WO2021012737A1 - 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法 - Google Patents

一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法 Download PDF

Info

Publication number
WO2021012737A1
WO2021012737A1 PCT/CN2020/086893 CN2020086893W WO2021012737A1 WO 2021012737 A1 WO2021012737 A1 WO 2021012737A1 CN 2020086893 W CN2020086893 W CN 2020086893W WO 2021012737 A1 WO2021012737 A1 WO 2021012737A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen production
porous ceramic
source powder
ceramic membrane
Prior art date
Application number
PCT/CN2020/086893
Other languages
English (en)
French (fr)
Inventor
沈岳松
金奇杰
Original Assignee
南京杰科丰环保技术装备研究院有限公司
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京杰科丰环保技术装备研究院有限公司, 南京工业大学 filed Critical 南京杰科丰环保技术装备研究院有限公司
Publication of WO2021012737A1 publication Critical patent/WO2021012737A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention provides a reforming hydrogen production catalyst using waste vanadium-titanium denitration catalyst as a raw material and a preparation method thereof, belonging to the technical field of waste product resource utilization and new energy.
  • Nitrogen oxides are the main cause of pollution such as haze and acid rain.
  • the denitration of industrial flue gas such as thermal power plants has become the focus of current air pollution control.
  • the number of catalysts in service exceeded 1.2 million cubic meters.
  • the average life of the catalyst is 3-5 years.
  • the vanadium-titanium denitrification catalyst will soon be included in the batch "replacement period”.
  • the Ministry of Environmental Protection website issued the “Notice on Strengthening the Supervision of Waste Flue Gas Denitration Catalysts", which included the management, regeneration, and utilization of waste flue gas denitration catalysts into hazardous waste management, and required improvement of its regeneration, utilization and disposal capabilities.
  • the regeneration rate of thermal power denitration catalysts is about 60%, and conventional catalysts can usually be regenerated 2-3 times, after which they can only be completely scrapped. That is, catalyst regeneration is not actually the final treatment route.
  • the high value-added resource utilization of waste vanadium-titanium denitration catalyst is a feasible and economical conversion method.
  • patent CN201410623778.8 designs a continuous device to recover vanadium, titanium, and molybdenum elements in waste vanadium-titanium denitrification catalysts.
  • Patent CN201510265236.2 leaches the waste vanadium-titanium denitrification catalyst to obtain a titanium-rich leaching residue and a leaching solution containing tungsten, molybdenum and vanadium, and adjusting the ratio of the content of each substance after simultaneous purification of the valuable components in the leaching solution to prepare the catalytic component The mixture is further prepared as a new catalyst.
  • Patent 201710717702.5 uses nitric acid solution to clean the surface of the waste denitrification catalyst, and then uses sodium hydroxide solution to remove arsenic, and sodium hydrosulfide to remove mercury to obtain denitrification powder, then mix Portland cement, glass fiber, cerium oxide and waste denitrification powder Prepared into ceramic powder, thereby preparing a denitration catalyst.
  • the above-mentioned patent not only uses a variety of acids, alkalis and organic liquids to clean the environment to cause secondary environmental pollution, but also does not fundamentally effectively solve the harmlessness of the waste vanadium-titanium denitration catalyst, and the market value is not high.
  • Patent CN201510852564.2 adopts silicon source powder, aluminum source powder, burning accelerator, vanadium element solid solvent and other raw materials to be mixed with waste denitration catalyst to prepare titanium-based ceramics.
  • the above-mentioned catalyst can completely solve the harmlessness of the catalyst, it can only be used in the fields of low added value such as textile porcelain and bathroom porcelain.
  • Patent CN20061013084.7 discloses a catalyst with a transition metal mixed oxide as an active component and alumina and magnesia as a composite carrier, which has a high ethanol conversion rate and a hydrogen selectivity of 60%.
  • Patent CN96100965.9A discloses a platinum-palladium catalyst for converting gasoline into hydrogen-rich gas. In the hydrogen-rich gas, the hydrogen content is 17% and the methane content is 62%. However, the active component is precious metals, and the cost is relatively high. Hydrogen selectivity is low.
  • the patent CN01138906.0A discloses a gasoline oxidation reforming hydrogen production catalyst with RuO 2 as the catalytically active component and rare earth element oxides as the promoter.
  • the hydrogen selectivity reaches 1.5 ⁇ 1.7mol(H 2 +CO) at 820°C. )/mol C, the reaction temperature is high, and the energy consumption is high. Therefore, the design purpose of the catalyst is mainly to increase the selectivity of the catalyst, reduce the active load of the catalyst and reduce the temperature of the catalytic reaction.
  • the present invention innovatively proposes to use waste vanadium-titanium denitration catalysts to prepare high-performance porous ceramic membranes
  • the reforming hydrogen production catalyst fundamentally solves the large-scale waste vanadium-titanium denitration catalyst and realizes its high value-added resource utilization.
  • the main basis is: the titanium dioxide carrier in the denitrification catalyst accounts for more than 90% of the catalyst powder, and the appropriate amount of silicon source powder and aluminum source powder is added and calcined to prepare a porous ceramic carrier.
  • the porous ceramic membrane reforming hydrogen production catalyst can effectively catalyze the reforming hydrogen production reaction of formaldehyde.
  • the successful application of the present invention will not only completely solve the treatment problem of waste vanadium-titanium denitrification catalyst, but also greatly solve the problem of formaldehyde pollution and energy shortage as a reforming hydrogen production catalyst, thereby bringing huge economic, environmental and social benefits.
  • the purpose of the present invention is to improve the shortcomings of the prior art and provide a porous ceramic membrane reforming hydrogen production catalyst using waste vanadium-titanium catalyst as a raw material.
  • Another object of the present invention is to provide a method for preparing the above reforming hydrogen production catalyst .
  • the technical scheme of the present invention is: the present invention prepares the porous ceramic membrane carrier by adding aluminum source powder and silicon source powder to the vanadium-titanium denitration catalyst; on the other hand, the titanium oxide and vanadium oxide in the vanadium-titanium denitration catalyst And tungsten oxide can not only serve as a ceramic membrane carrier component, but also have a strong interaction with the active component nickel oxide to improve the catalytic activity of the active component nickel oxide.
  • waste vanadium-titanium denitration catalyst as the main raw material, adding a small amount of silicon source powder and aluminum source powder, and supporting the active component nickel oxide, the research and development of a high-performance environmentally friendly porous ceramic membrane reforming hydrogen production catalyst is aimed at solving it thoroughly and effectively. Treatment of waste vanadium-titanium denitration catalysts and high value-added resource utilization, while solving formaldehyde pollution and the development and utilization of clean energy.
  • the specific technical scheme of the present invention is: a reforming hydrogen production catalyst using waste vanadium-titanium denitration catalyst as a raw material, which is characterized in that it is prepared from waste vanadium-titanium denitration catalyst, silicon source powder, aluminum source powder and forming agent solution.
  • the formed porous ceramic membrane is the carrier, and nickel oxide is the catalytic active component.
  • 80-90 parts by weight of waste vanadium-titanium denitration catalyst, 1-5 parts by weight of silicon source powder, 1-5 parts by weight of aluminum source powder, and weight of forming agent solution The parts are 8-10 parts, and the weight parts of the catalytically active component nickel oxide are 1-10 parts.
  • waste vanadium-titanium denitrification catalyst is applicable to the waste vanadium-titanium denitration catalyst of all manufacturers.
  • the present invention also provides a method for preparing the above porous ceramic membrane catalyst, and the specific steps are:
  • the waste vanadium-titanium denitrification catalyst, silicon source powder, and aluminum source powder are crushed, sieved, and mixed, then the forming agent solution is added for granulation, and the granulated mud is added to the mold and pressurized to maintain the pressure.
  • the ceramic body is then placed in a kiln for the first calcination to obtain a porous ceramic membrane carrier;
  • nickel salt to deionized water and perform stirring reaction until the solution is clear and transparent to obtain a solution; wherein: the mass ratio of nickel salt to deionized water is 1:1 ⁇ 6;
  • the reforming hydrogen production catalyst has a loading amount of 1%-10%.
  • the present invention also provides the above porous ceramic membrane catalyst, and the specific steps of the preparation method of the catalyst are:
  • the waste vanadium-titanium denitrification catalyst, silicon source powder, and aluminum source powder are crushed, sieved, and mixed, then the forming agent solution is added for granulation, and the granulated mud is added to the mold and pressurized to maintain the pressure.
  • the ceramic body is then placed in a kiln for the first calcination to obtain a porous ceramic membrane carrier;
  • nickel salt to deionized water and perform stirring reaction until the solution is clear and transparent to obtain a solution; wherein: the mass ratio of nickel salt to deionized water is 1:1 ⁇ 6;
  • the reforming hydrogen production catalyst has a loading amount of 1%-10%.
  • the silicon source powder is diatomaceous earth or silicon dioxide;
  • the aluminum source powder is aluminum hydroxide or pseudo-boehmite;
  • the mass fraction of the forming agent solution is 1-15%
  • the active component precursor is a soluble nickel salt.
  • the silicon source powder in step (1) is diatomaceous earth with a particle size of 100 mesh or less, and the aluminum source powder is aluminum hydroxide with a particle size of 100 mesh or less; in step (1), the forming agent solution is mass fraction It is 7% polyvinyl alcohol.
  • the pressurizing pressure in step (1) is 10-15 MPa, and the pressure holding time is 1-3 min.
  • the precursor of the active component nickel oxide is nickel chloride or nickel nitrate.
  • the first calcination temperature is 1100-1300°C, and the heat preservation is 1.5-3h
  • the second calcination temperature is 600-750°C, and the heat preservation is 1.5-3h.
  • concentration of each gas is: N 2 (90 mL/min); H 2 O (0.1 mL/min); HCHO (0.067 mL/min).
  • the catalyst has a H 2 selectivity of 74.5% and CO selectivity of 52.3%.
  • H 2 selectivity is 100% and CO selectivity is 86.25%.
  • the leaching rate of V element in the titanium-based ceramic products prepared by the porous ceramic membrane reforming hydrogen production catalyst prepared by the present invention is far lower than the limit requirement of V element content in GB26452-2011 "Vanadium Industry Pollutant Emission Standard" ( ⁇ 1ppm), Thoroughly and effectively solve the secondary pollution of waste and toxic vanadium-titanium denitration catalysts and the utilization of high value-added resources.
  • formaldehyde is used as a hydrogen source, and hydrogen is produced by reforming hydrogen under the action of a catalyst, which can solve the problem of energy shortage and formaldehyde environmental pollution.
  • the porous ceramic membrane reforming hydrogen production catalyst component of the present invention is environmentally friendly, has simple preparation process, low cost, high cost performance, strong application promotion value and broad market prospects.
  • the waste vanadium-titanium denitrification catalyst After crushing the waste vanadium-titanium denitrification catalyst by a crusher and a ball mill, it is homogenized through a 100-mesh standard sieve for use; the diatomite powder and aluminum hydroxide powder are respectively ball-milled through a 100-mesh standard sieve for use;
  • step (4) After immersing the prepared porous ceramic membrane carrier in the nickel chloride solution prepared in step (4) for 1 hour, take out the impregnated porous ceramic membrane carrier and place it in an oven at 80°C for drying, and then place it in a kiln at 600°C A 1% NiO-supported porous ceramic membrane reforming hydrogen production catalyst was prepared by keeping the temperature for 1.5 hours.
  • ICP Inductively Coupled Plasma Atomic Emission Spectrometry
  • the reforming hydrogen production catalyst prepared by this method is suitable for catalyzing the reforming of formaldehyde to produce hydrogen.
  • the waste vanadium-titanium denitrification catalyst is crushed by crusher and ball mill in turn, and then homogenized through a 100-mesh standard sieve for use; the silica powder and pseudo-boehmite powder are respectively ball-milled through a 100-mesh standard sieve for use;
  • step (4) After immersing the prepared porous ceramic membrane carrier in the nickel chloride solution prepared in step (4) for 1 hour, take out the impregnated porous ceramic membrane carrier and place it in an oven at 80°C for drying, and then place it in a kiln at 750°C After keeping the temperature for 3 hours, a 10% NiO-supported porous ceramic membrane reforming hydrogen production catalyst was prepared.
  • ICP Inductively Coupled Plasma Atomic Emission Spectrometry
  • the reforming hydrogen production catalyst prepared by this method is suitable for catalyzing the reforming of formaldehyde to produce hydrogen.
  • the waste vanadium-titanium denitrification catalyst is crushed by a crusher and ball mill in turn, and then homogenized through a 100-mesh standard sieve for use; Diatomite powder and pseudo-boehmite powder are respectively ball-milled through a 100-mesh standard sieve for use;
  • the prepared porous ceramic membrane carrier was immersed in the nickel sulfate solution prepared in step (4) for 1 hour, and the impregnated porous ceramic membrane carrier was taken out and dried in an oven at 80°C, and then placed in a kiln at 600°C After holding for 1.5 hours, a 1.7% NiO-supported porous ceramic membrane reforming hydrogen production catalyst was prepared.
  • ICP Inductively Coupled Plasma Atomic Emission Spectrometry
  • the reforming hydrogen production catalyst prepared by this method is suitable for catalyzing the reforming of formaldehyde to produce hydrogen.
  • the waste vanadium-titanium denitration catalyst is crushed by a crusher and a ball mill, it is homogenized through a 100-mesh standard sieve for use; the silica powder and aluminum hydroxide powder are respectively ball-milled through a 100-mesh standard sieve for use;
  • step (4) After immersing the prepared porous ceramic membrane carrier in the nickel acetate solution prepared in step (4) for 1 hour, take out the impregnated porous ceramic membrane carrier and place it in an oven at 80°C for drying, and then place it in a kiln at 750°C After 3 hours of heat preservation, a 3.3% NiO-supported porous ceramic membrane reforming hydrogen production catalyst was prepared.
  • ICP Inductively Coupled Plasma Atomic Emission Spectrometry
  • the reforming hydrogen production catalyst prepared by this method is suitable for catalyzing the reforming of formaldehyde to produce hydrogen.
  • the waste vanadium-titanium denitrification catalyst After crushing the waste vanadium-titanium denitrification catalyst by a crusher and a ball mill, they are homogenized through a 100-mesh standard sieve for use; the silicon source powder and aluminum source powder are respectively ball-milled through a 100-mesh standard sieve for use;
  • the porous ceramic membrane reforming hydrogen production catalyst has no catalytically active component nickel oxide, and its selectivity is extremely low, and there is basically no catalytic reforming hydrogen production activity.

Abstract

一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法,该催化剂以废旧钒钛脱硝催化剂、硅源粉料、铝源粉料和成型剂溶液制备而成的多孔陶瓷膜为载体,以氧化镍为催化活性组分。将废旧钒钛脱硝催化剂、硅源粉料、铝源粉料和成型剂溶液经粉碎、配料、造粒、成型、煅烧等工艺制备成多孔陶瓷膜载体,将多孔陶瓷膜载体浸渍于活性组分前驱体溶液中,经干燥、焙烧得到重整制氢催化剂。该重整制氢催化剂不仅能够实现废旧钒钛脱硝催化剂的无害化处置,还能将其高附加值资源化制氢,且重整甲醛制氢H 2选择性高,活性组分负载少、成本低,具有广阔的市场应用前景。

Description

一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法 技术领域
本发明提供一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法,属废弃产品资源化利用和新能源技术领域。
背景技术
氮氧化物是造成雾霾、酸雨等污染的主要成因,火电厂等工业烟气脱硝成为当前大气污染治理的重点。截至2017年,在役催化剂超过120万立方米,按照2013年开始集中上马火电脱硝工程,催化剂平均寿命3-5年计算,钒钛脱硝催化剂即将计入批量“更换期”。另一方面,环境保护部网站发布了《关于加强废烟气脱硝催化剂监管工作的通知》,将废烟气脱硝催化剂管理、再生、利用纳入危废管理,要求提高其再生和利用处置能力。因此,废弃钒钛脱硝催化剂的再生处理或资源化利用成为亟待解决的环保难题。火电脱硝催化剂的可再生率约为60%,且常规催化剂通常可再生2-3次,之后只能彻底报废。即催化剂再生其实并非最终处理途径。在此基础上,废弃钒钛脱硝催化剂的高附加值资源化利用是一种既可行又经济的转换方式。
现有处理废弃钒钛脱硝催化剂专利中,专利CN201410623778.8设计连续化装置回收废旧钒钛脱硝催化剂中钒、钛、钼元素。专利CN201510265236.2将废旧钒钛脱硝催化剂经过浸出后得到富钛浸出渣和含钨钼钒的浸出液,并通过对浸出液中有价组分同步纯化后进行各个物质含量的比例调节,制备催化组分的混合物,并进一步制备为新的催化剂。专利201710717702.5采用硝酸溶液清洗废旧脱硝催化剂表面,再用氢氧化钠溶液除砷,用硫氢化钠除汞得到脱硝粉体后,将硅酸盐水泥、玻璃纤维、二氧化铈与废弃脱硝粉体混合制备成陶瓷粉体,从而制备成脱硝催化剂。上述专利不仅利用多种酸、碱以及有机液体清洗造成二次环境污染,同时也没有从根本上实效解决废弃钒钛脱硝催化剂的无害化,市场价值也并不高。专利CN201510852564.2采用硅源粉料、铝源粉料、促烧剂、钒元素固溶剂等原料与废弃脱硝催化剂混合,制备成钛基陶瓷。上述催化剂虽然能够彻底解决催化剂 的无害化,但其只能用于纺织瓷、建卫瓷等附加值不高的领域。
与此同时,随着全球性能源短缺问题的日趋严峻,清洁能源的开发与利用迫在眉睫。氢气作为一种清洁、高效、可再生能源,正受到全球科研工作者的广泛关注。商业制氢的工艺主要有电解水制氢、煤气化制氢和催化重整制氢三大类,其中催化重整制氢是最具发展潜力的制氢工艺之一。目前,催化重整制氢工艺的氢源主要是甲烷、乙醇、甲醇等,这些氢源本身具有一定的能源利用性,其能源转化途径并不具备附加值增益。因此,开发低品质有机物催化重整制氢技术具有变废为宝、高附加值等重大意义。催化剂是催化重整制氢工艺的核心。专利CN20061013084.7公开的以过渡金属混合氧化物为活性组分,以氧化铝和氧化镁为复合载体的催化剂,具有较高的乙醇转化率,氢气选择性达到60%。专利CN96100965.9A公开了一种将汽油转化成富氢气体的铂钯催化剂,其富氢气体中,氢气含量为17%,甲烷含量为62%,但其活性组分为贵金属,成本较高,且氢气选择性较低。专利CN01138906.0A公开的以RuO 2为催化活性组分,以稀土元素氧化物为助催化剂的汽油氧化重整制氢催化剂,在820℃条件下氢气选择性达到1.5~1.7mol(H 2+CO)/mol C,其反应温度偏高,能耗较高。因此,催化剂的设计目的主要在于提高催化剂的选择性,降低催化剂活性负载量以及降低催化反应温度。
鉴于国内即将面临大量废旧钒钛脱硝催化剂,缺乏先进的安全处置和资源化技术问题,以及有机污染物本身的环境污染问题,本发明创新性地提出利用废旧钒钛脱硝催化剂制备高性能多孔陶瓷膜重整制氢催化剂,从根本上解决大批量废旧钒钛脱硝催化剂,并实现其高附加值资源化利用。主要依据是:脱硝催化剂中二氧化钛载体占催化剂粉体的90%以上,加入适量硅源粉体和铝源粉体煅烧制备为多孔陶瓷载体,负载活性组分氧化镍后,即可制备为高性能多孔陶瓷膜重整制氢催化剂,能够有效催化甲醛的重整制氢反应。本发明的成功应用不仅会彻底解决废旧钒钛脱硝催化剂的处理问题,同时作为重整制氢催化剂也会极大地解决甲醛污染和能源短缺问题,从而带来巨大的经济、环保和社会效益。
发明内容
本发明的目的是为了改进现有技术的不足而提供一种以废旧钒钛催化剂为原料的多孔陶瓷膜重整制氢催化剂,本发明的另一目的是提供上述重整制氢催化剂的制备方法。
本发明的目的可以通过以下技术方案实现:
本发明的技术方案为:本发明通过在钒钛脱硝催化剂中加入铝源粉体和硅源粉体,从 而制备成多孔陶瓷膜载体;另一方面,钒钛脱硝催化剂中的氧化钛、氧化钒和氧化钨不仅能够作为陶瓷膜载体组分,还能与活性组分氧化镍具有强相互作用,提高活性组分氧化镍的催化活性。以废旧钒钛脱硝催化剂为主要原料,添加少量硅源粉料和铝源粉料,负载活性组分氧化镍,研发一种高性能环保多孔陶瓷膜重整制氢催化剂,目的是彻底实效地解决废旧钒钛脱硝催化剂的处理和高附加值资源化利用,同时解决甲醛污染和清洁能源的开发利用。
本发明的具体技术方案为:一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂,其特征在于以废旧钒钛脱硝催化剂、硅源粉料、铝源粉料和成型剂溶液制备而成的多孔陶瓷膜为载体,以氧化镍为催化活性组分。其中:废旧钒钛脱硝催化剂的重量份数为80~90份,硅源粉料的重量份数为1~5份,铝源粉料的重量份数为1~5份,成型剂溶液的重量份数为8~10份,催化活性组分氧化镍的重量份数为1~10份。
上述的废旧钒钛脱硝催化剂对所有厂商的废弃钒钛脱硝催化剂都适用。
本发明还提供了上述多孔陶瓷膜催化剂的制备方法,其具体步骤为:
(1)多孔陶瓷膜载体的制备
将废旧钒钛脱硝催化剂、硅源粉料、铝源粉料粉碎过筛后混匀,之后加入成型剂溶液进行造粒,将造粒后的泥料加入模具中加压后保压,制得陶瓷坯体后置于窑炉中首次煅烧,得到多孔陶瓷膜载体;
(2)活性组分前驱体溶液配制
将镍盐加入去离子水中并进行搅拌反应直至溶液呈澄清透明状,得到溶液;其中:镍盐和去离子水的质量比为1∶1~6;
(3)催化剂制备
将步骤(1)制得的多孔陶瓷膜载体浸渍于步骤(2)制得的活性组分前驱体溶液1h后,取出浸渍后的多孔陶瓷膜载体进行干燥,二次煅烧后制得多孔陶瓷膜重整制氢催化剂,负载量是1%-10%。
本发明还提供了上述多孔陶瓷膜催化剂,该催化剂的制备方法其具体步骤为:
(1)多孔陶瓷膜载体的制备
将废旧钒钛脱硝催化剂、硅源粉料、铝源粉料粉碎过筛后混匀,之后加入成型剂溶液进行造粒,将造粒后的泥料加入模具中加压后保压,制得陶瓷坯体后置于窑炉中首次煅烧,得到多孔陶瓷膜载体;
(2)活性组分前驱体溶液配制
将镍盐加入去离子水中并进行搅拌反应直至溶液呈澄清透明状,得到溶液;其中:镍盐和去离子水的质量比为1∶1~6;
(3)催化剂制备
将步骤(1)制得的多孔陶瓷膜载体浸渍于步骤(2)制得的活性组分前驱体溶液1h后,取出浸渍后的多孔陶瓷膜载体进行干燥,二次煅烧后制得多孔陶瓷膜重整制氢催化剂,负载量是1%-10%。
优选:所述的硅源粉料为硅藻土或二氧化硅;所述的铝源粉料为氢氧化铝或拟薄水铝石;所述的成型剂溶液为质量分数是1~15%的聚乙烯醇溶液;所述的活性组分前驱体为可溶性镍盐。
进一步优选:步骤(1)中所述的硅源粉料为硅藻土,粒度100目以下,铝源粉料为氢氧化铝,粒度100目以下;步骤(1)中成型剂溶液为质量分数是7%的聚乙烯醇。
优选:步骤(1)中所述的加压压力为10~15MPa,保压时间为1-3min。
进一步优选:所述的活性组分氧化镍的前驱体为氯化镍或硝酸镍。
优选:首次煅烧温度为1100~1300℃,保温1.5~3h,所述的二次煅烧温度为600~750℃,保温1.5~3h。
本发明的催化反应条件及结果:取多孔陶瓷膜重整制氢催化剂圆柱体小样(Ф=22mm,h=10mm)装入催化剂性能评价反应装置中,通入反应气体进行活性评价。各气体的浓度为:N 2(90mL/min);H 2O(0.1mL/min);HCHO(0.067mL/min)。400℃时催化剂H 2选择性能够达到74.5%,CO选择性为52.3%,450℃条件下其H 2选择性为100%,CO选择性为86.25%。
有益效果:
本发明所制备的多孔陶瓷膜重整制氢催化剂制备的钛基陶瓷制品中V元素浸出率远低于GB26452-2011《钒工业污染物排放标准》V元素含量的限值要求(≤1ppm),彻底实效地解决了废旧有毒钒钛脱硝催化剂的二次污染和高附加值资源化利用。同时将甲醛作为氢源,在催化剂作用下进行重整制氢反应制备氢气,能够解决能源短缺及甲醛环境污染问题。本发明多孔陶瓷膜重整制氢催化剂组分环境友好,制备工艺简单,成本较低,性价比高,具有较强的应用推广价值和广阔的市场前景。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明的保护范围不限于此:
实施例1
(1)原料粉碎
将废旧钒钛脱硝催化剂依次经破碎机破碎、球磨机粉碎后,过100目标准筛均化备用;将硅藻土粉末和氢氧化铝粉末分别球磨过100目标准筛均化备用;
(2)配料与造粒
称取80g废旧脱硝催化剂粉末、5g硅藻土粉末、5g氢氧化铝粉末搅拌均匀,然后称取10g聚乙烯醇成型剂溶液与上述粉末混合进行研磨造粒;
(3)成型与首次煅烧
称取10g造粒后的泥料缓缓加入模具中加压至10MPa,保压1min后取出样品,重复坯体成型10次制得多孔陶瓷膜坯体10块,将其置于窑炉中在1100℃下保温1.5h煅烧,得到多孔陶瓷膜载体;
(4)活性组分前驱体溶液配制
称取3.18g六水合氯化镍,加入15.90g去离子水搅拌直至溶液呈澄清透明状,得到溶液。
(5)催化剂制备
将制得的多孔陶瓷膜载体浸渍于步骤(4)制得的氯化镍溶液1h后,取出浸渍后的多孔陶瓷膜载体置于80℃烘箱干燥,再将其置于窑炉中在600℃下保温1.5h制得1%NiO负载的多孔陶瓷膜重整制氢催化剂。
(6)催化剂活性测试
取1块多孔陶瓷膜催化剂圆柱体小样(Ф=22mm,h=10mm)装入催化剂性能评价反应装置中,通入反应气体进行活性评价。各气体的浓度为:N 2(90mL/min);H 2O(0.1mL/min);HCHO(0.067mL/min)。400℃时催化剂H 2选择性能够达到74.5%,CO选择性为52.3%,450℃条件下其H 2选择性为100%,CO选择性为86.2%。
(7)催化剂V元素浸出测试
采用ICP(电感耦合等离子体发射光谱法)检测样品的V元素浸出率远低于GB26452-2011《钒工业污染物排放标准》(≤1ppm)。
(8)应用范围:利用该方法制备的重整制氢催化剂适用于催化甲醛重整制氢。
实施例2:
(1)原料粉碎
将废旧钒钛脱硝催化剂依次经破碎机破碎、球磨机粉碎后,过100目标准筛均化备用;将二氧化硅粉料和拟薄水铝石粉料分别球磨过100目标准筛均化备用;
(2)配料与造粒
称取90g废旧脱硝催化剂粉末、1g二氧化硅粉末、1g拟薄水铝石粉末搅拌均匀,然后称取8g聚乙烯醇成型剂溶液与上述粉末混合进行研磨造粒;
(3)成型与首次煅烧
称取10g造粒后的泥料缓缓加入模具中加压至15MPa,保压3min后取出样品,重复坯体成型10次制得多孔陶瓷膜坯体10块,将其置于窑炉中在1300℃下保温3h煅烧,得到多孔陶瓷膜载体;
(4)活性组分前驱体溶液配制
称取31.81g六水合氯化镍,加入31.81g去离子水搅拌直至溶液呈澄清透明状,得到溶液。
(5)催化剂制备
将制得的多孔陶瓷膜载体浸渍于步骤(4)制得的氯化镍溶液1h后,取出浸渍后的多孔陶瓷膜载体置于80℃烘箱干燥,再将其置于窑炉中在750℃下保温3h制得10%NiO负载的多孔陶瓷膜重整制氢催化剂。
(6)催化剂活性测试
取1块多孔陶瓷膜催化剂圆柱体小样(Ф=22mm,h=10mm)装入催化剂性能评价反应装置中,通入反应气体进行活性评价。各气体的浓度为:N 2(90mL/min);H 2O(0.1mL/min);HCHO(0.067mL/min)。400℃时催化剂H 2选择性能够达到80.1%,CO选择性为58.3%,450℃条件下其H 2选择性为100%,CO选择性为96.4%。
(7)催化剂V元素浸出测试
采用ICP(电感耦合等离子体发射光谱法)检测样品的V元素浸出率远低于GB26452-2011《钒工业污染物排放标准》(≤1ppm)。
(8)应用范围:利用该方法制备的重整制氢催化剂适用于催化甲醛重整制氢。
实施例3:
(1)原料粉碎
将废旧钒钛脱硝催化剂依次经破碎机破碎、球磨机粉碎后,过100目标准筛均化备用; 将硅藻土粉末和拟薄水铝石粉末分别球磨过100目标准筛均化备用;
(2)配料与造粒
称取80g废旧脱硝催化剂粉末、5g硅藻土粉末、5g拟薄水铝石粉末搅拌均匀,然后称取10g聚乙烯醇成型剂溶液与上述粉末混合进行研磨造粒;
(3)成型与首次煅烧
称取10g造粒后的泥料缓缓加入模具中加压至10MPa,保压1min后取出样品,重复坯体成型10次制得多孔陶瓷膜坯体10块,将其置于窑炉中在1100℃下保温1.5h煅烧,得到多孔陶瓷膜载体;
(4)活性组分前驱体溶液配制
称取5.89g六水合硫酸镍,加入19.45g去离子水搅拌直至溶液呈澄清透明状,得到溶液。
(5)催化剂制备
将制得的多孔陶瓷膜载体浸渍于步骤(4)制得的硫酸镍溶液1h后,取出浸渍后的多孔陶瓷膜载体置于80℃烘箱干燥,再将其置于窑炉中在600℃下保温1.5h制得1.7%NiO负载的多孔陶瓷膜重整制氢催化剂。
(6)催化剂活性测试
取1块多孔陶瓷膜催化剂圆柱体小样(Ф=22mm,h=10mm)装入催化剂性能评价反应装置中,通入反应气体进行活性评价。各气体的浓度为:N 2(90mL/min);H 2O(0.1mL/min);HCHO(0.067mL/min)。400℃时催化剂H 2选择性能够达到75.6%,CO选择性为52.8%,450℃条件下其H 2选择性为100%,CO选择性为86.8%。
(7)催化剂V元素浸出测试
采用ICP(电感耦合等离子体发射光谱法)检测样品的V元素浸出率远低于GB26452-2011《钒工业污染物排放标准》(≤1ppm)。
(8)应用范围:利用该方法制备的重整制氢催化剂适用于催化甲醛重整制氢。
实施例4
(1)原料粉碎
将废旧钒钛脱硝催化剂依次经破碎机破碎、球磨机粉碎后,过100目标准筛均化备用;将二氧化硅粉末和氢氧化铝粉末分别球磨过100目标准筛均化备用;
(2)配料与造粒
称取90g废旧脱硝催化剂粉末、1g二氧化硅粉末、1g氢氧化铝粉末搅拌均匀,然后称取8g聚乙烯醇成型剂溶液与上述粉末混合进行研磨造粒;
(3)成型与首次煅烧
称取10g造粒后的泥料缓缓加入模具中加压至15MPa,保压3min后取出样品,重复坯体成型10次制得多孔陶瓷膜坯体10块,将其置于窑炉中在1300℃下保温3h煅烧,得到多孔陶瓷膜载体;
(4)活性组分前驱体溶液配制
称取7.85g醋酸镍,加入47.10g去离子水搅拌直至溶液呈澄清透明状,得到溶液。
(5)催化剂制备
将制得的多孔陶瓷膜载体浸渍于步骤(4)制得的醋酸镍溶液1h后,取出浸渍后的多孔陶瓷膜载体置于80℃烘箱干燥,再将其置于窑炉中在750℃下保温3h制得3.3%NiO负载的多孔陶瓷膜重整制氢催化剂。
(6)催化剂活性测试
取1块多孔陶瓷膜催化剂圆柱体小样(Ф=22mm,h=10mm)装入催化剂性能评价反应装置中,通入反应气体进行活性评价。各气体的浓度为:N 2(90mL/min);H 2O(0.1mL/min);HCHO(0.067mL/min)。400℃时催化剂H 2选择性能够达到84.1%,CO选择性为63.5%,450℃条件下其H 2选择性为100%,CO选择性为95.7%。
(7)催化剂V元素浸出测试
采用ICP(电感耦合等离子体发射光谱法)检测样品的V元素浸出率远低于GB26452-2011《钒工业污染物排放标准》(≤1ppm)。
(8)应用范围:利用该方法制备的重整制氢催化剂适用于催化甲醛重整制氢。
对比例1
(1)原料粉碎
将废旧钒钛脱硝催化剂依次经破碎机破碎、球磨机粉碎后,过100目标准筛均化备用;将硅源粉料和铝源粉料分别球磨过100目标准筛均化备用;
(2)配料与造粒
称取90g废旧脱硝催化剂粉末、1g硅藻土粉末、1g氢氧化铝粉末搅拌均匀,然后称取8g聚乙烯醇成型剂溶液与上述粉末混合进行研磨造粒;
(3)成型与煅烧
称取10g造粒后的泥料缓缓加入模具中加压至15MPa,保压3min后取出样品,重复坯体成型10次制得多孔陶瓷膜坯体10块,将其置于窑炉中在1300℃下保温3h煅烧,制得多孔陶瓷膜催化剂;
(4)催化剂活性测试
取1块多孔陶瓷膜催化剂圆柱体小样(Ф=22mm,h=10mm)装入催化剂性能评价反应装置中,通入反应气体进行活性评价。各气体的浓度为:N 2(90mL/min);H 2O(0.1mL/min);HCHO(0.067mL/min)。450℃条件下其H 2选择性为5.6%,CO选择性为0.7%。
(5)对比效果:与实例1-4相比,多孔陶瓷膜重整制氢催化剂中没有催化活性组分氧化镍,其选择性极低,基本没有催化重整制氢活性。
对比例2
(1)原料粉碎
将废旧钒钛脱硝催化剂依次经破碎机破碎、球磨机粉碎后,过100目标准筛均化备用;
(2)配料与造粒
称取92g废旧脱硝催化剂粉末,8g聚乙烯醇成型剂溶液与上述粉末混合进行研磨造粒;
(3)成型与煅烧
称取10g造粒后的泥料缓缓加入模具中加压至15MPa,保压3min后取出样品,重复坯体成型10次制得多孔陶瓷膜坯体10块,将其置于窑炉中在1300℃下保温3h煅烧,制得多孔陶瓷膜催化剂;
(4)对比效果:制备多孔陶瓷膜重整制氢催化剂时,不添加硅源粉料与铝源粉料时,催化剂焙烧后耐磨性差,无法制备成陶瓷片。

Claims (10)

  1. 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂,其特征在于:该催化剂以废旧钒钛脱硝催化剂、硅源粉料、铝源粉料和成型剂溶液制备而成的多孔陶瓷膜为载体,以氧化镍为催化活性组分;其中:废旧钒钛脱硝催化剂的重量份数为80~90份,硅源粉料的重量份数为1~5份,铝源粉料的重量份数为1~5份,成型剂溶液的重量份数为8~10份。催化活性组分氧化镍占载体质量百分含量1%~10%。
  2. 根据权利要求1所述的重整制氢催化剂,其特征在于:所述的硅源粉料为硅藻土或二氧化硅;所述的铝源粉料为氢氧化铝或拟薄水铝石;所述的成型剂溶液为质量分数是1~15%的聚乙烯醇溶液;所述的活性组分前驱体为可溶性镍盐。
  3. 根据权利要求1所述的重整制氢催化剂,其特征在于:该催化剂是通过如下方法制备得到:
    (1)多孔陶瓷膜载体的制备
    将废旧钒钛脱硝催化剂、硅源粉料、铝源粉料粉碎过筛后混匀,之后加入成型剂溶液进行造粒,将造粒后的泥料加入模具中加压后保压,制得陶瓷坯体后置于窑炉中首次煅烧,得到多孔陶瓷膜载体;
    (2)活性组分前驱体溶液配制
    将镍盐加入去离子水中并进行搅拌反应直至溶液呈澄清透明状,得到溶液;其中:镍盐和去离子水的质量比为1∶1~6;
    (3)催化剂制备
    将步骤(1)制得的多孔陶瓷膜载体浸渍于步骤(2)制得的活性组分前驱体溶液1h后,取出浸渍后的多孔陶瓷膜载体进行干燥,二次煅烧后制得多孔陶瓷膜重整制氢催化剂,负载量是1%-10%。
  4. 根据权利要求3所述的重整制氢催化剂,其特征在于:首次煅烧温度为1100~1300℃,保温1.5~3h,二次煅烧温度为600-750℃,保温1.5~3h。
  5. 根据权利要求3所述的重整制氢催化剂,其特征在于:步骤(1)中所述的硅源粉料为硅藻土,粒度100目以下,铝源粉料为氢氧化铝,粒度100目以下。
  6. 根据权利要求3所述的重整制氢催化剂,其特征在于:步骤(1)中所述的加压压力为10~15MPa,保压时间为1-3min。
  7. 一种权利要求1所述的以废旧钒钛脱硝催化剂为原料的重整制氢催化剂的制备方法, 其特征在于:该方法如下:
    (1)多孔陶瓷膜载体的制备
    将废旧钒钛脱硝催化剂、硅源粉料、铝源粉料粉碎过筛后混匀,之后加入成型剂溶液进行造粒,将造粒后的泥料加入模具中加压后保压,制得陶瓷坯体后置于窑炉中首次煅烧,得到多孔陶瓷膜载体;
    (2)活性组分前驱体溶液配制
    将镍盐加入去离子水中并进行搅拌反应直至溶液呈澄清透明状,得到溶液;其中:镍盐和去离子水的质量比为1∶1~6;
    (3)催化剂制备
    将步骤(1)制得的多孔陶瓷膜载体浸渍于步骤(2)制得的活性组分前驱体溶液1h后,取出浸渍后的多孔陶瓷膜载体进行干燥,二次煅烧后制得多孔陶瓷膜重整制氢催化剂,负载量是1%-10%。
  8. 根据权利要求7所述的制备方法,其特征在于:首次煅烧温度为1100~1300℃,保温1.5~3h,二次煅烧温度为600-750℃,保温1.5~3h。
  9. 根据权利要求7所述的制备方法,其特征在于:步骤(1)中所述的硅源粉料为硅藻土,粒度100目以下,铝源粉料为氢氧化铝,粒度100目以下。
  10. 根据权利要求7所述的制备方法,其特征在于:步骤(1)中所述的加压压力为10~15MPa,保压时间为1-3min。
PCT/CN2020/086893 2019-07-23 2020-04-25 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法 WO2021012737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910668738.8A CN110302795B (zh) 2019-07-23 2019-07-23 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法
CN201910668738.8 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021012737A1 true WO2021012737A1 (zh) 2021-01-28

Family

ID=68080664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086893 WO2021012737A1 (zh) 2019-07-23 2020-04-25 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN110302795B (zh)
WO (1) WO2021012737A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113694937A (zh) * 2021-08-27 2021-11-26 山东天璨环保科技有限公司 钒钛脱硝催化剂再生的方法
CN113926464A (zh) * 2021-11-10 2022-01-14 天津水泥工业设计研究院有限公司 一种利用全危废、固废为载体的scr催化剂及其制备方法与应用
CN114405496A (zh) * 2022-01-10 2022-04-29 四川亚联高科技股份有限公司 甲醇重整制氢催化剂及其制备方法、评价方法和应用
CN114620681A (zh) * 2021-12-24 2022-06-14 杭州江涌节能技术有限公司 一种可循环利用的制氢材料及其制备方法和应用
CN114870852A (zh) * 2022-05-11 2022-08-09 成都理工大学 乙酸自热重整制氢用负载型Ni/W-ZrO2催化剂

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302795B (zh) * 2019-07-23 2022-07-08 南京工业大学 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法
CN114835997B (zh) * 2022-04-13 2023-05-05 南京工业大学 一种以碱金属中毒失活脱硝催化剂为原料的热阻材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102737A (ja) * 1998-09-29 2000-04-11 Catalysts & Chem Ind Co Ltd 脱硝触媒の再生方法
CN102962079A (zh) * 2012-11-27 2013-03-13 南京工业大学 一种废弃钒钛基scr烟气脱硝催化剂再生方法
CN105347785A (zh) * 2015-11-30 2016-02-24 南京工业大学 以废旧钒钛脱硝催化剂为原料的钛基陶瓷及制备方法
CN106111144A (zh) * 2016-06-15 2016-11-16 广东工业大学 一种复合功能重整制氢催化剂及其制备方法和应用
CN109603849A (zh) * 2018-12-26 2019-04-12 南京工业大学 以废旧稀土基脱硝催化剂为原料的多孔陶瓷膜催化剂及其制备方法和应用
CN110302795A (zh) * 2019-07-23 2019-10-08 南京工业大学 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103373706B (zh) * 2012-04-19 2015-07-29 中国石油化工股份有限公司 一种甲烷重整制氢方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102737A (ja) * 1998-09-29 2000-04-11 Catalysts & Chem Ind Co Ltd 脱硝触媒の再生方法
CN102962079A (zh) * 2012-11-27 2013-03-13 南京工业大学 一种废弃钒钛基scr烟气脱硝催化剂再生方法
CN105347785A (zh) * 2015-11-30 2016-02-24 南京工业大学 以废旧钒钛脱硝催化剂为原料的钛基陶瓷及制备方法
CN106111144A (zh) * 2016-06-15 2016-11-16 广东工业大学 一种复合功能重整制氢催化剂及其制备方法和应用
CN109603849A (zh) * 2018-12-26 2019-04-12 南京工业大学 以废旧稀土基脱硝催化剂为原料的多孔陶瓷膜催化剂及其制备方法和应用
CN110302795A (zh) * 2019-07-23 2019-10-08 南京工业大学 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113694937A (zh) * 2021-08-27 2021-11-26 山东天璨环保科技有限公司 钒钛脱硝催化剂再生的方法
CN113694937B (zh) * 2021-08-27 2023-08-22 山东天璨环保科技有限公司 钒钛脱硝催化剂再生的方法
CN113926464A (zh) * 2021-11-10 2022-01-14 天津水泥工业设计研究院有限公司 一种利用全危废、固废为载体的scr催化剂及其制备方法与应用
CN113926464B (zh) * 2021-11-10 2024-02-27 天津水泥工业设计研究院有限公司 一种利用全危废、固废为载体的scr催化剂及其制备方法与应用
CN114620681A (zh) * 2021-12-24 2022-06-14 杭州江涌节能技术有限公司 一种可循环利用的制氢材料及其制备方法和应用
CN114405496A (zh) * 2022-01-10 2022-04-29 四川亚联高科技股份有限公司 甲醇重整制氢催化剂及其制备方法、评价方法和应用
CN114870852A (zh) * 2022-05-11 2022-08-09 成都理工大学 乙酸自热重整制氢用负载型Ni/W-ZrO2催化剂
CN114870852B (zh) * 2022-05-11 2023-05-26 成都理工大学 乙酸自热重整制氢用负载型Ni/W-ZrO2催化剂

Also Published As

Publication number Publication date
CN110302795A (zh) 2019-10-08
CN110302795B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2021012737A1 (zh) 一种以废旧钒钛脱硝催化剂为原料的重整制氢催化剂及其制备方法
CN110479262B (zh) 以废旧稀土基脱硝催化剂为原料的多孔陶瓷膜催化剂
CN111138167B (zh) 一种以赤泥废渣为载体的陶瓷催化剂及其制备方法和应用
CN109126772B (zh) 一种复合光催化剂材料及其制备方法
CN110368924A (zh) 一种钛酸铋/铋/钒酸铋复合物光催化剂及其在光热催化净化有机气体污染物中的应用
CN112316913A (zh) 一种以赤泥废渣为原料的水处理吸附剂及其制备方法
CN107890870A (zh) 一种二氧化碳和水制甲烷催化剂及其制备方法和应用
CN114392762A (zh) 一种基于二维MXene纳米结构复合材料及其制备方法
CN112675895A (zh) 一种酸改性硅酸盐矿物负载石墨相氮化碳光催化剂的制备方法
CN111054319A (zh) 用七钼酸铵制备烟气脱硝催化剂用原料、催化剂和制备方法
CN113457657A (zh) 一种碳基甲醇制氢催化剂及其制备方法和应用
CN105148972A (zh) 可见光条件下还原水中硝态氮的新型催化剂的制备方法及其应用
CN107243342A (zh) 一种负载型催化剂及其制备方法和应用
CN110302773B (zh) 一种用于含氯挥发性有机物催化燃烧的催化剂及其制备方法和应用
CN111659392A (zh) 一种由氧化钨-金属表面等离子共振激元-铬酸钆组成的桥式异质催化剂的制备及应用
CN113996294A (zh) 一种从废旧贵金属/不锈钢丝网催化剂回收制备co-scr脱硝催化剂的方法
CN108014836B (zh) 离子交换制备Cu-ZSM-5催化剂的方法
CN111151245B (zh) 一种以生物质活性炭为载体的金纳米花的催化剂及其制备方法和应用
CN110102326B (zh) 一种纳米金负载多孔炭改性氮化碳复合光催化材料及其制备方法与应用
CN113694920B (zh) 一种堇青石基scr催化剂及制备方法和应用
CN111744495B (zh) 一种陶瓷膜脱硝脱二噁英催化剂及其制备方法
CN114160104A (zh) 一种窑炉烟气co2捕集与利用耦合材料及其应用
CN102744091A (zh) 多孔无机陶瓷膜-石墨烯-N改性TiO2光触媒材料及其制备方法
CN107376915B (zh) 一种二氧化碳甲烷化催化剂及其制备方法
CN110075841A (zh) 以废旧商用钒钛脱硝催化剂制备的制氢催化剂及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843475

Country of ref document: EP

Kind code of ref document: A1