CN102639744A - 用于电化学应用的高导电性表面以及制备所述高导电性表面的方法 - Google Patents

用于电化学应用的高导电性表面以及制备所述高导电性表面的方法 Download PDF

Info

Publication number
CN102639744A
CN102639744A CN2010800435179A CN201080043517A CN102639744A CN 102639744 A CN102639744 A CN 102639744A CN 2010800435179 A CN2010800435179 A CN 2010800435179A CN 201080043517 A CN201080043517 A CN 201080043517A CN 102639744 A CN102639744 A CN 102639744A
Authority
CN
China
Prior art keywords
metal
cored
fuel cell
particle
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800435179A
Other languages
English (en)
Inventor
王丛桦
张琳
小杰拉尔德·A·宫塔兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Treadstone Technologies Inc
Original Assignee
Treadstone Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Treadstone Technologies Inc filed Critical Treadstone Technologies Inc
Publication of CN102639744A publication Critical patent/CN102639744A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Fuel Cell (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)

Abstract

公开了使用新型结构化金属-陶瓷复合粉末的方法以通过在金属基体表面上热喷涂结构化粉末来改善耐腐蚀金属基体的表面电导率。结构化粉末具有金属芯并由诸如金属氮化物材料的导电陶瓷材料完全或部分包围。在惰性气氛中进行热喷涂方法之前,所述金属芯可具有在其上形成的陶瓷材料,或者热喷涂可在活性气氛中进行使得陶瓷涂层在所述热喷涂方法过程中和/或在沉积之后而在所述芯上形成。通过所述热喷涂方法,所述金属芯将导电陶瓷材料结合在所述基体表面上。

Description

用于电化学应用的高导电性表面以及制备所述高导电性表面的方法
本申请要求2009年9月28日提交的第61/246,523号美国临时申请的优先权。该临时申请的整体内容通过引用并入本文。
背景
领域
本发明涉及增强电化学应用的表面电导率。更具体地,本发明涉及使用热喷涂方法在诸如金属基体的耐腐蚀表面上沉积少量导电陶瓷材料以保持低表面接触电阻。
背景讨论
金属部件广泛用于多种电化学装置,包括但不限于氯碱工艺中的电极以及燃料电池中的隔板。金属部件还用于电池、电解器和电化学气体分离装置。在这些应用的大部分中,金属部件需要具有金属表面的高电导率(或低电阻)以降低电化学装置的内部电损耗用于高运行效率。这些应用的主要挑战在于金属部件必须为耐腐蚀的同时保持其高的电导率。
第6,379,476号美国专利公开了具有大量碳化物和/或硼化物的导电金属内含物的特种不锈钢。这些导电内含物通过热处理过程而在合金主体内部生长,并且从钝化膜下的不锈钢中突出穿过钝化膜的外表面,从而降低不锈钢的接触电阻。
美国专利申请US2005/0089742公开了使导电金属内含物突出穿过金属表面的表面层和钝化膜的方法。
第7,144,628号美国专利公开了使用热喷涂方法以将耐腐蚀金属涂层沉积在金属基体表面的方法。
典型的热喷涂方法已用于表面工程的多种行业。用于所述方法的粉末包括纯金属、纯陶瓷、其中各个单独的颗粒为金属或陶瓷的混合金属和陶瓷粉末以及其中各个单独的颗粒具有金属和陶瓷组分二者的合金粉末。合金粉末通常具有在各个颗粒主体中均匀分布的金属和陶瓷。金属充当粘结剂以将陶瓷粉末保持在一起,并在将其热喷涂在基体上之后使陶瓷粉末与基体结合。
活性热喷涂方法包括在活性气体气氛中喷涂金属粉末。如Lugscheider在Advanced Engineering Materials 2000(高级工程材料2000),2,No.5,P281-284中所讨论的,在喷涂方法中,金属粉末能与氮气或甲烷反应以形成氮化物和碳化物颗粒。这些颗粒包封在金属涂层中以改善涂层耐磨性。
欧洲专利申请EP 1808920A1(2006)公开了使用过渡金属碳化物或氮化物和/或基于所述氮化物或碳化物的固体溶液作为燃料电池的催化剂的方法。其能降低燃料电池成本,并改善催化剂杂质耐量。
概述
本发明的目的是公开改善耐腐蚀金属部件的表面电导率的方法。其中,本发明的可能应用为电化学装置,包括燃料电池、电池、电解器以及气体分离装置。
公开的方法的优点在于其能以低成本制造用于具有高电导率和耐腐蚀性的电化学电力装置的金属部件。
附图简述
图1A为具有金属芯和完全覆盖所述金属芯的导电陶瓷外层的粉末结构的示意图。
图1B为具有金属芯和部分覆盖所述金属芯的导电陶瓷外层的粉末结构的示意图。
图1C为具有金属芯和导电陶瓷外层以及在所述金属芯中捕获的导电陶瓷颗粒的粉末结构的示意图。
图2为在一些实施方案中使用的热喷涂系统的示意图。
图3为具有由氮化物或氧化物-氮化物合金表面层覆盖的Ti或Cr金属/合金层片的金属基体的示意图。
图4为采用一个实施方案的金属部件作为隔板的燃料电池的示意图。
详细描述
在下列详细描述中,阐述了诸如材料类型和尺寸的多个具体细节从而提供对下面所讨论的优选实施方案的深入理解。与优选实施方案有关的所讨论的细节不应理解为限制本发明。此外,为了易于理解,将某些方法步骤描述为单独的步骤,然而,不应将这些步骤解释为必须不同,也不应将这些步骤解释为在其性能方面是顺序相关的。
本文公开了使用新型结构化金属-陶瓷复合粉末的方法以改善耐腐蚀金属基体的表面电导率。图1A示出第一个实施方案的粉末的示意图。粉末具有金属芯11A和完全覆盖金属芯11A表面的导电陶瓷表面层12A。制备粉末的常规方法为在高温下,在诸如氮气或甲烷的受控气氛中烧结金属粉末。金属与大气气体反应以在金属芯表面上形成导电陶瓷层。金属芯能为耐腐蚀金属,例如镍、钴、铝、铬、钛、铌、钨、钽或它们的合金。导电陶瓷层能为前述中任一种的碳化物、氮化物、硼化物、氧化物,和/或这些材料的合金,例如氮氧化钛TiOxNy
图1B示出具有不同结构的粉末的示意图。其具有金属芯11B和部分覆盖金属芯11B的导电陶瓷表面层12B。金属芯能为耐腐蚀金属,例如镍、钴、铝、铬、钛、铌、钨、钽或它们的合金。导电陶瓷层能为前述中任一种的碳化物、氮化物、硼化物、氧化物,和/或这些材料中任一种的合金。
图1C示出具有另一种不同结构的粉末的示意图。其具有金属芯11C、完全或部分覆盖金属芯11C表面的导电陶瓷表面层12C以及一些少量的在金属芯11C中捕获的导电芯片13C。在形成导电陶瓷表面层12C的过程中,将导电芯片13C自然捕获进入金属芯。(例如,可以使用等离子反应烧结方法,其实际上为在受控气氛中等离子喷涂进入真空区(不是基体)。在等离子烧结方法中,金属芯达到高达2500℃并熔化,并与大气气体反应以在表面上形成导电陶瓷层。在该过程中,导电陶瓷层可能破裂,并可将在金属液滴表面上形成的导电陶瓷捕获在金属芯中)。金属芯能为耐腐蚀金属,例如镍、钴、铝、铬、钛、铌、钨、钽或它们的合金。导电陶瓷层和芯片能为前述中任一种的碳化物、氮化物、硼化物、氧化物,和/或这些材料中任一种的合金。
制备新型结构化粉末的常规方法为通过在活性气氛中金属粉末的高温(700℃-1300℃)反应,例如对于氮化物涂层为氮气大气,对于碳化物涂层为烃大气。金属粉末与大气中的气体反应以在表面上形成导电陶瓷层。
在表面具有导电陶瓷的新型结构化粉末(图1A-C)能在喷涂前通过热化学反应而形成,或在热喷涂方法过程中通过金属液滴与热喷涂火焰或等离子体羽流的大气气体反应而原位形成。在后一种情况下,在一个步骤中进行导电陶瓷层和粉末沉积的形成。陶瓷层形成反应能在金属液滴处于飞行状态时发生,或在金属液滴沉积在表面上之后发生,或在两种情况下发生(即,当金属液滴处于飞行状态时,在与大气的化学反应过程中形成一些陶瓷涂层,并且在金属液滴已沉积在表面上之后形成其它陶瓷材料)。
使用图1A-C所述的新型结构化粉末的优选方法为通过热喷涂方法将粉末沉积在金属基体上以改善基体材料的表面电导率。能以连续层形式或以覆盖一部分基体表面的孤岛形式形成喷涂层片。
金属基体能为耐腐蚀金属,例如钛、铌、锆、钽以及它们的合金,或具有耐腐蚀表面处理的低成本碳钢、不锈钢、铜、铝以及它们的合金。
在图2中示意性地示出可用于本发明的热喷涂系统。在受控气氛条件下进行该方法以保持惰性气氛(例如,氩气或氢气)或活性气氛(例如,氮气或甲烷)21。应使用惰性或活性气体操作粉末供给器22。喷嘴23用于喷射粉末以形成熔化的金属液滴24,并将其喷出至金属基体25。喷嘴23能为等离子喷嘴或能为本领域已知的其它种类的喷嘴。
在本发明的一个实施方案中,通过热喷涂方法沉积一些钛或铬金属或合金颗粒,并结合在金属基体表面上。在含氮气的大气中进行热喷涂方法。通过热喷嘴将钛或铬金属颗粒喷出并且在火焰中熔化。钛或铬熔化液滴与大气中的氮气反应,在液滴表面上产生氮化物或氧化物-氮化物层。然后,将液滴溅射在基体表面上,并以层片形式结合在基体上。层片的表面还能与含氮气的大气反应,生成覆盖层片表面的氮化物,其具有在层片中或在层片-基体接触面上捕获的一些氧化物-氮化物芯片的氮化物。在图3中示出该实施方案的示意图。图3例示由钛或铬层片32部分覆盖的金属基体31以及在层片32上的薄氮化物或氧化物-氮化物覆盖物33。将氮化物或氧化物-氮化物芯片34封装在一些或所有层片32中。层片32的厚度为约0.1μm至100μm,并且优选为约1μm至5μm。氮化物或氧化物-氮化物层33的厚度为约1nm至5μm,优选为约5nm至1μm。
由于氮化钛和氮化铬(或氧化物-氮化物)为耐腐蚀且导电的,因此在电化学系统中钛或铬层片的氮化物或氧化物-氮化物覆盖物将充当金属基体与其它部件的电接触点。层片能以孤岛形式覆盖金属基体表面或被连接在一起。为了最小化材料用量,不必覆盖金属基体的整个表面。
表1示出多孔复写纸(SGL 24BA)与在表面上喷涂钛-氧化钛-氮化物层片的304不锈钢箔的接触电阻。通过在含氮气的受控气氛中等离子喷涂钛粉末而形成钛-氧化钛-氮化物层片。如表1所示,在150psi的压缩压力下喷涂的304SS的初始接触电阻为14mΩ.cm2。在pH3H2SO4+0.1ppm HF溶液中,在0.8VNHE阴极极化下,在腐蚀24小时之后,接触电阻保持几乎相同低的值。另一方面,裸露的304SS在腐蚀环境中具有显著的表面氧化,其导致在腐蚀之后显著高的接触电阻增加(100mΩ.cm2至200mΩ.cm2)。
表1.304SS箔与多孔复写纸的接触电阻的比较
在另一实施方案中,通过热喷涂方法在粉末表面上沉积具有氮化物层的一些钛或铬金属(或合金或前述)颗粒,并结合在金属基体表面上。在热喷涂沉积方法之前,通过高温气体渗氮方法处理粉末表面上的氮化物。在惰性(氩气或氢气)大气中或在含氮气的大气中进行热喷涂方法以防止热喷涂方法过程中氮化物的大规模氧化。通过热喷嘴将颗粒的钛或铬芯喷出并在火焰中熔化。颗粒溅射在基体的表面上,并以具有暴露在表面上的氮化物的层片形式结合在基体上。为了进一步改善表面电导率,能将其它化学品或电化学蚀刻方法用于去除氮化物表面上的金属,并在层片表面上进一步暴露氮化物。
在另一实施方案中,将在粉末颗粒表面上具有碳化钨层的钨金属粉末颗粒沉积在耐腐蚀金属基体表面上。颗粒溅射在金属基体上并结合在其表面上。为了进一步增加层片的表面积并改善化学稳定性,金属基体表面上的层片能经历化学或电化学蚀刻过程以溶解不太稳定的相,并增加表面粗糙度用于高表面积。表面上的碳化钨用作用于溴-氢或溴-锌液流电池的电极催化剂,或用作用于氢产生的水电解器,并且金属基体用作电池堆的隔板。
如上述讨论的,本文公开类型的金属部件可用于多种机电装置。例如,使用本文公开的技术形成的金属部件可用作在燃料电池中使用的燃料电池堆的隔板。示例性的燃料电池400在图4中例示。燃料电池400包括放置在容器49中的燃料电池堆40。燃料电池堆40包括三个膜电极组件/气体扩散层(MEA/GDL),其各自包括在PEM11的对侧上具有阳极42和阴极43的质子交换膜41以形成MEA和在对侧上邻近MEA的的气体扩散层44。将可使用本文公开的技术形成的隔板45布置在邻近的MEA/GDL之间,并且端板46在由三个MEA/GDL形成的燃料堆40的相对端上存在。在图4中例示的隔板45称为双极性隔板,因为它们具有在一侧上的阳极42和在另一侧上的阴极43。具有通过本文公开的技术形成的单极隔板的燃料电池堆也在本发明的范围内,其中阳极和阴极在邻近的MEA中交换。这些类型的燃料电池堆中的任一个可与其它部件(岐管等,在图4中未示出)结合以形成本领域熟知的燃料电池装置。本文公开类型的金属部件可用于形成2010年5月10日提交的标题为“使用金属隔板的高功率燃料堆”的第12/777,126号共同待审的美国专利申请中公开类型的隔板,其整体内容通过引用并入本文。
本文公开类型的金属部件的另一用途为用于电解器。例如,本文公开类型的金属部件可用作第4,643,818号美国专利和第7,763,152号美国专利中公开类型的电解器中的电极。本文公开类型的金属部件的其它用途为作为上述讨论的电池堆中的隔板以及氢气-空气燃料电池的电极催化剂;用于诸如在第5,290,410号美国专利中所公开的那些氯-碱电解电池;以及用于电化学气体分离装置。应当理解,在上述专利中例示的装置为说明可与本发明的金属部件一起使用的多种装置,并且这些专利的细节不应理解为以任何方式限制这类用途。在本段中上述列举的所有专利的内容均通过引用并入本文。
提供前述实施例仅出于解释的目的,并且根本不应理解为限制。当对各个实施方案进行参考时,本文使用的词语为描述和说明的词语,而不是限制的词语。此外,尽管示出对特殊方法、材料和实施方案的参考,但不存在对本文公开的细节的限制。相反,实施方案延伸至诸如在附加的权利要求范围内的所有功能等效的结构、方法和用途。
此外,摘要的目的在于一般地能使专利局和公众,且特别是不熟悉专利或法律术语或用语的本领域科学家、工程师和从业者通过粗略检验而快速确定本申请技术公开内容的性质。摘要不旨在以任何方式限制本发明的范围。

Claims (17)

1.用于制备具有高导电性表面的金属部件的方法,其包括:
在受控气氛中使用热喷涂方法将结构化粉末沉积在金属基体上;
其中所述粉末包含多个颗粒,各一颗粒具有由导电陶瓷涂层至少部分包围的金属芯,并且其中所述颗粒与所述金属基体的表面结合。
2.如权利要求1所述的方法,其中所述导电陶瓷涂层完全包围所述颗粒的金属芯。
3.如权利要求1所述的方法,其中所述导电陶瓷涂层部分包围所述颗粒的金属芯。
4.如权利要求1所述的方法,其中所述金属芯具有在其中捕获的陶瓷颗粒。
5.如权利要求1所述的方法,其中所述金属芯由选自钨、镍、钴、铝、铬、钛、铌、钽以及前述中任一种的合金的耐腐蚀材料形成。
6.如权利要求1所述的方法,其中所述导电陶瓷涂层由选自前述中任一种的碳化物、氮化物、硼化物、氧化物以及这些材料中任一种的合金的材料形成。
7.如权利要求1所述的方法,其中所述受控气氛为活性气氛,并且其中所述导电陶瓷涂层通过所述金属芯与所述活性气氛的反应而在所述热喷涂方法过程中在所述金属芯上形成。
8.如权利要求7所述的方法,其中所述活性气氛包含氮气,并且其中所述金属芯包括钛、铬、钨、铌、钽或它们的合金。
9.如权利要求1所述的方法,其中所述受控气氛为惰性气氛,并且其中在所述热喷涂方法之前在所述金属芯上形成所述导电陶瓷涂层。
10.如权利要求9所述的方法,其中使用在所述沉积步骤之前进行的等离子烧结方法而在所述金属芯上形成所述导电陶瓷涂层。
11.如权利要求1所述的方法,其中所述颗粒完全覆盖所述金属基体的表面。
12.如权利要求1所述的方法,其中所述颗粒形成多个覆盖一部分所述金属基体表面的岛。
13.如权利要求1所述的方法,其还包括:
在所述沉积步骤之后蚀刻所述表面以去除暴露的金属使得表面上另外的陶瓷材料暴露。
14.如权利要求1所述的方法,其中与所述金属基体表面结合的粉末颗粒的金属芯的最大厚度为约0.1微米至100微米。
15.如权利要求14所述的方法,其中覆盖与所述金属基体表面结合的粉末颗粒的金属芯的陶瓷涂层的厚度为约1纳米至5微米。
16.由权利要求1所述的方法形成的金属部件。
17.燃料电池堆,其包括:
第一燃料电池,所述第一燃料电池包括
膜电极组件,其包括质子交换膜、在所述质子交换膜一侧上的第一电极和在所述质子交换膜对侧上的第二电极;
在所述膜电极组件第一侧上的第一气体扩散层;
在所述膜电极组件第二侧上的第二气体扩散层;
第二燃料电池;以及
在所述第一燃料电池和所述第二燃料电池之间的隔板,所述隔板为由权利要求1所述的方法形成的金属部件。
CN2010800435179A 2009-09-28 2010-09-28 用于电化学应用的高导电性表面以及制备所述高导电性表面的方法 Pending CN102639744A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24652309P 2009-09-28 2009-09-28
US61/246,523 2009-09-28
PCT/US2010/050578 WO2011038406A2 (en) 2009-09-28 2010-09-28 Highly electrically conductive surfaces for electrochemical applications and methods to produce same

Publications (1)

Publication Number Publication Date
CN102639744A true CN102639744A (zh) 2012-08-15

Family

ID=43780761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800435179A Pending CN102639744A (zh) 2009-09-28 2010-09-28 用于电化学应用的高导电性表面以及制备所述高导电性表面的方法

Country Status (6)

Country Link
US (1) US20110076587A1 (zh)
EP (1) EP2483436A2 (zh)
JP (1) JP2013506050A (zh)
KR (1) KR20120082903A (zh)
CN (1) CN102639744A (zh)
WO (1) WO2011038406A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936727A (zh) * 2013-01-24 2015-09-23 H.C.施塔克股份有限公司 制备含氮化铬的喷涂粉末的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2229471T3 (da) 2008-01-08 2015-06-22 Treadstone Technologies Inc Stærkt elektrisk ledende overflader til elektrokemiske anvendelser
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
DE102013201103A1 (de) * 2013-01-24 2014-07-24 H.C. Starck Gmbh Thermisches Spritzpulver für stark beanspruchte Gleitsysteme
US9567681B2 (en) 2013-02-12 2017-02-14 Treadstone Technologies, Inc. Corrosion resistant and electrically conductive surface of metallic components for electrolyzers
EP2961537A4 (en) * 2013-02-26 2016-08-10 Treadstone Technologies Inc CORROSION-RESISTANT METALLIC COMPONENTS FOR BATTERIES
TWI633206B (zh) 2013-07-31 2018-08-21 卡利拉股份有限公司 使用金屬氧化物之電化學氫氧化物系統及方法
US11033961B2 (en) * 2014-01-09 2021-06-15 Raytheon Technologies Corporation Material and processes for additively manufacturing one or more parts
EP3096910B1 (en) * 2014-01-24 2021-07-07 Raytheon Technologies Corporation Additive manufacturing an object from material with a selective diffusion barrier
WO2015164589A1 (en) 2014-04-23 2015-10-29 Calera Corporation Methods and systems for utilizing carbide lime or slag
US9957621B2 (en) 2014-09-15 2018-05-01 Calera Corporation Electrochemical systems and methods using metal halide to form products
EP3218702A1 (en) 2014-11-10 2017-09-20 Calera Corporation Measurement of ion concentration in presence of organics
EP3271501A1 (en) 2015-03-16 2018-01-24 Calera Corporation Ion exchange membranes, electrochemical systems, and methods
US10435782B2 (en) 2015-04-15 2019-10-08 Treadstone Technologies, Inc. Method of metallic component surface modification for electrochemical applications
CN108290807B (zh) 2015-10-28 2021-07-16 卡勒拉公司 电化学、卤化和氧卤化的系统及方法
US10236526B2 (en) 2016-02-25 2019-03-19 Calera Corporation On-line monitoring of process/system
US10847844B2 (en) 2016-04-26 2020-11-24 Calera Corporation Intermediate frame, electrochemical systems, and methods
CN109154090B (zh) 2016-05-26 2021-08-06 卡勒拉公司 阳极组装件、接触带、电化学电池及其使用和制造方法
CN106129443B (zh) * 2016-07-08 2018-11-30 北京航空航天大学 一种新型的keggin型钴钨酸液流电池
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
EP3425085A1 (fr) 2017-07-07 2019-01-09 The Swatch Group Research and Development Ltd Procede de traitement de surface de particules d'une poudre metallique et particules de poudre metallique obtenues grace a ce procede
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
JP2023514456A (ja) 2020-02-25 2023-04-05 アレラク, インコーポレイテッド バテライトを形成するための石灰の処理のための方法およびシステム
WO2021173601A1 (en) * 2020-02-26 2021-09-02 Treadstone Technologies, Inc. Component having improved surface contact resistance and reaction activity and methods of making the same
US11377363B2 (en) 2020-06-30 2022-07-05 Arelac, Inc. Methods and systems for forming vaterite from calcined limestone using electric kiln
WO2022071823A1 (en) * 2020-09-30 2022-04-07 Siemens Energy Global Gmbh & Go. Kg A spherical carbide-coated metal powder and method for production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235711A1 (en) * 2002-03-19 2003-12-25 Hitachi Cable, Ltd. Corrosive resistant metal material covered with conductive substance
WO2005085490A1 (en) * 2004-03-04 2005-09-15 Kyung Hyun Ko Method for forming wear-resistant coating comprising metal-ceramic composite
KR20060106865A (ko) * 2005-04-07 2006-10-12 주식회사 솔믹스 내마모성 금속기지 복합체 코팅층 형성방법 및 이를이용하여 제조된 코팅층
WO2007149881A2 (en) * 2006-06-19 2007-12-27 Cabot Corporation Metal-containing nanoparticles, their synthesis and use

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US466743A (en) * 1892-01-05 Heel lift skiving machine
US3755105A (en) * 1971-06-28 1973-08-28 G Messner Vacuum electrical contacts for use in electrolytic cells
JPS582453B2 (ja) * 1975-02-28 1983-01-17 日本電気株式会社 ダイキボハンドウタイシユウセキカイロソウチ
US4031268A (en) * 1976-01-05 1977-06-21 Sirius Corporation Process for spraying metallic patterns on a substrate
JPS5569278A (en) * 1978-11-17 1980-05-24 Kureha Chem Ind Co Ltd Frame of carbon fiber-high molecular composite material electrolytic cell
US4643818A (en) * 1984-08-07 1987-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Multi-cell electrolyzer
US5314601A (en) * 1989-06-30 1994-05-24 Eltech Systems Corporation Electrodes of improved service life
US5098485A (en) * 1990-09-19 1992-03-24 Evans Findings Company Method of making electrically insulating metallic oxides electrically conductive
JP2719049B2 (ja) * 1991-01-28 1998-02-25 日本碍子株式会社 ランタンクロマイト膜の製造方法及び固体電解質型燃料電池用インターコネクターの製造方法
US5624769A (en) * 1995-12-22 1997-04-29 General Motors Corporation Corrosion resistant PEM fuel cell
DE19646424A1 (de) * 1996-11-11 1998-05-14 Henkel Kgaa Verwendung von Polyolen für Isocyanat-Gießharze und -Beschichtungsmassen
US6153080A (en) * 1997-01-31 2000-11-28 Elisha Technologies Co Llc Electrolytic process for forming a mineral
US6599643B2 (en) * 1997-01-31 2003-07-29 Elisha Holding Llc Energy enhanced process for treating a conductive surface and products formed thereby
WO1998033960A1 (en) * 1997-01-31 1998-08-06 Elisha Technologies Co. L.L.C. An electrolytic process for forming a mineral containing coating
EP0935265A3 (en) * 1998-02-09 2002-06-12 Wilson Greatbatch Ltd. Thermal spray coated substrate for use in an electrical energy storage device and method
US6207522B1 (en) * 1998-11-23 2001-03-27 Microcoating Technologies Formation of thin film capacitors
JP4534353B2 (ja) * 1999-01-21 2010-09-01 旭硝子株式会社 固体高分子電解質型燃料電池
KR100361548B1 (ko) * 1999-04-19 2002-11-21 스미토모 긴조쿠 고교 가부시키가이샤 고체고분자형 연료전지용 스텐레스 강재
US6649031B1 (en) * 1999-10-08 2003-11-18 Hybrid Power Generation Systems, Llc Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities and method of making the same
DE19957981A1 (de) * 1999-12-02 2001-06-07 Abb Research Ltd Hochtemperatursupraleiteranordnung und Verfahren zu deren Herstellung
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
CN101638765A (zh) * 2000-11-29 2010-02-03 萨莫希雷梅克斯公司 电阻加热器及其应用
US7005214B2 (en) * 2001-11-02 2006-02-28 Wilson Greatbatch Technologies, Inc. Noble metals coated on titanium current collectors for use in nonaqueous Li/CFx cells
CN1290219C (zh) * 2001-12-18 2006-12-13 本田技研工业株式会社 燃料电池用隔板的制造方法及其制造设备
EP1369504A1 (en) * 2002-06-05 2003-12-10 Hille & Müller Metal strip for the manufacture of components for electrical connectors
US7144648B2 (en) * 2002-11-22 2006-12-05 The Research Foundation Of State University Of New York Bipolar plate
US6924002B2 (en) * 2003-02-24 2005-08-02 General Electric Company Coating and coating process incorporating raised surface features for an air-cooled surface
US7070833B2 (en) * 2003-03-05 2006-07-04 Restek Corporation Method for chemical vapor deposition of silicon on to substrates for use in corrosive and vacuum environments
JP4327489B2 (ja) * 2003-03-28 2009-09-09 本田技研工業株式会社 燃料電池用金属製セパレータおよびその製造方法
US7052741B2 (en) * 2004-05-18 2006-05-30 The United States Of America As Represented By The Secretary Of The Navy Method of fabricating a fibrous structure for use in electrochemical applications
US7309540B2 (en) * 2004-05-21 2007-12-18 Sarnoff Corporation Electrical power source designs and components
US20060003174A1 (en) * 2004-06-30 2006-01-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium material and method for manufacturing the same
US7955754B2 (en) * 2004-07-20 2011-06-07 GM Global Technology Operations LLC Enhanced stability bipolar plate
US20060260473A1 (en) * 2005-05-19 2006-11-23 Keith Nybakke Insulated platter
WO2007124038A2 (en) * 2006-04-20 2007-11-01 Dentatek Corporation Apparatus and methods for treating root canals of teeth
US20080145633A1 (en) * 2006-06-19 2008-06-19 Cabot Corporation Photovoltaic conductive features and processes for forming same
DK2229471T3 (da) * 2008-01-08 2015-06-22 Treadstone Technologies Inc Stærkt elektrisk ledende overflader til elektrokemiske anvendelser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235711A1 (en) * 2002-03-19 2003-12-25 Hitachi Cable, Ltd. Corrosive resistant metal material covered with conductive substance
WO2005085490A1 (en) * 2004-03-04 2005-09-15 Kyung Hyun Ko Method for forming wear-resistant coating comprising metal-ceramic composite
KR20060106865A (ko) * 2005-04-07 2006-10-12 주식회사 솔믹스 내마모성 금속기지 복합체 코팅층 형성방법 및 이를이용하여 제조된 코팅층
CN101155946A (zh) * 2005-04-07 2008-04-02 Snt株式会社 制备含有金属基体复合物的耐磨涂层的方法及由其制备的涂层
WO2007149881A2 (en) * 2006-06-19 2007-12-27 Cabot Corporation Metal-containing nanoparticles, their synthesis and use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936727A (zh) * 2013-01-24 2015-09-23 H.C.施塔克股份有限公司 制备含氮化铬的喷涂粉末的方法
CN104936727B (zh) * 2013-01-24 2019-01-01 世特科表面技术及陶瓷粉末股份有限公司 制备含氮化铬的喷涂粉末的方法
CN109338137A (zh) * 2013-01-24 2019-02-15 世特科表面技术及陶瓷粉末股份有限公司 制备含氮化铬的喷涂粉末的方法
TWI661882B (zh) * 2013-01-24 2019-06-11 德商世泰科表面科技及陶瓷粉末有限公司 製造含氮化鉻經燒結噴灑粉末之方法,含鉻經燒結噴灑粉末及其用途,與經塗佈組件及其製造方法
US10695839B2 (en) 2013-01-24 2020-06-30 H.H. Starck Surface Technology And Ceramic Powders Gmbh Method for producing spray powders containing chromium nitride

Also Published As

Publication number Publication date
WO2011038406A9 (en) 2012-04-12
EP2483436A2 (en) 2012-08-08
US20110076587A1 (en) 2011-03-31
KR20120082903A (ko) 2012-07-24
WO2011038406A3 (en) 2011-08-04
WO2011038406A2 (en) 2011-03-31
JP2013506050A (ja) 2013-02-21

Similar Documents

Publication Publication Date Title
CN102639744A (zh) 用于电化学应用的高导电性表面以及制备所述高导电性表面的方法
EP2260531B1 (en) Electrode with a coating, method in production thereof and use of a material
US9991523B2 (en) Fuel cell catalyst including carbon support particles with metal carbide layer and catalytic material and fuel cell using the same
US20090176120A1 (en) Highly electrically conductive surfaces for electrochemical applications
WO2006049850A2 (en) Method of fabricating corrosion-resistant bipolar plate
CN104220630A (zh) 耐腐蚀且导电的金属表面
CA2669526C (en) Fuel cell separator and method for producing the same
CN105161733A (zh) 用于碳腐蚀保护的导电薄膜
US20160172687A1 (en) Oxide-coated metal catalyst for composite electrode and method for preparing composite electrode using the same
CN105593413B (zh) 用于使材料层沉积到燃料电池或电解池的金属支承体上的方法
KR101079248B1 (ko) 전도성 산화물과 비전도성 산화물을 포함하는 치밀한 구조의 복합 산화물의 박막, 이의 제조방법 및 그를 이용한금속 접속자
Lettenmeier et al. Protective coatings for low-cost bipolar plates and current collectors of proton exchange membrane electrolyzers for large scale energy storage from renewables
EP3958360A1 (en) Hybrid structured porous transport electrodes with electrochemically active top-layer
US11228042B2 (en) Aluminum separator for fuel cell and manufacturing method thereof
Seabaugh et al. Oxide Protective Coatings for Solid Oxide Fuel Cell Interconnects
KR101885412B1 (ko) 연료전지분리판의 제조방법 및 그에 따른 연료전지분리판
WO2023006202A1 (en) Hybrid structured porous transport electrodes with electrochemically active top-layer
CN115663224A (zh) 质子交换膜燃料电池双极板金属复合涂层及其制备方法
JPH05287539A (ja) 導電性酸化物のコーティング法およびこの方法により製造された固体電解質型燃料電池の金属−セラミック複合セパレータ
JP2006140010A (ja) 固体高分子電解質燃料電池用金属セパレータ及びその製造方法
Windes et al. A low CTE intermetallic bipolar plate
WO2004040673A2 (en) Thin-film ion conducting membrane

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120815