CN102643085A - 一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法 - Google Patents

一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN102643085A
CN102643085A CN2012101081609A CN201210108160A CN102643085A CN 102643085 A CN102643085 A CN 102643085A CN 2012101081609 A CN2012101081609 A CN 2012101081609A CN 201210108160 A CN201210108160 A CN 201210108160A CN 102643085 A CN102643085 A CN 102643085A
Authority
CN
China
Prior art keywords
preparation
seo
ceramic material
discharge plasma
plasma sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101081609A
Other languages
English (en)
Inventor
林元华
刘勇
兰金叻
刘耀春
成波
沈洋
南策文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN2012101081609A priority Critical patent/CN102643085A/zh
Publication of CN102643085A publication Critical patent/CN102643085A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法,其中,0≤x≤0.1;包括如下步骤:(1)按照BiCu1-xSeO中的化学计量比,称取Bi、Cu、Se和Bi2O3并进行混合得到混合物料;(2)将所述混合物料进行研磨得到前驱体粉末;(3)所述前驱体粉末经放电等离子烧结即得所述BiCu1-xSeO基氧化物热电陶瓷材料。本发明提供的BiCu1-xSeO基氧化物热电陶瓷材料;通过引入Cu缺陷,所得陶瓷材料既有较高电学性能,同时仍能保持住较低的热传输性能,具有很好的热电传输性能,是一类具有广阔应用前景的新型高温氧化物热电陶瓷材料。本发明的方法与普通的固相烧结相比,具有反应时间短,烧结温度低,同时合成工艺相对简单,可以一步合成BiCu1-xSeO基陶瓷样品。

Description

一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法
技术领域
本发明涉及一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法。
背景技术
热电材料的性能一般用无量纲热电优值ZT(ZT=α2σT/κ,其中α、σ、κ、T分别代表材料的Seebeck系数、电导率、热导率和绝对温度)来表示。优良的热电材料应当具有高的Seebeck系数绝对值、高的电导率和低的热导率。目前所研究的热电材料包括金属固溶体,合金半导体和氧化物热电材料,长期以来研究重点集中在Bi2Te3基合金、填充式Skutterudites型合金及Half-Heusler合金等体系,但这类合金熔点低、含有有害物质、在温度较高时易氧化等限制了其在热电发电方面的应用。与非氧化物系列材料相比,氧化物基陶瓷热电转换材料具有高温化学稳定性、耐热、合成制备容易、可以在大气环境中长期使用等优点,并且无污染、无毒性、制备工艺简单,在中高温区热电领域具有很大的应用潜力,适合于利用低品位热能(如工业余热、废热、太阳能等)进行发电。目前,氧化物热电材料的研究已经形成了一个具有重要研究和实用意义的研究方向,同时开发新型氧化物热电材料及工艺合成也是目前热电材料研究重点。
BiCuSeO是一种重要的半导体材料,一直作为光电及透明导电体功能材料,其禁带宽度1eV左右,其在结构上表现叠层状,即它由导电层(Cu2Se2)2-和绝缘层(Bi2O2)2+交替叠加构成,类似于Ca3Co4O9晶体结构。BiCuSeO的结构决定了它具有较低的热导率,其电学性能相对差些,如何能提高其电学传输性能,将有利于提高其热电性能。从结构分析,p型半导体传输性能的BiCuSeO的电导率调节有两种方式,一种是在Bi位掺杂低价态的原子增加空穴载流子(Zhao L-D,et.al,Appl.Phys.Lett.,2010,97,092118-11.),另一种是引入Cu缺陷提高其空穴载流子浓度。BiCuSeO的传统制备方法多采用固相方法,由于Bi、Se金属的熔点低的原因,多采用两步固相烧结法,整个烧结工艺相对复杂、繁琐及过程成本较高(Hiramatsu H,et.al,Chem.Mater.,2008,20,326-334;J.Mater.Chem.,2004,14,2946-2950)。
发明内容
本发明的目的是提供一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法。
本发明所提供的一种BiCu1-xSeO基氧化物热电陶瓷材料的制备方法,其中,0≤x≤0.1;包括如下步骤:
(1)按照BiCu1-xSeO中的化学计量比,称取Bi、Cu、Se和Bi2O3并进行混合得到混合物料;
(2)将所述混合物料进行研磨得到前驱体粉末;
(3)所述前驱体粉末经放电等离子体烧结即得所述BiCu1-xSeO基氧化物热电陶瓷材料。
上述的制备方法中,所述研磨可采取干磨的方式。
上述的制备方法中,所述干磨的转速可为250rpm~500rpm,具体可为250rpm、300rpm、350rpm、400rpm或500rpm,所述干磨的时间可为2h~10h,具体可为2h、8h或8h。
上述的制备方法中,所述干磨可在惰性气氛下进行,如氩气。
上述的制备方法中,所述方法还包括在步骤(2)之后将所述前驱体粉末进行干燥的步骤。
上述的制备方法中,所述干燥的温度可为50℃~80℃,具体可为50℃、60℃、70℃或80℃,干燥的时间可为2h~24h,具体可为2h、4h、12h或24h。
上述的制备方法中,所述放电等离子烧结可包括依次进行的下述过程1)和过程2):
1)所述放电等离子烧结的温度可为200℃~300℃,时间可为4min~15min;
2)所述放电等离子烧结的温度可为600℃~800℃,时间可为4min~15min。
上述的制备方法中,过程1)中,所述放电等离子烧结的温度具体可为200℃、250℃或300℃,时间具体可为4min、6min、10min、12min或15min;过程2)中,所述放电等离子烧结的温度具体可为600℃、650℃或700℃,时间具体可为4min、8min、10min、12min或15min。
上述的制备方法中,过程1)中,所述放电等离子烧结的升温速率可为50℃/min~300℃/min,具体可为50℃/min、150℃/min、200℃/min、250℃/min或300℃/min,压力可为30Mpa~60Mpa,具体可为30Mpa、40Mpa、50Mpa或60Mpa。
上述的制备方法中,过程2)中,所述放电等离子烧结的升温速率可为50℃/min~300℃/min,具体可为50℃/min、150℃/min、200℃/min、250℃/min或300℃/min,压力可为30Mpa~60Mpa,具体可为30Mpa、40Mpa、50Mpa或60Mpa。
本发明还进一步提供了由上述方法制备的BiCu1-xSeO基氧化物热电陶瓷材料;通过引入Cu缺陷,所得陶瓷材料既有较高电学性能,同时仍能保持住较低的热传输性能,具有很好的热电传输性能,是一类具有广阔应用前景的新型高温氧化物热电陶瓷材料。
本发明具有以下有益效果:与普通的固相烧结相比,具有反应时间短,烧结温度低,同时合成工艺相对简单,可以一步合成BiCu1-xSeO基陶瓷样品;并且烧结的样品性能有很大的提高,在650℃下其ZT值可以达到0.8。
附图说明
图1为本发明实施例1-5制备的BiCu1-xSeO陶瓷材料的XRD谱图。
图2为本发明实施例1制备的BiCuSeO陶瓷材料的SEM图谱。
图3为本发明实施例1-5制备的BiCu1-xSeO陶瓷材料的热电优值ZT随温度的变化曲线。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、制备BiCuSeO基氧化物热电陶瓷材料
按照BiCuSeO中的化学计量比,称取Bi、Cu、Se和Bi2O3,进行混合后得到混合物料;将该混合物料置于球磨罐中进行干磨,转速为400rpm,时间为8h,得到前驱体粉末;将该前驱体粉末于60℃干燥12h;然后将粉末放入石墨磨具中进行放电等离子烧结,控制升温速率为300℃/min,终温300℃下烧结6min,压力为50Mpa;然后控制升温速率为300℃/min,终温为700℃下放电等离子烧结8min,压力为50Mpa,得到BiCuSeO基氧化物热电陶瓷材料。
该实施例制备的样品的XRD谱图如图1所示,由该图可知其组成正确;该样品的SEM谱图如图2所示,由该图可知该实施例制备的样品非常致密,基本无孔洞。
该实施例制备的样品的热电优值ZT随温度的变化曲线如图3所示,由该图可知该材料在650℃下其ZT值可以达到0.5。
实施例2、制备BiCu0.985SeO基氧化物热电陶瓷材料
按照BiCu0.985SeO中的化学计量比,称取Bi、Cu、Se和Bi2O3,进行混合后得到混合物料;将该混合物料置于球磨罐中进行干磨,转速为250rpm,时间为2h,得到前驱体粉末;将该前驱体粉末于50℃干燥24h;然后将粉末放入石墨磨具中进行放电等离子烧结,控制升温速率为50℃/min,终温200℃下烧结4min,压力为30Mpa;然后控制升温速率为50℃/min,终温为600℃下放电等离子烧结4min,压力为30Mpa,得到BiCu0.985SeO基氧化物热电陶瓷材料。
该实施例制备的样品的XRD谱图如图1所示,由该图可知其组成正确;该样品的SEM谱图如图2类似,可表明其致密的结构;
该实施例制备的样品的热电优值ZT随温度的变化曲线如图3所示,由该图可知在650℃下其ZT值可以达到0.65。
实施例3、制备BiCu0.975SeO基氧化物热电陶瓷材料
按照BiCu0.975SeO中的化学计量比,称取Bi、Cu、Se和Bi2O3,进行混合后得到混合物料;将该混合物料置于球磨罐中进行干磨,转速为300rpm,时间为10h,得到前驱体粉末;将该前驱体粉末于70℃干燥4h;然后将粉末放入石墨磨具中进行放电等离子烧结,控制升温速率为150℃/min,终温250℃下烧结10min,压力为40Mpa;然后控制升温速率为150℃/min,终温为650℃下放电等离子烧结10min,压力为40Mpa,得到BiCu0.975SeO基氧化物热电陶瓷材料。
该实施例制备的样品的XRD谱图如图1所示,由该图可知其组成正确;该样品的SEM谱图如图2类似,可表明其致密的结构;
该实施例制备的样品的热电优值ZT随温度的变化曲线如图3所示,由该图可知在650℃下其ZT值可以达到0.8。
实施例4、制备BiCu0.95SeO基氧化物热电陶瓷材料
按照BiCu0.95SeO中的化学计量比,称取Bi、Cu、Se和Bi2O3,进行混合后得到混合物料;将该混合物料置于球磨罐中进行干磨,转速为350rpm,时间为8h,得到前驱体粉末;将该前驱体粉末于80℃干燥2h;然后将粉末放入石墨磨具中进行放电等离子烧结,控制升温速率为200℃/min,终温300℃下烧结12min,压力为60Mpa;然后控制升温速率为200℃/min,终温为700℃下放电等离子烧结12min,压力为60Mpa,得到BiCu0.95SeO基氧化物热电陶瓷材料。
该实施例制备的样品的XRD谱图如图1所示,由该图可知其组成正确;该样品的SEM谱图如图2类似,可表明其致密的结构;
该实施例制备的样品的热电优值ZT随温度的变化曲线如图3所示,由该图可知在650℃下其ZT值可以达到0.4。
实施例5、制备BiCu0.925SeO基氧化物热电陶瓷材料
按照BiCu0.925SeO中的化学计量比,称取Bi、Cu、Se和Bi2O3,进行混合后得到混合物料;将该混合物料置于球磨罐中进行干磨,转速为500rpm,时间为2h,得到前驱体粉末;将该前驱体粉末于70℃干燥12h;然后将粉末放入石墨磨具中进行放电等离子烧结,控制升温速率为250℃/min,终温300℃下烧结15min,压力为50Mpa;然后控制升温速率为250℃/min,终温为700℃下放电等离子烧结15min,压力为50Mpa,得到BiCu0.925SeO基氧化物热电陶瓷材料。
该实施例制备的样品的XRD谱图如图1所示,由该图可知其组成正确;该样品的SEM谱图如图2类似,可表明其致密的结构;
该实施例制备的样品的热电优值ZT随温度的变化曲线如图3所示,由该图可知在650℃下其ZT值可以达到0.25。

Claims (10)

1.一种BiCu1-xSeO基氧化物热电陶瓷材料的制备方法,其中,0≤x≤0.1;包括如下步骤:
(1)按照BiCu1-xSeO中的化学计量比,称取Bi、Cu、Se和Bi2O3并进行混合得到混合物料;
(2)将所述混合物料进行研磨得到前驱体粉末;
(3)所述前驱体粉末经放电等离子烧结即得所述BiCu1-xSeO基氧化物热电陶瓷材料。
2.根据权利要求1所述的制备方法,其特征在于:所述研磨采取干磨的方式。
3.根据权利要求1或2所述的制备方法,其特征在于:所述干磨的转速为250rpm~500rpm,所述干磨的时间为2h~10h。
4.根据权利要求3所述的制备方法,其特征在于:所述干磨在惰性气氛下进行。
5.根据权利要求1-4中任一所述的制备方法,其特征在于:所述方法还包括在步骤(2)之后将所述前驱体粉末进行干燥的步骤。
6.根据权利要求5所述的制备方法,其特征在于:所述干燥的温度为50℃~80℃,干燥的时间为2h~24h。
7.根据权利要求1-6中任一所述的制备方法,其特征在于:所述放电等离子烧结包括依次进行的下述过程1)和过程2):
1)所述放电等离子烧结的温度为200℃~300℃,时间为4min~15min;
2)所述放电等离子烧结的温度为600℃~800℃,时间为4min~15min。
8.根据权利要求7所述的制备方法,其特征在于:过程1)中,所述放电等离子烧结的升温速率为50℃/min~300℃/min,压力为30Mpa~60Mpa。
9.根据权利要求7或8所述的制备方法,其特征在于:过程2)中,所述放电等离子烧结的升温速率为50℃/min~300℃/min,压力为30Mpa~60Mpa。
10.权利要求1-9中任一所述方法制备的BiCu1-xSeO基氧化物热电陶瓷材料。
CN2012101081609A 2012-04-13 2012-04-13 一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法 Pending CN102643085A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101081609A CN102643085A (zh) 2012-04-13 2012-04-13 一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101081609A CN102643085A (zh) 2012-04-13 2012-04-13 一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN102643085A true CN102643085A (zh) 2012-08-22

Family

ID=46656206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101081609A Pending CN102643085A (zh) 2012-04-13 2012-04-13 一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102643085A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807362A (zh) * 2012-09-14 2012-12-05 西北有色金属研究院 一种Bi-2212基高温超导块体材料的制备方法
CN104591103A (zh) * 2014-12-30 2015-05-06 华中科技大学 一种Bi2Te3-xSx热电材料及其制备方法
CN104900670A (zh) * 2015-05-21 2015-09-09 河北大学 一种基于铋铜硒氧热电薄膜横向热电效应的光探测器
CN106395764A (zh) * 2016-08-29 2017-02-15 北京化工大学 一种四元层状化合物的制备方法
CN109012745A (zh) * 2018-08-08 2018-12-18 清华大学 复合材料及其制备方法以及空气净化器
CN109273584A (zh) * 2018-07-16 2019-01-25 叶泽龙 一种汽车尾气温差发电装置用热电材料及发电装置
CN110078476A (zh) * 2019-04-18 2019-08-02 广西大学 一种Al掺杂BiCuSeO基热电材料及其制备方法
CN110112281A (zh) * 2019-04-18 2019-08-09 广西大学 Al掺杂Cu缺位BiCuSeO基热电材料及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L.D.ZHAO: "Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials", 《APPLIED PHYSICS LETTERS》 *
YONG LIU ET AL.: "Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies", 《J.AM.CHEM.SOC.》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807362A (zh) * 2012-09-14 2012-12-05 西北有色金属研究院 一种Bi-2212基高温超导块体材料的制备方法
CN104591103A (zh) * 2014-12-30 2015-05-06 华中科技大学 一种Bi2Te3-xSx热电材料及其制备方法
CN104900670A (zh) * 2015-05-21 2015-09-09 河北大学 一种基于铋铜硒氧热电薄膜横向热电效应的光探测器
CN104900670B (zh) * 2015-05-21 2018-07-17 河北大学 一种基于铋铜硒氧热电薄膜横向热电效应的光探测器
CN106395764A (zh) * 2016-08-29 2017-02-15 北京化工大学 一种四元层状化合物的制备方法
CN106395764B (zh) * 2016-08-29 2018-06-26 北京化工大学 一种四元层状化合物的制备方法
CN109273584A (zh) * 2018-07-16 2019-01-25 叶泽龙 一种汽车尾气温差发电装置用热电材料及发电装置
CN109012745A (zh) * 2018-08-08 2018-12-18 清华大学 复合材料及其制备方法以及空气净化器
CN110078476A (zh) * 2019-04-18 2019-08-02 广西大学 一种Al掺杂BiCuSeO基热电材料及其制备方法
CN110112281A (zh) * 2019-04-18 2019-08-09 广西大学 Al掺杂Cu缺位BiCuSeO基热电材料及制备方法
CN110078476B (zh) * 2019-04-18 2022-03-25 广西大学 一种Al掺杂BiCuSeO基热电材料及其制备方法
CN110112281B (zh) * 2019-04-18 2022-09-02 广西大学 Al掺杂Cu缺位BiCuSeO基热电材料及制备方法

Similar Documents

Publication Publication Date Title
CN102643085A (zh) 一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法
Zhang et al. High‐performance pseudocubic thermoelectric materials from non‐cubic chalcopyrite compounds
CN103011838B (zh) 一种BiCuSeO基热电氧化物粉体的制备方法
CN108238796B (zh) 铜硒基固溶体热电材料及其制备方法
JP2009529799A (ja) 熱電用途用のドープ処理テルル化鉛
CN102280570B (zh) 一种微量Cu掺杂Bi2S3基热电材料
CN105977372A (zh) 一种K空穴掺杂的多晶SnSe及其制备方法
CN101101954A (zh) 一种镉锑基p型热电材料及其制备方法
CN105671344A (zh) 一步制备高性能CoSb3基热电材料的方法
CN106252499A (zh) 一种高性能N型PbTe基热电材料及其制备方法
CN106145062B (zh) 一种快速制备碲化锑热电材料的方法
CN104404284B (zh) 一种快速制备高性能AgBiSe2块体热电材料的方法
CN111799360A (zh) 一种n型PbTe基热电材料及其制备方法
CN107887495A (zh) 一种一步制备Cu2Se/BiCuSeO复合热电材料的方法
CN107793154B (zh) 一种超快速制备Cu2Se/BiCuSeO块体复合热电材料的方法
CN107324293A (zh) 一步超快速制备高性能p型SnTe块体热电材料的方法
CN103555986A (zh) 一种(Bi0.8Sb0.2)2Te3纳米热电材料的制备方法
CN103811653B (zh) 一种多钴p型填充方钴矿热电材料及其制备方法
JP6865951B2 (ja) p型熱電半導体、その製造方法及びそれを用いた熱電発電素子
CN105420528B (zh) 一种制备高性能AgInTe2热电材料的方法
CN101857929A (zh) 一种多孔结构p型锌锑基热电材料及其制备方法
CN101118946B (zh) 一种钡锌锑基p型热电材料及其制备方法
US9960334B2 (en) Thermoelectric materials and their manufacturing method
CN104218143B (zh) 一种BiAgSeTe基热电材料的制备方法
CN106145063B (zh) 一种提高Cu2Se基热电材料相转变温度的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120822

WD01 Invention patent application deemed withdrawn after publication