CN102689927B - 一种近化学计量比铌酸锂晶体的制备方法 - Google Patents

一种近化学计量比铌酸锂晶体的制备方法 Download PDF

Info

Publication number
CN102689927B
CN102689927B CN201210203084XA CN201210203084A CN102689927B CN 102689927 B CN102689927 B CN 102689927B CN 201210203084X A CN201210203084X A CN 201210203084XA CN 201210203084 A CN201210203084 A CN 201210203084A CN 102689927 B CN102689927 B CN 102689927B
Authority
CN
China
Prior art keywords
lithium
powder
diffusion
polycrystal powder
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210203084XA
Other languages
English (en)
Other versions
CN102689927A (zh
Inventor
孙军
许京军
李威
张华�
张玲
孔勇发
杨金凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201210203084XA priority Critical patent/CN102689927B/zh
Publication of CN102689927A publication Critical patent/CN102689927A/zh
Application granted granted Critical
Publication of CN102689927B publication Critical patent/CN102689927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种近化学计量比铌酸锂晶体的制备方法,包括:将碳酸锂质量含量为23%~45%的碳酸锂和五氧化二铌混合物经升温、熔化、降温结晶、粉碎,得到富锂多晶粉末A,将A装入耐高温的坩埚下部;把待扩散的缺锂铌酸锂晶体放置在A上,晶体周围裸露的A用铂金片覆盖;再用碳酸锂质量含量为10%~18%的碳酸锂和五氧化二铌混合物经升温、熔化、降温结晶、粉碎,得到贫锂多晶粉末B,将B装入坩埚上部;然后将坩埚在高温炉中加热进行扩散处理,扩散温度为1000~1150℃,扩散时间根据扩散温度和晶体的厚度确定,扩散温度越高、晶体厚度越小需要的扩散时间越短,反之时间越长。经过扩散处理后,可以获得高质量的近化学计量比铌酸锂晶体。

Description

一种近化学计量比铌酸锂晶体的制备方法
技术领域
本发明涉及一种用于近化学计量比铌酸锂晶体的制备方法,特别是高光学均匀性的近化学计量比铌酸锂晶体的制备方法。
背景技术
由于按照分子式化学计量配比的铌酸锂晶体不是固液同成分共熔,即铌离子物质的量与锂离子物质的量之比[Nb]:[Li]=l的铌酸锂熔体,结晶出来的固体成分与熔体成分不一致,其[Nb]:[Li]>l,从而使熔体的成分不断发生变化,结晶的固体成分也不断发生变化。因此难以得到成分均匀的铌酸锂晶体。固液同成分共熔配比的铌酸锂晶体为[Li]/[Li+Nb]约为48.6%,即铌酸锂晶体中锂离子物质的量与锂离子和铌离子物质的量总和之比为48.6%,这种铌酸锂晶体通常被称为同成分铌酸锂晶体。而[Li]/[Li+Nb]接近50%的铌酸锂晶体,组分接近化学计量配比,通常被称为近化学计量比铌酸锂晶体。
为了得到成分均匀的近化学计量比铌酸锂晶体,现在采用的技术有以下几种:
1、助熔剂法。在化学计量比配比的铌酸锂原料中添加氧化钾作为助熔剂,然后从熔体中结晶得到近化学计量比配比的铌酸锂晶体。但助熔剂加入量很大,使得晶体生长时生长界面需要进行充分的扩散,因此生长速度缓慢,且晶体光学质量差,容易产生包裹体等,实用价值较低。
2、富锂熔体生长法。在晶体生长时,利用富锂的熔体直接生长近化学计量比的铌酸锂晶体。随着生长的进行,往熔体中补充与生长晶体等量的近化学计量比配比的原料,使熔体的成分维持不变。这种方法需要精确称量生长的晶体重量,然后根据晶体生长的重量往熔体中连续添加原料,因此技术难度很高,设备复杂,成品率低,成本高昂。
3、扩散法。目前的扩散法是将缺锂的铌酸锂晶体放入由氧化锂与氧化铌烧制的陶瓷中,通过高温下的气相扩散,使铌酸锂晶体锂的含量增加,从而得到成分均匀的近化学计量比铌酸锂晶体。该方法工艺较复杂,富锂原料难以重复利用,扩散速度慢。
4、其它方法。包括区熔法、坩埚下降法等,但都局限于研究阶段,尚未达到实用地步。
上述方法中,扩散法可以制备出高光学均匀性的近化学计量比铌酸锂晶体,但该方法的主要问题是扩散速度缓慢,使得扩散时间长,难以制备尺寸较厚的晶体,同时其成本也较高。
发明内容
本发明的目的是解决现有扩散法存在的扩散速度慢、成本高的问题,提供一种制备高光学均匀性近化学计量比铌酸锂晶体的方法。
本发明方法的技术方案是:
将缺锂铌酸锂晶体的一侧与碳酸锂质量含量为23%~45%的碳酸锂和余量的五氧化二铌混合物经升温、熔化、降温结晶、粉碎,得到粒度为0.01mm~0.5mm的富锂多晶粉末A接触,另一侧与碳酸锂质量含量为10%~18%的碳酸锂和余量的五氧化二铌混合物经升温、熔化、降温结晶、粉碎,得到粒度为0.01mm~0.5mm的贫锂多晶粉末B接触,然后将晶体与多晶粉末一起放入坩埚中,将坩埚放入高温炉在1000~1150℃温度下进行高温扩散处理,即可获得近化学计量比铌酸锂晶体。
本发明方法的具体实施经过如下步骤:
1.制备富锂多晶粉末A:根据需要制备的粉末的质量,按照碳酸锂质量含量为23%~45%的比例,分别计算、称量出所需的高纯碳酸锂粉末和余量的高纯五氧化二铌粉末,然后混合均匀,放入铂坩埚中加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为富锂多晶粉末A。这样合成的富锂多晶粉末A为LiNbO3和Li3NbO4的混合物。
2.制备贫锂多晶粉末B:根据需要制备的粉末的质量,按照碳酸锂质量含量为10%~18%的比例,分别计算、称量出所需的高纯碳酸锂粉末和余量的高纯五氧化二铌粉末,然后混合均匀,放入铂坩埚中加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为贫锂多晶粉末B。这样合成的贫锂多晶粉末B为LiNbO3和LiNb3O4的混合物。
3.装料:将富锂多晶粉末A放入刚玉坩埚底部,将待扩散的缺锂铌酸锂晶体放在富锂多晶粉末A的上面,晶体的周围裸露的粉末用铂金片覆盖,然后再往坩埚中放入贫锂多晶粉末B,无须密封。
4.扩散处理:将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1000~1150℃,扩散时间根据扩散温度和晶体的厚度确定,扩散温度越高、晶体厚度越小需要的扩散时间越短,反之需要的扩散时间越长。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶体和下部富锂多晶粉末A。
所述的缺锂的铌酸锂晶体氧化锂含量低于化学计量配比,即氧化锂的质量含量低于10.11%。
所述的坩埚是刚玉坩埚或其它耐高温且高温下不与多晶粉末反应的坩埚。
本发明的优点和有益效果:
本发明提供的制备近化学计量比铌酸锂晶体的方法,也是采用扩散法,但与传统的扩散方法相比,其区别和优点是:
(1)根据发明人的研究,缺锂的铌酸锂晶体内存在大量的锂空位和反位铌本征缺陷,在锂向晶体内部扩散时,晶体内部的锂空位被扩散进来的锂填充,而反位铌将通过与本征缺陷的交换扩散迁移出晶体内部,反位铌的扩散速度与本征缺陷数量相关联,且反位铌的迁移速度制约了整个扩散的速度。传统的扩散法实施时,待扩散晶体周围均处于富锂气氛中,晶体表层将很快达到近化学计量配比组分,本征缺陷急剧降低,因此反位铌迁移出晶体内部的速度受到限制。而本发明中待扩散晶体的一侧与锂含量较高的富锂多晶粉末A接触,晶体相对的另一侧与锂含量较低的贫锂多晶粉末B接触,将为反位铌的扩散提供一个速度较快的扩散通道,可以大幅提高扩散速度。根据发明人的实验数据,以Z方向切割的厚度为1.0mm的固液同成分共熔点配比铌酸锂晶体扩散实验为例,采用传统扩散方法,使用的富锂原料为碳酸锂质量含量为27.7%的碳酸锂、五氧化二铌混合粉末制成,晶片在1100℃扩散100小时可达到近化学计量比配比,而采用本发明的方法,分别用碳酸锂质量含量为27.7%和13.0%的碳酸锂、五氧化二铌混合粉末制成富锂多晶粉末A和B,同样在1100℃扩散约75小时即可得到同样的结果,晶片组分达到近化学计量比配比,扩散时间减少了25%。
(2)本发明所使用的富锂多晶粉末A和贫锂多晶粉末B采用熔体合成,取代了原有的固相合成方法,这样合成的多晶粉末与待扩散晶体不发生腐蚀反应,装料时可以将待扩散晶体直接与多晶粉末接触,无须像传统的扩散法一样采用复杂的隔离装置将晶体与多晶粉末隔开,极大地降低了实施的技术难度,较少贵金属的使用也降低了扩散法制备近化学计量比铌酸锂晶体的成本。
(3)本发明所使用的富锂多晶粉末A和贫锂多晶粉末B,均可多次重复使用。当富锂多晶粉末A的锂含量过低时(低于按照碳酸锂质量含量23%的比例制备的富锂多晶粉末),与锂含量较高的多晶粉末混合即可重新使用。而贫锂多晶粉末B在高温扩散过程中氧化锂会自然挥发,贫锂多晶粉末B可以长期使用而无需更换。而原有的扩散法所使用的富锂原料只能使用一次或少数几次,本发明大幅降低了扩散法制备近化学计量比铌酸锂晶体的成本。
(4)由于本发明提高了扩散速度,因此本发明不仅可以用来制备近化学计量比铌酸锂晶片,也可以用来制备条状、圆柱状等近化学计量比铌酸锂晶体,拓展了扩散法的应用范围。
具体实施方式
实施例1:
(1)制备富锂多晶粉末A:需要制备的的质量为,按照碳酸锂质量含量为45%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要1350.0克高纯碳酸锂粉末和1650.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为富锂多晶粉末A。
(2)制备贫锂多晶粉末B:按照碳酸锂质量含量为18%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要540.0克高纯碳酸锂粉末和2460.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为贫锂多晶粉末B。
(3)装料:将约1500克富锂多晶粉末A放入直径为100mm刚玉坩埚底部,将同成分铌酸锂晶体切割为X×Y×Z=30.0mm×30.0mm×1.0mm的晶片(X、Y、Z表示晶体学方向,下同),放在坩埚底部的多晶粉末A的上面,晶片的周围裸露的粉末用铂金片遮盖,然后再往坩埚中放入贫锂多晶粉末B,厚度约为2cm。
(4)扩散处理:将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1000℃,扩散时间为4200分钟。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶片和下部富锂多晶粉末A。
经过扩散处理后的晶片完整无开裂,经研磨、抛光,然后用显微拉曼分析,晶片的组分[Li]/[Li+Nb]=49.95%,非常接近化学计量配比。
实施例2:
(1)制备富锂多晶粉末A:按照碳酸锂质量含量为23%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要690.0克高纯碳酸锂粉末和2310.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为富锂多晶粉末A。
(2)制备贫锂多晶粉末B:按照碳酸锂质量含量为18%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要540.0克高纯碳酸锂粉末和2460.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为贫锂多晶粉末B。
(3)装料:将约1600克富锂多晶粉末A放入直径为100mm刚玉坩埚底部,将同成分铌酸锂晶体切割为X×Y×Z=30.0mm×30.0mm×1.0mm的晶片,放在坩埚底部的多晶粉末A的上面,晶片的周围裸露的粉末用铂金片遮盖,然后再往坩埚中放入贫锂多晶粉末B,厚度约为2cm。
(4)扩散处理:将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1000℃,扩散时间为5000分钟。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶片和下部富锂多晶粉末A。
经过扩散处理后的晶片完整无开裂,经研磨、抛光,然后用显微拉曼分析,晶片的组分[Li]/[Li+Nb]=49.94%,非常接近化学计量配比。
实施例3:
(1)制备富锂多晶粉末A:按照碳酸锂质量含量为45%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要1350.0克高纯碳酸锂粉末和1650.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为富锂多晶粉末A。
(2)制备贫锂多晶粉末B:按照碳酸锂质量含量为10%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要300.0克高纯碳酸锂粉末和2700.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为贫锂多晶粉末B。
(3)装料:将约1600克富锂多晶粉末A放入直径为100mm刚玉坩埚底部,将同成分铌酸锂晶体切割为X×Y×Z=30.0mm×30.0mm×1.0mm的晶片,放在坩埚底部的多晶粉末A的上面,晶片的周围裸露的粉末用铂金片遮盖,然后再往坩埚中放入贫锂多晶粉末B,厚度约为2cm。
(4)扩散处理:将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1000℃,扩散时间为4000分钟。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶片和下部富锂多晶粉末A。
经过扩散处理后的晶片完整无开裂,经研磨、抛光,然后用显微拉曼分析,晶片的组分[Li]/[Li+Nb]=49.94%,非常接近化学计量配比。
实施例4:
(1)制备富锂多晶粉末A:按照碳酸锂质量含量为23%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要690.0克高纯碳酸锂粉末和2310.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为富锂多晶粉末A。
(2)制备贫锂多晶粉末B:按照碳酸锂质量含量为10%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要300.0克高纯碳酸锂粉末和2700.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为贫锂多晶粉末B。
(3)装料:将约1600克富锂多晶粉末A放入直径为100mm刚玉坩埚底部,将同成分铌酸锂晶体切割为X×Y×Z=30.0mm×30.0mm×1.0mm的晶片,放在坩埚底部的多晶粉末A的上面,晶片的周围裸露的粉末用铂金片遮盖,然后再往坩埚中放入贫锂多晶粉末B,厚度约为2cm。
(4)扩散处理:将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1000℃,扩散时间为4500分钟。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶片和下部富锂多晶粉末A。
经过扩散处理后的晶片完整无开裂,经研磨、抛光,然后用显微拉曼分析,晶片的组分[Li]/[Li+Nb]=49.96%,非常接近化学计量配比。
实施例5:
(1)制备富锂多晶粉末A:按照碳酸锂质量含量为36%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要1080.0克高纯碳酸锂粉末和1920.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为富锂多晶粉末A。
(2)制备贫锂多晶粉末B:按照碳酸锂质量含量为15%的比例,计算出3000克碳酸锂和五氧化二铌混合粉末需要450.0克高纯碳酸锂粉末和2550.0克高纯五氧化二铌粉末,然后用球磨机混合60分钟,放入铂坩埚中用中频加热使其全部熔化,然后降温冷却,得到结晶后的多晶块料。多晶块料经过粉碎,用筛子分选,取粒度为0.01mm~0.5mm的部分作为贫锂多晶粉末B。
(3)装料:将约1600克富锂多晶粉末A放入直径为100mm刚玉坩埚底部,将同成分铌酸锂晶体切割为X×Y×Z=30.0mm×30.0mm×1.0mm的晶片,放在坩埚底部的多晶粉末A的上面,晶片的周围裸露的粉末用铂金片遮盖,然后再往坩埚中放入贫锂多晶粉末B,厚度约为2cm。
(4)扩散处理:将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1000℃,扩散时间为4000分钟。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶片和下部富锂多晶粉末A。
经过扩散处理后的晶片完整无开裂,经研磨、抛光,然后用显微拉曼分析,晶片的组分[Li]/[Li+Nb]=49.96%,非常接近化学计量配比。
实施例6:
(1)制备富锂多晶粉末A:将实施例1中制备的富锂多晶粉末A称取500克、实施例2中的富锂多晶粉末A称取500克、实施例5中的富锂多晶粉末A称取500克,混合均匀,作为富锂多晶粉末A。
(2)制备贫锂多晶粉末B:将实施例1中制备的贫锂多晶粉末B称取550克、实施例3中的贫锂多晶粉末B称取200克、实施例5中的贫锂多晶粉末B称取200克,混合均匀,作为贫锂多晶粉末B。
(3)装料:将约1500克富锂多晶粉末A放入直径为100mm刚玉坩埚底部,将同成分铌酸锂晶体切割为X×Y×Z=30.0mm×30.0mm×1.0mm的晶片,放在坩埚底部的多晶粉末A的上面,晶片的周围裸露的粉末用铂金片遮盖,然后再往坩埚中放入贫锂多晶粉末B,厚度约为2cm。
(4)扩散处理:将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1150℃,扩散时间为4000分钟。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶片和下部富锂多晶粉末A。
经过扩散处理后的晶片完整无开裂,经研磨、抛光,然后用显微拉曼分析,晶片的组分[Li]/[Li+Nb]=49.96%,非常接近化学计量配比。
实施例7:
(1)将实施例1中使用过的富锂多晶粉料A约1400克装入直径为100mm刚玉坩埚底部,将同成分铌酸锂晶体切割为X×Y×Z=5.0mm×5.0mm×3.0mm的晶体块,放在坩埚底部的多晶粉末A的上面,晶片的周围裸露的粉末用铂金片遮盖,然后再往坩埚中放入实施例3中使用过的贫锂多晶粉末B,厚度约为2cm。
(2)将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1100℃,扩散时间为9000分钟。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶片和下部富锂多晶粉末A。
经过扩散处理后的晶片完整无开裂,经研磨、抛光,然后用显微拉曼分析,晶片的组分[Li]/[Li+Nb]=49.92%,非常接近化学计量配比。
实施例8:
(1)将实施例7中使用过的富锂多晶粉料A约1400克装入直径为100mm刚玉坩埚底部,将同成分铌酸锂晶体切割为直径为3mm、长度为20mm的晶体棒平放在坩埚底部的多晶粉末A的上面,用带有3mm×20mm方孔的铂金片遮住晶体棒周围裸露的粉末,并使晶体棒的大约一半在铂金片下方,然后再往坩埚中放入实施例7中使用过的贫锂多晶粉末B,厚度约为2cm。
(2)将刚玉坩埚放入高温炉中加热进行扩散处理,扩散温度为1100℃,扩散时间为7000分钟。扩散结束后,降温,依次取出上部贫锂多晶粉末B、晶体棒和下部富锂多晶粉末A。
经过扩散处理后的晶体棒完整无开裂,将晶体棒研磨成片状,然后抛光并用显微拉曼分析,晶片的组分[Li]/[Li+Nb]=49.93%,非常接近化学计量配比。
虽然本发明已以较佳实施例公开如上,然其并非用以限定本发明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,如对富锂或贫锂多晶粉料中各成分的含量、富锂与贫锂多晶粉料的质量、以及同成分铌酸锂晶体的尺寸等作出各种合理的变形例,这都应当视为本发明的保护范围。

Claims (7)

1.一种近化学计量比铌酸锂晶体的制备方法,其特征在于:将缺锂铌酸锂晶体的一侧与碳酸锂质量含量为23%~45%的碳酸锂和五氧化二铌混合物经升温、熔化、降温结晶、粉碎,得到粒度为0.01mm~0.5mm的富锂多晶粉末A接触,另一侧与碳酸锂质量含量为10%~18%的碳酸锂和五氧化二铌混合物经升温、熔化、降温结晶、粉碎,得到粒度为0.01mm~0.5mm的贫锂多晶粉末B接触,其中,富锂多晶粉末A放入坩埚底部,将待扩散的缺锂铌酸锂晶体放在这些富锂多晶粉末A的上面,晶体周围裸露的多晶粉末用铂金片覆盖,再往坩埚上部放入贫锂多晶粉末B,无须密封,然后将坩埚放入高温炉在1000~1150℃温度下进行高温扩散处理,即可获得近化学计量比铌酸锂晶体。
2.根据权利要求1所述的方法,其特征在于:富锂多晶粉末A的制备方法是,采用质量含量为23%~45%的碳酸锂和余量的五氧化二铌粉末经过充分混合,然后升温、熔化,再将熔体降温结晶,结晶得到块料通过机械粉碎,然后筛分得到粒度为0.01mm~0.5mm的混合颗粒,即为富锂多晶粉末A。
3.根据权利要求1所述的方法,其特征在于:贫锂多晶粉末B的制备方法是,采用质量含量为10%~18%的碳酸锂和余量的五氧化二铌粉末经过充分混合,然后升温、熔化,再将熔体降温结晶,结晶得到块料通过机械粉碎,然后筛分得到粒度为0.01mm~0.5mm的混合颗粒,即为贫锂多晶粉末B。
4.根据权利要求1所述的方法,其特征在于,扩散温度为1000~1150℃之间,扩散时间根据扩散温度和晶体的厚度进行调整,扩散温度越高、晶体厚度越小需要的扩散时间越短,反之需要的扩散时间越长。
5.根据权利要求1所述的方法,其特征在于,所述的缺锂的铌酸锂晶体氧化锂含量低于化学计量配比,即氧化锂的质量含量低于10.11%。
6.根据权利要求1所述的方法,其特征在于,所述的坩埚是刚玉坩埚或其它耐高温且高温下不与多晶粉末反应的坩埚。
7.根据权利要求1所述的方法,其特征在于,铂金片可以采用其它高温下稳定的材料代替,当待扩散晶体自身即可完全覆盖坩埚下部的多晶粉末时,无须使用铂金片。
CN201210203084XA 2012-06-19 2012-06-19 一种近化学计量比铌酸锂晶体的制备方法 Active CN102689927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210203084XA CN102689927B (zh) 2012-06-19 2012-06-19 一种近化学计量比铌酸锂晶体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210203084XA CN102689927B (zh) 2012-06-19 2012-06-19 一种近化学计量比铌酸锂晶体的制备方法

Publications (2)

Publication Number Publication Date
CN102689927A CN102689927A (zh) 2012-09-26
CN102689927B true CN102689927B (zh) 2013-12-11

Family

ID=46855687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210203084XA Active CN102689927B (zh) 2012-06-19 2012-06-19 一种近化学计量比铌酸锂晶体的制备方法

Country Status (1)

Country Link
CN (1) CN102689927B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233290B (zh) * 2022-08-11 2023-11-17 济南量子技术研究院 一种浮区法生长近化学计量比铌酸锂晶体的方法
CN115745606B (zh) * 2022-11-24 2024-02-27 先导薄膜材料(广东)有限公司 一种富锂铌酸锂粉体制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818342B2 (ja) * 1992-12-04 1998-10-30 日本碍子株式会社 酸化物単結晶の製造方法
CN1362546A (zh) * 2001-12-17 2002-08-07 南开大学 近化学计量比铌酸锂晶片及其制备方法
CN101275275A (zh) * 2007-12-21 2008-10-01 南开大学 制备化学计量比铌酸锂或钽酸锂晶片的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818342B2 (ja) * 1992-12-04 1998-10-30 日本碍子株式会社 酸化物単結晶の製造方法
CN1362546A (zh) * 2001-12-17 2002-08-07 南开大学 近化学计量比铌酸锂晶片及其制备方法
CN101275275A (zh) * 2007-12-21 2008-10-01 南开大学 制备化学计量比铌酸锂或钽酸锂晶片的方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
#8722 *
absorption and optical-damage threshold of Mg (5 mol%) : LiNbO3 crystals.《Appl Phys》.2010,第100卷第1073-1081页. *
De-Long Zhang et al..Influence of post-grown Li-rich and Li-poor vapor transport equilibration on composition, OH&#8722
De-Long Zhang et al..Influence of post-grown Li-rich and Li-poor vapor transport equilibration on composition, OH&amp *
Li-Rich/Li-Poor Vapor Transport Equilibration Time Dependence of Surface Composition of Congruent LiNbO3 Crystal;Zhen Wang et al.;《J. Am. Ceram. Soc.》;20120531;第95卷;第1661-1664页 *
P. F. Bordui et al..Preparation and characterization of off-congruent lithium niobate crystals.《J. Appl. Phys.》.1992,第71卷第875-879页.
Preparation and characterization of off-congruent lithium niobate crystals;P. F. Bordui et al.;《J. Appl. Phys.》;19920115;第71卷;第875-879页 *
Zhen Wang et al..Li-Rich/Li-Poor Vapor Transport Equilibration Time Dependence of Surface Composition of Congruent LiNbO3 Crystal.《J. Am. Ceram. Soc.》.2012,第95卷第1661-1664页.
孔勇发等.3. 近化学计量比铌酸锂晶体的生长.《华北地区硅酸盐学会第八届学术会议论文集Ⅰ》.2005,第183-186页. *
朱登松等.1. 气相交换平衡技术在获得近化学计量比LiNbO3晶体中的作用.《南开大学学报》.2002,第23-27页. *

Also Published As

Publication number Publication date
CN102689927A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
CN110042467B (zh) 化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和用途
CN101225545B (zh) 一种近化学计量比钽酸锂晶体的制备方法
CN103789835A (zh) 一种改进型梯度凝固GaAs单晶生长方法
CN104451564B (zh) 一种制备硅质靶材的方法
CN106917140B (zh) 化合物硼酸锂钠双折射晶体及制备方法和用途
Huang et al. Subsolidus phase relations and the crystallization region of LiNbO3 in the system Li2O–B2O3–Nb2O5
CN102689928B (zh) 一种近化学计量比钽酸锂晶体的制备方法
CN110029397A (zh) 化合物锗酸锂铯和锗酸锂铯非线性光学晶体及制备方法和用途
CN102689927B (zh) 一种近化学计量比铌酸锂晶体的制备方法
CN103205812B (zh) 化合物硼硫酸铷和硼硫酸铷晶体及制备方法
CN106316134B (zh) 一种透辉石和长石主晶相微晶玻璃及其制备方法
CN110067024A (zh) 光电功能晶体m3re(po4)3及其制备方法
CN102260914A (zh) 一种大尺寸lgs晶体的生长方法
CN1043479C (zh) 坩埚下降生长钨酸铅闪烁大单晶的制备方法
CN103993348B (zh) 稀土正铁氧体单晶的生长方法及应用
CN107488874A (zh) 一种用于稀土晶体生长工艺的温度场结构的设计方法及低成本稀土晶体的生长工艺
CN104141170B (zh) 化合物硼酸钠镉晶体的生长方法
CN103668455B (zh) 一种lbo晶体的生长装置以及生长方法
CN106968016B (zh) 一种绿色发光材料多硼酸铽铅的制备和性能及用途
CN108793170A (zh) 一种工业硅通气造渣冶炼结合预处理后酸洗工艺
CN1322174C (zh) 硼酸铋晶体的坩埚下降法生长工艺
CN1259466C (zh) 掺铈二硅酸镥闪烁晶体的生长方法
CN1122732C (zh) 一种硼磷酸镁锌非线性光学晶体及其制备方法和用途
CN113930842A (zh) 一种铈掺杂硼酸镥锂晶体的制备方法
CN103950943B (zh) 利用钼尾矿制备氟金云母及其方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant