CN102744406B - 全致密各向异性纳米晶NdFeB块状磁体材料的制备方法 - Google Patents

全致密各向异性纳米晶NdFeB块状磁体材料的制备方法 Download PDF

Info

Publication number
CN102744406B
CN102744406B CN201210152382.0A CN201210152382A CN102744406B CN 102744406 B CN102744406 B CN 102744406B CN 201210152382 A CN201210152382 A CN 201210152382A CN 102744406 B CN102744406 B CN 102744406B
Authority
CN
China
Prior art keywords
magnet material
sintering
ndfeb
thermal deformation
close
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210152382.0A
Other languages
English (en)
Other versions
CN102744406A (zh
Inventor
李小强
陈志成
敖敬培
屈盛官
杨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201210152382.0A priority Critical patent/CN102744406B/zh
Publication of CN102744406A publication Critical patent/CN102744406A/zh
Application granted granted Critical
Publication of CN102744406B publication Critical patent/CN102744406B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种全致密各向异性纳米晶NdFeB块状磁体材料的制备方法,该方法利用放电等离子技术进行快速烧结制得全致密各向同性纳米晶NdFeB块状磁体材料;然后,采用放电等离子烧结技术将全致密各向同性纳米晶NdFeB块状磁体材料进行热变形处理,获得全致密各向异性纳米晶NdFeB块状磁体材料。本发明采用HDDR为初始原料,来源丰富,价格相对低廉,所制备的磁体材料的磁性能显著提高,可广泛应用于手机扬声器、计算机硬磁盘驱动器等。本发明在热变形处理过程中采用钽片将块状磁体材料与WC模具隔开,有效地解决了WC模具容易损坏的问题,不仅工艺简单,而且节约了生产成本,提高了生产效率。

Description

全致密各向异性纳米晶NdFeB块状磁体材料的制备方法
技术领域
本发明属于磁性材料制备领域,具体涉及一种全致密各向异性纳米晶NdFeB块状磁体材料的制备方法。 
背景技术
NdFeB永磁合金,因其具有高剩磁、高矫顽力和高磁能积,已经在计算机硬磁盘驱动器、电机、人体核磁共振成像仪、音响器件等许多方面得到应用。NdFeB永磁材料的制备方法主要包括烧结、热变形和粘结。粘结NdFeB由于粘结剂的加入使得磁性能普遍偏低。而传统烧结NdFeB则因组织不均匀性、存在非磁性相以及高温烧结诱发晶粒粗大等原因,致使其温度稳定性差、磁化强度和抗腐蚀性能偏低。与粘结、传统烧结NdFeB相比,热变形(Hot-Deformation,HD)NdFeB磁体因烧结后的热变形处理晶粒会沿着压力方向(C轴)取向,并表现出更为优异的磁性能、抗腐蚀性及断裂韧性。目前,研究者们针对热变形工艺、微观组织及磁性能三者间关系已进行了较为深入的研究,并且注意到传统烧结和后续热变形过程中的晶粒均易发生长大而导致磁性能恶化。 
近年来,放电等离子烧结(Spark Plasma Sintering,SPS)得到了快速发展,并被视为制备具有超细晶和纳米结构材料较为可行的一种方法。放电等离子烧结是利用脉冲能、放电脉冲压力以及焦耳热产生高频率、瞬间的局部高温场来完成烧结过程的,具有升温和冷却速度快、烧结温度低和烧结时间短等优点,可有效地抑制晶粒长大。最近,苏雷斯(K.Suresh)等,于2009年第321期《磁学和磁性材料》(Journal of Magnetism and Magnetic Materials)上发表的论文《放电等离子烧结HDDR(吸氢-歧化-脱氢-再结合)粉末制备钕铁硼磁体》(Consolidation of hydrogenation–disproportionation–desorption–recombinationprocessed Nd–Fe–B magnets by spark plasma sintering)中采用SPS烧结HDDR磁粉,成功制备出了纳米晶NdFeB材料,不过其致密度偏低。岳明等,于2010年第107期《应用物理》(Journal of Applied Physics)上发表的论文《放电等离子技术制备各向同性和各向异性钕铁硼磁体的组织和磁性能》(Structure and magnetic properties of magnetically isotropic and anisotropic Nd–Fe–B permanent magnets prepared by spark plasma sintering technology)中利用SPS设备进行烧结和后续热变形处理则进一步制备出了磁能积高达400kJ/m3的各向异性纳米晶NdFeB磁体,但其初始粉末材料价格昂贵,不利于工业生产。显然,利用SPS技术进行烧结和热变形制备具有纳米晶的各向异性NdFeB磁体有着一定的优势。 
HDDR是目前制取纳米晶NdFeB磁粉的一种有效途径。铸态NdFeB合金经过HDDR处理, 其组织由几十微米以上的粗大晶粒转变为约200-300nm的细小晶粒。HDDR磁粉价格相对便宜且因其晶粒尺寸和Nd2Fe14B单畴体尺寸接近,可成为制备永磁体所需的优异原材料。然而,HDDR磁粉在目前主要应用于制备粘结磁体,在烧结磁体领域的应用较少,这是由于,当热变形温度达到650℃以上,NdFeB磁体中富钕相处于液态,它会粘着在WC模具上,严重损坏WC模具,影响生产效率。 
发明内容
本发明的目的在于克服现有技术中采用HDDR磁粉为初始材料,放电等离子烧结设备进行热变形处理时存在WC模具容易损坏等技术问题,提供一种全致密各向异性纳米晶NdFeB块状磁体材料的制备方法。 
本发明利用放电等离子技术进行快速烧结制得全致密各向同性纳米晶NdFeB块状磁体材料;然后,采用放电等离子烧结技术将全致密各向同性纳米晶NdFeB块状磁体材料进行热变形处理,获得全致密各向异性纳米晶NdFeB块状磁体材料,其制备方法具体包括以下步骤: 
步骤一:放电等离子烧结 
将粒径为45–100μm的HDDR磁粉装入石墨模具中后,经过40–50MPa预压后,进行快速烧结,烧结工艺条件如下: 
烧结压力:40–50MPa 
烧结温度:750℃–850℃ 
升温速率:100–150℃/min 
保温时间:10–20min 
烧结真空度:≤4Pa 
经快速烧结即可获得全致密各向同性纳米晶NdFeB块状磁体材料; 
步骤二:热变形处理 
将步骤一获得的全致密各向同性纳米晶NdFeB块状磁体材料放置于放电等离子烧结设备中,并采用钽片将其与WC模具隔开,然后进行快速热变形处理,热变形工艺条件如下: 
热变形压力为:100–300MPa 
热变形温度为:750℃–850℃ 
升温速率为:100–150℃/min 
保温时间为:10–30min 
烧结真空度:≤4Pa 
经过热变形处理后,可获得全致密各向异性纳米晶NdFeB块状磁体材料。 
本发明与现有技术相比,具有以下优点: 
1)本发明采用HDDR为初始原料,来源丰富,价格相对低廉,并且利用放电等离子烧结技术烧结成形和热变形处理,制备的全致密各向异性纳米晶NdFeB块状磁体材料具有组分、粒度分布均匀以及全致密等特点,可以显著提高材料的磁性能。本发明所制备的各向异性NdFeB磁体用途广泛,可应用于手机扬声器、计算机硬磁盘驱动器等,可充分利用我们丰富的稀土资源,减少我国对高性能NdFeB永磁材料的进口依赖。 
2)本发明在热变形处理过程中采用钽片将全致密各向异性纳米晶NdFeB块状磁体材料与WC(碳化钨)模具隔开,有效地解决了现有技术中采用HDDR磁粉为初始材料时,放电等离子烧结设备进行热变形处理存在WC模具容易损坏等技术问题,不仅工艺简单,而且节约了生产成本,提高了生产效率。 
3)本发明所制备的各向异性纳米晶NdFeB磁体的Nd2Fe14B晶粒呈板条状,长度为500-800nm,厚度为200-300nm,且沿着压力方向取向明显。 
附图说明
图1为本发明采用放电等离子设备进行热变形处理的工艺示意图。 
图2为实施例2制备的NdFeB块状磁体材料热变形处理前后的X-射线衍射图谱。 
图3为实施例3制备的全致密各向异性纳米晶NdFeB块状磁体材料沿着易磁化轴和难磁化轴方向上的磁滞回线图。 
具体实施方式
通过如下实施例对本发明作进一步说明,但本发明的实施方式不仅限于此。 
实施例1 
本发明利用放电等离子技术进行快速烧结制得全致密各向同性纳米晶NdFeB块状磁体材料;然后,采用放电等离子烧结技术将全致密各向同性纳米晶NdFeB块状磁体材料进行热变形处理,获得全致密各向异性纳米晶NdFeB块状磁体材料,其制备方法具体包括以下步骤: 
步骤一:放电等离子烧结 
将粒径为45–100μm的HDDR磁粉装入石墨模具中后,经过40MPa预压后,进行快速烧结,烧结工艺条件如下: 
烧结压力:40MPa 
烧结温度:750℃ 
升温速率:100℃/min 
保温时间:10min 
烧结真空度:4Pa 
经快速烧结即可获得全致密各向同性纳米晶NdFeB块状磁体材料。 
步骤二:热变形处理 
将步骤一获得的全致密各向同性纳米晶NdFeB块状磁体材料放置于放电等离子烧结设备中,采用钽片4将步骤一中获得的磁体与WC模具隔开,如图1热变形处理的工艺示意图所示,其中1、上电极,2、下电极,3、WC压头,4、钽片,5、红外测温仪,6、真空系统,7、电源,8、各向同性磁体; 
然后进行快速热变形处理,热变形工艺条件如下: 
热变形压力为:200MPa 
热变形温度为:750℃ 
升温速率为:150℃/min 
保温时间为:10min 
烧结真空度:4Pa 
经过热变形处理后,可获得全致密各向异性纳米晶NdFeB块状磁体材料。 
实施例2 
本发明利用放电等离子技术进行快速烧结制得全致密各向同性纳米晶NdFeB块状磁体材料;然后,采用放电等离子烧结技术将全致密各向同性纳米晶NdFeB块状磁体材料进行热变形处理,获得全致密各向异性纳米晶NdFeB块状磁体材料,其制备方法具体包括以下步骤: 
步骤一:放电等离子烧结 
将粒径为45–100μm的HDDR磁粉装入石墨模具中后,经过50MPa预压后,进行快速烧结,烧结工艺条件如下: 
烧结压力:50MPa 
烧结温度:800℃ 
升温速率:120℃/min 
保温时间:20min 
烧结真空度:2Pa 
经快速烧结即可获得全致密各向同性纳米晶NdFeB块状磁体材料,其X-射线衍射图谱如图2中a曲线所示。 
步骤二:热变形处理 
将步骤一获得的全致密各向同性纳米晶NdFeB块状磁体材料放置于放电等离子烧结设备中,采用钽片4将步骤一中获得的磁体与WC模具隔开,如图1所示; 
然后进行快速热变形处理,热变形工艺条件如下: 
热变形压力为:300MPa 
热变形温度为:800℃ 
升温速率为:100℃/min 
保温时间为:20min 
烧结真空度:2Pa 
经过热变形处理后,可获得全致密各向异性纳米晶NdFeB块状磁体材料,其X-射线衍射图谱如图2中b曲线所示。 
对比分析图2中图谱可知,NdFeB块状磁体材料经过热变形处理后衍射峰变化较大,呈现明显的各向异性。 
实施例3 
本发明利用放电等离子技术进行快速烧结制得全致密各向同性纳米晶NdFeB块状磁体材料;然后,采用放电等离子烧结技术将全致密各向同性纳米晶NdFeB块状磁体材料进行热变形处理,获得全致密各向异性纳米晶NdFeB块状磁体材料,其制备方法具体包括以下步骤: 
步骤一:放电等离子烧结 
将粒径为45–100μm的HDDR磁粉装入石墨模具中后,经过50MPa预压后,进行快速烧结,烧结工艺条件如下:
烧结压力:45MPa 
烧结温度:850℃ 
升温速率:150℃/min 
保温时间:15min 
烧结真空度:4Pa 
经快速烧结即可获得全致密各向同性纳米晶NdFeB块状磁体材料。 
步骤二:热变形处理 
将步骤一获得的全致密各向同性纳米晶NdFeB块状磁体材料放置于放电等离子烧结设备中,采用钽片4将步骤一中获得的磁体与WC模具隔开,如图1所示; 
然后进行快速热变形处理,热变形工艺条件如下: 
热变形压力为:100MPa 
热变形温度为:850℃ 
升温速率为:120℃/min 
保温时间为:30min 
烧结真空度:4Pa 
经过热变形处理后,可获得全致密各向异性纳米晶NdFeB块状磁体材料,其磁滞回线如图 3所示,对比分析图3中磁滞回线可知,NdFeB块状磁体材料在不同方向的磁性能不相同,表现出明显的各向异性。 
上述实施例获得的全致密各向异性纳米晶NdFeB块状磁体材料的磁性能如表1所示。 
表1 
Figure BDA00001643468100061

Claims (1)

1.全致密各向异性纳米晶NdFeB块状磁体材料的制备方法,其特征在于,该方法利用放电等离子技术进行快速烧结制得全致密各向同性纳米晶NdFeB块状磁体材料;然后,采用放电等离子烧结技术将全致密各向同性纳米晶NdFeB块状磁体材料进行热变形处理,获得全致密各向异性纳米晶NdFeB块状磁体材料,其制备方法具体包括以下步骤:
步骤一:放电等离子烧结
将粒径为45–100μm的HDDR磁粉装入石墨模具中后,经过40–50MPa预压后,进行快速烧结,烧结工艺条件如下:
烧结压力:40–50MPa
烧结温度:750℃–850℃
升温速率:100–150℃/min
保温时间:10–20min
烧结真空度:≤4Pa
经快速烧结即可获得全致密各向同性纳米晶NdFeB块状磁体材料;
步骤二:热变形处理
将步骤一获得的全致密各向同性纳米晶NdFeB块状磁体材料放置于放电等离子烧结设备中,并采用钽片将其与碳化钨模具隔开,然后进行快速热变形处理,热变形工艺条件如下:
热变形压力为:100–300MPa
热变形温度为:750℃–850℃
升温速率为:100–150℃/min
保温时间为:10–30min
烧结真空度:≤4Pa
经过热变形处理后,可获得全致密各向异性纳米晶NdFeB块状磁体材料。
CN201210152382.0A 2012-05-16 2012-05-16 全致密各向异性纳米晶NdFeB块状磁体材料的制备方法 Expired - Fee Related CN102744406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210152382.0A CN102744406B (zh) 2012-05-16 2012-05-16 全致密各向异性纳米晶NdFeB块状磁体材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210152382.0A CN102744406B (zh) 2012-05-16 2012-05-16 全致密各向异性纳米晶NdFeB块状磁体材料的制备方法

Publications (2)

Publication Number Publication Date
CN102744406A CN102744406A (zh) 2012-10-24
CN102744406B true CN102744406B (zh) 2014-02-26

Family

ID=47025097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210152382.0A Expired - Fee Related CN102744406B (zh) 2012-05-16 2012-05-16 全致密各向异性纳米晶NdFeB块状磁体材料的制备方法

Country Status (1)

Country Link
CN (1) CN102744406B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576019B (zh) * 2014-11-26 2017-02-22 宁波格荣利磁业有限公司 一种利用废料制备钕铁硼磁体的方法
CN106531382B (zh) * 2015-09-10 2019-11-05 燕山大学 一种永磁材料及其制备方法
CN109148133B (zh) * 2017-06-16 2020-11-06 中国科学院宁波材料技术与工程研究所 一种稀土永磁体及其制备方法
CN111029128A (zh) * 2019-12-31 2020-04-17 浙江大学 一种稀土永磁的快速热处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324206A (ja) * 1989-06-22 1991-02-01 Tdk Corp ボンデッド磁石用永久磁石粉末の製造方法およびボンディッド磁石用永久磁石粉末
US7371292B2 (en) * 2002-11-12 2008-05-13 Nissan Motor Co., Ltd. Nd-Fe-B type anisotropic exchange spring magnet and method of producing the same
CN101423912B (zh) * 2008-12-03 2010-12-01 华南理工大学 一种纳米晶钨基合金块体材料及其制备方法
CN101882504B (zh) * 2009-11-06 2014-01-08 金浦威恩磁业(上海)有限公司 各向异性稀土磁体光波微波烧结方法

Also Published As

Publication number Publication date
CN102744406A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
CN103056370B (zh) 一种提高烧结钕铁硼磁材料矫顽力的方法
CN103123843B (zh) 一种细晶粒各向异性致密化钕铁硼永磁体的制备方法
CN102403118B (zh) 一种各向异性钐钴基纳米晶稀土永磁体制备方法
CN1737955A (zh) 稀土铁系双相纳米晶复合永磁材料的制备方法
CN102744406B (zh) 全致密各向异性纳米晶NdFeB块状磁体材料的制备方法
JP2016115923A (ja) 磁気特性が向上したMnBiを含む異方性複合焼結磁石及びその製造方法
JP5691989B2 (ja) 希土類磁石前駆体の焼結体を形成する磁性粉体の製造方法
Xiantao et al. Regeneration of waste sintered Nd-Fe-B magnets to fabricate anisotropic bonded magnets
JP2013084802A (ja) 希土類磁石前駆体の焼結体とこれを形成する磁性粉末の製造方法
CN101265529A (zh) 块状纳米晶SmCo系永磁材料的制备方法
JP6613730B2 (ja) 希土類磁石の製造方法
Zhao et al. Preparation and properties of hot-deformed magnets processed from nanocrystalline/amorphous Nd–Fe–B powders
CN105374488A (zh) 一种耐高温高性能稀土永磁材料
TW201330024A (zh) 稀土類永久磁石及稀土類永久磁石之製造方法
CN108962580B (zh) 一种渗镝/铽钕铁硼磁体的制备方法
CN101673605A (zh) 各向异性纳米/非晶复相块体永磁材料及其制备方法
TWI374458B (zh)
CN103310933A (zh) 一种高压制备烧结钕铁硼的方法
Moosa Powder metallurgy and its application in the production of permanent magnets
CN104103414A (zh) 一种制备高矫顽力各向异性纳米晶钕铁硼永磁体的方法
JPWO2018056390A1 (ja) 焼結磁石形成用焼結体の製造方法及び焼結磁石形成用焼結体を用いた永久磁石の製造方法
CN104103415A (zh) 一种氢化镝纳米粉末掺杂制备各向异性NdFeB稀土永磁体的方法
CN102784920A (zh) 一种稀土永磁合金纳米片状粉体的制备方法
CN106531383B (zh) 钐钴合金材料、钐钴合金粉末及其制备方法及钐钴基磁体
CN103480836B (zh) 烧结钕铁硼粉料的造粒方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140226

Termination date: 20210516

CF01 Termination of patent right due to non-payment of annual fee