所述的方法,其特征在于:所述方法还包括如下步骤:将步骤3)得到的铂/石墨烯纳米复合材料依次用乙醇和去离子水超声洗涤后再过滤,重复上述洗涤-过滤的操作,直至除去步骤1)中引入的溶剂;然后将产物干燥得到纯化的铂/石墨烯纳米复合材料。
5.权利要求1-4中任一项所述方法制备得到的铂/石墨烯纳米复合材料。
6.根据权利要求5所述的铂/石墨烯纳米复合材料,其特征在于:所述铂/石墨烯纳米复合材料中,铂的质量含量为1.0~15.0%,铂纳米粒子的粒径为1~3nm。
7.一种超级电容器用电极材料,由权利要求5或6所述的铂/石墨烯纳米复合材料、导电剂和粘合剂组成;其中,所述铂/石墨烯纳米复合材料、导电剂和粘结剂的质量比依次为(80~90)∶(5~15)∶5。
8.根据权利要求7所述的超级电容器用电极材料,其特征在于:所述导电剂选自下述任意一种:乙炔黑、导电炭黑和科琴黑;所述粘合剂选自下述任意一种:聚偏氟乙烯、聚四氟乙烯和羧甲基纤维素。
9.一种制备超级电容器用电极的方法,包括下述步骤:
1)将组成权利要求7或8所述电极材料中的铂/石墨烯纳米复合材料、导电剂及粘合剂混合,再用分散剂分散均匀,涂抹在集流体上;
2)待电极材料干燥后,成型、再次干燥,得到所述超级电容器用电极。
10.权利要求9所述的方法制备得到的超级电容器用电极。
CN201210239602.3A 2012-07-11 2012-07-11 一种铂/石墨烯纳米复合材料及其制备方法与应用 Active CN102751101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210239602.3A CN102751101B (zh) 2012-07-11 2012-07-11 一种铂/石墨烯纳米复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210239602.3A CN102751101B (zh) 2012-07-11 2012-07-11 一种铂/石墨烯纳米复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN102751101A true CN102751101A (zh) 2012-10-24
CN102751101B CN102751101B (zh) 2016-06-15

Family

ID=47031197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210239602.3A Active CN102751101B (zh) 2012-07-11 2012-07-11 一种铂/石墨烯纳米复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN102751101B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390507A (zh) * 2013-07-04 2013-11-13 复旦大学 一种石墨烯/铂纳米粒子复合纤维电极材料及其制备方法
CN103646789A (zh) * 2013-12-20 2014-03-19 哈尔滨工业大学 一种石墨烯-铂超级电容器复合电极材料的制备方法
CN103861638A (zh) * 2014-03-18 2014-06-18 青岛大学 一种石墨烯复合催化剂的制备方法
CN104043825A (zh) * 2014-06-30 2014-09-17 中国科学技术大学 一种以金属盐析法制备的石墨烯金属复合材料及其制备方法
CN104190412A (zh) * 2014-08-29 2014-12-10 北京大学 一种铂/碳基纳米复合材料及其制备方法与应用
CN105098231A (zh) * 2015-07-24 2015-11-25 黑龙江省科学院技术物理研究所 一种用于燃料电池的石墨烯基双金属复合材料的制备方法
CN105274502A (zh) * 2015-09-25 2016-01-27 天津工业大学 一种通过γ辐照制备石墨烯基纳米贵金属复合材料的新方法
CN105474372A (zh) * 2013-08-09 2016-04-06 国立大学法人北陆先端科学技术大学院大学 氧化物半导体层及其制造方法、以及氧化物半导体的前驱体、氧化物半导体层、半导体元件及电子装置
CN106098394A (zh) * 2016-05-31 2016-11-09 西安交通大学 二维层状氮掺杂Ti3C2“纸”纳米复合材料及其制备方法及用该材料制备复合电极的方法
CN108231429A (zh) * 2018-01-03 2018-06-29 中国工程物理研究院化工材料研究所 基于超级电容器的热丝点火装置及其制备方法
CN108490015A (zh) * 2018-03-15 2018-09-04 中国科学院宁波材料技术与工程研究所 一种含氧石墨烯还原程度的判定方法
CN109500385A (zh) * 2018-09-28 2019-03-22 中北大学 一种激光快速成型用镍/石墨烯复合粉末的制备方法
CN109904000A (zh) * 2019-04-10 2019-06-18 蚌埠学院 一种纳米线状镍基配合物电极材料的制备方法及其应用
WO2019136926A1 (zh) * 2018-01-09 2019-07-18 山东大学 一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法
CN117276568A (zh) * 2023-11-21 2023-12-22 北京石墨烯技术研究院有限公司 催化材料及其制备方法、电池及用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040217A (zh) * 2009-10-26 2011-05-04 国家纳米科学中心 一种石墨烯的制备方法
CN102408109A (zh) * 2011-08-23 2012-04-11 中国科学院上海应用物理研究所 一种还原氧化石墨烯及其制备方法
CN102509639A (zh) * 2011-11-28 2012-06-20 深圳市贝特瑞纳米科技有限公司 超级电容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040217A (zh) * 2009-10-26 2011-05-04 国家纳米科学中心 一种石墨烯的制备方法
CN102408109A (zh) * 2011-08-23 2012-04-11 中国科学院上海应用物理研究所 一种还原氧化石墨烯及其制备方法
CN102509639A (zh) * 2011-11-28 2012-06-20 深圳市贝特瑞纳米科技有限公司 超级电容器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HE HONGKUN & GAO CHAO: "Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: Synthesis, characterization, and catalysis applications", 《SCIENCE CHINA CHEMISTRY》 *
PRASHANT KUMAR等: "Graphene Patterning and Lithography Employing Laser/Electron-Beam Reduced Graphene Oxide and Hydrogenated Graphene", 《MATER. EXPRESS》 *
张馨允等: "辐射法制备Pt-Pd/CNTs 纳米复合材料", 《核技术》 *
王衡东等: "辐射法制备Pt/CNTs 纳米催化剂", 《四川成都辐射研究与辐射工艺研讨会论文集》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390507A (zh) * 2013-07-04 2013-11-13 复旦大学 一种石墨烯/铂纳米粒子复合纤维电极材料及其制备方法
CN103390507B (zh) * 2013-07-04 2016-04-13 宁国市龙晟柔性储能材料科技有限公司 一种石墨烯/铂纳米粒子复合纤维电极材料及其制备方法
CN105474372A (zh) * 2013-08-09 2016-04-06 国立大学法人北陆先端科学技术大学院大学 氧化物半导体层及其制造方法、以及氧化物半导体的前驱体、氧化物半导体层、半导体元件及电子装置
CN103646789A (zh) * 2013-12-20 2014-03-19 哈尔滨工业大学 一种石墨烯-铂超级电容器复合电极材料的制备方法
CN103646789B (zh) * 2013-12-20 2016-06-15 哈尔滨工业大学 一种石墨烯-铂超级电容器复合电极材料的制备方法
CN103861638A (zh) * 2014-03-18 2014-06-18 青岛大学 一种石墨烯复合催化剂的制备方法
CN104043825A (zh) * 2014-06-30 2014-09-17 中国科学技术大学 一种以金属盐析法制备的石墨烯金属复合材料及其制备方法
CN104043825B (zh) * 2014-06-30 2016-03-02 中国科学技术大学 一种以金属盐析法制备的石墨烯金属复合材料及其制备方法
CN104190412B (zh) * 2014-08-29 2016-05-25 北京大学 一种铂/碳基纳米复合材料及其制备方法与应用
CN104190412A (zh) * 2014-08-29 2014-12-10 北京大学 一种铂/碳基纳米复合材料及其制备方法与应用
CN105098231A (zh) * 2015-07-24 2015-11-25 黑龙江省科学院技术物理研究所 一种用于燃料电池的石墨烯基双金属复合材料的制备方法
CN105274502A (zh) * 2015-09-25 2016-01-27 天津工业大学 一种通过γ辐照制备石墨烯基纳米贵金属复合材料的新方法
CN105274502B (zh) * 2015-09-25 2018-04-03 天津工业大学 一种通过γ辐照制备石墨烯基纳米贵金属复合材料的新方法
CN106098394A (zh) * 2016-05-31 2016-11-09 西安交通大学 二维层状氮掺杂Ti3C2“纸”纳米复合材料及其制备方法及用该材料制备复合电极的方法
CN106098394B (zh) * 2016-05-31 2018-05-18 西安交通大学 二维层状氮掺杂Ti3C2“纸”纳米复合材料及其制备方法及用该材料制备复合电极的方法
CN108231429A (zh) * 2018-01-03 2018-06-29 中国工程物理研究院化工材料研究所 基于超级电容器的热丝点火装置及其制备方法
WO2019136926A1 (zh) * 2018-01-09 2019-07-18 山东大学 一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法
CN108490015A (zh) * 2018-03-15 2018-09-04 中国科学院宁波材料技术与工程研究所 一种含氧石墨烯还原程度的判定方法
CN109500385A (zh) * 2018-09-28 2019-03-22 中北大学 一种激光快速成型用镍/石墨烯复合粉末的制备方法
CN109500385B (zh) * 2018-09-28 2021-06-22 中北大学 一种激光快速成型用镍/石墨烯复合粉末的制备方法
CN109904000A (zh) * 2019-04-10 2019-06-18 蚌埠学院 一种纳米线状镍基配合物电极材料的制备方法及其应用
CN117276568A (zh) * 2023-11-21 2023-12-22 北京石墨烯技术研究院有限公司 催化材料及其制备方法、电池及用电装置

Also Published As

Publication number Publication date
CN102751101B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN102751101A (zh) 一种铂/石墨烯纳米复合材料及其制备方法与应用
Sun et al. Few-layered Ni (OH) 2 nanosheets for high-performance supercapacitors
Xiang et al. High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material
Vijayan et al. Facile fabrication of thin metal oxide films on porous carbon for high density charge storage
Zhao et al. Nitrogen/oxygen co-doped carbon nanofoam derived from bamboo fungi for high-performance supercapacitors
Gao et al. Morphology-controllable synthesis of NiFe2O4 growing on graphene nanosheets as advanced electrode material for high performance supercapacitors
Liu et al. Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high-performance supercapacitor
CN102543464B (zh) ZnO/还原氧化石墨烯/聚吡咯三元复合材料的制备方法及三元复合材料的应用
CN101546651B (zh) 一种纳米石墨片/掺杂二氧化锰复合材料及其制备方法
CN105152170A (zh) 一种蝉蜕基用于电化学电容器的多孔碳材料的制备方法
CN101060038A (zh) 膨胀石墨/金属氧化物复合材料及其制备方法
CN103632857A (zh) 氧化镍/还原氧化石墨烯纳米片复合材料的制备方法
Yan et al. Facile hydrothermal synthesis of urchin‐like NiCo2O4 as advanced electrochemical pseudocapacitor materials
Huang et al. One-step synthesis of nitrogen− fluorine dual-doped porous carbon for supercapacitors
CN103035916A (zh) 一种纳米二氧化锡-石墨烯复合材料的制备方法及其产品
Liu et al. Spear-shaped Mn/Ni bimetallic hydroxide derived from metal-organic frameworks as electrode materials for aqueous and all-solid-state hybrid supercapacitors
CN109411238B (zh) 一种层状双氢氧化物复合电极材料及其制备方法和用途
Bai et al. Simultaneously morphology and phase controlled synthesis of cobalt manganese hydroxides/reduced graphene oxide for high performance supercapacitor electrodes
Niu et al. Hydrothermal ion exchange synthesis of CoM (M= Fe or Mn)/MXene 2D/2D hierarchal architectures for enhanced energy storage
CN104157858A (zh) 分级多孔四氧化三铁/石墨烯纳米线及其制备方法和应用
Chen et al. Preparation and electrochemical properties of NiMnO3@ NiO nanosheets for pseudocapacitors
CN104409219A (zh) 六边形二氧化锰纳米片材料的制备及其作为超级电容器电极材料的应用
CN105036130A (zh) 一种以榆钱为原料制备超级电容器用活性炭材料的方法
Zhang et al. Enhancing redox kinetics by electron orbital modulation for high-performance aqueous energy storage
Anwer et al. Microwave assisted green synthesis of high capacitive TiO2 doped rGO nanosheets for supercapacitor applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant