CN102728365A - 多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法 - Google Patents

多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法 Download PDF

Info

Publication number
CN102728365A
CN102728365A CN2012102130176A CN201210213017A CN102728365A CN 102728365 A CN102728365 A CN 102728365A CN 2012102130176 A CN2012102130176 A CN 2012102130176A CN 201210213017 A CN201210213017 A CN 201210213017A CN 102728365 A CN102728365 A CN 102728365A
Authority
CN
China
Prior art keywords
cnt
ceramic membrane
inorganic ceramic
porous
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102130176A
Other languages
English (en)
Other versions
CN102728365B (zh
Inventor
董长青
覃吴
孙帅
王体朋
杨勇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201210213017.6A priority Critical patent/CN102728365B/zh
Publication of CN102728365A publication Critical patent/CN102728365A/zh
Application granted granted Critical
Publication of CN102728365B publication Critical patent/CN102728365B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法属于光催化材料领域。该光触媒材料以多孔无机陶瓷膜为载体,将Fe改性TiO2与碳纳米管的复合物负载于载体表面;该催化剂中,多孔无机陶瓷膜的质量百分比为50%~80%,Fe改性TiO2与碳纳米管的复合物的质量百分比20%~50%;Fe改性TiO2与碳纳米管的复合物中,碳纳米管的质量百分比为3%~5%,其余为Fe改性TiO2,其中,Fe与Ti的原子比为1:5。该材料制备成本低,多孔结构可促进表面传质过程,加快表面吸附反应,且其极大的比表面积,能够使水体中的有机物富集于其表面,进而增大有机物的转化率,催化性能好。

Description

多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法
技术领域:
本发明属于光催化水处理领域,具体涉及一种多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法。
背景技术:
光催化氧化技术是20世纪70年代发展起来的一种新型水处理技术,该技术具有氧化能力强、节能高效、工艺简单、清洁无二次污染等诸多优点,因此倍受环境工作者关注。主要的光催化剂有TiO2、ZnO、CdS、WO3和Fe2O3等,由于TiO2具有化学稳定性好、反应活性大、无毒等独特的优势,目前对TiO2的研究最为广泛。
TiO2作为光催化剂处理废水虽然具有很多优点,但同时也存在一些问题。TiO2的光吸收波长阈值小于400 nm,因此目前在对TiO2光催化氧化的研究中,光源普遍为紫外光,这就产生了两方面的问题:一是增加产业化成本,浪费了充足的太阳光资源;二是紫外光线的释放会对人体健康带来负面影响。为了提高对太阳光的光能利用率,需要对TiO2催化剂进行改性,拓宽其光吸收波长范围,使催化剂的光谱响应波长红移,从而在废水处理领域更有效的应用TiO2的光催化性能。
发明内容:
本发明的目的在于克服现有光触媒催化剂的缺陷,利用无机陶瓷膜的富集作用、碳纳米管独特的电荷传输性能以及Fe元素的掺杂改性,提供一种光吸收波长阈值大、催化效率高、耐腐蚀、耐清洗、机械强度大、结构稳定不变形和使用寿命长的用于富集水中有机污染物的多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法。
本发明所采用的技术方案是:
该光触媒材料以多孔无机陶瓷膜为载体,将Fe改性TiO2与碳纳米管的复合物负载于载体表面;该催化剂中,多孔无机陶瓷膜的质量百分比为50%~80%,Fe改性TiO2与碳纳米管的复合物的质量百分比20%~50%;Fe改性TiO2与碳纳米管的复合物中,碳纳米管的质量百分比为3%~5%,其余为Fe改性TiO2,其中,Fe与Ti的原子比为1:5。
所述的光触媒材料的制备方法,具体制备步骤如下:
步骤(1):将主要成分为SiO2、Al2O3、CaO、MgO、TiO2、K2O和Na2O的煤渣研磨均匀,加入粒径为0.02mm的发泡剂,在压力机上采用半干法以及38MPa的成型压力下压模成型,压制成薄片;将压制的薄片在马弗炉中1100oC下煅烧2 h即获得粉煤灰基多孔陶瓷片,并将其研磨,得到多孔无机陶瓷膜;
步骤(2):室温下,将碳纳米管放入无水乙醇中,超声粉碎处理使碳纳米管开口;然后进行第一次超声波处理,而后加入钛酸正丁酯,再继续进行第二次超声处理,并在第二次超声处理过程中,依次加入硝酸铁和乙酸的混合溶液与多孔无机陶瓷膜;超声处理直至溶胶出现时停止,并在室温条件下老化数天;
步骤(3):对步骤(2)得到的老化样品进行干燥、焙烧,即得到所述光触媒材料,且使得到的催化剂中,多孔无机陶瓷膜的质量百分比为50%~80%,Fe改性TiO2与碳纳米管的复合物的质量百分比20%~50%;Fe改性TiO2与碳纳米管的复合物中,碳纳米管的质量百分比为3%~5%,其余为Fe改性TiO2,其中,Fe与Ti的原子比为1:5。
所述步骤(1)中的煤渣的研磨粒径为0.06 mm~0.09mm;发泡剂为木炭且用量为发泡剂与煤渣总重量的10%;煅烧后薄片的研磨粒径为0.1mm~0.3mm。
所述步骤(2)中超声粉碎处理的时间为15min,第一次超声处理的时间为15min,第二次超声处理的时间为30min;乙酸的浓度为0.5 mol/L,硝酸铁与乙酸的摩尔比为1:2。
所述步骤(3)中的干燥为普通鼓风干燥箱干燥,干燥温度为80oC,干燥时间为10h;焙烧在氮气氛围下进行,焙烧温度为550oC,焙烧时间为1.5h。
本发明的有益效果为:
本发明采用溶胶-凝胶法,以钛酸正丁酯为前体物合成粒径分散均匀的高活性的掺Fe3+的无机膜/碳纳米管/TiO2富集水中有机污染物光触媒材料。掺入金属离子Fe3+之后,提高了TiO2的光响应范围,并向可见光范围拓展,减少电子和空穴的复合,其光催化活性进一步提高。单纯的二氧化钛作为催化剂,污水中的有机物在其表面浓度低,传质速率低也影响了其催化效率。将二氧化钛负载于无机陶瓷膜的表面,无机膜以其极大地比表面积以及孔隙率,可促进其表面的传质过程,加快表面吸附反应,进而达到富集有机物的目的,从而增加二氧化钛的催化效率。此外,碳纳米管具有极高的比表面积、化学惰性以及离域大π键的隧道导电特性,可提高材料的催化性能。
无机膜以火电厂煤灰为原材料、木屑为发泡剂,制备成本低,并达到了废物回收利用的目的。以无机多孔陶瓷膜为载体制备的光触媒材料,其多孔结构可促进表面传质过程,加快表面吸附反应,且其极大的比表面积,能够使水体中的有机物富集于其表面,从而增大有机物的转化率。碳纳米管具有极大的比表面积、化学惰性以及离域大π键的隧道导电特性,可提高材料性能。此外,Fe元素的掺杂可提高TiO2的光吸收阈值,拓宽其光吸收波长范围,使催化剂的光谱响应波长红移,从而在废水处理领域更有效的应用TiO2的光催化性能。
具体实施方式:
本发明提供了一种多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法,下面通过具体实施例对本发明做进一步阐述。
下述实例中的百分含量如无特殊说明均为重量百分含量。
实施例1
按以下步骤制备该光触媒材料:
步骤(1):将主要成分为SiO2、Al2O3、CaO、MgO、TiO2、K2O、Na2O的煤渣研磨至0.06 mm~0.09 mm,加入10wt.%粒径为0.02 mm的木屑,在压力机上采用半干法以成型压力为38MPa的条件下压模成型,压制成φ10×5 mm的薄片;将压制的薄片在马弗炉中1100oC下煅烧2h即获得粉煤灰基多孔陶瓷片,并将其研磨至粒径0.1 mm~0.3 mm。
步骤(2):室温下,将0.30g碳纳米管放入无水乙醇中,超声粉碎15min,然后普通超声处理15min后加入13.72g钛酸正丁酯,再次超声处理30min。依次将161 ml浓度为0.5 mol/L的乙酸与16.31g Fe(NO3)3·9H2O混合溶液与10.00g无机膜在超声处理中加入到上述溶液中,超声处理直至溶胶的出现,室温条件下老化数天。
步骤(3):对步骤(2)得到的老化样品置于普通鼓风干燥箱80oC下干燥10h、马弗炉中氮气氛围下550oC焙烧1.5h,即得到Fe改性无机膜/碳纳米管/TiO2富集水中有机污染物光触媒复合材料(无机膜和Fe改性TiO2/碳纳米管复合物的质量百分比分别为50%和50%。TiO2/碳纳米管复合物中,碳纳米管与TiO2的质量百分比分别为3%和97%,Fe与Ti的原子比为1:5)。
采用腈纶污水为目标降解物,分别以紫外线(波长:254nm,365nm)、可见光作为光源考察了Fe改性无机膜/碳纳米管/TiO2光触媒复合物的光催化活性。结果表明:空气和氮气氛围下,在该催化剂作用下,腈纶的转化率均较高,且结果表明掺入金属离子Fe3+之后,提高了TiO2的光响应范围。
实施例2
按以下步骤制备该光触媒材料:
步骤(1):将主要成分为SiO2、Al2O3、CaO、MgO、TiO2、K2O、Na2O的煤渣研磨至0.06mm~0.09mm,加入10wt.%粒径为0.02mm的木屑,在压力机上采用半干法以成型压力为38MPa的条件下压模成型,压制成φ10×5 mm的薄片;将压制的薄片在马弗炉中1100oC下煅烧2h即获得粉煤灰基多孔陶瓷片,并将其研磨至粒径0.1 mm~0.3mm。
步骤(2):室温下,将0.32g碳纳米管放入无水乙醇中,超声粉碎15min,然后普通超声处理15min后加入10.88g钛酸正丁酯,再次超声处理30min。依次将128 ml浓度为0.5 mol/L的乙酸与12.93g Fe(NO3)3·9H2O混合溶液与12.00g无机膜在超声处理中加入到上述溶液中。超声处理直至溶胶的出现。室温条件下老化数天。
步骤(3):对步骤(2)得到的老化样品置于普通鼓风干燥箱80oC下干燥10h、马弗炉中氮气氛围下550 oC焙烧1.5h,即得到Fe改性无机膜/碳纳米管/TiO2富集水中有机污染物光触媒复合材料(无机膜和Fe改性TiO2/碳纳米管复合物的质量百分比分别为60%和40%。TiO2/碳纳米管复合物中,碳纳米管与TiO2的质量百分比分别为4%和96%,Fe与Ti的原子比为1:5)。
采用腈纶污水为目标降解物,分别以紫外线(波长:254 nm,365nm)、可见光作为光源考察了Fe改性无机膜/碳纳米管/TiO2光触媒复合物的光催化活性。结果表明:空气和氮气氛围下,在该催化剂作用下,腈纶的转化率均较高,且结果表明掺入金属离子Fe3+之后,提高了TiO2的光响应范围。
实施例3
按以下步骤制备该光触媒材料:
步骤(1):将主要成分为SiO2、Al2O3、CaO、MgO、TiO2、K2O、Na2O的煤渣研磨至0.06 mm~0.09 mm,加入10wt.%粒径为0.02mm的木屑,在压力机上采用半干法以成型压力为38 MPa的条件下压模成型,压制成φ10×5mm的薄片;将压制的薄片在马弗炉中1100oC下煅烧2h即获得粉煤灰基多孔陶瓷片,并将其研磨至粒径0.1 mm~0.3 mm。
步骤(2):室温下,将0.20g碳纳米管放入无水乙醇中,超声粉碎15min,然后普通超声处理15min后加入5.38g钛酸正丁酯,再次超声处理30min。依次将63 ml浓度为0.5 mol/L的乙酸与6.39g Fe(NO3)3·9H2O混合溶液与16.00g无机膜在超声处理中加入到上述溶液中。超声处理直至溶胶的出现。室温条件下老化数天。
步骤(3):对步骤(2)得到的老化样品置于普通鼓风干燥箱80oC下干燥10h、马弗炉中氮气氛围下550 oC焙烧1.5h,即得到Fe改性无机膜/碳纳米管/TiO2富集水中有机污染物光触媒复合材料(无机膜和Fe改性TiO2/碳纳米管复合物的质量百分比分别为80%和20%。TiO2/碳纳米管复合物中,碳纳米管与TiO2的质量百分比分别为5%和95%,Fe与Ti的原子比为1:5)。
采用腈纶污水为目标降解物,分别以紫外线(波长:254 nm,365nm)、可见光作为光源考察了Fe改性无机膜/碳纳米管/TiO2光触媒复合物的光催化活性。结果表明:空气和氮气氛围下,在该催化剂作用下,腈纶的转化率均较高,且结果表明掺入金属离子Fe3+之后,提高了TiO2的光响应范围。

Claims (5)

1.一种多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料,其特征在于,以多孔无机陶瓷膜为载体,将Fe改性TiO2与碳纳米管的复合物负载于载体表面;该催化剂中,多孔无机陶瓷膜的质量百分比为50%~80%,Fe改性TiO2与碳纳米管的复合物的质量百分比20%~50%;Fe改性TiO2与碳纳米管的复合物中,碳纳米管的质量百分比为3%~5%,其余为Fe改性TiO2,其中,Fe与Ti的原子比为1:5。
2.一种权利要求1所述的多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料的制备方法,其特征在于,具体制备步骤如下:
步骤(1):将主要成分为SiO2、Al2O3、CaO、MgO、TiO2、K2O和Na2O的煤渣研磨均匀,加入粒径为0.02mm的发泡剂,在压力机上采用半干法以及38MPa的成型压力下压模成型,压制成薄片;将压制的薄片在马弗炉中1100oC下煅烧2 h即获得粉煤灰基多孔陶瓷片,并将其研磨,得到多孔无机陶瓷膜;
步骤(2):室温下,将碳纳米管放入无水乙醇中,超声粉碎处理使碳纳米管开口;然后进行第一次超声波处理,而后加入钛酸正丁酯,再继续进行第二次超声处理,并在第二次超声处理过程中,依次加入硝酸铁和乙酸的混合溶液与多孔无机陶瓷膜;超声处理直至溶胶出现时停止,并在室温条件下老化数天;
步骤(3):对步骤(2)得到的老化样品进行干燥、焙烧,即得到所述光触媒材料,且使得到的催化剂中,多孔无机陶瓷膜的质量百分比为50%~80%,Fe改性TiO2与碳纳米管的复合物的质量百分比20%~50%;Fe改性TiO2与碳纳米管的复合物中,碳纳米管的质量百分比为3%~5%,其余为Fe改性TiO2,其中,Fe与Ti的原子比为1:5。
3.根据权利要求2所述的一种权利要求1所述的多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料的制备方法,其特征在于,所述步骤(1)中的煤渣的研磨粒径为0.06 mm~0.09mm;发泡剂为木炭且用量为发泡剂与煤渣总重量的10%;煅烧后薄片的研磨粒径为0.1mm~0.3mm。
4.根据权利要求2所述的一种权利要求1所述的多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料的制备方法,其特征在于,所述步骤(2)中超声粉碎处理的时间为15min,第一次超声处理的时间为15min,第二次超声处理的时间为30min;乙酸的浓度为0.5 mol/L,硝酸铁与乙酸的摩尔比为1:2。
5.根据权利要求2所述的一种权利要求1所述的多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料的制备方法,其特征在于,所述步骤(3)中的干燥为普通鼓风干燥箱干燥,干燥温度为80oC,干燥时间为10h;焙烧在氮气氛围下进行,焙烧温度为550oC,焙烧时间为1.5h。
CN201210213017.6A 2012-06-21 2012-06-21 多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法 Expired - Fee Related CN102728365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210213017.6A CN102728365B (zh) 2012-06-21 2012-06-21 多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210213017.6A CN102728365B (zh) 2012-06-21 2012-06-21 多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法

Publications (2)

Publication Number Publication Date
CN102728365A true CN102728365A (zh) 2012-10-17
CN102728365B CN102728365B (zh) 2014-05-07

Family

ID=46985078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210213017.6A Expired - Fee Related CN102728365B (zh) 2012-06-21 2012-06-21 多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102728365B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406136A (zh) * 2013-08-09 2013-11-27 江苏高淳陶瓷实业有限公司 Lu、N共掺杂TiO2光催化蜂窝陶瓷网的制备方法
CN107973435A (zh) * 2018-01-19 2018-05-01 广州锦时环保设备有限公司 一种陶瓷污水处理装置及方法
CN108273395A (zh) * 2018-02-08 2018-07-13 北京交通大学 负载针铁矿纳米催化剂的陶瓷膜及其制备方法
CN109925893A (zh) * 2019-04-23 2019-06-25 深圳技术大学 一种可见光催化型复合陶瓷纳滤膜及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583273A (zh) * 2004-06-11 2005-02-23 中山大学 负载型金属氧化物催化剂的制备方法
CN102151561A (zh) * 2011-01-22 2011-08-17 浙江理工大学 一种纳米碳管负载二氧化钛的光催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583273A (zh) * 2004-06-11 2005-02-23 中山大学 负载型金属氧化物催化剂的制备方法
CN102151561A (zh) * 2011-01-22 2011-08-17 浙江理工大学 一种纳米碳管负载二氧化钛的光催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈卫祥等: "碳纳米管的特性及其高性能的复合材料", 《复合材料学报》, vol. 18, no. 4, 30 November 2001 (2001-11-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406136A (zh) * 2013-08-09 2013-11-27 江苏高淳陶瓷实业有限公司 Lu、N共掺杂TiO2光催化蜂窝陶瓷网的制备方法
CN107973435A (zh) * 2018-01-19 2018-05-01 广州锦时环保设备有限公司 一种陶瓷污水处理装置及方法
CN108273395A (zh) * 2018-02-08 2018-07-13 北京交通大学 负载针铁矿纳米催化剂的陶瓷膜及其制备方法
CN109925893A (zh) * 2019-04-23 2019-06-25 深圳技术大学 一种可见光催化型复合陶瓷纳滤膜及其制备方法和应用

Also Published As

Publication number Publication date
CN102728365B (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN102728339B (zh) 多孔无机陶瓷膜-石墨烯-TiO2光触媒复合材料及其制备方法
CN102153318B (zh) 光催化水泥基材料的制备方法和光催化剂的制备方法
CN102728346A (zh) MnO2-TiO2碳纳米管-多孔无机陶瓷膜低温催化脱硝自清理材料及其制备方法
CN102285686B (zh) 快速溶胶凝胶制备铁-氮共掺杂介孔纳米二氧化钛的方法
CN102728365B (zh) 多孔无机陶瓷膜-Fe改性TiO2-碳纳米管光触媒材料及其制备方法
CN105329876A (zh) 一种硼、氮共掺杂碳量子点的制备方法
CN102744051B (zh) 多孔无机陶瓷膜-碳纳米管-TiO2光触媒复合材料及其制备方法
CN102728348B (zh) MnO2-TiO2石墨烯-多孔无机陶瓷膜低温脱硝催化剂及其制备方法
CN106512598A (zh) 具有除尘和催化脱硝功能的陶瓷膜过滤元件及其制备方法
CN108499556B (zh) 一种低温脱硝催化剂及其制备方法
CN103071455A (zh) 一种复合吸附净化剂的制备方法
WO2021012737A1 (zh) 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法
CN110961106A (zh) 一种利用废固资源制备的高性能低温脱硝催化剂及其制备方法
CN102671650B (zh) 一种多孔碳-二氧化钛复合材料的制备方法
CN102517122A (zh) 一种利用赤泥制备化学链燃烧氧载体的方法
CN105289498A (zh) 一种生物质炭-碳纳米材料复合物的制备方法
CN102432326A (zh) 多孔碳-二氧化钛复合材料及其制备方法
CN112403459A (zh) 一种基于金属相变微胶囊的低温scr催化剂及其制备方法
CN102410530A (zh) 一种利用铜渣制备化学链燃烧氧载体的方法
CN105312072B (zh) 生物质灰渣基N-TiO2/N-碳纳米管光触媒净水材料及其制备方法
CN102744091B (zh) 多孔无机陶瓷膜-石墨烯-N改性TiO2光触媒材料及其制备方法
CN102728347B (zh) MnO2-TiO2石墨烯-多孔无机陶瓷膜低温催化脱硝自清理材料及其制备方法
CN102886255A (zh) MnO2-TiO2碳纳米管-多孔无机陶瓷膜低温脱硝催化剂及其制备方法
CN104211426A (zh) 一种禾本科植物结构遗态的高硅莫来石及其制备方法
CN104923279A (zh) 一种BN/MoO3复合光催化材料的制备方法及其用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140507

Termination date: 20170621

CF01 Termination of patent right due to non-payment of annual fee