CN102575339A - Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质 - Google Patents

Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质 Download PDF

Info

Publication number
CN102575339A
CN102575339A CN201080045590XA CN201080045590A CN102575339A CN 102575339 A CN102575339 A CN 102575339A CN 201080045590X A CN201080045590X A CN 201080045590XA CN 201080045590 A CN201080045590 A CN 201080045590A CN 102575339 A CN102575339 A CN 102575339A
Authority
CN
China
Prior art keywords
geo
powder
target
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201080045590XA
Other languages
English (en)
Other versions
CN102575339B (zh
Inventor
奈良淳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of CN102575339A publication Critical patent/CN102575339A/zh
Application granted granted Critical
Publication of CN102575339B publication Critical patent/CN102575339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00451Recording involving ablation of the recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

一种Bi-Ge-O型烧结体溅射靶,含有铋(Bi)、锗(Ge)和氧(O),其特征在于,Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.92,并且含有Bi12GeO20、Bi4Ge3O12和GeO2三相作为结晶相。本发明涉及Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质,特别地提供在溅射时不产生靶的破裂,粉粒的产生少,可以稳定地制作高品质的薄膜,可以得到不产生记录位的错误的光记录介质的Bi-Ge-O型烧结体溅射靶及该靶的制造方法以及光记录介质。

Description

Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质
技术领域
本发明涉及Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质,特别地涉及在溅射时不产生靶的破裂,粉粒的产生少,可以稳定地制作高品质的薄膜,可以得到不产生记录位的错误的光记录介质的Bi-Ge-O型烧结体溅射靶及该靶的制造方法以及光记录介质。
背景技术
一写多读型(WORM:Write Once Read Many)光记录介质,是通过蓝色波长区域(350~500nm)的激光也可以进行高密度记录的光记录介质,特别是具有多层具有高记录灵敏度的记录层的光记录介质。
光盘为了应对高密度化的要求而通过多层化进行高密度化。使用蓝色LD的光盘也同样地进行了高密度记录用光记录介质的开发。
为了实现可以进行高密度多层记录的一写多读型光记录介质,肯定需要具有稳定的组成、结构的材料,而且需要透光特性优良的膜,这样的材料多数为氧化物,一般而言熔点高,因此多数情况下使用溅射法作为成膜方法。
因此,需要适合得到这样的膜的溅射靶。但是,构成靶的化合物的形态、结构等对溅射特性也有影响,因此在将构成靶的化合物形成为适合必要的膜特性的物质时,是否可以稳定地进行良好的溅射成为问题。
使用溅射法在衬底上形成光记录介质用薄膜时,根据靶的材料有时会产生许多粉粒,从而使品质下降。特别是对于高记录密度介质,由粉粒等导致记录位产生错误是重大的问题。由此,会成为不合格品,从而产生成品率下降的问题。
以往,作为提出的光记录介质,提出了许多材料。例如,在专利文献1中,记载了在衬底上至少形成有记录层的光记录介质,其中,记录层的构成元素的主成分为Bi和O(氧),含有B,并且含有选自Ge、Li、Sn、Cu、Fe、Pd、Zn、Mg、Nd、Mn和Ni中的至少一种元素X。
另外,在专利文献2中,记载了一种一写多读型光记录介质,其特征在于,记录层含有Bi、M(M为Mg、Al、Cr、Mn、Co、Fe、Cu、Zn、Li、Si、Ge、Zr、Ti、Hf、Sn、Mo、V、Nb、Y和Ta中的至少一种元素)和氧,记录有信息的记录标记部含有在该记录层中含有的元素的结晶和/或这些元素的氧化物的结晶。
此外,提出了专利文献3至专利文献8。其中,考虑了含有铋(Bi)、锗(Ge)和氧(O)的光记录介质的组合,也记载了通过烧结体靶的溅射将这些光记录介质成膜。但是,该Bi-Ge-O型烧结体溅射靶,存在如下问题:耐热冲击性弱,通过高功率进行溅射时大多会产生破裂、产生龟裂,由此产生粉粒,损害记录膜等的品质。
现有技术文献
专利文献
专利文献1:日本特开2008-210492号公报
专利文献2:日本特开2006-116948号公报
专利文献3:日本特开2003-48375号公报
专利文献4:日本特开2005-161831号公报
专利文献5:日本特开2005-108396号公报
专利文献6:日本特开2007-169779号公报
专利文献7:日本特开2008-273167号公报
专利文献8:日本专利第4271063号公报
发明内容
本发明的课题涉及Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质,特别地提供在溅射时不产生靶的破裂,粉粒的产生少,可以稳定地制作高品质的薄膜,可以得到不产生记录位的错误的光记录介质的Bi-Ge-O型烧结体溅射靶及该靶的制造方法以及光记录介质。
为了解决上述问题,本发明人进行了广泛深入的研究,结果发现,选择适当组成的Bi-Ge-O型烧结体而控制结晶相,抑制靶的热冲击而防止靶的破裂,从而在溅射时可以有效地抑制粉粒的产生。
基于这些发现,本发明提供:
1)一种Bi-Ge-O型烧结体溅射靶,含有铋(Bi)、锗(Ge)和氧(O),其特征在于,
Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.92,并且含有Bi12GeO20、Bi4Ge3O12和GeO2三相作为结晶相。
2)如上述1)所述的烧结体溅射靶,其特征在于,通过200℃、30分钟的加热对靶施加热冲击的情况下,该热冲击前后的平均弯曲强度下降率为50%以下。
3)一种光记录介质,其通过使用上述1)或2)所述的靶进行溅射而成膜。
另外,本发明提供:
4)一种Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,
将0.03~89摩尔%的GeO2粉末、11~99.97摩尔%的Bi12GeO20粉末作为起始原料,将这些原料以Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.92的方式进行混合后,在600~840℃、施压150~400kg/cm2的条件下进行热压,由此制作含有Bi12GeO20、Bi4Ge3O12和GeO2三相的结晶相的烧结体。
5)如上述4)所述的Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,
将14.3摩尔%的GeO2粉末和85.7摩尔%的Bi2O3粉末混合后,使其进行固相反应,从而制作Bi12GeO20粉末。
6)如上述4)或5)所述的Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,
使用平均晶粒直径为10~50μm的氧化锗烧结原料粉末进行烧结。
发明效果
本发明的Bi-Ge-O型烧结体溅射靶,具有如下优良效果:在溅射时不产生靶的破裂,粉粒的产生少,可以稳定地制作高品质的薄膜,可以得到不产生记录位的错误的光记录介质。
具体实施方式
本发明的Bi-Ge-O型烧结体溅射靶,含有铋(Bi)、锗(Ge)和氧(O),其特征在于,Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.92,并且含有Bi12GeO20、Bi4Ge3O12和GeO2三相作为结晶相。使用该组成的记录膜,为可以通过多层化实现高密度记录的适合组成,可以稳定地进行良好的溅射成膜。
一般而言,在将氧化铋(Bi2O3)和氧化锗(GeO2)的粉末作为起始原料并将其烧结来制作该组成靶的情况下,成为Bi12GeO20和Bi4Ge3O12两相共存的组成。
不过,Bi12GeO20和Bi4Ge3O12的热膨胀系数差异大,因此耐热冲击性极弱,产生在使用高功率溅射成膜时产生破裂的问题。
因此,本申请发明中,将热膨胀系数值处于Bi12GeO20和Bi4Ge3O12之间的GeO2作为中间相,将其形成在烧结体中三相共存的组织,因此GeO2相成为缓冲相,从而显著提高耐热冲击性。顺便说一下,Bi12GeO20的热膨胀系数为1.39×10-5,Bi4Ge3O12的热膨胀系数为6.00×10-6。另一方面,GeO2的热膨胀系数为7.59×10-6,为具有处于前两者之间的热膨胀系数的相,因此可以成为有效的缓冲相。
结果,可以提高靶的耐热冲击性,由此可以得到如下显著优点:可以进行高功率成膜,可以提高生产效率。
另外,可以得到如下效果:引起破裂或龟裂的粉粒的产生显著减少,可以制作稳定的高品质的薄膜,可以制作不产生记录位的错误、从而可以实现高记录密度的光记录介质。
为了防止溅射时产生粉粒,将靶的结晶平均粒度调节为100μm以下也是有效的。
另外,本发明的Bi-Ge-O型烧结体溅射靶,在通过200℃、30分钟的加热对靶施加热冲击的情况下,该热冲击前后的平均弯曲强度下降率为50%以下。
现有的Bi12GeO20和Bi4Ge3O12两相共存组成的靶的情况下,所述热冲击前后的平均弯曲强度下降率超过80%,与此相对,本发明实现了显著的改善效果。由此,可以抑制靶由于热冲击而破裂,并且可以直接评价靶的特性。
另外,所述靶的Bi12GeO20、Bi4Ge3O12和GeO2三相的比率可以在本发明的制造条件的范围内任意调节。这也取决于溅射时靶所受到的热冲击的程度、即成膜速度(生产速度)或溅射装置的结构,成为用于缓和热冲击的指标。
通过使用上述的靶进行溅射而成膜的光记录介质,为稳定的高品质的薄膜,可以得到不产生记录位的错误的光记录介质。
制造Bi-Ge-O型烧结体溅射靶时,将氧化铋和氧化锗的粉末作为起始原料,将这些原料以Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.92的方式进行混合。然后,在600~840℃、施压150~400kg/cm2的条件下对该混合粉末进行热压。由此制作含有Bi12GeO20、Bi4Ge3O12和GeO2三相的结晶相的烧结体。
该烧结条件为可以得到均匀组成的靶的适合条件。在偏离上述范围的烧结条件下也可以制造靶,但是,靶的品质的重现性差,因此期望设定为上述范围。另外,所述原料阶段的Bi与Ge的原子数比0.57<(Bi/(Bi+Ge))<0.92直接反映到靶中,可以得到相同组成比的靶。
制造Bi-Ge-O型烧结体溅射靶时,作为氧化铋和氧化锗烧结原料,期望使用0.03~89摩尔%的GeO2粉末、11~99.97摩尔%的Bi12GeO20粉末。这是用于有效地得到含有Bi12GeO20、Bi4Ge3O12和GeO2三相的结晶相的烧结体的必要条件。
另外,期望使用平均晶粒直径为10~50μm的氧化锗(GeO2)粉末进行烧结。这是因为:小于上述的下限值时,容易产生粉末的凝聚,难以得到均匀的烧结体。另外,超过上述的上限值时,烧结得到的靶中产生粗大粒子,容易偏析,因此期望设定为上述范围。这是更优选的粉末的条件,通过调节烧结条件,也可以使用该范围外的粉末。
关于Bi12GeO20粉末,可以事先通过将14.3摩尔%的GeO2粉末和85.7摩尔%的Bi2O3粉末混合后进行固相反应,并将其粉碎来制作。关于Bi12GeO20粉末的粒径,没有特别限制,为约100μm以下就没有问题。这是因为:在本申请发明的烧结条件下,不会产生象GeO2一样的凝聚。
实施例
以下,基于实施例和比较例进行说明。另外,本实施例仅仅是例子,本发明无论如何不限于该实施例。即,本发明仅受权利要求书的限制,本发明也包括本发明所包括的实施例以外的各种变形。
(实施例1)
将纯度3N(99.9%)的氧化铋和氧化锗的粉末作为起始原料,并且预先准备平均粒径12μm的GeO2粉末和平均粒径20μm的Bi12GeO20粉末,将它们各自以83.3摩尔%的GeO2粉末和16.7摩尔%的Bi12GeO20粉末进行配合使得Bi与Ge的原子数比为0.67,然后进行混合,再将混合后的粉末填充到碳制模具中,在温度700℃、压力250kg/cm2的条件下进行热压。
另外,本实施例中,GeO2粉末和Bi12GeO20粉末以上述的摩尔比进行添加,但是,这些粉末的添加的综合比以符合50.0摩尔%的GeO2和50.0摩尔%的Bi2O3的配合比进行调节。
将热压后的烧结体精加工而得到靶。靶的相对密度为102%(100%密度为7.44g/cm3)。
该烧结体通过X射线衍射测定确认为Bi12GeO20、Bi4Ge3O12和GeO2的三相结构。结果如表1所示。
然后,通过200℃、30分钟的加热对该靶施加热冲击。然后,实施JIS标准1601规定的弯曲试验(从靶中的任意5个部位取宽4±0.1mm、高3±0.1mm、长40~50mm的试验片进行测定,并求出5个点的测定结果的平均值),测定该热冲击前后的平均弯曲强度比(强度的下降率)。虽然其根据测定部位的不同多少存在偏差,但是均低于50%,强度的下降率少。
然后,使用该靶,以2kW的功率进行溅射。结果,靶没有产生破裂或龟裂,与下述的比较例相比,粉粒的产生显著地少。
结果,本申请发明的实施例为具有如下优良效果的良好靶:不产生破裂,可以提高生产效率,并且可以稳定地制作高品质的薄膜,可以得到不产生记录位的错误的光记录介质。
Figure BDA0000151748890000091
(实施例2)
将纯度3N(99.9%)的氧化铋和氧化锗的粉末作为起始原料,并且预先准备平均粒径12μm的GeO2粉末和平均粒径20μm的Bi12GeO20粉末,将它们各自以66.7摩尔%的GeO2粉末和33.3摩尔%的Bi12GeO20粉末进行配合使得Bi与Ge的原子数比为0.80,然后进行混合,再将混合后的粉末填充到碳制模具中,在温度700℃、压力250kg/cm2的条件下进行热压。
另外,本实施例中,GeO2粉末和Bi12GeO20粉末以上述的摩尔比进行添加,但是,这些粉末的添加的综合比以符合33.3摩尔%的GeO2和66.7摩尔%的Bi2O3的配合比进行调节。
将热压后的烧结体精加工而得到靶。靶的相对密度为95.9%(100%密度为7.58g/cm3)。
该烧结体通过X射线衍射测定确认为Bi12GeO20、Bi4Ge3O12和GeO2的三相结构。结果如表1所示。
然后,通过200℃、30分钟的加热对该靶施加热冲击。然后,实施JIS标准1601规定的弯曲试验,测定该热冲击前后的平均弯曲强度比(强度的下降率)。虽然其根据测定部位的不同多少存在偏差,但是均低于50%,强度的下降率少。
然后,使用该靶,以2kW的功率进行溅射。结果,靶没有产生破裂或龟裂,与下述的比较例相比,粉粒的产生也少。
结果,本申请发明的实施例为具有如下优良效果的良好靶:不产生破裂,可以提高生产效率,并且可以稳定地制作高品质的薄膜,可以得到不产生记录位的错误的光记录介质。
(比较例1)
将纯度3N(99.9%)的氧化铋和氧化锗的粉末作为起始原料,将它们各自以平均粒径5μm的50.0摩尔%的GeO2粉末和平均粒径20μm的50.0摩尔%的Bi2O3粉末进行配合使得Bi与Ge的原子数比为0.67,然后进行混合,再将混合后的粉末填充到碳制模具中,在温度730℃、压力250kg/cm2的条件下进行热压。
将热压后的烧结体精加工而得到靶。靶的相对密度为103%(100%密度为7.44g/cm3)。
该烧结体通过X射线衍射测定确认为Bi12GeO20、Bi4Ge3O12的两相结构。结果如表1所示。
然后,通过200℃、30分钟的加热对该靶施加热冲击。然后,实施JIS 1601规定的弯曲试验。该热冲击前后的平均弯曲强度比(强度的下降率)的测定结果同样如表1所示。
结果,平均弯曲强度下降率为82%。使用该靶,以2kW的功率进行溅射。结果,在溅射过程中靶产生破裂。另外,与实施例相比,粉粒的产生显著增加。认为这是由于溅射过程中靶破裂造成的。
(比较例2)
将纯度3N(99.9%)的氧化铋和氧化锗的粉末作为起始原料,并预先准备平均粒径5μm的GeO2粉末和平均粒径20μm的Bi12GeO20粉末,将它们各自以83.3摩尔%的GeO2粉末和16.7摩尔%的Bi12GeO20粉末进行配合使得Bi与Ge的原子数比为0.67,然后进行混合,再将混合后的粉末填充到碳制模具中,在温度700℃、压力250kg/cm2的条件下进行热压。
另外,本实施例中,GeO2粉末和Bi12GeO20粉末以上述的摩尔比进行添加,但是,这些粉末的添加的综合比以符合50.0摩尔%的GeO2和50.0摩尔%的Bi2O3的配合比进行调节。
将热压后的烧结体精加工而得到靶。靶的相对密度为103%(100%密度为7.58g/cm3)。
该烧结体通过X射线衍射测定确认GeO全部反应,为Bi12GeO20、Bi4Ge3O12的两相结构。结果如表1所示。
然后,通过200℃、30分钟的加热对该靶施加热冲击。然后,实施JIS 1601规定的弯曲试验。该热冲击前后的平均弯曲强度比(强度的下降率)的测定结果同样如表1所示。
结果,平均弯曲强度下降率为80%。使用该靶,以2kW的功率进行溅射。结果,在溅射过程中靶产生破裂。另外,与实施例相比,粉粒的产生显著增加。认为这是由于溅射过程中靶破裂造成的。
产业实用性
根据本发明的Bi-Ge-O型烧结体溅射靶及其制造方法,具有如下优良效果:在溅射时不产生靶的破裂,粉粒的产生少,可以稳定地制作高品质的薄膜,可以得到不产生记录位的错误的光记录介质。本发明可以提供能够提高光记录介质的成膜的生产效率,适合制造光记录介质的靶。

Claims (6)

1.一种Bi-Ge-O型烧结体溅射靶,含有铋(Bi)、锗(Ge)和氧(O),其特征在于,
Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.92,并且含有Bi12GeO20、Bi4Ge3O12和GeO2三相作为结晶相。
2.如权利要求1所述的烧结体溅射靶,其特征在于,通过200℃、30分钟的加热对靶施加热冲击的情况下,该热冲击前后的平均弯曲强度下降率为50%以下。
3.一种光记录介质,其通过使用权利要求1或2所述的靶进行溅射而成膜。
4.一种Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,
将0.03~89摩尔%的GeO2粉末、11~99.97摩尔%的Bi12GeO20粉末作为起始原料,将这些原料以Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.92的方式进行混合后,在600~840℃、施压150~400kg/cm2的条件下进行热压,由此制作含有Bi12GeO20、Bi4Ge3O12和GeO2三相的结晶相的烧结体。
5.如权利要求4所述的Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,
将14.3摩尔%的GeO2粉末和85.7摩尔%的Bi2O3粉末混合后,使其进行固相反应,从而制作Bi12GeO20粉末。
6.如权利要求4或5所述的Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,
使用平均晶粒直径为10~50μm的氧化锗烧结原料粉末进行烧结。
CN201080045590.XA 2009-10-13 2010-10-04 Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质 Active CN102575339B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-236262 2009-10-13
JP2009236262 2009-10-13
PCT/JP2010/067338 WO2011046033A1 (ja) 2009-10-13 2010-10-04 Bi-Ge-O系焼結体スパッタリングターゲット及びその製造方法並びに光記録媒体

Publications (2)

Publication Number Publication Date
CN102575339A true CN102575339A (zh) 2012-07-11
CN102575339B CN102575339B (zh) 2014-03-26

Family

ID=43876084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080045590.XA Active CN102575339B (zh) 2009-10-13 2010-10-04 Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质

Country Status (4)

Country Link
JP (1) JP5259741B2 (zh)
CN (1) CN102575339B (zh)
TW (1) TWI412619B (zh)
WO (1) WO2011046033A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070679A1 (en) 2011-11-08 2013-05-16 Tosoh Smd, Inc. Silicon sputtering target with special surface treatment and good particle performance and methods of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109300A (en) * 1975-03-20 1976-09-28 Matsushita Electric Ind Co Ltd Gerumaniumusanbisumasuhakumakuno seizohoho
JPS5313200A (en) * 1976-07-21 1978-02-06 Matsushita Electric Ind Co Ltd Production method of piezo-electric thin film
JPS58167429A (ja) * 1982-03-26 1983-10-03 Otsuka Chem Co Ltd ビスマスーゲルマニウム系酸化物の製法
JP2003277923A (ja) * 2002-03-27 2003-10-02 Sumitomo Metal Mining Co Ltd スパッタリング用Ge−Bi合金ターゲット及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097802A (ja) * 2006-09-15 2008-04-24 Tdk Corp 多層光記録媒体及び多層光記録媒体への記録方法
JP4764858B2 (ja) * 2007-01-30 2011-09-07 株式会社リコー 光記録媒体、スパッタリングターゲット及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109300A (en) * 1975-03-20 1976-09-28 Matsushita Electric Ind Co Ltd Gerumaniumusanbisumasuhakumakuno seizohoho
JPS5313200A (en) * 1976-07-21 1978-02-06 Matsushita Electric Ind Co Ltd Production method of piezo-electric thin film
JPS58167429A (ja) * 1982-03-26 1983-10-03 Otsuka Chem Co Ltd ビスマスーゲルマニウム系酸化物の製法
JP2003277923A (ja) * 2002-03-27 2003-10-02 Sumitomo Metal Mining Co Ltd スパッタリング用Ge−Bi合金ターゲット及びその製造方法

Also Published As

Publication number Publication date
CN102575339B (zh) 2014-03-26
JP5259741B2 (ja) 2013-08-07
JPWO2011046033A1 (ja) 2013-03-07
TWI412619B (zh) 2013-10-21
WO2011046033A1 (ja) 2011-04-21
TW201142058A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
EP1887100B1 (en) Sputtering target and process for producing the same
KR100753328B1 (ko) 스퍼터링 타겟트, 광 정보기록 매체용 박막 및 그 제조방법
US9567665B2 (en) Sputtering target for magnetic recording film, and process for producing same
CN102365385B (zh) Ti-Nb系氧化物烧结体溅射靶、Ti-Nb系氧化物薄膜及该薄膜的制造方法
JP5265710B2 (ja) Bi−Ge−O系焼結体スパッタリングターゲット及びその製造方法並びに光記録媒体
CN102575339B (zh) Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质
CN103748055B (zh) 导电性氧化物烧结体及其制造方法
EP1985725A2 (en) Sputtering target, optical information recording medium and process for producing the same
JP2014077187A (ja) 薄膜形成用スパッタリングターゲット及びその製造方法
JP5185406B2 (ja) スパッタリングターゲット、それを用いた相変化光記録媒体用界面層膜とその製造方法、および相変化光記録媒体
JP2002038258A (ja) スパッタリングターゲット
US8815149B2 (en) Semi-reflective film and reflective film for optical recording medium, and Ag alloy sputtering target for forming semi-reflective film or reflective film for optical recording medium
TW201505739A (zh) 薄膜形成用濺鍍靶及其製造方法
JP4465711B2 (ja) 記録マークの保存安定性に優れた相変化型記録媒体を作製するためのGaSb系相変化型記録膜およびこの記録膜を形成するためのスパッタリングターゲット
WO2014069367A1 (ja) 導電性酸化物焼結体及び該導電性酸化物を用いた低屈折率膜
JP4817895B2 (ja) スパッタリングターゲット、それを用いた相変化光記録媒体用界面層膜とその製造方法、および相変化光記録媒体
JP4714051B2 (ja) スパッタリングターゲットの製造方法、金属酸窒化膜の製造方法、および相変化光記録媒体の製造方法
EP1757712B1 (en) Sputtering target, optical information recording medium and method for producing same
JP2019096372A (ja) 熱アシスト磁気記録媒体用密着層および熱アシスト磁気記録媒体の密着層形成用スパッタリングターゲット
JP2008071424A (ja) スパッタリングターゲット、それを用いた相変化光記録媒体用界面層膜とその製造方法、および相変化光記録媒体
JP2005251236A (ja) スパッタリングターゲット並びに光情報記録媒体用保護膜及びその製造方法
JP2007238986A (ja) スパッタリングターゲット及び光記録媒体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: JX NIPPON MINING & METALS CORPORATION

Address before: Tokyo, Japan

Patentee before: JX Nippon Mining & Metals Corporation

CP01 Change in the name or title of a patent holder