WO2019136926A1 - 一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法 - Google Patents

一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法 Download PDF

Info

Publication number
WO2019136926A1
WO2019136926A1 PCT/CN2018/091538 CN2018091538W WO2019136926A1 WO 2019136926 A1 WO2019136926 A1 WO 2019136926A1 CN 2018091538 W CN2018091538 W CN 2018091538W WO 2019136926 A1 WO2019136926 A1 WO 2019136926A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
solution
reduced graphene
coated
sno
Prior art date
Application number
PCT/CN2018/091538
Other languages
English (en)
French (fr)
Inventor
慈立杰
彭瑞芹
陈靖桦
李德平
侯广梅
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2019136926A1 publication Critical patent/WO2019136926A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20091Measuring the energy-dispersion spectrum [EDS] of diffracted radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material

Definitions

  • the invention relates to the technical field of gas sensors, in particular to a platinum oxide/tin dioxide nanoparticle cluster gas sensor and a preparation method thereof.
  • Methanol is a simple chemical that is synthesized by large-scale synthesis of coal by gasification and steam reforming. It is an important chemical basic product and organic chemical raw material. In addition, among the world's basic organic chemical raw materials, methanol consumption is second only to ethylene, propylene and benzene, ranking fourth. It is an excellent energy and vehicle fuel. Adding methanol to gasoline in a certain proportion can increase the octane number. And oxygen content, so that the combustion is more sufficient, effectively reducing engine exhaust pollutants. It can also be used in the fields of fine chemicals, plastics, etc. It is used to manufacture various organic products such as formaldehyde, acetic acid and methylamine. It is also one of the important raw materials for pesticides and medicines.
  • Methanol is a substance with a strong toxic, colorless alcohol odor, which can cause damage to the nervous system and blood system of the human body. Exposure to methanol over a certain concentration and time will cause headaches, nausea, stomach pain, fatigue, blurred vision and even blindness, which may endanger life. In recent years, many safety accidents caused by methanol have caused great loss of life and property. Therefore, it is of great significance to detect the concentration of methanol in the environment in real time to protect personnel and production safety.
  • the detection methods of methanol gas mainly include chemical detection method and instrument detection method.
  • the chemical detection method is simple in operation, but has disadvantages such as low sensitivity and poor repeatability.
  • Chemical instrument testing is mainly based on its core components: gas sensor for detection, with high sensitivity, reusability, automation and other advantages, is widely used in industrial production and environmental testing.
  • gas sensors mainly include: semiconductor gas sensing, contact combustion, electrochemical, infrared detection, surface acoustic wave, etc. Among them, semiconductor gas sensors have the most sensitive applications such as high sensitivity and good stability.
  • the traditional metal oxide gas sensor has the largest market share, higher stability and lower cost, but at the same time the working temperature is higher (>200 °C), which greatly increases the high temperature resistance of its subsidiary detection unit.
  • patent application CN105651835 A discloses a preparation method of a methanol gas sensor, wherein the gas sensing material is composed of a graphene-doped Sn(bipyO 2 ) 2 Cl 2 material, but the synthetic material requirement is too high, and special preparation is required, and The response sensitivity is too low (2 at 500 ppm).
  • Patent application CN105699439 A discloses a method for preparing a methanol gas sensor based on a carbon nitride-supported metal and metal oxide composite.
  • the method mainly integrates cobalt-doped molybdenum oxide/titanium dioxide nanosheets on carbon nitride in situ, and utilizes the large specific surface area, mesoporous gas adsorption characteristics and electron transfer of the material to affect the sensitivity of the material. Characteristics to achieve the detection of methanol.
  • this method has problems such as high precursor material price and high preparation conditions, and it is difficult to realize low-cost, high-performance methanol gas sensor preparation.
  • Patent application CN104897727 A discloses a gas sensitive sensor for high-sensitivity multi-gas detection, which mainly uses nano-nickel oxide as a gas-sensitive material, electrochemically deposits a nickel atom layer on ITO glass through a three-electrode system, and then performs simple annealing treatment. After cooling, sonication, etc., nano-nickel oxide with rose-like morphology was obtained, and then a gas sensor was fabricated. At 350 ° C, the response value reached 7 at a methanol concentration of 5 ppm. However, there is still a problem that the operating temperature is too high and the sensitivity is not high.
  • Patent application CN104034758 A discloses an integrated hydrogen sensor of a hybrid graphene film, a noble metal particle and a metal oxide material, and a preparation method thereof, the sensor comprising a substrate, a heating electrode, a thermal conductive insulating layer, a detecting electrode, and a heating electrode on the substrate,
  • the thermally conductive insulating layer between the heating electrode and the detecting electrode further comprises a metal oxide film deposited on the detecting electrode, a noble metal particle deposited on the surface of the metal oxide film, and a graphene film covering the metal oxide film deposited with the noble metal particle on.
  • a sensor has a problem of poor detection sensitivity at low temperature operation.
  • the methanol sensor of the prior art has problems of low sensitivity, high operating temperature, high production cost, and the like, therefore, a methanol sensor with simple process steps, repeatability, high sensitivity, and operation at a lower temperature is developed. It has great application prospects and market value; therefore, it is necessary to develop a new gas sensor.
  • the present invention aims to provide a platinum/tin dioxide (Pt/SnO 2 ) nanoparticle coated with reduced graphene oxide.
  • Pt/SnO 2 platinum/tin dioxide
  • the cluster gas sensor and the preparation method thereof, the methanol sensor prepared by the invention can realize high sensitive detection at a temperature of 110 ° C, can respond quickly, and has high stability; in addition, the preparation method of the invention is simple and controllable, The production cost is low, and it is easy to realize large-scale production, which is very promising.
  • One of the objects of the present invention is to provide a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster.
  • a second object of the present invention is to provide a method for preparing a graphene-depleted Pt/SnO 2 nanoparticle cluster.
  • a third object of the present invention is to provide a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster gas sensor.
  • a fourth object of the present invention is to provide a Pt/SnO 2 nanoparticle cluster coated with the above reduced graphene oxide, a preparation method thereof, and a sensor for preparing the nanoparticle cluster.
  • the present invention discloses a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster for preparing a gas sensor;
  • the nanoparticle cluster is a core-like shell composite structure in which platinum atoms are uniformly distributed in The surface of the tin dioxide forms a cluster of nanoparticles as a core, and the reduced graphene oxide is coated as a shell on the surface of the entire core.
  • the present invention discloses a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster; in particular, the preparation method comprises the following steps:
  • the graphene oxide powder is added to deionized water, ultrasonically dispersed, and then subjected to reduction treatment with a hydroiodic acid solution to obtain a reduced graphene oxide solution.
  • a hydroiodic acid solution to obtain a reduced graphene oxide solution.
  • the reason for choosing hydriodic acid is that hydriodic acid ensures the reduction of partial graphene oxide, and the degree of reduction is controlled by controlling the reaction time.
  • the sample will be dried in a vacuum oven to increase the binding to the substrate and reduce the graphene oxide. It can greatly increase the response of the device to methanol and work with Pt/SnO 2 nanoparticle clusters to increase the sensitivity of the device.
  • a certain amount of the chloroplatinic acid solution is added to the mixed solution of the step 1), then the alkaline substance is added, and the pH of the solution is adjusted to be alkaline to obtain a milky white precursor solution.
  • the hydrothermal synthesis reaction is carried out in a vessel lined with polytetrafluoroethylene.
  • the hydrothermal synthesis reaction will sufficiently reduce the graphene oxide, and finally the graphene oxide is completely reduced to obtain reduced graphene oxide.
  • step 5) After the hydrothermal synthesis reaction in step 4) is completed, the solution is centrifuged, and after separation, the steps of washing, centrifuging and rinsing are repeated with ethanol and deionized water to obtain a gelatinous product.
  • the gelatinous product in the step 5) is dried by a two-step drying method, and then annealed to obtain a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster.
  • the water-soluble tin compound includes: SnCl 4 ⁇ 5H 2 O, SnCl 2 ⁇ 2H 2 O, SnCl 4 , dimethyl tin dichloride, and the like.
  • step 1) the volume ratio of the solvent to dimethylformamide is from 10:1 to 30:1.
  • the ratio of solvent to dimethylformamide added will affect the grain size of the final product.
  • the grain size of the prepared material can be controlled between 10 and 50 nanometers, and a high specific surface area is obtained, which is advantageous for improving the performance of the gas sensor.
  • the volume ratio of the solvent to dimethylformamide is 20:1.
  • This preferred ratio fully takes into account the need for the water-soluble tin compound to meet the operability of the later experiments, and correlates this preferred ratio with the size of the final product particle size to obtain a replicable process.
  • the addition volume of dimethylformamide By controlling the addition volume of dimethylformamide, the agglomeration during the synthesis of the material is inhibited, so as to achieve an effect of increasing the specific area of the material.
  • the solvent is a methanol solution; the addition of the methanol and dimethylformamide materials is advantageous for reducing the agglomeration of the subsequent precursor materials and reducing the particle size of the material.
  • step 1) the stirring time is 30-120 min.
  • the concentration of the reduced graphene oxide solution is 1-5 mg/mL.
  • the alkaline substance includes: NaOH, KOH, ammonia water, or the like.
  • step 3 the pH of the solution is 8-9.
  • the chloroplatinic acid solution is added in an amount to control the Pt:Sn atom ratio of 3:100.
  • step 4 the mass percentage of the reduced graphene oxide solution and the precursor solution is 1:50.
  • the temperature of the hydrothermal synthesis reaction is 180-250 ° C, and the reaction time is 12-24 h.
  • the reaction temperature and time range ensure that the product SnO 2 is obtained and the graphene oxide is completely reduced.
  • the hydrothermal synthesis reaction has a temperature of 180 ° C and a time of 16 h.
  • the reaction temperature and time will help control the morphology of the reaction product.
  • the parameters of the centrifugal separation are: a rotation speed of 5000-8000 r/min, and a time of 10-20 min.
  • the parameters of the centrifugal separation are: a rotational speed of 6500 r/min and a time of 20 min.
  • step 5 the washing, centrifuging and rinsing steps are repeated 5 times each.
  • the two-step drying condition is: vacuum drying, first baking at 60 ° C for 1-2 h, then baking at 120 ° C for 1-3 h.
  • the annealing condition is 500-600 ° C for 1-3 h under a nitrogen atmosphere.
  • the present invention discloses a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster gas sensor; specifically, the preparation method comprises the following steps:
  • the gelatinous product in the above step 5) is spin-coated onto a ceramic substrate by a spin coating process to obtain a ceramic substrate coated with a gel-like film; then, it is subjected to a two-step drying method, and finally Annealing is performed.
  • step (1) depositing an Au electrode on the annealed ceramic substrate in the step (1) by using a standard photolithography process and a metal deposition technique to form a gas sensing device unit and an array, that is, reducing the graphene-encapsulated Pt. /SnO 2 nanoparticle cluster gas sensor.
  • the parameters of the spin coating process are: low speed 600-800r/min, high speed 3000-5000r/min; time is 30-40s, 40-60s respectively.
  • the parameters of the spin coating process are: low speed 650r/min, high speed 4000r/min; time is 30s, 60s respectively.
  • the thickness of the gel film is 1.5-3.0 um, and the thickness of the film is maintained within the thickness range to effectively reduce surface cracking and greatly improve the sensitivity of the device.
  • the two-step drying condition is: vacuum drying, first baking at 60 ° C for 1-2 h, then baking at 120 ° C for 1-3 h.
  • the annealing conditions are: 500-600 ° C for 1-3 h under a nitrogen atmosphere.
  • the Au electrode has a thickness of 200 to 350 nm.
  • the thickness of the Au electrode is 300 nm.
  • the present invention discloses the above-mentioned reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster and a preparation method thereof, and a sensor for preparing the nanoparticle cluster, the application comprising the use of a methanol gas detection and an environmental detection In the field of production safety testing and disaster prevention.
  • the present invention achieves the following beneficial effects:
  • the present invention utilizes a simple chemical synthesis method to prepare a Pt/SnO 2 nanoparticle cluster coated with reduced graphene oxide, exhibits a spillover effect of Pt metal doping, and reduces the grain boundary barrier of the composite material, thereby producing High sensitivity methanol sensor.
  • the graphene oxide is partially reduced by a hydriodic acid solution, and then the degree of reduction is enhanced by combining hydrothermal and nitrogen atmospheres to obtain reduced graphene oxide, thereby increasing the specific surface area and the rate of charge transfer of the composite structure, and improving the basis
  • the sensitivity of this structure is optimized to achieve high sensitivity at 110 ° C, high controllability, and great industrial prospects.
  • the preparation method of the invention is controllable, the chemical synthesis ratio is controllable, and the sensitive material and the special shape design are used to obtain the sensitive device with high sensitivity and low working temperature by constructing the heterojunction and the metal overflow effect, and the preparation process It can be repeated and has great industrial application value.
  • the technology of the present invention can also be extended to form a gas sensor array, which is simple and controllable in process operation.
  • FIG. 1 is a flow chart showing the fabrication of a device for a methanol sensor of the present invention.
  • FIG. 2 is a schematic view showing the structure of a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster prepared by the present invention.
  • Example 3 is an X-ray diffraction pattern of GO, pure tin dioxide, and reduced graphene oxide-coated Pt/SnO 2 nanoparticle clusters prepared in Example 1 of the present invention.
  • FIG. 4 is a SEM and EDS diagram of a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster in Example 1 of the present invention; wherein, FIG. 4(a) is an SEM image, and the inset is a high-resolution SEM image; b) is an EDS map.
  • Fig. 5 is a graph showing the resistance change response of the methanol sensor prepared in Example 1 of the present invention.
  • the existing sensor has problems of low sensitivity, high operating temperature, high production cost, complicated preparation process, and the like. Therefore, the present invention provides a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster.
  • the gas sensor and its preparation method will be further described with reference to the accompanying drawings and specific embodiments.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster comprising the steps of:
  • step 4 mixing the reduced graphene oxide solution in step 2) with the precursor solution in step 3) (mass percentage: 1:50), adding to a container lined with polytetrafluoroethylene, and hydrothermal at 200 ° C Synthesis 16h.
  • step 5) After the hydrothermal synthesis reaction in step 4) is completed, the solution is centrifuged, the rotation speed is controlled at 6000 r/min, and the time is 10 min. After separation, ethanol and deionized water are used, and the washing, centrifuging and rinsing are repeated 5 times respectively to obtain Gummy product.
  • step 6) The gelatinous product in step 5) is first baked at 60 ° C for 2 h, then baked at 120 ° C for 2 h, and finally annealed in a nitrogen atmosphere at 550 ° C for 2 h to obtain a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster. cluster.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster gas sensor comprising the steps of:
  • the colloidal product in the above step 5) is spin-coated onto the ceramic substrate by a spin coating process.
  • the parameters of the spin coating process are: low speed 650 r/min, high speed 4000 r/min; time is 30 s, 60 s, respectively.
  • step (2) depositing an Au electrode on the annealed ceramic substrate in the step (1) by a standard photolithography process and a metal deposition technique to form a gas sensor device unit and an array, wherein the thickness of the Au electrode is 300 nm. That is, the Pt/SnO 2 nanoparticle cluster gas sensor coated with graphene oxide is reduced.
  • the reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster prepared in this embodiment is a core-like shell composite structure; wherein Pt atoms are uniformly distributed on the surface of SnO 2 to form a core, and the reduced graphene oxide is coated as a shell.
  • the structure of the entire core is shown in Figure 2.
  • the reduced graphene oxide-coated Pt/SnO 2 nanoparticle clusters obtained in the present example for preparing a gas sensor were subjected to XRD, SEM, and EDS tests, and the results are shown in Figs. It can be seen from Fig. 3 that the RGO/Pt/SnO 2 composite was synthesized by a simple hydrothermal method, and the incorporation of GO and Pt elements did not change the structure of the tin dioxide rutile. The incorporation of the Pt element exists in the form of a Pt metal element and PtO 2 . The grain size is calculated to be around 10 nm. As shown in Fig.
  • the gas sensor prepared in the present example was subjected to real-time detection using a gas sensing test system under the conditions of a working temperature of 110 ° C and a methanol concentration of 10 ppm to 500 ppm.
  • the results are shown in FIG. 5 .
  • the gas-sensitive response time and recovery time to methanol at 60 ppm are 6 s and 21 s, respectively, and the sensitivity is as high as 60.
  • the device has fast performance response and accurate detection, which can effectively reduce energy consumption and expand the application field.
  • the structural design of this sensitive material has a good choice for methanol. Sex.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster comprising the steps of:
  • step 4 mixing the reduced graphene oxide solution in step 2) with the precursor solution in step 3) (mass percentage: 1:50), adding to a container lined with polytetrafluoroethylene, and hydrothermal at 180 ° C Synthesis 16h.
  • step 5) After the hydrothermal synthesis reaction in step 4) is completed, the solution is centrifuged, the rotation speed is controlled at 6500 r/min, and the time is 20 min. After separation, ethanol and deionized water are used, and the washing, centrifuging and rinsing are repeated 5 times respectively to obtain Gummy product.
  • step 6) The gelatinous product in step 5) is first baked at 60 ° C for 1 h, then baked at 120 ° C for 1 h, and finally annealed at 500 ° C for 3 h under nitrogen atmosphere to obtain a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster. cluster.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster gas sensor comprising the steps of:
  • the gelatinous product in the above step 5) is spin-coated onto the ceramic substrate by a spin coating process.
  • the parameters of the spin coating process are: low speed 600r/min, high speed 3000r/min; time is 40s, 40s, respectively.
  • step (2) depositing an Au electrode on the annealed ceramic substrate in the step (1) by a standard photolithography process or a metal deposition technique to form a gas sensing device unit and an array, wherein the thickness of the Au electrode is 200 nm. That is, the Pt/SnO 2 nanoparticle cluster gas sensor coated with graphene oxide is reduced.
  • the reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster prepared in this embodiment is a core-like shell composite structure; wherein Pt atoms are uniformly distributed on the surface of SnO 2 to form a core, and the reduced graphene oxide is coated as a shell. On the surface of the entire kernel.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster comprising the steps of:
  • step 4 mixing the reduced graphene oxide solution in step 2) with the precursor solution in step 3) (mass percentage: 1:50), adding to a container lined with polytetrafluoroethylene, and hydrothermal at 250 ° C Synthesis for 12h.
  • step 5) After the hydrothermal synthesis reaction in step 4) is completed, the solution is centrifuged, the rotation speed is controlled at 5000r/min, the time is 20min, and after separation, the ethanol and deionized water are used, and the washing, centrifuging and rinsing are repeated 5 times respectively to obtain Gummy product.
  • step 6) The gelatinous product in step 5) is first baked at 60 ° C for 1.5 h, then baked at 120 ° C for 1.5 h, and finally annealed at 600 ° C for 1 h under nitrogen atmosphere to obtain reduced graphene oxide-coated Pt/SnO 2 nanometer. Particle clusters.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster gas sensor comprising the steps of:
  • the gelatinous product in the above step 5) is spin-coated onto the ceramic substrate by a spin coating process.
  • the parameters of the spin coating process are: low speed 800 r/min, high speed 5000 r/min; time is 35 s, 50 s, respectively.
  • step (2) depositing an Au electrode on the ceramic substrate annealed in the step (1) by using a standard photolithography process and a metal deposition technique to form a gas sensing device unit and an array, wherein the thickness of the Au electrode is 350 nm. That is, the Pt/SnO 2 nanoparticle cluster gas sensor coated with graphene oxide is reduced.
  • the reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster prepared in this embodiment is a core-like shell composite structure; wherein Pt atoms are uniformly distributed on the surface of SnO 2 to form a core, and the reduced graphene oxide is coated as a shell. On the surface of the entire kernel.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster comprising the steps of:
  • step 4 mixing the reduced graphene oxide solution in step 2) with the precursor solution in step 3) (mass percentage: 1:50), adding to a container lined with polytetrafluoroethylene, and hydrothermal at 250 ° C Synthesis for 24h.
  • step 5) After the hydrothermal synthesis reaction in step 4) is completed, the solution is centrifuged, the rotation speed is controlled at 8000 r/min, and the time is 10 min. After separation, ethanol and deionized water are used, and the washing, centrifuging and rinsing are repeated 5 times respectively to obtain Gummy product.
  • step 6) The gelatinous product in step 5) is first baked at 60 ° C for 1.5 h, then baked at 120 ° C for 1.5 h, and finally annealed at 580 ° C for 1.5 h under nitrogen atmosphere to obtain reduced graphene oxide-coated Pt/SnO 2 Nanoparticle clusters.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster gas sensor comprising the steps of:
  • the gelatinous product in the above step 5) is spin-coated onto the ceramic substrate by a spin coating process.
  • the parameters of the spin coating process are: low speed 700r/min, high speed 4500 r/min; time is 40s, 55s, respectively.
  • step (2) depositing an Au electrode on the ceramic substrate annealed in the step (1) by using a standard photolithography process and a metal deposition technique to form a gas sensing device unit and an array, wherein the thickness of the Au electrode is 250 nm. That is, the Pt/SnO 2 nanoparticle cluster gas sensor coated with graphene oxide is reduced.
  • the reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster prepared in this embodiment is a core-like shell composite structure; wherein Pt atoms are uniformly distributed on the surface of SnO 2 , aggregated into particle clusters as a core, and reduced graphene oxide. Covered as a shell over the entire surface of the core.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster comprising the steps of:
  • step 4 mixing the reduced graphene oxide solution in step 2) with the precursor solution in step 3) (mass percentage: 1:50), adding to a container lined with polytetrafluoroethylene, and hydrothermal at 230 ° C Synthesis for 18h.
  • step 5) After the hydrothermal synthesis reaction in step 4) is completed, the solution is centrifuged, the rotation speed is controlled at 7500 r/min, and the time is 12 min. After separation, ethanol and deionized water are used, and the washing, centrifuging and rinsing are repeated 5 times respectively to obtain Gummy product.
  • step 6) The gelatinous product in step 5) is first baked at 60 ° C for 1.5 h, then baked at 120 ° C for 1.5 h, and finally annealed at 580 ° C for 1.5 h under nitrogen atmosphere to obtain reduced graphene oxide-coated Pt/SnO 2 Nanoparticle clusters.
  • a method for preparing a reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster gas sensor comprising the steps of:
  • the gelatinous product in the above step 5) is spin-coated onto the ceramic substrate by a spin coating process.
  • the parameters of the spin coating process are: low speed 700r/min, high speed 4500 r/min; time is 40s, 55s, respectively.
  • step (2) depositing an Au electrode on the ceramic substrate annealed in the step (1) by using a standard photolithography process and a metal deposition technique to form a gas sensing device unit and an array, wherein the thickness of the Au electrode is 250 nm. That is, the Pt/SnO 2 nanoparticle cluster gas sensor coated with graphene oxide is reduced.
  • the reduced graphene oxide-coated Pt/SnO 2 nanoparticle cluster prepared in this embodiment is a core-like shell composite structure; wherein Pt atoms are uniformly distributed on the surface of SnO 2 to form a core, and the reduced graphene oxide is coated as a shell. On the surface of the entire kernel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法;所述纳米颗粒团簇为类核壳复合结构,其中,铂原子均匀分布在二氧化锡的表面,形成纳米颗粒团簇作为内核,还原氧化石墨烯作为壳体包覆在整个内核的表面。针对现有技术中传感器存在灵敏度低、工作温度高、生产成本高、制备工艺复杂等问题,提供了一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法,制备的气敏传感器能够在110℃温度下实现高灵敏探测,能够快速响应,同时具备很高的稳定性。

Description

一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法 技术领域
本发明涉及气体传感器技术领域,具体的,涉及一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法。
背景技术
人类的日常生活和生产与周围的环境密切相关,周围环境中有害气体的存在将产生极大的影响,如果气体存在有毒性气体,将带来严重危害甚至死亡。甲醇是一种煤经气化和天热气经蒸汽重整大规模合成的简单化学品,是重要的化工基础产品和有机化工原料。另外,在世界基础有机化工原料中,甲醇消费量仅次与乙烯、丙烯、苯,居第四位,是性能优良的能源和车用燃料,将甲醇按照一定比例加入汽油中可以提高辛烷值和含氧量,使燃烧更为充分,有效降低发动机尾气排放污染物。还可应用于精细化工,塑料等领域,用来制造甲醛、醋酸、甲胺等多种有机产品,同时也是农药、医药的重要原料之一。
甲醇是一种具有较强毒性、无色酒精气味的物质,对人体的神经系统和血液系统会造成损伤。接触甲醇超过一定浓度和时间,将出现头疼、恶心、胃疼、疲倦、视力模糊甚至失明,最终可能危及生命。近年来,由甲醇引发的安全事故很多,均造成极大的生命、财产损失,因此对环境中甲醇浓度进行实时检测,保护人员、生产安全具有重要意义。
甲醇气体的检测方法主要有化学检测法和仪器检测法。化学检测法操作简单,但存在灵敏度不高、重复性差等缺点。化学仪器检测主要是利用其核心部件:气敏传感器进行检测,具有灵敏度高、可重复使用、自动化等优势,被广泛应用到工业生产及环境检测中。气敏传感器根据不同的工作原理主要包括:半导体气敏传感、接触燃烧式、电化学、红外线检测、声表面波等,其中半导体气敏传感器具有灵敏度高、稳定性能好等优势应用最为广泛。其中,传统的金属氧化物制作的气敏传感器市场占有率最大,稳定性较高,成本较低,但同时工作温度较高(>200℃),极大的增加其附属检测单元的抗高温设计复杂程度,并存在能耗较高的缺点,同时增加其在恶劣环境中应用的风险,因此急需开发能够较低温度下工作的甲醇气敏传感器制备技术。
自2004年二维石墨烯被发现以来,因其优异的物理、化学性能,成为制备气敏传感器的优选材料。而其中人们发现石墨烯衍生物如还原氧化石墨烯(RGO)与传统的金属氧化物复合可以有效的改善传感器的气敏特性,可以有效降低工作温度,成为研究的热点方向。
现有技术公开了多种甲醇传感器的制备方法。例如,专利申请CN105651835 A公开了一种甲醇气敏传感器制备方法,气敏材料采用氧化石墨烯掺杂Sn(bipyO 2) 2Cl 2材料组成,但其 合成材料要求过高,需要特殊制备,且响应灵敏度过低(500ppm下为2)。
专利申请CN105699439 A公开了一种基于氮化碳负载金属及金属氧化物复合材料的甲醇气体传感器的制备方法。该方法主要是在氮化碳上原位复合钴掺杂的氧化钼/二氧化钛纳米片,利用该材料大的比表面积、介孔高气体吸附特性和电子传递受材料表面气体变化而影响敏感的诸多特性,实现对甲醇的检测。但该方法存在前驱体材料价格较高、制备条件要求较高等问题,难以实现低成本、高性能甲醇气体传感器制备。
专利申请CN104897727 A公开了一种高灵敏多气体检测的气敏传感器,主要是以纳米氧化镍为气敏材料,通过三电极体系在ITO玻璃上电化学沉积镍原子层,然后通过简单的退火处理、冷却、超声等处理,得到玫瑰花状形貌的纳米氧化镍,后制作气敏传感器,350℃下,在5ppm甲醇浓度下响应值达到7。但仍存在工作温度过高,灵敏度不高的问题。
专利申请CN104034758 A公开了一种混杂石墨烯膜、贵金属粒子和金属氧化物材料的集成氢气传感器及其制备方法,传感器包括基片、加热电极、导热绝缘层、检测电极,加热电极位于基片上,导热绝缘层在加热电极与检测电极之间,还包括沉积在检测电极上的金属氧化物薄膜,金属氧化物薄膜表面上沉积的贵金属粒子,石墨烯膜覆盖在沉积有贵金属粒子的金属氧化物薄膜上。但这种传感器存在低温工作时检测灵敏度差的问题。
综上,现有技术中的甲醇传感器存在灵敏度低、且工作温度高、生产成本高等问题,因此,开发一种工艺步骤简单,可重复、灵敏度高、且可在较低温度下工作的甲醇传感器极具应用前景及市场价值;因此,有必要开发一种新的气体传感器。
发明内容
针对现有技术中传感器存在灵敏度低、工作温度高、生产成本高、制备工艺复杂等问题,本发明旨在提供一种还原氧化石墨烯包裹的铂/二氧化锡(Pt/SnO 2)纳米颗粒团簇气敏传感器及其制备方法,本发明制备的甲醇传感器能够在110℃温度下实现高灵敏探测,能够快速响应,同时具备很高的稳定性;另外,本发明制备方法简单、可控、生产成本低,易于实现大规模生产,极具应用前景。
本发明的目的之一是提供一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇。
本发明的目的之二是提供一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法。
本发明的目的之三是提供一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器的制备方法。
本发明的目的之四是提供上述还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇及其制备方法,以及该纳米颗粒团簇制备的传感器的应用。
为实现上述发明目的,本发明公开了下述技术方案:
首先,本发明公开了一种用于制备气敏传感器的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇;所述纳米颗粒团簇为类核壳复合结构,其中,铂原子均匀分布在二氧化锡的表面,形成纳米颗粒团簇作为内核,还原氧化石墨烯作为壳体包覆在整个内核的表面。
其次,本发明公开了一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法;具体的,所述制备方法包括以下步骤:
1)取一定量的水溶性锡化物溶入溶剂中,搅拌,获得均匀透明溶液,然后将一定量的二甲基甲酰胺与上述透明溶液混合,得到混合液。
2)将氧化石墨烯粉末加入的去离子水中,超声分散后用氢碘酸溶液进行还原处理,得到还原氧化石墨烯溶液。选用氢碘酸的原因是:氢碘酸保证将部分氧化石墨烯还原,通过控制反应的时间来控制还原程度,后续将通过真空烘箱将样品烘干,增加与基底的结合,通过还原氧化石墨烯可大大增加器件对甲醇的响应特性,并与Pt/SnO 2纳米颗粒团簇共同作用,增加器件的灵敏度。
3)配置前驱体溶液:取一定量的氯铂酸溶液加入在步骤1)的混合液中,然后加入碱性物质,将溶液PH值调节至碱性,获得乳白色前驱体溶液。
4)将步骤2)中的还原氧化石墨烯溶液与步骤3)中的前驱体溶液混合后,加入内衬为聚四氟乙烯的容器中进行水热合成反应。水热合成反应会将充分还原氧化石墨烯,最后氧化石墨烯被完全还原获得还原氧化石墨烯。
5)对步骤4)中水热合成反应完毕放入溶液进行离心分离,分离后用乙醇和去离子水,分别重复冲洗、离心、冲洗各步骤,获得胶状产物。
6)将步骤5)中的胶状产物通过两步烘干法烘干,然后进行退火,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇。
步骤1)中,所述水溶性锡化物包括:SnCl 4·5H 2O、SnCl 2·2H 2O,SnCl 4,二甲基二氯化锡等。
步骤1)中,所述溶剂和二甲基甲酰胺的体积比为10:1-30:1。溶剂和二甲基甲酰胺的加入比例将影响最终产物的晶粒大小。在此比例范围内可将制备材料的晶粒大小控制在10-50纳米之间,获得高比表面积,有利于提升气敏器件性能。
优选的,所述溶剂和二甲基甲酰胺的体积比为20:1。该优选比例充分考虑到水溶性锡化物需要满足后期实验的可操作性,并将此优选比例与最终产物粒径的大小建立关联,以获得可复制的工艺。通过控制二甲基甲酰胺的加入体积,抑制材料合成过程中的团聚,以达到提高材料比面积的效果。
步骤1)中,所述溶剂为甲醇溶液;甲醇和二甲基甲酰胺物质的加入有利于降低后续前驱体物质的团聚,减小材料的粒径。
步骤1)中,所述搅拌时间为30-120min。
步骤2)中,所述还原氧化石墨烯溶液的浓度为1-5mg/mL。
步骤3)中,所述碱性物质包括:NaOH、KOH、氨水等。
步骤3)中,所述溶液的PH值为8-9。
步骤3)中,所述氯铂酸溶液的加入量以控制Pt:Sn原子比为3:100为准。
步骤4)中,所述还原氧化石墨烯溶液、前驱体溶液的质量百分比为1:50。
步骤4)中,所述水热合成反应的温度为180-250℃,反应时间为12-24h。该反应温度和时间范围能够保证获得产物SnO 2,并将氧化石墨烯完全还原。
优选的,所述水热合成反应的温度为180℃,时间为16h。该反应温度和时间将有助于控制反应产物的形貌。
步骤5)中,所述离心分离的参数为:转速5000-8000r/min,时间10-20min。
优选的,所述离心分离的参数为:转速6500r/min,时间20min。
优选的,步骤5)中,重复冲洗、离心、冲洗步骤各5次。
步骤6)中,所述两步烘干条件为:真空干燥,先在60℃烘1-2h,然后在120℃烘1-3h。
步骤6)中,所述退火条件为500-600℃氮气氛围下保温1-3h。
再次,本发明公开了一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器的制备方法;具体的,所述制备方法包括以下步骤:
(1)将上述步骤5)中的胶状产物利用旋涂工艺旋涂至陶瓷衬底上,得到涂覆有胶状薄膜的陶瓷衬底;然后对其进行两步烘干法烘干,最后进行退火。
(2)利用标准的光刻工艺、金属沉积技术将Au电极沉积在步骤(1)中退火后的陶瓷衬底上,形成气敏器件单元与阵列的制备,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器。
步骤(1)中,所述旋涂工艺的参数为:低速600-800r/min、高速3000-5000r/min;时间分别为30-40s、40-60s。
优选的,旋涂工艺的参数为:低速650r/min,高速4000r/min;时间分别为30s、60s。
步骤(1)中,所述胶状薄膜的厚度为1.5-3.0um,薄膜的厚度保持在该厚度范围内可以有效降低表面裂纹的产生,并大幅度提高器件的敏感性能。
步骤(1)中,所述两步烘干条件为:真空干燥,先在60℃烘1-2h,然后在120℃烘1-3h。
步骤(1)中,所述退火条件为:500-600℃氮气氛围下保温1-3h。
步骤(2)中,所述Au电极的厚度为200-350nm。
优选的,所述Au电极的厚度为300nm。
最后,本发明公开了上述还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇及其制备方法,以及该纳米颗粒团簇制备的传感器的应用,所述应用包括用于甲醇气体检测、环境检测、生产安全检测、防灾领域中。
与现有技术相比,本发明取得了以下有益效果:
(1)本发明利用简单化学合成方式,制备出还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇,发挥Pt金属掺杂的溢出效应,降低了该复合材料的晶界势垒,制作出高灵敏度甲醇传感器。
(2)本发明中通过氢碘酸溶液将氧化石墨烯部分还原,然后结合水热和氮气氛围提高还原程度,获得还原氧化石墨烯,提高该复合结构的比表面积、电荷转移的速度,改善基于此结构的灵敏度,实现优化工作温度110℃下高灵敏度敏感,可控性高,极具工业化前景。
(3)本发明的制备方法可控、化学合成比例可控,借助合理的原料和特殊形貌设计,通过构建异质结及金属溢出效应,获得高灵敏度、低工作温度的敏感器件,制备工艺可重复,具有较大的产业化应用价值。
(4)本发明技术还可扩展形成气敏传感器阵列,其工艺操作简单、可控。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明的甲醇传感器的器件制作流程图。
图2为本发明制备的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的结构示意图。
图3为本发明实施例1中制备的GO、纯二氧化锡和还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的X射线衍射图。
图4为本发明实施例1中还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的SEM及EDS图;其中,图4(a)为SEM图,插图为高分辨SEM图;图4(b)为EDS图。
图5为本发明实施例1中制备的甲醇传感器的电阻变化响应图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本 申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是:本发明及其实施例所述的氧化石墨烯均通过改进型Hummers法制备。
正如背景技术所述,现有的传感器存在灵敏度低、工作温度高、生产成本高、制备工艺复杂等问题,因此,本发明提供了一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器及其制备方法,现结合附图及具体实施方式对本发明做进一步的说明。
实施例1:
1、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法;包括以下步骤:
1)取100mL的SnCl 4·5H 2O溶入甲醇溶液中,搅拌60min,获得均匀透明溶液,然后将5mL的二甲基甲酰胺与上述透明溶液混合,得到混合液。
2)将5g氧化石墨烯粉末加入120mL去离子水中,超声分散后用浓度为5mg/mL的氢碘酸溶液进行还原处理,得到还原氧化石墨烯溶液。
3)配置前驱体溶液:将氯铂酸溶液加入在步骤1)的混合液中,使Pt:Sn原子比控制在3:100;然后加入NaOH,将溶液PH值调节至8,获得乳白色前驱体溶液。
4)将步骤2)中的还原氧化石墨烯溶液与步骤3)中的前驱体溶液混合(质量百分比为1:50)后,加入内衬为聚四氟乙烯的容器中,在200℃下水热合成16h。
5)对步骤4)中水热合成反应完毕放入溶液进行离心分离,转速控制在6000r/min,时间为10min,分离后用乙醇和去离子水,分别重复冲洗、离心、冲洗5次,获得胶状产物。
6)将步骤5)中的胶状产物先在60℃烘2h,然后在120℃烘2h,最后550℃的氮气氛围下退火2h,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇。
2、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器的制备方法,包括以下步骤:
(1)将上述步骤5)中的胶状产物利用旋涂工艺旋涂至陶瓷衬底上,旋涂工艺的参数为:低速650r/min,高速4000r/min;时间分别为30s、60s,得到涂覆有2mm厚度的胶状薄膜的陶瓷衬底;然后将涂有胶状薄膜的陶瓷衬底先在60℃烘2h,然后在120℃烘2h,最后550℃的氮气氛围下退火2h。
(2)利用标准的光刻工艺、金属沉积技术将Au电极沉积在步骤(1)中退火后的陶瓷衬底上,形成气敏器件单元与阵列的制备,其中,Au电极的厚度为300nm,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器。
本实施例制备的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇为类核壳复合结构;其 中,Pt原子均匀分布在SnO 2的表面,形成内核,还原氧化石墨烯作为壳体包覆在整个内核的表面,其结构示意图如图2所示。
对本实施例中得到的用于制备气敏传感器的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇进行XRD、SEM、EDS测试,结果分别如图3、4所示。从图3中可以看出通过简单的水热法合成了RGO/Pt/SnO 2复合材料,GO和Pt元素的掺入并没有改变二氧化锡金红石结构。Pt元素的掺入以Pt金属单质和PtO 2的形式存在。经计算晶粒大小尺寸在10nm左右。通过图4所示,可以看出RGO包裹颗粒的存在,颗粒大小分布均匀,呈现GO薄膜为壳,Pt/SnO 2颗粒为核的结构,该结构可以有效提高甲醇的气敏性能,并降低气敏工作温度。
在工作温度为110℃、甲醇浓度10ppm-500ppm的条件下,对本实施例制备的气敏传感器利用气敏测试系统对器件进行实时检测,结果如图5所示。从图5中可以看出:在40ppm浓度下,对甲醇的气敏响应时间和恢复时间分别为6s和21s,灵敏度高达60。相较于同类传感器该器件性能响应速度快,检测准确,可以有效降低能耗,扩展应用领域,另外通过对比其它挥发类的气体响应发现,这种敏感材料的结构设计具有对甲醇很好的选择性。
实施例2:
1、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法;包括以下步骤:
1)取100mL的SnCl 2·2H 2O溶入甲醇溶液中,搅拌30min,获得均匀透明溶液,然后将10mL的二甲基甲酰胺与上述透明溶液混合,得到混合液。
2)将5g氧化石墨烯粉末加入120mL去离子水中,超声分散后用浓度为1mg/mL的氢碘酸溶液进行还原处理,得到还原氧化石墨烯溶液。
3)配置前驱体溶液:将氯铂酸溶液加入在步骤1)的混合液中,使Pt:Sn原子比控制在3:100;然后加入KOH,将溶液PH值调节至8.5,获得乳白色前驱体溶液。
4)将步骤2)中的还原氧化石墨烯溶液与步骤3)中的前驱体溶液混合(质量百分比为1:50)后,加入内衬为聚四氟乙烯的容器中,在180℃下水热合成16h。
5)对步骤4)中水热合成反应完毕放入溶液进行离心分离,转速控制在6500r/min,时间为20min,分离后用乙醇和去离子水,分别重复冲洗、离心、冲洗5次,获得胶状产物。
6)将步骤5)中的胶状产物先在60℃烘1h,然后在120℃烘1h,最后500℃的氮气氛围下退火3h,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇。
2、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器的制备方法,包括以下步骤:
(1)将上述步骤5)中的胶状产物利用旋涂工艺旋涂至陶瓷衬底上,旋涂工艺的参数为:低速600r/min,高速3000r/min;时间分别为40s、40s,得到涂覆有3mm厚度的胶状 薄膜的陶瓷衬底;然后将涂有胶状薄膜的陶瓷衬底先在60℃烘1h,然后在120℃烘1h,最后500℃的氮气氛围下退火3h。
(2)利用标准的光刻工艺、金属沉积技术将Au电极沉积在步骤(1)中退火后的陶瓷衬底上,形成气敏器件单元与阵列的制备,其中,Au电极的厚度为200nm,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器。
本实施例制备的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇为类核壳复合结构;其中,Pt原子均匀分布在SnO 2的表面,形成内核,还原氧化石墨烯作为壳体包覆在整个内核的表面。
实施例3:
1、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法;包括以下步骤:
1)取120mL的SnCl 4溶入甲醇溶液中,搅拌120min,获得均匀透明溶液,然后将4mL的二甲基甲酰胺与上述透明溶液混合,得到混合液。
2)将5g氧化石墨烯粉末加入120mL去离子水中,超声分散后用浓度为3mg/mL的氢碘酸溶液进行还原处理,得到还原氧化石墨烯溶液。
3)配置前驱体溶液:将氯铂酸溶液加入在步骤1)的混合液中,使Pt:Sn原子比控制在3:100;然后加入氨水,将溶液PH值调节至9,获得乳白色前驱体溶液。
4)将步骤2)中的还原氧化石墨烯溶液与步骤3)中的前驱体溶液混合(质量百分比为1:50)后,加入内衬为聚四氟乙烯的容器中,在250℃下水热合成12h。
5)对步骤4)中水热合成反应完毕放入溶液进行离心分离,转速控制在5000r/min,时间为20min,分离后用乙醇和去离子水,分别重复冲洗、离心、冲洗5次,获得胶状产物。
6)将步骤5)中的胶状产物先在60℃烘1.5h,然后在120℃烘1.5h,最后600℃的氮气氛围下退火1h,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇。
2、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器的制备方法,包括以下步骤:
(1)将上述步骤5)中的胶状产物利用旋涂工艺旋涂至陶瓷衬底上,旋涂工艺的参数为:低速800r/min,高速5000r/min;时间分别为35s、50s,得到涂覆有1.5mm厚度的胶状薄膜的陶瓷衬底;然后将涂有胶状薄膜的陶瓷衬底先在60℃烘1.5h,然后在120℃烘1.5h,最后600℃的氮气氛围下退火1h。
(2)利用标准的光刻工艺、金属沉积技术将Au电极沉积在步骤(1)中退火后的陶瓷衬底上,形成气敏器件单元与阵列的制备,其中,Au电极的厚度为350nm,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器。
本实施例制备的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇为类核壳复合结构;其中,Pt原子均匀分布在SnO 2的表面,形成内核,还原氧化石墨烯作为壳体包覆在整个内核的表面。
实施例4:
1、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法;包括以下步骤:
1)取150mL的二甲基二氯化锡溶入甲醇溶液中,搅拌80min,获得均匀透明溶液,然后将10mL的二甲基甲酰胺与上述透明溶液混合,得到混合液。
2)将5g氧化石墨烯粉末加入120mL去离子水中,超声分散后用浓度为4mg/mL的氢碘酸溶液进行还原处理,得到还原氧化石墨烯溶液。
3)配置前驱体溶液:将氯铂酸溶液加入在步骤1)的混合液中,使Pt:Sn原子比控制在3:100;然后加入氨水,将溶液PH值调节至9,获得乳白色前驱体溶液。
4)将步骤2)中的还原氧化石墨烯溶液与步骤3)中的前驱体溶液混合(质量百分比为1:50)后,加入内衬为聚四氟乙烯的容器中,在250℃下水热合成24h。
5)对步骤4)中水热合成反应完毕放入溶液进行离心分离,转速控制在8000r/min,时间为10min,分离后用乙醇和去离子水,分别重复冲洗、离心、冲洗5次,获得胶状产物。
6)将步骤5)中的胶状产物先在60℃烘1.5h,然后在120℃烘1.5h,最后580℃的氮气氛围下退火1.5h,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇。
2、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器的制备方法,包括以下步骤:
(1)将上述步骤5)中的胶状产物利用旋涂工艺旋涂至陶瓷衬底上,旋涂工艺的参数为:低速700r/min,高速4500r/min;时间分别为40s、55s,得到涂覆有2mm厚度的胶状薄膜的陶瓷衬底;然后将涂有胶状薄膜的陶瓷衬底先在60℃烘1.5h,然后在120℃烘1.5h,最后580℃的氮气氛围下退火1.5h。
(2)利用标准的光刻工艺、金属沉积技术将Au电极沉积在步骤(1)中退火后的陶瓷衬底上,形成气敏器件单元与阵列的制备,其中,Au电极的厚度为250nm,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器。
本实施例制备的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇为类核壳复合结构;其中,Pt原子均匀分布在SnO 2的表面,聚集成为颗粒团簇作为内核,还原氧化石墨烯作为壳体包覆在整个内核的表面。
实施例5:
1、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法;包括以下步骤:
1)取100mL的SnCl 4·5H 2O溶入甲醇溶液中,搅拌100min,获得均匀透明溶液,然后将4mL的二甲基甲酰胺与上述透明溶液混合,得到混合液。
2)将5g氧化石墨烯粉末加入120mL去离子水中,超声分散后用浓度为2mg/mL的氢碘酸溶液进行还原处理,得到还原氧化石墨烯溶液。
3)配置前驱体溶液:将氯铂酸溶液加入在步骤1)的混合液中,使Pt:Sn原子比控制在3:100;然后加入NaOH,将溶液PH值调节至8,获得乳白色前驱体溶液。
4)将步骤2)中的还原氧化石墨烯溶液与步骤3)中的前驱体溶液混合(质量百分比为1:50)后,加入内衬为聚四氟乙烯的容器中,在230℃下水热合成18h。
5)对步骤4)中水热合成反应完毕放入溶液进行离心分离,转速控制在7500r/min,时间为12min,分离后用乙醇和去离子水,分别重复冲洗、离心、冲洗5次,获得胶状产物。
6)将步骤5)中的胶状产物先在60℃烘1.5h,然后在120℃烘1.5h,最后580℃的氮气氛围下退火1.5h,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇。
2、一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器的制备方法,包括以下步骤:
(1)将上述步骤5)中的胶状产物利用旋涂工艺旋涂至陶瓷衬底上,旋涂工艺的参数为:低速700r/min,高速4500r/min;时间分别为40s、55s,得到涂覆有2mm厚度的胶状薄膜的陶瓷衬底;然后将涂有胶状薄膜的陶瓷衬底先在60℃烘1.5h,然后在120℃烘1.5h,最后580℃的氮气氛围下退火1.5h。
(2)利用标准的光刻工艺、金属沉积技术将Au电极沉积在步骤(1)中退火后的陶瓷衬底上,形成气敏器件单元与阵列的制备,其中,Au电极的厚度为250nm,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器。
本实施例制备的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇为类核壳复合结构;其中,Pt原子均匀分布在SnO 2的表面,形成内核,还原氧化石墨烯作为壳体包覆在整个内核的表面。
以上所述仅为本申请的优选实施例,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇;其特征在于:所述纳米颗粒团簇为类核壳复合结构,其中,铂原子均匀分布在二氧化锡的表面,形成内核,还原氧化石墨烯作为壳体包覆在整个内核的表面。
  2. 一种如权利要求1所述的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法;其特征在于:所述制备方法包括以下步骤:
    1)取一定量的水溶性锡化物溶入溶剂中,搅拌,获得均匀透明溶液,然后将一定量的二甲基甲酰胺与上述透明溶液混合,得到混合液;
    2)将氧化石墨烯粉末加入的去离子水中,超声分散后用氢碘酸溶液进行还原处理,得到还原氧化石墨烯溶液;
    3)配置前驱体溶液:取一定量的氯铂酸溶液加入在步骤1)的混合液中,然后加入碱性物质,将溶液PH值调节至碱性,获得乳白色前驱体溶液;
    4)将步骤2)中的还原氧化石墨烯溶液与步骤3)中的前驱体溶液混合后,加入内衬为聚四氟乙烯的容器中进行水热合成反应;
    5)对步骤4)中水热合成反应完毕放入溶液进行离心分离,分离后用乙醇和去离子水,分别重复冲洗、离心、冲洗步骤,获得胶状产物;
    6)将步骤5)中的胶状产物通过两步烘干法烘干,然后进行退火,即得用于制备气敏传感器的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇。
  3. 如权利要求2所述的制备方法;其特征在于:步骤1)中,所述水溶性锡化物包括:SnCl 4·5H 2O、SnCl 2·2H 2O、SnCl 4,二甲基二氯化锡;
    优选的,所述溶剂和二甲基甲酰胺的体积比为10:1-30:1,优选的,所述溶剂和二甲基甲酰胺的体积比为20:1;
    优选的,所述溶剂为甲醇溶液;
    优选的,所述搅拌时间为30-120min。
  4. 如权利要求3所述的制备方法;其特征在于:步骤2)中,所述还原氧化石墨烯溶液的浓度为1-5mg/mL;
    所述碱性物质包括:NaOH、KOH、氨水;
    所述溶液的PH值为8-9;
    优选的,所述氯铂酸溶液的加入量将Pt:Sn原子比控制在3:100。
  5. 如权利要求2-4任一项所述的制备方法;其特征在于:步骤4)中,所述水热合成反应的温度为180-250℃,反应时间为12-24h;优选的,所述水热合成反应的温度为180℃,时间为16h;优选的,所述还原氧化石墨烯溶液、前驱体溶液的质量百分比为1:50。
  6. 如权利要求5所述的制备方法;其特征在于:步骤5)中,所述离心分离的参数为:转速5000-8000r/min,时间10-20min;
    优选的,所述离心分离的参数为:转速6500r/min,时间20min;
    优选的,重复冲洗、离心、冲洗步骤各5次。
  7. 如权利要求5所述的制备方法;其特征在于:步骤6)中,所述两步烘干条件为:真空干燥,先在60℃烘1-2h,然后在120℃烘1-3h;
    所述退火条件为500-600℃氮气氛围下保温1-3h。
  8. 利用权利要求2-7任一项方法制备的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇制备气敏传感器的方法;其特征在于:所述方法包括以下步骤:
    (1)将权利要求2-7任一项所述的步骤5)中的胶状产物利用旋涂工艺旋涂至陶瓷衬底上,得到涂覆有胶状薄膜的陶瓷衬底;然后对其进行两步烘干法烘干,最后进行退火;
    (2)利用标准的光刻工艺、金属沉积技术将Au电极沉积在步骤(1)中退火后的陶瓷衬底上,形成气敏器件单元与阵列的制备,即得还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇气敏传感器。
  9. 如权利要求8所述的方法;其特征在于:所述旋涂工艺的参数为:低速600-800r/min、高速3000-5000r/min;时间分别为30-40s、40-60s;优选的,旋涂工艺的参数为:低速650r/min,高速4000r/min;时间分别为30s、60s;
    所述胶状薄膜的厚度为1.5-3.0um;
    所述两步烘干条件为:真空干燥,先在60℃烘1-2h,然后在120℃烘1-3h;
    所述退火条件为:500-600℃氮气氛围下保温1-3h;
    所述Au电极的厚度为200-350nm;优选的,所述Au电极的厚度为300nm。
  10. 如权利要求1所述的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇、如权利要求2-7任一项所述的还原氧化石墨烯包裹的Pt/SnO 2纳米颗粒团簇的制备方法、如权利要求8-9任一项所述的制备气敏传感器的方法在甲醇气体检测、环境检测、生产安全检测、防灾领域中的应用。
PCT/CN2018/091538 2018-01-09 2018-06-15 一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法 WO2019136926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810019257.XA CN108318510B (zh) 2018-01-09 2018-01-09 RGO包裹的Pt/SnO2纳米颗粒团簇气敏传感器及其制备方法
CN201810019257.X 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019136926A1 true WO2019136926A1 (zh) 2019-07-18

Family

ID=62894933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091538 WO2019136926A1 (zh) 2018-01-09 2018-06-15 一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN108318510B (zh)
WO (1) WO2019136926A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115841A (zh) * 2018-08-13 2019-01-01 江苏大学 一种氧化石墨烯包覆氧化锡量子点气敏材料及其制备方法
CN110857928A (zh) * 2018-08-23 2020-03-03 吉福有限公司 半导体型气体传感器、多重传感装置及其识别方法
CN110498405A (zh) * 2019-08-21 2019-11-26 南京倍格电子科技有限公司 一种石墨烯/氧化锡复合气敏材料及其制备方法
CN110635120A (zh) * 2019-08-23 2019-12-31 上海海关工业品与原材料检测技术中心 二氧化锡/金属单质/石墨烯三元复合材料及其制备方法和应用
CN114235903A (zh) * 2020-09-09 2022-03-25 中国科学院苏州纳米技术与纳米仿生研究所 一种气体传感器及其制作方法
CN112881488B (zh) * 2021-01-18 2022-06-24 天津理工大学 核壳Au@氧化锡/垂直石墨烯微电极及其制备方法和应用
CN113219008B (zh) * 2021-04-26 2022-07-26 浙江大学 一种高选择性氢气气体传感器用多孔纳米复合材料及其制备方法
CN114005564B (zh) * 2021-11-02 2023-09-26 山东大学 一种柔性的聚合物-铋基卤化物纳米颗粒复合x射线防护材料及制备方法和应用
US11688850B1 (en) 2022-01-23 2023-06-27 Guangdong University Of Technology Preparation method of SnO2@Sn coated reduced graphene oxide composite material
CN114487020B (zh) * 2022-02-08 2023-12-22 扬州大学 一种面向肺癌呼吸标志气甲醇的气敏材料及其制备方法
CN114894852A (zh) * 2022-03-11 2022-08-12 东北大学 一种PtSnx-rGO-SnO2纳米复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751101A (zh) * 2012-07-11 2012-10-24 北京大学 一种铂/石墨烯纳米复合材料及其制备方法与应用
CN103926278A (zh) * 2014-04-24 2014-07-16 电子科技大学 石墨烯基三元复合薄膜气体传感器及其制备方法
WO2015143353A1 (en) * 2014-03-20 2015-09-24 The Research Foundation For The State University Of New York Synthesis and incorporation of graphene and/or metallized or metal oxide-modified graphene to improve organic solar cells and hydrogen fuel cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525102B1 (ko) * 2013-09-30 2015-06-03 전자부품연구원 마이크로 가스센서 및 그 제조 방법
CN103616413A (zh) * 2013-12-12 2014-03-05 苏州大学 一种基于还原氧化石墨烯的气敏传感器及其制备方法
CN104034758A (zh) * 2014-05-28 2014-09-10 南京益得冠电子科技有限公司 一种混杂石墨烯膜、贵金属粒子和金属氧化物材料的集成氢气传感器及其制备方法
CN105651835A (zh) * 2014-11-12 2016-06-08 长沙理工大学 一种甲醇气体传感器及其制备方法
CN105158303B (zh) * 2015-09-09 2018-08-17 安徽工程大学 贵金属/贱金属氧化物/石墨烯三元复合气敏材料及制备
CN106990142A (zh) * 2017-05-09 2017-07-28 大连理工大学 一种基于石墨烯/二氧化锡量子点复合材料的no2传感器及其制备方法
CN107290389B (zh) * 2017-06-12 2020-02-07 苏州慧闻纳米科技有限公司 用于室温检测低浓度甲醛的气敏材料及其制备方法、气敏传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751101A (zh) * 2012-07-11 2012-10-24 北京大学 一种铂/石墨烯纳米复合材料及其制备方法与应用
WO2015143353A1 (en) * 2014-03-20 2015-09-24 The Research Foundation For The State University Of New York Synthesis and incorporation of graphene and/or metallized or metal oxide-modified graphene to improve organic solar cells and hydrogen fuel cells
CN103926278A (zh) * 2014-04-24 2014-07-16 电子科技大学 石墨烯基三元复合薄膜气体传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUO, BAOMIN ET AL.: "Synthesis of Pt/SnO2/Graphene Composite Catalyst and its Electro-catalytic properties to Methanol Oxidation", GUANGDONG CHEMICAL INDUSTRY, vol. 44, no. 11, 15 June 2017 (2017-06-15), pages 51 - 52, ISSN: 1007-1865 *

Also Published As

Publication number Publication date
CN108318510A (zh) 2018-07-24
CN108318510B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2019136926A1 (zh) 一种还原氧化石墨烯包裹的铂/二氧化锡纳米颗粒团簇气敏传感器及其制备方法
Xu et al. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature
Meng et al. One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties
Ren et al. Conductometric NO2 gas sensors based on MOF-derived porous ZnO nanoparticles
Liu et al. Hydrothermal synthesis of Au@ SnO2 hierarchical hollow microspheres for ethanol detection
Li et al. Design of core–shell heterostructure nanofibers with different work function and their sensing properties to trimethylamine
Huang et al. Ultrasensitive formaldehyde gas sensor based on Au-loaded ZnO nanorod arrays at low temperature
Zhang et al. Preparation of g–C3N4–SnO2 composites for application as acetic acid sensor
CN103048363B (zh) 介孔-大孔复合结构金属氧化物材料及其制备方法和用途
CN110133059B (zh) 一种室温检测低浓度硫化氢气体的Pt-SnO2气敏传感器的制备方法
CN104034763A (zh) 一种混杂贵金属掺粒子和金属氧化物薄膜的集成气体传感器及其制备方法
Wang et al. Synthesis of Au decorated SnO 2 mesoporous spheres with enhanced gas sensing performance
CN104492367B (zh) 一种超高灵敏度的贵金属修饰的ZnO微纳分级结构及其制备方法
CN110182856A (zh) 一种双层壳空心球状钴酸镍纳米颗粒的制备方法
CN106346016A (zh) 银/石墨烯复合薄膜的制备方法及在紫外探测器中的应用
CN111525033B (zh) 一种反向介孔钙钛矿太阳能电池结构及其制备方法
CN108535334B (zh) 一种氧化锡纳米颗粒和氧化锌纳米线团聚结构的甲醇气敏传感器制备方法
Wang et al. Enhanced n-pentanol sensing performance by RuCu alloy nanoparticles decorated SnO2 nanoclusters
Jin et al. SnO2 quantum dots-functionalized MoO3 nanobelts for high-selectivity ethylene sensing
Zhang et al. Defect engineering of nanostructured ZnSnO3 for conductometric room temperature CO2 sensors
Wang et al. Surface-wrinkled SnO2 hollow microspheres decorated with AuAg bimetallic nanoparticles for triethylamine detection
Si et al. One-pot hydrothermal synthesis of nano-sheet assembled NiO/ZnO microspheres for efficient sulfur dioxide detection
Li et al. SnO2 nanosheets for NIR-enhanced NO2 sensing and adsorption/desorption
Liu et al. Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature
Li et al. ZnO‐Reinforced Thermal Regulating Microcapsules with Double‐Layer Shell via Atomic Layer Deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18899087

Country of ref document: EP

Kind code of ref document: A1