CN101673605A - 各向异性纳米/非晶复相块体永磁材料及其制备方法 - Google Patents

各向异性纳米/非晶复相块体永磁材料及其制备方法 Download PDF

Info

Publication number
CN101673605A
CN101673605A CN200810124400A CN200810124400A CN101673605A CN 101673605 A CN101673605 A CN 101673605A CN 200810124400 A CN200810124400 A CN 200810124400A CN 200810124400 A CN200810124400 A CN 200810124400A CN 101673605 A CN101673605 A CN 101673605A
Authority
CN
China
Prior art keywords
magnetic
amorphous
complex phase
magnetic material
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810124400A
Other languages
English (en)
Other versions
CN101673605B (zh
Inventor
陈�光
曹扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN2008101244008A priority Critical patent/CN101673605B/zh
Publication of CN101673605A publication Critical patent/CN101673605A/zh
Application granted granted Critical
Publication of CN101673605B publication Critical patent/CN101673605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种各向异性纳米/非晶复相块体永磁材料及其制备方法。本发明纳米尺寸的硬磁相和软磁相均匀分布在块体非晶合金基体上组成的复相块体永磁材料。其制备方法首先将合金熔体直接铸造成型制备金属玻璃块体材料,然后在磁场下退火进行反玻璃化处理,得到纳米/非晶复相材料。这种复相材料以块体金属玻璃(BMG)为基体,纳米尺度软磁性相(α-Fe或Fe3B相)和硬磁性相(Nd2Fe14B相和Pr2Fe14B相等)作为弥散分布相。本发明具有良好的各向异性永磁性能、良好的力学和物理性能;工艺流程简单,各向异性纳米/非晶复相块体永磁材料的制备仅需要两大步骤即可完成;成本低廉,耗用稀土资源较少。

Description

各向异性纳米/非晶复相块体永磁材料及其制备方法
技术领域
本发明属于高性能块体永磁材料技术,特别是一种各向异性纳米/非晶复相块体永磁材料及其制备方法。
背景技术
稀土铁永磁材料是指以稀土与铁形成的金属间化合物为基体的永磁材料。钕铁硼永磁体具有高的剩磁、高矫顽力和高的磁能积,被誉为现代“磁王”。近年来,随着市场对线性运动、转动电机(主轴电机和步进电机等)等器件小型化、轻量化的需求增加,世界各国都在致力于开发各种各向异性永磁体。其中,各向异性块体稀土铁永磁体的研究已经成为硬磁材料研究和应用的热点之一。
根据传统制备方法的不同,各向异性块体稀土永磁体主要分为三种:烧结永磁体、热变形永磁体和粘结永磁体。这三种方法中,永磁体都经历了母合金熔炼-破碎制粉-成型的复杂过程,最终获得永磁体的磁性能优劣很大程度上取决于磁粉的性能。一般要求磁粉具有:小的颗粒尺寸和窄的尺寸分布;粉末颗粒呈近球状;颗粒的晶体缺陷尽可能少;表面吸附杂质和气体尽可能少。图1是美国通用汽车公司(GM公司)和美国Marko公司给出的两种典型工艺图(周寿增,董清飞。超强永磁体一稀土铁系永磁材料(第2版)。2004年2月。北京,冶金工业出版社)。而粘结各向异性永磁体所用的各向异性磁粉通常采用两种方法获得:将热变形各向异性永磁体破碎研磨;改进HDDR(氢化、歧化、脱氢和重组法)工艺。为获得最优的永磁性能,多级回火工艺和多次双向脉冲磁场取向被广泛应用。由于材料本身的特点,稀土永磁体力学性能较差,而且容易腐蚀,必要时需要进行相应的耐蚀处理。因此,传统工艺生产流程长、工艺繁琐,工艺过程中任何一个环节都会直接影响到产品质量。
1988年,Cohoorn等研究了快淬Nd4Fe77B18.5材料以来,具有剩磁增强效应的双相纳米晶复合永磁材料备受关注。如张湘义等提出的各向异性复合纳米晶永磁材料等(张湘义,关颖,张静武,α-Fe/Nd2Fe14B各向异性复合纳米晶永磁材料的制备方法,CN1385869A)。这种各向异性复合纳米晶可以直接作为条带使用,同时也提供了各向异性磁粉的制备新方法。潘振东也提出了熔体快淬结合磁场热处理获得磁粉的新方法(潘振东,稀土铁系纳米复合永磁合金粉末及其制造方法,CN1347124A)。但是如果想获得各向异性块体材料,这种条带仍需要破碎后烧结或者粘结来成型,不能避免母合金熔炼-破碎制粉-成型的复杂过程,而这种纳米晶在烧结过程很容易发生晶粒的长大导致性能恶化。
发明内容
本发明的目的在于提供一种具有良好的各向异性硬磁性能的纳米/非晶复相块体永磁材料及其制备方法。
实现本发明目的的技术解决方案分为:一种各向异性纳米/非晶复相块体永磁材料,纳米尺寸的硬磁相和软磁相均匀分布在块体非晶合金基体上组成的复相块体永磁材料。
一种制备上述的各向异性纳米/非晶复相块体永磁材料的方法,包括以下步骤:
a.采用熔体直接铸造成型的方法制备出块体金属玻璃;
b.块体金属玻璃前躯体在磁场下进行反玻璃化退火处理,硬磁相和软磁相作为晶体相比金属玻璃具有更高的热稳定性,退火过程中从玻璃前驱体中形核长大,而残余的金属玻璃热稳定性得到提高,在退火后保留为非晶合金基体,从而得到纳米尺寸的硬磁相和软磁相均匀分布在块体非晶合金基体上组成的复相块体永磁材料。
本发明与现有技术相比,其显著优点在于:
(1)良好的各向异性永磁性能。由于反玻璃化温度低于软磁相的居里转变温度,α-Fe析出带有择优取向性,通过Nd2Fe14B硬磁相与α-Fe或Fe3B软磁相之间的交换耦合作用,最终获得的块体金属玻璃复合材料具有各向异性,即沿着某一特定方向性能较优异。
(2)具有良好的力学和物理性能。采用金属模铸造-磁场退火反玻璃化工艺得到的材料结构上更致密,可以达到100%理论密度。常规稀土永磁体Nd2Fe14B相之间是易氧化的富钕相,因此磁体耐蚀性极差,需要专门进行耐蚀处理,而且力学性能也差,十分易碎。而该种复相块体材料是以金属玻璃作为基体,而金属玻璃没有晶界和晶体缺陷,其强度为常规金属材料的3~5倍,耐蚀性能远远高于不锈钢等耐蚀材料。即由于该种复相块体材料是以金属玻璃作为基体,而金属玻璃没有晶界和晶体缺陷,因此采用该方法生产出来永磁体具有较高的力学性能和良好的耐腐蚀行为。
(3)工艺流程简单,各向异性纳米/非晶复相块体永磁材料的制备仅需要两大步骤即可完成。采用合金熔体直接铸造成型制备金属玻璃(BMG)块体材料,无需破碎制粉过程,也没有复杂的烧结或粘结工艺。因此,制备工艺十分简单,流程短,过程容易控制。与传统NdFeB基永磁材料相比,耗用稀土元素较少,是一种高效低成本的新工艺。
(4)成本低廉,耗用稀土资源较少。与以往依靠Nd2Fe14B相的含量来提高硬磁性能不同,本发明采用的是纳米尺度软相与硬相相互耦合来获取磁性,这样可以减少Nd等稀土元素的用量。
下面结合附图对本发明作进一步详细描述。
附图说明
图1是为商品化稀土永磁体的常用工艺之一(快淬钕铁硼永磁体生产工艺)流程图。
图2是磁场反玻璃化后制备材料的XRD,上曲线和下曲线分别代表平行磁场方向和垂直磁场方向。
图3是磁场反玻璃化后所制备永磁材料不同方向上的VSM(振动样品磁强计)曲线。
具体实施方式
本发明各向异性纳米/非晶复相块体永磁材料是由纳米尺寸的硬磁相和软磁相均匀分布在块体非晶合金基体上组成的复相块体永磁材料。非晶合金基体为Fe基非晶、Co基非晶或Ni基非晶,硬磁性相为R2Fe14B结构的相,R为稀土元素,软磁相为α-Fe或Fe3B。R2Fe14B硬磁相和α-Fe或Fe3B软磁相的尺寸为10~50纳米,相是在金属玻璃前躯体进行磁场退火反玻璃化下产生的。
本发明各向异性纳米/非晶复相块体永磁材料的制备方法的过程如下:
第一步,铁基块体金属玻璃(Fe-BMG)的制备。
采用纯金属铁和铌、类金属元素硼以及稀土材料钕和镨或者Fe-B中间合金作为原材料,根据预设定的原子配比,采用非自耗钨电极反复熔炼3~5次获得成分均匀的母合金。合金的原子百分配比由玻璃形成能力来给定。合金需体系满足两个条件:具有大的玻璃形成能力;反玻璃化退火可以析出纳米尺寸的软磁相和硬磁性相。玻璃形成能力可以通过差示扫描量热(DSC)法分析得到的热参数(玻璃转变温度、晶化温度和过冷液相区宽度)来表征。
母合金经过表面打磨,简单机械破碎后置于真空中采用中频或高频感应加热重熔并适当过热处理。过热处理后的合金熔体直接通过喷铸或吸铸工艺浇铸到给定形状、尺寸的金属模中。考虑到良好的导热能力和蓄热能力,通常所采用的金属模为锻造铜模。由于铸造后的元件在第二步中仅需要进行磁场热处理,元件的尺寸和形状都不会发生明显变化,通过模具的合理设计,可以直接获得所需元件的外形,实现净成型,无需后续机械加工。
第二步,磁场反玻璃化退火。将第一步制备的Fe-BMG置于带有强磁场的等温退火炉中退火。采用磁场强度一般选取5~19T之间,退火温度可以根据金属玻璃的热力学参数进行合适选取,一般控制在室温~1000℃,常用温度为700℃左右。退火处理中,根据块体金属玻璃的热力学参数进行选取,温度控制在玻璃的晶化温度以上,而低于软磁相的居里温度。在此基础上将退火温度降低至硬磁相的居里温度以下进一步退火,复相块体永磁材料的各向异性会进一步增强。退火处理中,退火时间选取10~120分钟,确保硬磁相和软磁相的充分析出,而且不会过分长大。控制Fe-BMG的反玻璃化过程,通过调节磁场大小、退火温度和退火时间的最佳匹配获得Nd2Fe14B硬磁相与α-Fe或Fe3B软磁相组成的复合材料。
本发明各向异性纳米/非晶复相块体永磁材料的方法,如根据名义成分(Fe71B21Nd8)96Nb4(原子百分比)的块体金属玻璃进行准确称量出纯金属Fe、Nb和类金属元素B以及稀土材料Nd,利用超声波清洗干净后放置于非自耗电弧炉内,在高纯氩气保护下反复多次熔炼均匀获得母合金锭。母合金锭置于真空密封的开孔石英玻璃管内采用感应加热重新熔化均匀,熔体张力使得合金熔体不会自行流下。采用一定压力的高纯惰性气体将熔体吹注到金属模具中成型,开模后得到块体金属玻璃前躯体。将这种金属玻璃前躯体放入带有强磁场的等温退火炉中反玻璃化处理。等温退火的温度和时间通过差示扫描量热(DSC)得出,确保能够得到非晶基体上弥散分布纳米尺寸的Nd2Fe14B硬磁相与α-Fe或Fe3B软磁相获得的复合结构。
块体金属玻璃前躯体在12T的磁场下进行反玻璃化退火处理,退火温度为700~760℃,退火时间为10~30分钟,Nd2Fe14B硬磁相和α-Fe、Fe3B软磁相作为晶体相比金属玻璃具有更高的热稳定性,退火过程中从玻璃前驱体中形核长大,而残余的金属玻璃热稳定性得到提高,在退火后保留为非晶合金基体,从而得到纳米尺寸的硬磁相和软磁相均匀分布在块体非晶合金基体上组成的复相块体永磁材料。退火温度升高时,软磁相为Fe3B(720℃以下);退火温度进一步升高时,软磁相为Fe3B和α-Fe(720~760℃);退火温度再进一步升高时,软磁相为α-Fe(780℃以上)。
实施例1:发明实施例采用的名义成分为(Fe71B21Nd8)96Nb4(原子百分比)。实施例采用原材料的名义纯度为Fe 99.99%,B99.99%,Nd99.99%,Nb99.8%。
Fe-BMG制备:在高于10-3Pa的真空下,先采用电弧熔炼的方法将Nd熔化,熔化电流550A,搅拌电压0.8V。冷却后取出,将表面重新打磨后按照名义成分配比,将Nb、Fe、B和提纯后的Nd一起放入坩埚抽真空至10-3Pa,冲入高纯Ar气,用Zr除气后一起用电弧熔炼。将熔炼均匀的母合金锭置于真空密封的开孔石英玻璃管(孔直径1.0mm)内采用感应加热重新熔化均匀,熔体张力使得合金熔体不会自行流下。感应熔化温度为1240℃。采用0.2MPa压力的高纯Ar气将熔体吹注到内径为1.5mm长为50mm的金属模具中成型,开模后得到块体金属玻璃前躯体棒状材料。XRD结构表征确定为金属玻璃结构。
将上述得到的Fe-BMG置于5~12T强磁场下,迅速升温至700℃。温度稳定后(约半分钟以内)保持温度恒定,保温时间为10min,而后将样品取出空冷。对比例采用相同加热退火工艺,但是不采用磁场,如图2和图3。图2是所制备出的各向异性纳米/非晶复相块体永磁材料的XRD图谱(反玻璃化退火条件:温度700℃,时间10分钟,磁场强度12T)。可以看出,在非晶的漫散射峰上叠加着Nd2Fe14B相和α-Fe相的晶体衍射峰。利用谢乐公式计算出晶粒尺寸在纳米量级(10~50nm)。图3为相应的VSM测量结果,可以看出沿磁场方向和垂直磁场方向处理后,材料的饱和磁感应强度、剩磁和矫顽力相差10%左右,即具有明显的磁性各向异性。
实施例2:发明实施例采用的名义成分为(Fe71B21Nd8)96Nb4(原子百分比)。实施例采用原材料的名义纯度为Fe99.99%,B99.99%,Nd99.99%,Nb99.8%。
Fe-BMG制备同实施例1。将上述得到的Fe-BMG置于12~19T强磁场下,迅速升温至720℃。温度稳定后(约半分钟以内)保持温度恒定,保温时间为10min,而后在磁场下缓慢冷却至290℃等温10min,再将样品取出空冷。表1为磁性对比,可以看出具有明显各向异性。
表1各向异性永磁材料的性能对比。

Claims (8)

1、一种各向异性纳米/非晶复相块体永磁材料,其特征在于:纳米尺寸的硬磁相和软磁相均匀分布在块体非晶合金基体上组成的复相块体永磁材料。
2、根据权利要求1所述的各向异性纳米/非晶复相块体永磁材料,其特征在于:非晶合金基体为Fe基非晶、Co基非晶或Ni基非晶,硬磁性相为R2Fe14B结构的相,R为稀土元素,软磁相为α-Fe或Fe3B。
3、根据权利要求2中的各向异性纳米/非晶复相块体永磁材料,其特征在于:R2Fe14B硬磁相和α-Fe或Fe3B软磁相的尺寸为10~50纳米,相是在金属玻璃前躯体进行磁场退火反玻璃化下产生的。
4、一种制备权利要求1、2或3所述的各向异性纳米/非晶复相块体永磁材料的方法,包括以下步骤:
a.采用熔体直接铸造成型的方法制备出块体金属玻璃;
b.块体金属玻璃前躯体在磁场下进行反玻璃化退火处理,硬磁相和软磁相作为晶体相比金属玻璃具有更高的热稳定性,退火过程中从玻璃前驱体中形核长大,而残余的金属玻璃热稳定性得到提高,在退火后保留为非晶合金基体,从而得到纳米尺寸的硬磁相和软磁相均匀分布在块体非晶合金基体上组成的复相块体永磁材料。
5、根据权利要求4所述的各向异性纳米/非晶复相块体永磁材料的制备方法,其特征在于:磁场强度为5~19T。
6、根据权利要求4所述的各向异性纳米/非晶复相块体永磁材料的制备方法,其特征在于:退火处理中,根据块体金属玻璃的热力学参数进行选取,温度控制在玻璃的晶化温度以上,而低于软磁相的居里温度。
7、根据权利要求6所述的各向异性纳米/非晶复相块体永磁材料的制备方法,其特征在于:在此基础上将退火温度降低至硬磁相的居里温度以下进一步退火,复相块体永磁材料的各向异性会进一步增强。
8、根据权利要求4所述的各向异性纳米/非晶复相块体永磁材料的制备方法,其特征在于:退火处理中,退火时间选取10~120分钟,确保硬磁相和软磁相的充分析出,而目不会过分长大。
CN2008101244008A 2008-09-08 2008-09-08 各向异性纳米/非晶复相块体永磁材料及其制备方法 Active CN101673605B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101244008A CN101673605B (zh) 2008-09-08 2008-09-08 各向异性纳米/非晶复相块体永磁材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101244008A CN101673605B (zh) 2008-09-08 2008-09-08 各向异性纳米/非晶复相块体永磁材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101673605A true CN101673605A (zh) 2010-03-17
CN101673605B CN101673605B (zh) 2011-12-07

Family

ID=42020771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101244008A Active CN101673605B (zh) 2008-09-08 2008-09-08 各向异性纳米/非晶复相块体永磁材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101673605B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894644A (zh) * 2010-06-29 2010-11-24 上海大学 各向异性的纳米晶复合NdFeB永磁合金及其制备方法
CN102114537A (zh) * 2011-03-14 2011-07-06 中国科学院宁波材料技术与工程研究所 一种富稀土纳米晶双相复合磁粉的制备方法
CN102290183A (zh) * 2011-05-04 2011-12-21 上海大学 一种具有优异矫顽力的Fe基块体永磁合金及其制备方法
CN103377784A (zh) * 2012-04-23 2013-10-30 江门市新会区宇宏科技有限责任公司 一种双相纳米晶稀土永磁的制备方法
CN106407547A (zh) * 2016-09-12 2017-02-15 西北工业大学 针对各向异性材料铸造残余应力的数值模拟方法
CN106884072A (zh) * 2017-03-28 2017-06-23 中磁科技股份有限公司 钕铁硼永磁材料熔炼的自动控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69423305T2 (de) * 1993-12-10 2000-11-30 Sumitomo Spec Metals Dauermagnet-Legierungspulver auf Eisenbasis für harzgebundene Magneten und daraus hergestellte Magneten
CN1347124A (zh) * 2001-07-30 2002-05-01 潘振东 稀土铁系纳米复合永磁合金粉末及其制造方法
CN1385869A (zh) * 2002-05-30 2002-12-18 燕山大学 α-Fe/Nd2Fe14B各向异性复合纳米晶永磁材料的制备方法
CN100432271C (zh) * 2007-02-09 2008-11-12 上海大学 一种具有硬磁性的铁基大块非晶合金及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894644A (zh) * 2010-06-29 2010-11-24 上海大学 各向异性的纳米晶复合NdFeB永磁合金及其制备方法
CN102114537A (zh) * 2011-03-14 2011-07-06 中国科学院宁波材料技术与工程研究所 一种富稀土纳米晶双相复合磁粉的制备方法
CN102290183A (zh) * 2011-05-04 2011-12-21 上海大学 一种具有优异矫顽力的Fe基块体永磁合金及其制备方法
CN103377784A (zh) * 2012-04-23 2013-10-30 江门市新会区宇宏科技有限责任公司 一种双相纳米晶稀土永磁的制备方法
CN106407547A (zh) * 2016-09-12 2017-02-15 西北工业大学 针对各向异性材料铸造残余应力的数值模拟方法
CN106884072A (zh) * 2017-03-28 2017-06-23 中磁科技股份有限公司 钕铁硼永磁材料熔炼的自动控制方法

Also Published As

Publication number Publication date
CN101673605B (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
KR101378090B1 (ko) R-t-b계 소결 자석
CN108133799B (zh) 一种高性能纳米晶热变形钕铁硼永磁体及其制备方法
CN106448986B (zh) 一种各向异性纳米晶稀土永磁体及其制备方法
CN106935350B (zh) 一种各向异性SmCo5型稀土永磁材料及制备方法
CN102693799B (zh) 永磁快淬带的电磁凝固及热压纳米晶磁体及其制备方法
CN101673605B (zh) 各向异性纳米/非晶复相块体永磁材料及其制备方法
CN104332264A (zh) 一种提高烧结钕铁硼磁体性能的方法
CN108063045A (zh) 一种无重稀土钕铁硼永磁材料及其制备方法
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN102568729B (zh) 一种制备块体纳米晶复合稀土永磁材料的方法
JP2013197414A (ja) 焼結体とその製造方法
CN101393791B (zh) 一种各向异性粘结磁粉及其制备方法
CN102699294A (zh) 电磁凝固Nd-Fe-B永磁速凝片及制备方法
CN101844219A (zh) 一种块体纳米复合R-Fe-B-M永磁材料的制备方法
CN102304663A (zh) 一种永磁合金块体及其制备方法
CN106531383B (zh) 钐钴合金材料、钐钴合金粉末及其制备方法及钐钴基磁体
CN105280319A (zh) 由工业纯混合稀土制备的稀土铁硼材料及其制备方法和应用
JP2012023197A (ja) 異方性希土類磁石の製造方法
CN115821173B (zh) 一种高丰度稀土元素基纳米双相复合材料及其制备方法
JP2530185B2 (ja) 永久磁石の製造法
CN112877581B (zh) 一种改进烧结钕铁硼铸片的制备方法
CN106710769B (zh) 一种Nd-Fe-B永磁薄带磁体及其制备方法
JP3529551B2 (ja) 希土類焼結磁石の製造方法
CN1385869A (zh) α-Fe/Nd2Fe14B各向异性复合纳米晶永磁材料的制备方法
JP2730441B2 (ja) 永久磁石用合金粉末の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20100317

Assignee: JIANGSU CHANNELON ELECTRONIC GROUP Co.,Ltd.

Assignor: NANJING University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2022980007286

Denomination of invention: Anisotropic nano / amorphous composite bulk permanent magnet material and its preparation method

Granted publication date: 20111207

License type: Common License

Record date: 20220608