CN102548581A - 粘合复合物凝聚层及其制备和使用方法 - Google Patents

粘合复合物凝聚层及其制备和使用方法 Download PDF

Info

Publication number
CN102548581A
CN102548581A CN2010800383973A CN201080038397A CN102548581A CN 102548581 A CN102548581 A CN 102548581A CN 2010800383973 A CN2010800383973 A CN 2010800383973A CN 201080038397 A CN201080038397 A CN 201080038397A CN 102548581 A CN102548581 A CN 102548581A
Authority
CN
China
Prior art keywords
coacervate
polyanion
polycation
group
crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800383973A
Other languages
English (en)
Inventor
R·J·斯图尔特
邵辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Utah Research Foundation UURF
Original Assignee
University of Utah Research Foundation UURF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Utah Research Foundation UURF filed Critical University of Utah Research Foundation UURF
Publication of CN102548581A publication Critical patent/CN102548581A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2846Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0015Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/043Mixtures of macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/10Acylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Materials Engineering (AREA)
  • Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Composite Materials (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

粘合复合物凝聚层包括一种或多种聚阳离子和一种或多种聚阴离子的混合物。粘合复合物凝聚层中的聚阳离子和聚阴离子在固化时通过共价键彼此交联。与常规生物粘合剂对比时,粘合复合物凝聚层具有多个期望特征,其在基于水的应用中是有效的。当应用到基材时,本文所述的粘合复合物凝聚层在水中显示出良好的界面张力(即,它们散布在界面上而不是成珠)。另外,复合物凝聚层的分子间交联的能力增加了粘合复合物凝聚层的粘聚强度。粘合复合物凝聚层作为生物粘合剂和药物递送装置具有许多生物学应用。特别地,本文所述的粘合复合物凝聚层在水下应用和存在水的情况例如,举例来说,生理条件下是特别有用的。

Description

粘合复合物凝聚层及其制备和使用方法
相关申请的交叉引用
本申请要求根据2009年7月23日提交的美国正式专利申请序列号为12/508,280的优先权。该申请在此通过引用将其全部并入。
序列表的交叉引用
本文所述的蛋白质通过序列识别号(SEQ ID NO)引用。SEQ ID NO与序列标识符<400>1、<400>2等数字对应。采用书面的计算机可读格式(CFR)的序列表通过引用以其全部被并入。
致谢
促成本发明的研究由美国国家卫生研究院,基金号R01 EB006463部分资助。美国政府具有本发明中的某些权利。
背景
在当今社会中,骨折是严重的健康忧虑。除了骨折本身,多种其他健康风险与骨折有关。例如,关节内骨折是伸入关节表面并使软骨表面破裂的骨损伤。软骨表面的骨折经常会导致致衰弱的创伤性关节炎。创伤性关节炎发展中的主要决定因素被认为是在损伤时提供的能量的量、患者患创伤性关节炎的遗传倾向(或其缺乏),和复原的准确度和维持。在这三种预后因素中,矫形护理员可控的唯一因素是实现和维持复原。将关节表面(软骨)和干骺端(紧邻软骨下面的骨的部分)的粉碎性损伤维持在复原(对齐的)位置是特别有挑战性的。这与这一区域内的骨的质量和类型有关。它还与使用钛或不锈钢植入物固定的限制有关。
如今,不锈钢和钛植入物是固定的主要方法,但是它们的尺寸和为放置它们必需的钻孔经常干扰较小片骨和软骨的精确操作和复原。已测试了多种骨粘合剂作为机械固定的替代方法。这些粘合剂分为四类:聚甲基丙烯酸甲酯(PMMA)、基于纤维蛋白的胶、磷酸钙(CP)粘固剂(cement)和CP树脂复合材料。用于修复固定中的PMMA粘固剂具有众所周知的缺点,最严重的一个是放热环境反应产生的热量可杀死相邻的骨组织。另外,与骨的差粘结(bond)导致无菌性松动,是PMMA粘固修复失败的主要原因。
自从20世纪70年代,已测试基于血凝蛋白纤维蛋白原的纤维蛋白胶用于固定骨移植物和修复软骨,且还未被广泛采用。纤维蛋白胶的一个缺点是其由汇集的人供体血制造。因此,它们具有传播传染病的风险且可能潜在地被限制供应。
CP粘固剂(cement)是一种或多种形式的CP的粉末,例如磷酸四钙、无水磷酸二钙、和β-磷酸三钙。当将粉末与水混合时,其形成通过一种或多种形式的CP晶体,包括羟磷灰石的缠结而形成并硬化的膏状物。CP粘固剂的优点包括等温固化(isothermal set)、已证明的生物相容性、骨传导性,且其在愈合期间用作用于形成羟磷灰石的Ca和PO4的储库。主要缺点是CP粘固剂易碎,具有低机械强度并且因此对于小的关节片段的稳定复原不是理想的。CP粘固剂大多用作骨填隙料。CP粘固剂的差的机械特性已导致CP颗粒和聚合物的复合粘固剂。通过改变颗粒相和聚合物相的体积比例,可以将胶的模量和强度向着天然骨的那些模量和强度调整,这也是向我们打开的途径。
由于与骨折有关的整体健康危害和如今修复方法的不完善状态,需要新的固定方法。
概述
本文描述的是可生物降解的粘合复合物凝聚层(adhesive complexcoacervate)的合成及其用途。粘合复合物凝聚层包括一种或多种聚阳离子和一种或多种聚阴离子的混合物。聚阳离子和聚阴离子在固化时通过共价键合彼此交联。与常规粘合剂对比时,粘合复合物凝聚层具有多个期望特征,其在基于水的应用中是有效的。当应用到基材时,本文所述的粘合复合物凝聚层在水中显示出低界面张力(即,它们散布在界面上而不是成珠)。另外,复合物凝聚层的分子间交联的能力增加了粘合复合物凝聚层的粘聚强度(cohesive strength)。粘合复合物凝聚层作为粘合剂和药物递送装置具有许多生物学应用。特别地,本文所述的粘合复合物凝聚层在水下应用和存在水的情况例如,生理条件下是特别有用的。
将在以下说明中部分地阐述本发明的优点,并且部分地这些优点从该说明中将是明显的,或可通过以下描述的方面的实践获知。借助于在所附权利要求中特别指出的组成部分和组合,将认识并实现以下所述的优点。应当理解的是,上述一般说明和以下详细说明都仅是示范性和说明性的且不是限制性的。
附图简述
并入本说明书中并构成本说明书一部分的附图,示出了下述多个方面。
图1示出了pH依赖的凝聚层结构的模型和粘合机制。(A)和多胺(红色)配对的具有低电荷密度的多磷酸盐(黑色)形成nm-级复合物。该复合物具有净正电荷。(B)广大的高电荷密度多磷酸盐在存在二价阳离子(绿色符号)时形成由更紧凑的较低电荷密度的多胺连接的网络。共聚物上的净电荷是负电荷。(C)3,4-二羟基苯酚(D)被O2或加入的氧化剂的氧化引发苯醌(Q)和伯胺侧链之间的交联。凝聚层可通过静电相互作用、3,4-二羟基苯酚侧链、和苯醌介导的与基质蛋白质的共价偶联粘合在羟磷灰石表面上。
图2-7示出了由沙堡虫(P.californica)产生的可被用作本发明中的聚阳离子和聚阴离子的多个蛋白序列以及在本发明中有用的合成聚阳离子和聚阴离子。
图8示出了DOPA交联的不同机制。
图9示出了用于应用本文公开的复合物凝聚层的小“焊点”以修复骨折(A),小的骨损伤(B),或将合成支架粘结到骨组织上(C)的双注射器系统。
图10示出了模拟共聚物的结构和UV/VIS特征。(A)Pc3类似物,1,含有88.4mol%磷酸盐、9.7mol%多巴酰胺(dopamide),和0.1mol%FITC侧链。Pc1类似物,2,含有8.1mol%胺侧链。在两种情况下,余量是丙烯酰胺亚单位。(B)3,4-二羟基苯酚的儿茶酚形式的280nm处特征单峰存在于1的光谱中。用NaIO4氧化之后,出现对应苯醌形式的395nm处的峰,证实了含有3,4-二羟基苯酚的共聚物的预期氧化还原行为。
图11示出了混合的聚合电解质的pH依赖的复合物凝聚层。(A)在低pH下,带有等量胺和磷酸侧链的1和2的50mg/ml混合物形成稳定的胶体PEC。随着pH升高,聚合物凝缩为稠密的液态复合物凝聚层相。在pH10下,共聚物进入溶液并氧化交联成澄清的水凝胶。(B)共聚物侧链的净电荷作为pH的函数从共聚物侧链密度计算。(C)在pH范围2-4上,PEC(圆圈)的直径增加近3倍。在pH4以上,复合物絮凝,且它们的尺寸是不可测量的。与计算的净电荷一致,在pH3.6附近ζ电位(方块)为0。
图12示出了粘合复合物凝聚层的液体特征。1和2的溶液含有等量的胺和磷酸侧链,pH7.4。
图13示出了聚合电解质和二价阳离子的相图。在固定pH8.2下改变胺与磷酸侧链和磷酸侧链与二价阳离子的比例。以灰度表示溶液的状态。以深灰色方块表示凝聚层相的质量(mg)。用星号表示的组合物被用来测试粘结强度。
图14示出了凝聚层粘结的骨的粘结强度、剪切模量和尺寸稳定性。(A)当相对于磷酸侧链二价阳离子比例从0至0.4升高时,断裂处粘结强度增加~50%且硬度加倍。使用商业化的氰基丙烯酸酯粘合剂湿粘结的样本作为参照。(对于所有条件,n=6)(B)完全浸没在PBS(pH7.2)中达4个月的粘合的骨样本的粘结物(bond)没有明显地膨胀。
图15示出了氧化前和氧化后(pH7.2)多巴胺共聚物的UV-vis光谱图。氧化前存在的儿茶酚峰被转化为苯醌形式。左上:p(DMA[8]-Aam[92])。左下:p(AEMA[30]-DMA[8])。右:通过多巴胺共聚物的氧化交联形成水凝胶。(A)p(DMA[8]-Aam[92])。(B)p(EGMP[92]-DMA[8])。(C)与p(AEMA[30]-Aam[70])混合的p(DMA[8]-Aam[92])。(D)与p(AEMA[30]-Aam[70])混合的p(EGMP[92]-DMA[8])。加括号的数字表示侧链的mol%。箭头表示光谱随时间变化的方向。
图16示出了多巴胺在聚(EGMP[92]-DMA[8])中氧化的pH依赖性。箭头表示光谱随时间变化的方向。上:pH5.0,时间过程插图。下:pH6.0。
图17示出了(A)人包皮成纤维细胞,(B)人气管成纤维细胞,和(C)大鼠原代星形胶质细胞与粘合剂(红色自发荧光块区,白色星号)的直接接触。细胞形态、纤连蛋白分泌,和运动性与没有胶存在下生长的细胞不能区别。绿色=中间丝蛋白。红色=分泌的纤连蛋白。蓝色=DAPI染色的核。
图18示出了多片段大鼠颅面骨缺损模型。(A)缺损的产生。(B)骨帽的断裂。(C)缺损片段的替换。(D)骨胶的应用。(E-F)胶的固化(变深)。片段在E和F中被牢固固定。
图19示出了pH和标准化净电荷对形成粘合复合物凝聚层的影响。
图20提供了Pc1-Pc8的氨基酸mol%。
图21示出了用于生产胺修饰的明胶的反应方案。
图22示出了(A)水中(白色箭头)的粘合复合物凝聚层的实例和(B)聚合电解质的相态特征以及凝结和交联机制。
图23示出了多磷酸盐-明胶-二价阳离子混合物的相图:(A)Ca2+组合物,pH5;(B)Ca2+组合物,pH7.4;(C)Mg2+组合物,pH5;(D)Mg2+组合物,pH7.4。每种混合物中的共聚物的总浓度是5wt%。可溶性组合物是白色的,凝缩成复合物凝聚层的组合物是浅灰色的,形成凝胶或硬质固体沉淀的组合物是深灰色的。方块中的数字代表分离的复合物凝聚层相的浓度(wt%)。没有数字的灰色盒含有复合物凝聚层但体积太小而不能允许浓度的准确测量。含有复合物凝聚层的组合物的空间对于Mg2+较高并随pH增加。Mg2+固相比硬质Ca2+沉淀更柔软且更像凝胶。
图24示出了通过动态振荡流变图确定的固化温度。(A)Ca2+/明胶/多磷酸盐流变图。在Ca2+比例大于0.15下,当温度从0至40℃升高时,弹性模量(G’,黑色符号)以S形上升。(插图)随着Ca2+比例增加,弹性模量(G’)和粘性模量(G”,灰色符号)的交叉、固化或凝胶化温度降低。为清楚表示,从插图中去除了Ca2+比例0.25。(符号:◆0.3/0.6 Ca2+比例、■0.25/0.6 Ca2+比例、▲0.2/0.6 Ca2+比例、●0.15/0.6Ca2+比例)。(B)Mg2+/明胶/多磷酸盐流变图。(符号:◆0.8/1.0Mg2+比例、■0.9/1.0Mg2+比例、▲1.0/01.0Mg2+比例)。在恒应变为0.1%且频率为1.0hz下,进行了对比测量。
图25示出了剪切强度作为二价阳离子比例和温度的函数。(A)在恒定胺比例下,改变相对于磷酸盐的Ca2+比例。(B)在恒定胺比例下,改变Mg2+比例。在粘合剂完全浸没在温度-控制的水浴(pH7.4)中下进行测试。深色柱代表没有氧化交联时在37℃进行的剪切测试。白色柱代表没有氧化交联时在转变温度以下进行的剪切测试。交叉阴影柱代表在以相对多巴酰胺侧链的1∶2的比例下用NaIO4氧化交联后,在37℃进行的剪切测试。并在完全浸没在温度控制的水浴中的同时固化(24小时)和测试交联的粘结物。柱代表平均值+/-标准差(对于所有组合物,n=9)。
图26示出了带有光化学上可交联基团的聚阳离子和聚阴离子的合成和随后的聚阳离子和聚阴离子的交联。
详述
在公开和描述该化合物、组合物、物品、装置、和/或方法之前,应当理解以下描述的方面不限于具体的化合物、合成方法或用途,因为这些自然可以变化。还应当理解本文使用的术语是仅用于描述具体方面的目的且不意味着是限制性的。
在本说明书和在以下的权利要求中,将提及许多术语,这些术语应被定义为具有以下含义:
必须注意的是,如说明书和所附权利要求中所用的,除非上下文明确另外指明,单数形式“一种”、“一个”和“该”包含复数的提及对象。因此,例如,提到“一种药物载体”包括两种或更多种这类载体的混合物,及类似物。
“任选的”或“任选地”是指随后描述的事件或情形可以发生或可以不发生,且这种表述包括其中所述事件或情形发生的情况和其中所述事件或情形不发生的情况。例如,短语“任选地取代的低级烷基”是指可被取代或可不被取代的低级烷基且这种表述包括未取代的低级烷基和有取代的低级烷基。
在本文中,范围可被表述为从“约”一个具体值,和/或至“约”另一个具体值。当这种范围被表述时,另一方面包括从所述一个具体值和/或至所述另一个具体值。相似地,当值被表述为近似值时,通过使用先行词“约”,将应理解该具体值形成另一方面。将应进一步理解每个范围的端点在有关另一端点和独立于另一端点时都是有效的。
在本说明书和得出的权利要求中对组合物或物品中的具体成分或组分的重量份的提及,是指组合物或物品中一个成分或组分和任何其他成分或组分之间以重量份表示的重量关系。因此,在包含由2重量份的组分X和5重量份的组分Y的化合物中,X和Y以重量比2∶5存在,且无论化合物中是否含有其他组分都以该比例存在。
除非特别相反指明,组分的重量百分比是以包含该组分的制剂或组合物的总重量为基础的。
除非相反指明,贯穿本申请所用的例如R1、R2、R3、R4、R5、R13-R22、A、X、d、m、n、s、t、u、v、w、和x的变量是和之前定义的相同的变量。
本文所用的术语“烷基”是指1至25个碳原子的支链的或无支链的饱和烃基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、戊基、己基、庚基、辛基、癸基、十四烷基、十六烷基、二十烷基、二十四烷基及类似物。更长链烷基的实例包括,但不限于棕榈酸酯基。“低级烷基”是包含从一至六个碳原子的烷基。
本文所述的任何化合物可以是药学可接受的盐。一方面,通过用合适量的药学可接受的碱处理游离酸制备药学可接受的盐。代表性的药学可接受的碱为氢氧化铵、氢氧化钠、氢氧化钾、氢氧化锂、氢氧化钙、氢氧化镁、氢氧化亚铁、氢氧化锌、氢氧化铜、氢氧化铝、氢氧化铁、异丙胺、三甲胺、二乙胺、三乙胺、三丙胺、乙醇胺、2-二甲基氨基乙醇、2-二乙基氨基乙醇、赖氨酸、精氨酸、组氨酸及类似物。一方面,在从约0℃至约100℃的温度例如室温下,单独在水中或在与惰性的、与水互溶的有机溶剂组合的水中进行反应。在可应用的某些方面,选择本文所述的化合物相对于所用的碱的摩尔比例以提供任何具体的盐期望的比例。例如,为了制备游离酸起始材料的铵盐,可用约一当量的药学可接受的碱处理起始材料以产生中性盐。
另一方面,如果化合物具有碱性基团,其可用酸例如HCl、HBr、或H2SO4质子化以产生阳离子盐。一方面,在从约0℃至约100℃的温度例如室温下,单独在水中或在与惰性的、与水互溶的有机溶剂组合的水中进行化合物与酸或碱的反应。在可应用的某些方面,选择本文所述的化合物相对于所用的碱的摩尔比例以提供任何具体的盐期望的比例。例如,为了制备游离酸起始材料的铵盐,可用约一当量的药学可接受的碱处理起始材料以产生中性盐。
本文描述了可生物降解的粘合复合物凝聚层及其应用。通常,复合物是阳离子和阴离子的以平衡比例的混合物以在期望pH下产生稳定的水性复合物。该粘合复合物凝聚层包括至少一种聚阳离子和至少一种聚阴离子,其中至少一中聚阳离子和/或聚阴离子是可生物降解的,且聚阳离子和聚阴离子包括至少一个能够彼此交联的基团。以下描述了凝聚层的每个组分和用于制备该凝聚层的方法。
粘合复合物凝聚层是具有其中单独的聚合物组分遍布整个相扩散的动态结构的组合液体。复合物凝聚层在流变学方面表现得类似粘性颗粒分散物而不像粘弹性的聚合物溶液。如以上所述,当应用到水下的或潮湿的基材时,粘合复合物凝聚层在水中显示出低界面张力。换句话说,复合物凝聚层均匀分散在界面上而不是成珠。另外,经过分子间交联,粘合复合物凝聚层形成结实的、不可溶的、粘性的材料。
相反地,可以是本文所述的粘合复合物凝聚层的前体的聚合电解质复合物(PEC)是小的胶体颗粒。例如,参考图11A,在pH3.1和pH4.2的PEC的溶液以具有约300nm直径的胶体颗粒的牛奶状溶液存在。当将pH升高至7.2和8.1时,PEC凝缩成浓缩的聚合物的液相(凝聚层相)和稀释的平衡相。就这点而言,PEC可被转化为本文所述的粘合复合物凝聚层。
图1中呈现了聚合电解质复合物和粘合复合物凝聚层之间的相态特征差异的示例性模型。在低pH下带有相反电荷的聚合电解质通过静电作用联合成带有稳定悬液以产生PEC1的净正电表面电荷的纳米复合物。随着pH增加,复合物的净电荷从正电向负电变化但维持在接近净电中性。PEC可形成松散的沉淀相,通过进一步升高pH其可被转化为复合物凝聚层2(图1)。因此,在某些方面,通过调整pH和/或多价阳离子的浓度可以“引发”PEC到复合物凝聚层的转变。例如,可在小于或等于4的pH下产生PEC,且可将PEC的pH升高至大于或等于7.0、从7.0至9.0、或8.0至9.0以将PEC转化为复合物凝聚层。聚阳离子和聚阴离子之间的随后的交联(例如,如图1C中示出的氧化和共价交联)促使形成本文所述的粘合复合物凝聚层。
聚阳离子和聚阴离子包含在固化时允许两种聚合物之间的交联的基团以生成新的共价键且最终生成粘合剂。交联的机制可根据交联基团的选择而变化。一方面,交联基团可以是亲电基团和亲核基团。例如,聚阴离子可具有一个或多个亲电基团,且聚阳离子可具有能够和亲电基团反应以产生新的共价键的一个或多个亲核基团。亲电基团的实例包括但不限于酸酐基、酯、酮、内酰胺(例如,马来酰亚胺和琥珀酰亚胺)、内酯、环氧基、异氰酸酯基和醛。下面给出了亲核基团的实例。可替代地,聚阴离子可具有一个或多个亲核基团,且聚阳离子可具有能够和亲核基团反应以产生新的共价键的一个或多个亲电基团。
另一方面,聚阳离子和聚阴离子各自具有光化学上可交联的基团。如本文所用的,有关固化或聚合的“光化学上可交联的基团”是指聚阳离子和聚阴离子之间的交联通过光化学辐射,例如,举例来说,UV辐射、可见光辐射、离子化辐射(例如γ射线或X-射线辐射)、微波辐射、及类似辐射来进行。光化学固化方法是本领域技术人员熟知的。光化学上可交联的基团可以是不饱和的有机基团例如,举例来说,烯属基团。本文中有用的烯属基团的实例包括但不限于丙烯酸酯基、甲基丙烯酸酯基、丙烯酰胺基、甲基丙烯酰胺基、烯丙基、乙烯基、乙烯酯基或苯乙烯基。以下详细描述有助于交联的聚合引发剂的使用。
另一方面,交联可通过叠氮基经由光活化的交联发生在聚阳离子和聚阴离子之间。再一次地,在这种类型的交联期间形成新的共价键。
另一方面,可交联的基团包括能够经历氧化交联的任何基团。术语“氧化交联”被定义为基团或部分经历氧化然后接着与另一个基团反应以产生新的共价键的能力。能够经历氧化交联的基团的实例包括能够在氧化剂存在下经历氧化的二羟基取代的芳族基团。一方面,二羟基取代的芳族基团是二羟基苯酚或卤化的二羟基苯酚基团,例如,举例来说,DOPA和儿茶酚(3,4-二羟基苯酚)。例如,就DOPA来讲,其可被氧化成多巴醌。多巴醌是能够与相邻DOPA基团或另一个亲核基团反应的亲电基团。在氧化剂例如氧气或包括但不限于过氧化物、高碘酸盐(例如,NaIO4)、过硫酸盐、高锰酸盐、重铬酸盐、过渡金属氧化剂(例如,Fe+3化合物、四氧化锇)或酶(例如,儿茶酚氧化酶)的其他添加剂存在下,二羟基取代的芳族基团可被氧化。
一方面,聚阴离子和/或聚阳离子包括能够经历氧化交联的至少一种二羟基芳族基团,其中二羟基芳族基团共价连接到聚阴离子或聚阴离子上。一方面,聚阳离子和聚阴离子都包括能够经历氧化交联的邻-二羟基芳族基团。另一方面,聚阳离子包括邻-二羟基芳族基团且聚阴离子包括能够与二羟基芳族基团的氧化形式反应以形成共价键的亲核基团。
在某些方面,可稳定化氧化剂。例如,与不具有氧化还原活性的高碘酸盐形成复合物的化合物可以产生稳定化的氧化剂。换句话说,高碘酸盐在非氧化形式下是稳定化的且当在复合物中时不能氧化二羟基取代的芳族基团。复合物是可逆的且即使其具有极高的稳定常数,依然形成小量的未复合的高碘酸盐。稳定但可逆的氧化剂允许氧化剂的缓慢释放以控制氧化交联的速率。二羟基取代的芳族基团同化合物竞争小量的游离高碘酸盐。当游离高碘酸盐被氧化时,由于其处于平衡中,更多的游离高碘酸盐从复合物释放出来。一方面,具有簇集在六元环上的顺,顺-1,2,3-三醇的糖可形成竞争性高碘酸盐复合物。形成稳定高碘酸盐复合物的特定化合物的实例是1,2-O-异亚丙基-α-D-呋喃葡萄糖。稳定化的氧化剂可控制交联速率。不希望被理论约束,稳定化的氧化剂降低氧化速率以使得在粘合剂不可逆地硬化之前,有添加氧化剂和放置基材的时间。
氧化交联剂的稳定性可以变化。例如,含有可氧化交联剂的本文所述的含膦酰基聚阴离子在溶液中是稳定的且不与自身交联。这允许存在于聚阳离子上的亲核基团与氧化的交联剂反应。这是本发明的期望特征,其允许分子间键的形成并最后形成强力粘合剂。有用的亲核基团的实例包括但不限于羟基、硫醇和含氮基团例如取代的或未取代的氨基和咪唑基。例如,赖氨酸、组氨酸和/或半胱氨酸残基可被掺入到聚阳离子中且引入亲核基团。图8中示出了这种实例。DOPA残基1可被氧化以形成多巴醌残基2。多巴醌是反应中间体且可与另一聚合物或同一聚合物上的DOPA残基交联(即,反应)以生成二-DOPA基。可替代地,多巴醌残基可通过迈克尔型加成与亲核试剂例如,举例来说,氨基、羟基、或硫醇基反应以生成新的共价键。参考图8,赖氨酰基、半胱氨酰基、和组氨酰基与多巴醌残基反应以生成新的共价键。尽管DOPA是合适的交联基团,本文可使用其他基团例如,举例来说酪氨酸。以下将讨论交联对于使用本文所述的粘合复合物凝聚层的重要性。
在其他方面,存在于聚阳离子和/或聚阴离子上的交联剂可与过渡金属离子形成配位化合物。例如,可向聚阳离子和聚阴离子的混合物中加入过渡金属离子,其中两种聚合物都含有能够与过渡金属离子配位的交联剂。通过选择交联剂、过渡金属离子和pH可控制配位和解离的速率。因此,除了以上所述的共价交联,可通过静电作用、离子键或其他非共价结合发生交联。本文可使用过渡金属离子例如,举例来说,铁、铜、钒、锌、和镍。
聚阳离子和聚阴离子通常包括在特定pH下带有多个可带电基团的聚合物骨架。这些基团可侧链连接至聚合物骨架和/或掺入聚合物骨架中。在某些方面,(例如,生物医药应用),聚阳离子是具有阳离子基团或可通过调节pH被容易地转化为阳离子基团的任何生物相容性的聚合物。一方面,聚阳离子为多胺化合物。多胺的氨基可以是支链或是聚合物骨架的一部分。氨基可以是能被质子化以在所选pH下产生阳离子铵基团的伯胺基团、仲胺基团或叔胺基团。通常,如在其等电点(pI)即聚合物带有电中性净电荷的pH中所反映的,多胺是在相关pH下相对于负电荷带有极大过量的正电荷的聚合物。存在于聚阳离子上的氨基的数量最终决定了在特定pH下聚阳离子的电荷。例如,聚阳离子可具有从10至90摩尔%、从10至80摩尔%、10至70摩尔%、10至60摩尔%、10至50摩尔%、10至40摩尔%、10至30摩尔%、10至20摩尔%的氨基。一方面,多胺在约7的pH下具有过量的正电荷,具有明显大于7的pI。如以下将要讨论的,额外的氨基可被掺入聚合物中以增加pI值。
一方面,可从连接在聚阳离子上的赖氨酸、组氨酸、或咪唑残基获得氨基。任何阴离子反离子可被用来与阳离子聚合物结合。反离子应当是与组合物的主要组分在物理上和化学上相容的且不会以其他方式过度损害产物的性能、稳定性或美学特征。这些反离子的非限制性实例包括卤化物(例如,氯化物、氟化物、溴化物、碘化物)、硫酸盐和甲基硫酸盐。
一方面,当聚阳离子为天然存在时,聚阳离子可以是由自然生物体生产的带正电的蛋白质。例如,由沙堡虫生产的蛋白质可被用作聚阳离子。图2-6示出了由沙堡虫生产的几种粘固剂蛋白的蛋白序列(Zhao等人“Cement Proteins of the tube building polychaete Phragmatopomacalifornica(造管多毛纲环节动物沙堡虫的粘固剂蛋白)”J.Biol.Chem.(2005)280:42938-42944)。图20提供了每种蛋白的氨基酸摩尔%。参考图2-5,Pc1、Pc2、Pc4-Pc18(分别是SEQ ID NO 1、2、5-19)为聚阳离子,其中聚合物在中性pH下是阳离子的。为了达到想要的溶液性质,可以改变蛋白质中存在的氨基酸的类型和数量。例如,参考图20,Pc1富含赖氨酸(13.5摩尔%)而Pc4和Pc5富含组氨酸(分别是12.6和11.3摩尔%)。
另一方面,聚阳离子是通过基因或修饰基因或含有来自几个基因的部分的组合基因在异源宿主例如,举例来说,细菌、酵母、牛、山羊、烟草及类似物中的人工表达而生产的重组蛋白。另一方面,聚阳离子可以是遗传修饰的蛋白。
另一方面,聚阳离子可以是可生物降解的多胺。可生物降解的多胺可以是合成的聚合物或天然存在的聚合物。可降解多胺的机制将根据所使用的多胺而改变。就天然聚合物来讲,它们是可生物降解的,因为有可水解聚合物和破坏聚合物链的酶。例如,蛋白酶可以水解天然蛋白如明胶。就合成的可生物降解的多胺来讲,它们也具有化学不稳定键。例如,β-氨基酯具有可被水解的酯基。除了多胺的本质特征,为了改变可生物降解的程度,可改变其他因素例如多胺的分子量和粘合剂的交联密度。
一方面,可生物降解的多胺包括多糖、蛋白质、或合成多胺。本文可使用带有一个或多个氨基的多糖。一方面,多糖是天然的多糖例如壳聚糖。相似地,蛋白质可以是合成的或天然存在的化合物。另一方面,可生物降解的多胺是合成的多胺例如聚(β-氨基酯)、聚酯胺、聚(二硫化胺)、混合的聚(酯和酰胺-胺),和肽交联的多胺。在某些方面,期望聚阳离子以及聚阴离子是非凝胶的和低内毒素。
在聚阳离子为合成的聚合物的情况下,可使用多种不同的聚合物;然而,在某些应用例如,举例来说,生物医学应用中,期望聚合物是生物相容性的且是对细胞和组织无毒的。一方面,可生物降解的多胺可以是胺修饰的天然聚合物。术语“胺修饰的天然聚合物”被定义为已随后被操作或处理以改变聚合物的天然状态的任何天然聚合物。例如,可使用本文所述的技术化学修饰天然聚合物。可替代地,天然聚合物可被变性或被酶消化。一方面,胺修饰的天然聚合物可以是胺修饰的蛋白质例如,举例来说,用一个或多个烷基氨基、杂芳基、或被一个或多个氨基取代的芳族基团修饰的明胶或胶原。在式IV-VI中示出了烷基氨基的实例
-NR13(CH2)sNR14R15        IV
Figure BDA0000139024760000141
其中,R13-R22独立为氢、烷基、或含氮取代基;
s、t、u、v、w和x是从1到10的整数;且
A是从1到50的整数,
其中烷基氨基共价地连接到天然聚合物上。一方面,如果天然聚合物具有羧基(例如,酸或酯),该羧基可与多胺化合物反应以产生酰胺键并将烷基氨基掺入聚合物中。因此,参考式IV-VI,氨基NR13共价连接到天然聚合物的羰基上。
如式IV-VI中所示,可改变氨基的数量。一方面,烷基氨基为-NHCH2NH2、-NHCH2CH2NH2、-NHCH2CH2CH2NH2、-NHCH2CH2CH2CH2NH2、-NHCH2CH2CH2CH2CH2NH2、-NHCH2NHCH2CH2CH2NH2、-NHCH2CH2NHCH2CH2CH2NH2、-NHCH2CH2CH2NHCH2CH2CH2CH2NHCH2CH2CH2NH2、-NHCH2CH2NHCH2CH2CH2CH2NH2、-NHCH2CH2NHCH2CH2CH2NHCH2CH2CH2NH2、或-NHCH2CH2NH(CH2CH2NH)dCH2CH2NH2,其中d为从0到50。
一方面,胺修饰的天然聚合物可包括具有直接或间接与芳族基团连接的一个或多个氨基的芳基。可替代地,氨基可被掺入芳环中。例如,芳氨基为吡咯、异吡咯、吡唑、咪唑、三唑、或吲哚。另一方面,芳氨基包括存在于组氨酸中的异咪唑基。另一方面,可生物降解的多胺可以是用乙二胺修饰的明胶。
一方面,聚阳离子包括具有一个或多个侧链氨基的聚丙烯酸酯。例如,骨架可以是来源于包括但不限于丙烯酸酯、甲基丙烯酸酯、丙烯酰胺及类似物的丙烯酸酯单体的聚合的均聚物或共聚物。一方面,聚阳离子的骨架是聚丙烯酰胺。在其他方面,聚阳离子是嵌段共聚物,其中取决于用来产生共聚物的单体的选择,共聚物的片段或部分具有阳离子基团。
一方面,聚阳离子是聚氨基化合物。另一方面,聚氨基化合物具有10至90摩尔%的叔氨基。又一方面,聚阳离子聚合物具有至少一个式I的片段
Figure BDA0000139024760000151
其中R1、R2和R3独立为氢或烷基,X是氧或NR5,其中R5是氢或烷基,且m为从1到10,或其药学可接受的盐。另一方面,R1、R2和R3为甲基且m是2。参考式I,聚合物骨架包括带有侧链-C(O)X(CH2)mNR2R3单元的CH2-CR1单元。在这方面,带有式I的片段为丙烯酸酯、甲基丙烯酸酯、丙烯酰胺或甲基丙烯酰胺的残基。图3(结构C和D)和图6(4和7)示出了带有式I的片段的聚阳离子的实例,其中聚合物骨架来源于以上讨论的丙烯酰胺残基和甲基丙烯酸酯残基。一方面,聚阳离子是阳离子叔胺单体(甲基丙烯酸2-二甲氨基乙酯)和丙烯酰胺的自由基聚合产物,其中分子量为从10至20kd且具有从15至30mol%的叔胺单体浓度。图4(结构E和F)和图6(5)提供了本文中有用的聚阳离子的实例,其中咪唑基直接连接到聚合物骨架上(结构F)或通过接头间接连接到聚合物骨架上(结构E,通过亚甲基接头)。
与聚阳离子相似,聚阴离子可以是合成的聚合物或天然存在的。一方面,当聚阴离子为天然存在时,聚阴离子是由沙堡虫产生的带负电荷的蛋白质。图2和7示出了由沙堡虫生产的两种蛋白(Pc3a和Pc3b)的序列(Zhao等人“Cement Proteins of the tube building polychaete Phragmatopomacalifornica(造管多毛纲环节动物沙堡虫的粘固剂蛋白)”J.Biol.Chem.(2005)280:42938-42944)。参考图20,Pc3a和Pc3b主要包括聚磷酸丝氨酸,其在中性pH下为阴离子的。其他天然存在的聚阴离子的实例包括糖胺聚糖例如硫酸软骨素、肝素、硫酸肝素、硫酸皮肤素和透明质酸。
当聚阴离子为合成的聚合物时,其通常是具有阴离子基团或通过调节pH可被容易地转化为阴离子基团的基团的任何聚合物。可被转化为阴离子基团的基团的实例包括,但不限于羧酸根(carboxylate)、磺酸根(sulfonate)、膦酸根(phosphonate)、硼酸根(boronate)、硫酸根(sulfate)、硼酸根(borate)、或磷酸根(phosphate)。如果满足了以上讨论的因素,可使用任何阳离子反离子与阴离子聚合物结合。取决于阴离子基团的选择,该基团可侧链连接至聚合物骨架和/或掺入聚合物骨架中。
一方面,聚阴离子为多磷酸盐。另一方面,聚阴离子为具有从10至90摩尔%磷酸基团的多磷酸盐化合物。例如,多磷酸盐可以是天然存在的化合物例如,举例来说,高磷酸化的蛋白质如卵黄高磷蛋白(卵蛋白)、牙质(天然的牙磷蛋白)、酪蛋白(磷酸化的牛奶蛋白)、骨蛋白(例如骨桥蛋白)、或DNA。另一方面,多磷酸盐为无机多膦酸盐,例如,举例来说聚偏磷酸钠(格来汉氏盐)。
在其他方面,含磷聚合物可被转化为聚阴离子。例如,磷脂或糖磷酸不是聚阴离子但是可通过用其制造脂质体或胶束而将其转化为聚阴离子。因此,在这方面,复合物凝聚层为带电胶体。可替代地,可通过本文所述的任何聚阴离子或聚阳离子产生胶体。
另一方面,多磷酸盐可以是合成的化合物。例如,多磷酸盐可以是带有连接到聚合物骨架上的侧链磷酸基团和/或存在于聚合物骨架中的磷酸基团(例如,磷酸二酯骨架)的聚合物。一方面,可通过化学地或用酶磷酸化天然化合物生成多磷酸盐。一方面,天然富含丝氨酸的蛋白质可被磷酸化以将膦酸基团(phosphonate group)掺入蛋白质中。另一方面,存在于多糖上的羟基可被磷酸化以产生本文中有用的聚阴离子。
一方面,聚阴离子包括具有一个或多个侧链磷酸基团的聚丙烯酸酯。例如,骨架可以是来源于包括但不限于丙烯酸酯、甲基丙烯酸酯、丙烯酰胺及类似物的丙烯酸酯单体的聚合的均聚物或共聚物。一方面,聚阴离子的骨架来源于聚丙烯酰胺的聚合。在其他方面,聚阴离子是嵌段共聚物,其中取决于用来产生共聚物的单体的选择,共聚物的片段或部分具有阴离子基团。又一方面,聚阴离子可以是硫酸肝素、透明质酸、壳聚糖和通常用于本领域的其他生物相容性的且可生物降解的聚合物。
一方面,聚阴离子为多磷酸盐。另一方面,聚阴离子为具有至少一个式II片段的聚合物
Figure BDA0000139024760000171
其中R4为氢或烷基,且n为从1到10,或其药学可接受的盐。另一方面,其中R4为甲基且n为2。与式I相似,式II的聚合物骨架包括丙烯酸酯或甲基丙烯酸酯的残基。式II的剩余部分为侧链磷酸基团。图7(结构B),示出了本文中有用的具有式II片段的聚阴离子的实例,其中聚合物骨架来源于丙烯酰胺残基和甲基丙烯酸酯残基。一方面,聚阴离子是甲基丙烯酸磷酸乙二醇酯(ethylene glycol methacrylate phosphate)和丙烯酰胺的共聚合产物,其中分子量为从10,000至50,000,优选30,000,且具有45至90mol%的量的磷酸基团。
如上所述,聚阳离子和聚阴离子包括可交联的基团。一方面,聚阳离子和聚阴离子包括本文所述的光化学上可交联的基团。可被用作聚阳离子和聚阴离子的以上讨论的任何聚合物(合成的或天然存在的)可被修饰以包含光化学上可交联的基团。例如,聚阳离子可以是具有一个或多个侧链氨基(例如,咪唑基)的聚丙烯酸酯。就聚阴离子来讲,一方面,多磷酸盐可被修饰以包括光化学上可交联的基团。例如,其中聚阳离子和聚阴离子包括至少一个具有式VII的片段
Figure BDA0000139024760000181
其中R1、R2和R3独立为氢或烷基,X是氧或NR5,其中R5是氢或烷基,且m为从1到10,或其药学可接受的盐,其中R2或R3的至少一个为光化学上可交联的基团。一方面,参考式VII,R1为甲基,R2为氢,R3为丙烯酸酯基或甲基丙烯酸酯基,X为NH,且m为2。
一方面,聚阴离子可包括能经历如之前所述的氧化交联的一个或多个基团,且聚阳离子包括能够与氧化的交联剂反应以产生新的共价键的一个或多个亲核基团。一方面,聚阴离子包括能够经历氧化的至少一个二羟基芳族基团,其中二羟基芳族基团共价连接到聚阴离子上。二羟基芳族基团的实例包括DOPA残基或儿茶酚残基。以上所述的任何聚阴离子可被修饰以包括一个或多个二羟基芳族基团。一方面,聚阴离子是两个或更多个单体之间的聚合产物,其中单体中的一个具有共价连接到单体上的二羟基芳族基团。例如,单体可具有能够与连接到单体上的二羟基芳族基团经历自由基聚合的不饱和基团。例如,聚阴离子可以是(1)磷酸丙烯酸酯和/或磷酸甲基丙烯酸酯和(2)具有二羟基芳族基团的第二丙烯酸酯和/或第二甲基丙烯酸酯之间的聚合产物,所述二羟基芳族基团共价地键合到所述第二丙烯酸酯或第二甲基丙烯酸酯上。另一方面,聚阴离子是单丙烯酰氧乙基磷酸酯(monoacryloxyethyl phosphate)和多巴胺甲基丙烯酰胺之间的聚合产物。图6中的聚合物3和7提供了分别掺入聚阴离子和聚阳离子中的DOPA残基的实例。在这些聚合物的每一个中,含有侧链DOPA残基的丙烯酸酯与合适的单体聚合以产生带有侧链DOPA残基的聚阴离子3和聚阳离子7。
不希望被理论约束,带有二羟基芳族基团的聚阴离子是稳定的,因为它们在溶液中与自身缓慢反应。因此,聚阴离子主要通过分子间交联与聚阳离子反应(例如,聚阳离子具有亲核基团或二羟基芳族基团)以产生复合物凝聚层。这提供了关于复合物凝聚层的使用和施用的许多优点。例如,聚阳离子和聚阴离子可被预混合并向受治疗者施用而不是顺序施用聚合物。这极大地简化了复合物凝聚层的施用,这不是如今可利用的生物粘合剂的选择。
涵盖聚阳离子可以是天然存在的化合物(例如,来自沙堡虫的蛋白)且聚阴离子是合成化合物。另一方面,聚阳离子可以是合成化合物且聚阴离子是天然存在的化合物(例如,来自沙堡虫的蛋白)。又一方面,聚阴离子和聚阳离子都是合成的化合物。
粘合复合物凝聚层可任选地包含一种或多种多价阳离子(即,具有+2电荷或更多电荷的阳离子)。一方面,多价阳离子可以是包括一种或多种碱土金属的二价阳离子。例如,二价阳离子可以是Ca+2和/或Mg+2。在其他方面,带有+2或更多电荷的过渡金属离子可被用作多价阳离子。除了pH,多价阳离子的浓度可决定凝聚层形成的速率和程度。不希望被理论约束,可通过多价阳离子桥接过量的表面负电荷介导流体中的粒子之间的弱粘聚力。可以改变本文使用的多价阳离子的量。一方面,量是以存在于聚阴离子和聚阳离子中的阴离子基团和阳离子基团的数量为基础的。例如,当多价阳离子为钙和镁的混合物,聚阳离子为多胺,聚阴离子为多磷酸盐时,则钙与胺/磷酸基团的比例可以是从0.1至0.3,且镁与胺/磷酸基团的比例可以是从0.8至1.0。在实施例中,解决了关于产生粘合复合物凝聚层的多价阳离子的量和其他物理状态的选择。
在某些方面,凝聚层也包括一种或多种引发剂。例如,光引发剂可被诱捕到凝聚层中。因此,当光引发剂被活化时(例如,暴露在光下),当可交联基团为光化学上可交联的基团时,可在聚阳离子和聚阴离子之间发生交联。光引发剂的实例包括,但不限于氧化膦、过氧化基、叠氮基、α-羟基酮或α-氨基酮。一方面,光引发剂包括,但不限于樟脑醌、安息香甲基醚、1-羟基环己基苯基甲酮、或
Figure BDA0000139024760000201
型或型、例如
Figure BDA0000139024760000203
1173或2959。通过引用并入的欧洲专利第0632329号中公开的光引发剂可用在本文中。在其他方面,光引发剂是水溶性的光引发剂,包括但不限于核黄素、曙红、曙红Y和玫瑰红。
在某些方面,可使用多种引发剂来拓宽引发剂系统的吸收谱以增加引发速率。例如,可采用由不同的光波长活化的两种不同的光引发剂。另一方面,化学引发剂可与光引发剂组合使用。另一方面,共引发剂可与本文所述的任何聚合引发剂组合使用。一方面,共引发剂是丙烯酸2-(二乙氨基)乙酯、丙烯酸2-(二甲氨基)乙酯、苯甲酸2-(二甲氨基)乙酯、甲基丙烯酸2-(二甲氨基)乙酯、2-乙基己基-4-(二甲氨基)苯甲酸酯、丙烯酸3-(二甲氨基)丙酯、4,4-双(二乙氨基)二苯甲酮、或4-(二乙氨基)二苯甲酮。
在某些方面,光引发剂和/或共引发剂共价连接到聚阳离子和/或聚阴离子上。另一方面,引发剂可被化学接枝到聚阳离子和聚阴离子的骨架上。因此,在这些方面,光引发剂和/或共引发剂共价连接到聚合物上并侧链连接至聚合物骨架。这一方法将简化制剂并可能增强储存和稳定性。
可以用多种不同方式合成粘合复合物凝聚层。一方面,可通过包括混合至少一种聚阳离子和至少一种聚阴离子的方法产生粘合复合物凝聚层,其中至少一种聚阳离子和/或聚阴离子是可生物降解的,且聚阳离子和聚阴离子包括至少一个能够彼此交联的基团。
在某些方面,可调整混合物的pH和/或至少一种多价阳离子的浓度以产生粘合复合物凝聚层。在实施例中提供了用可聚合的单体生产凝聚层的示例性技术。
本文中生产的粘合复合物凝聚层可经历随后的相变,相变最终导致形成水不溶性的粘合剂。一方面,通过将粘合复合物凝聚层中的聚阳离子和聚阴离子交联生产粘合剂。可使用本文之前描述的任何技术和方法来交联聚阳离子和聚阴离子。另一方面,可通过包括以下步骤的方法生产粘合剂:
(a)加热本文所述的粘合复合物凝聚层;和
(b)将凝聚层中的聚阳离子和聚阴离子交联,
其中可在步骤(b)之前、在步骤(b)之后、或与步骤(b)同时进行步骤(a)以产生粘合剂。
在这方面,加热并交联粘合复合物凝聚层将凝聚层转化为不溶性的固体(即,粘合剂)。可根据凝聚层的属性(即,聚阳离子、聚阴离子、多价阳离子等的选择)改变温度。例如,在室温下,可以存在复合物凝聚层。但是,通过将凝聚层注射到温度为37℃的受治疗者体内,凝聚层在体温下固体化。如以下将要讨论的,这具有组织/骨修复以及用于药物递送方面的许多应用。
在其他方面,可通过包括以下步骤的方法生产粘合剂:
(a)制备本文所述的粘合复合物凝聚层;
(b)调节粘合复合物凝聚层的pH;
(c)将凝聚层中的聚阳离子和聚阴离子交联,其中可在步骤(c)之前、在步骤(c)之后、或与步骤(c)同时进行步骤(b)以产生粘合剂。
在这方面,通过调节pH将复合物凝聚层转化为粘合剂。可通过多种技术实现pH的调节。例如,可通过与复合物凝聚层组合递送第二组分(例如,酸或碱)而主动改变pH来将复合物凝聚层转化为不溶性的固体。可选择地,可将复合物凝聚层引入到具有不同于复合物凝聚层的pH的环境中,其中pH的改变可将复合物凝聚层转化为不溶性的固体。一方面,将pH升高至大于或等于7.0的pH,或高达pH8.0。
本文所述的粘合复合物凝聚层和由此生产的粘合剂作为生物胶和递送装置具有许多应用。例如,凝聚层具有低起始粘度、大于1的比重,且大部分的重量是水,在水环境中的界面张力低,所有这些特征有助于其粘合到潮湿表面的能力。关于粘合复合物凝聚层的粘结机制(即,交联)的其他优点包括凝结期间的低热量产生,其防止了对活组织的损害。可以预聚合组分以避免原位放热聚合反应的热量产生。大部分地,这是由粘合复合物凝聚层在如上所述的非常温和的条件下分子间交联的能力引起的。
本文所述的粘合复合物凝聚层可被应用到多种不同的生物基材上。可在体外或体内接触基材。经过将凝聚层中的聚阳离子和聚阴离子交联,产生不溶于水的固体,其产生强力粘合剂。通过例如pH和氧化剂或有助于交联的其他试剂存在,可控制粘合复合物凝聚层内的交联速率。可在图9中找到用于将粘合复合物凝聚层应用到基材的一种方法。图9中示出的技术在本文被称为“点焊(spot welding)”,其中粘合复合物凝聚层被应用到基材的不同且特定的区域。一方面,可原位产生粘合复合物凝聚层。参考图9A,通过使用注射器将低pH(例如,5)的包括聚阳离子和聚阴离子的预形成的稳定PEC溶液1和较高pH(例如,10)的包括氧化剂的固化溶液2同时应用到基材上。经混合,通过将聚合物交联在基材表面上,固化溶液同时产生粘合复合物凝聚层。
另一方面,参考图9B,聚阴离子3和聚阳离子4的溶液被同时应用到基材上。一种溶液具有高于另一种溶液的pH以产生粘合复合物凝聚层。参考图9B,聚阴离子3比聚阳离子溶液4处于更低的pH下;但是,还涵盖聚阴离子可以比聚阳离子处于具有更高pH的溶液中。具有更高pH的溶液可包含氧化剂以有助于交联。
图9C示出了点焊的另一方面。在这方面,用特定pH下的聚阳离子敷涂基材。下一步,将较高pH下的聚阴离子的溶液应用到聚阳离子上以原位产生粘合复合物凝聚层。还涵盖可先用聚阴离子随后用聚阳离子敷涂基材。然后可将氧化剂单独敷到复合物凝聚层上以有助于交联以产生粘合复合物凝聚层。可替代地,在已经敷涂基材后所应用的溶液可包含氧化剂以使得粘合复合物凝聚层在原位形成并随后被交联。
本文所述的粘合复合物凝聚层的性质使其对水下应用例如向受治疗者施用变得理想。例如,可使用粘合复合物凝聚层和由此产生的粘合剂修复多种不同骨折和断裂。凝聚层通过多种机制(见图1C)粘合到骨(和其他矿物质)上。骨的羟磷灰石矿物相(Ca5(PO)4(OH))表面是正电荷和负电荷的阵列。存在于聚阴离子上的负电基团(例如,磷酸基团)可直接与表面正电荷相互作用或可通过聚阳离子和/或多价阳离子上的阳离子基团将其桥接到表面负电荷上。同样地,聚阳离子和表面负电荷的直接相互作用将有助于粘合。另外,当聚阳离子和/或聚阴离子包含儿茶酚部分时,它们可有助于将凝聚层粘合到已经湿润的羟磷灰石上。其他粘合机制包括将未氧化的交联剂(例如,DOPA或其他儿茶酚类)直接键合到羟磷灰石上。可替代地,氧化的交联剂可偶联到骨基质蛋白的亲核侧链上。
这些断裂的实例包括完全骨折、不完全骨折、线性骨折、横向骨折、斜形骨折、压缩骨折、螺旋形骨折、粉碎性骨折、碾压骨折(compactedfracture)、或开放性骨折。一方面,骨折为关节内骨折或颅面骨骨折。骨折例如关节内骨折是伸入软骨表面并使软骨表面断裂的骨损伤。粘合复合物凝聚层可帮助这些骨折的复原的维持,允许更少的创伤性手术,减少手术室时间,减少花费,并通过减少创伤后关节炎的风险而提供更好的结果。
在其他方面,粘合复合物凝聚层和由此产生的粘合剂可被用来连接高度粉碎性骨折的小片段。在这方面,断裂的骨的小片被粘合到现存的骨上。例如,凝聚层可被应用到断裂的骨和/或现存的骨上。通过用机械固定器对其钻孔维持小片段的复原是尤其挑战性的。片段越小且数量越多,问题越多。一方面,可小体积注射粘合复合物凝聚层或其前体以产生如上所述的点焊以修复骨折而不是填补整个裂缝。小的生物相容性点焊将使对周围组织的愈合的干扰最小化并不必一定是可生物降解的。在这方面,其将相似于永久植入的硬件。
在其他方面,粘合复合物凝聚层和由此产生的粘合剂可被用来将支架固定到骨或其他组织上,例如软骨、韧带、腱、软组织、器官、膜组织(例如,阴道膜、鼻膜、羊膜)、和这些材料的合成衍生物。使用本文所述的复合物和点焊技术,可使用粘合复合物凝聚层和由此产生的粘合剂在受治疗者体内放置生物支架。在固定支架前,可将凝聚层应用到生物支架和/或骨或组织上。包括本文所述的粘合复合物凝聚层的小粘合钉将不会干扰细胞的迁移或将小分子运输到支架内或从支架运出。在某些方面,支架可包括有助于骨和组织的生长或修复的一种或多种药物。在其他方面,支架可包括防止感染的药物,例如,举例来说抗生素。例如,可用药物包被支架或在替代方案中,可将药物掺入支架内以使药物随时间从支架浸出。
粘合复合物凝聚层和由此产生的粘合剂具有许多牙科应用。使用本文所述的点焊技术,粘合复合物凝聚层可被应用到口腔内的特定点上(例如,颌、牙齿部分)。例如,凝聚层可被用于治疗萎缩缺陷,增加牙龈组织的高度和宽度、增加牙龈边缘处连接的牙龈组织的量,和增加连接的牙龈组织的区域。在口腔手术中,它们可被用来改善软组织结果并在引导性骨再生手术中生长新骨。另外,凝聚层可促进牙周手术后的牙床伤口愈合并帮助防止或减少出血。如将要讨论的,可使用凝聚层递送生物活性剂。因此,可使用凝聚层对牙齿的牙床和根部递送生物活性剂。在其他方面,可使用凝聚层将牙科植入物固定到牙齿上(例如,牙套、假牙)。可替代地,凝聚层可被用作制备牙齿的牙质或珐琅质表面的底胶以粘结牙科粘固剂。
在其他方面,粘合复合物凝聚层和由此产生的粘合剂可将基材粘合到骨上。基材的实例包括金属基材(例如,板、医疗植入物、等)、纤维、箔、布片或可被植入到受治疗者体内的任何其他材料。在使用前可将凝聚层应用到基材和/或骨上。例如,通常使用由氧化钛、不锈钢、或其他金属制成的植入物来修复断裂的骨。在将基材粘合到骨上之前,可将粘合复合物凝聚层或其前体应用到金属基材、骨、或该两者上。在某些方面,存在于聚阳离子或聚阴离子上的交联基团可与氧化钛形成牢固的键。例如,已证实DOPA可牢固结合到湿润的氧化钛表面上(Lee等人,PNAS 103:12999(2006))。因此,除了粘结骨碎片,本文所述的粘合复合物凝聚层可促进金属基材与骨的粘结,其可促进骨修复和恢复。
还涵盖粘合复合物凝聚层和由此产生的粘合剂可包括一种或多种生物活性剂。生物活性剂可以是当将复合物应用到骨上时促进骨生长和修复的任何药物。可通过选择用来制备复合物的材料以及如果物质是盐的话通过选择生物活性剂的电荷来控制释放速率。在某些方面,当通过温度和/或pH的变化将粘合复合物凝聚层转化为不溶性固体时,复合物凝聚层可被施用给受治疗者并原位产生不溶性固体。因此,在这方面,不溶性固体可表现为定位控制的药释贮库。同时固定组织和骨以及递送生物活性剂以提供更大的患者舒适性,加速骨愈合,和/或防止感染可以是可能的。
粘合复合物凝聚层和由此产生的粘合剂可被用于各种其他外科手术。例如,可使用粘合复合物凝聚层和由此产生的粘合剂修复由创伤或由外科手术本身引起的撕裂。一方面,可使用粘合复合物凝聚层和由此产生的粘合剂修复受治疗者体内的角膜或结膜撕裂。在其他方面,可使用粘合复合物凝聚层和由此产生的粘合剂抑制受治疗者的血管内的血流。通常,将粘合复合物凝聚层注射到血管内,随后通过交联(例如,加热复合物凝聚层或本文所述的其他交联技术)以将凝聚层转化为不溶性的固体和以部分地或完全地堵塞血管。该方法具有许多应用,包括止血或产生人工栓塞以抑制血液流向肿瘤或动脉瘤。
实施例
举出以下实施例以向本领域普通技术人员提供如何制备和评价本文所述和所要求保护的化合物、组合物和方法的完整公开和描述,且其旨在是仅示例性的且并不旨在限制发明人认定的其发明的范围。已作出努力以确保有关数字(例如,量、温度等)的准确性,但应当考虑一些误差和偏差。除非另外指明,份是以重量计的份,温度以℃计或是在环境温度下,且压力是处于或接近大气压。存在反应条件的许多改变和组合,例如,组分浓度、期望的溶剂、溶剂混合物、温度、压力和可被用来优化由所述的方法获得的产物纯度和产量的其他反应范围和条件。优化这些反应条件仅需要合理的且常规的实验。
I.粘合复合物凝聚层的合成和表征
模拟共聚物的合成和表征
Pc3类似物。通过公布方法(Lee BP,Huang K,Nunalee FN,Shull KR,Messersmith PB.Synthesis of 3,4-dihydroxyphenylanine(DOPA)containingmonomers and their co-polymerization with PEG-diacrylate to form hydrogels(含有3,4-二羟苯丙氨酸(DOPA)的单体的合成及其与PEG-二丙烯酸酯的共聚合以形成水凝胶).J Biomater Sci polym Ed 2004;15(4):449-464)的略微改变制备dopa类似物单体(多巴胺甲基丙烯酰胺,DMA)。简要地,硼酸盐(borate)-多巴胺复合物与甲基丙烯酰氯在pH>9下反应。在通过酸化破坏硼酸盐(borate)-儿茶酚键之后,产物用乙酸乙酯洗涤,从己烷重结晶,并通过1H NMR(400MHz,DMSO-TMS)验证:d8.8-8.58(2H,(OH2-Ar-)、7.92(1H,-C(=O)-NH-)、6.64-6.57(2H,C6HH2(OH)2-)、6.42(1H,C6H2H(OH)2-)、5.61(1H,-C(=O)-C-(-CH3)=CHH)、5.30(1H,-C(=O)-C-(-CH3)=CHH)、3.21(2H,C6H3(OH)2-CH2-CH2(NH)-C(=O)-)、2.55(C6H3(OH)2-CH2-CH2(NH)-C(=O)-)、1.84(3H,-C(=O)-C-(-CH3)=CH2)。
在聚合之前,在MeOH中稀释单丙烯酰氧乙基磷酸酯(MAEP,Polysciences)并用己烷萃取以去除二烯。通过在MeOH中混合90mol%MAEP、8mol%DMA、2mol%丙烯酰胺(Aam,Polysciences)和0.1mol%FITC-甲基丙烯酰胺以5wt%的单体终浓度制备共聚物1。在密封的安瓿中,用偶氮二异丁腈(AIBN)引发自由基聚合反应并在60℃持续进行24小时。使用相似的方法以制备如图2-7中所示的聚合物3-7。通过在SephadexLH-20柱子(Sigma-Aldrich)上在MeOH中的尺寸排阻色谱(SEC)回收共聚物1(图10),通过旋转蒸发浓缩,溶于DI水中,并冻干。
通过在连接到小角度光散射检测器(Brookhaven BI-MWA)和折射率监控器(Brookhaven BI-DNDC)的PLgel柱(Polymer Labs)上在DMF中通过SEC测定1的MW和多分散指数(PDI)。使用聚苯乙烯标准品校准柱子。1的MW为245kda,PDI为1.9。通过UV/VIS光谱(e280=2600M-1cm-1)验证多巴胺侧链的浓度和反应性。通过使用自动滴定仪(Brinkmann Titrando 808)用0.005M NaOH滴定测定磷酸侧链的浓度。1的UV/VIS光谱包含多巴胺的儿茶酚形式的280nm处的单一特征吸收峰(图10B)。在pH5.0加入相对1的1∶1摩尔比的NaIO4,将dopa儿茶酚氧化为具有预期的395nm附近的吸收峰的多巴醌。多巴醌峰在pH<5时稳定长达数小时。
Pc1类似物。用N-(3-氨基丙基)甲基丙烯酰胺盐酸盐(APMA,Polysciences)模拟Pc1的赖氨酸侧链。通过在DI水中溶解10mol%APMA和90mol%Aam,用N2脱气并用2mol%过硫酸铵(Polysciences)引发聚合反应合成共聚物2(图10)。在密封的安瓿中,在50℃持续24小时进行聚合反应。通过持续3天的对水透析回收聚合物,并然后冻干。通过1H NMR(400MHz,DMSO-TMS)从d 13.45(3H,-CH3)和d 51.04(1H,RC(=O)CHR2)的比例测定伯胺侧链的mol%。通过在Superose 6柱子(Pharmacia)上在PBS(20mM PO4,300mM NaCl,pH7.2)中的SEC测定2的MW和PDI。用聚-2-羟基丙基甲基丙烯酸酯标准品校准柱子。2的MW为165kda且PDI为2.4。
凝聚层形成和表征。搅拌下逐滴地向1的5wt%的水溶液中添加2的5wt%的水溶液,直到达到目标胺/磷酸根比例。总共聚物浓度为50mg/ml。持续混合30分钟后,用NaOH(6M)调节pH。在DI水中将有助于聚合电解质复合物(PEC)形成的pH(<4)下的组合物稀释至1mg/ml并在Zeta-Sizer3000HS(Malvern Instruments)上测量PEC的ζ电位和粒径分布。在较高pH下,在微量离心机(Eppendorf)中在25℃下以2500rpm离心凝聚的组合物2分钟以收集凝聚层相。测量两种相的体积。冻干凝聚层相并称重以确定其质量和浓度。
图11A中示出了以1∶1摩尔比的磷酸侧链与胺侧链(50mg/ml合并浓度)混合的1和2在pH范围3-10上的相态特征。图11B中示出了标准化成总的可离子化侧链浓度的计算的共聚物净电荷。以1∶5的摩尔比向dopa中加入抗坏血酸盐,一种还原剂,以阻滞dopa被O2氧化和随后的在升高的pH下的交联。在低pH下,聚合电解质形成胶体状聚合电解质复合物(PEC)的稳定牛奶状溶液。通过动态光散射测定的PEC在pH2.1下的平均直径是360nm,具有窄分散度并在pH4.0下增加到1080nm(图11C)。在pH3.6下的从正到负的ζ电位的变换与计算出的复合物的pH依赖的净电荷很好吻合(图11B)。由于复合物絮凝,在pH4以上不能准确地测量粒度。当由磷酸侧链的去质子化引起净电荷增加时,共聚物凝缩成稠密的第二相。在pH5.1下,分离的相具有松散的低密度沉淀的特征。在pH7.2和pH8.3下,稠密相具有粘性液体复合物凝聚层的特征(图12)。在凝聚层相中,共聚物被浓缩约3倍至分别为148和153mg/ml。在pH9.5下,聚合电解质混合物形成稠密的非液体离子凝胶。在pH10下,共聚物进入溶液并通过多巴醌和胺侧链自发交联成澄清的水凝胶。
用螯合剂EDTA提取二价阳离子导致沙堡虫管的压缩强度减少50%,粘合度下降10倍和胶的多孔结构崩溃。通过范围从1∶1至0∶1的胺与磷酸侧链的比例和范围从0∶1至1∶1的二价阳离子与磷酸侧链的比例混合1和2以制作凝聚层相图(图13),研究了二价阳离子对模拟聚合电解质的相态特征的作用。将pH固定在8.2,即海水的pH,并以Mg2+和Ca2+的4∶1的混合物加入二价阳离子,4∶1为通过元素分析确定的天然胶中的大致的Mg2+/Ca2+比例。凝聚层的最高质量(深灰色方块)发生在具有较高的胺与磷酸侧链比例和较低的二价阳离子与磷酸侧链比例的混合物中。即使处于较高的二价阳离子/磷酸侧链比例,具有较低多胺比例的混合物是澄清的(空白方块)。在较高胺/磷酸根比例和二价阳离子/磷酸根比例下,溶液是浑浊的(浅灰色方块),带有轻微沉淀但是比含有PEC的溶液(中灰色方块)浑浊度小得多。
机械粘结测试。用带锯从当地杂货店获得的牛大腿骨的皮质骨上切下~1cm3的骨测试样本,用320粒度(grit)的砂纸砂磨,并储存在-20℃下。将相对于dopa侧链为1∶2摩尔比的NaIO4均匀应用在两种湿润骨样本的每一个的一个表面上。用移液器应用足以充分填充1cm2的骨界面之间的空隙的体积,即40ml的受试凝聚层溶液,将骨样本按压在一起挤出小部分过量的粘合剂、夹住并立即包裹在用PBS(20mM PO4,150mM NaCl,pH7.4)浸泡的纱布中。所应用的凝聚层包含相对于dopa的1∶5摩尔比的抗坏血酸盐以防止提前交联。在含有湿透的海绵以维持100%湿度的密封容器中在37℃孵育经粘结的样本至少24小时。以完全相同的方式用40ml的Loctite401强力胶水粘结参考样本。由于没有用于对比的可利用的硬组织医用粘合剂,使用商业化的非医用级氰基丙烯酸酯。使用1kg承载元件,在定制的材料检测系统上进行机械测试。使用Labview(NationalInstruments)控制设备并获得数据。从粘结界面1mm处横向夹住粘结成对的一块骨。相对于位于粘结界面横侧1mm处的钝边以0.02mm/s的十字头速度按压第二块骨。在打开湿润的样本之后,为防止干燥,立即在室温下进行粘结强度测试。测试后,测定粘结物的断裂模式。通过以下测量粘结面积:在纸上描绘骨接触表面的轮廓,剪下描绘纸片,并根据剪出的纸的重量测定其面积。对于每一种条件,测试至少6个样本。
使用湿润时用图13中用星号标记的三种凝聚组合物粘结的牛皮质骨样本测量断裂时的剪切模量和强度。三种组合物中的凝聚层密度随二价阳离子比例的增加而增加(分别达到120、125和130mg/ml)。充分水化的样本的模量和粘结强度都随着二价阳离子浓度的增加而增加,达到用商业化的氰基丙烯酸酯粘合剂粘结的湿润骨的强度的37%(图14A)。由于没有用于对比的在临床上使用的骨粘合剂,氰基丙烯酸酯粘合剂被用作参照点。模拟粘合剂的强度也是估计为350kPa的天然沙堡虫胶和取决于季节的估计为320至750kPa范围的贻贝足丝胶的强度的约1/3。在几乎所有情形中,粘结物未能粘聚,将粘合剂残留在两个骨界面上,这说明组合物与羟磷灰石形成牢固的界面粘结。粘结物是尺寸稳定的,在完全浸没在pH7.2的PBS中数月后既不明显缩水也不明显膨胀(图14B)。在固化和长期暴露于水期间的尺寸稳定性是对于有用的骨粘合剂的重要的要求。
多巴胺介导的关聚物交联。以1∶1的摩尔比向3的溶液中加入NaIO4,立即并量化地将DOPA(280nm)氧化为多巴醌(392nm)。在几分钟之内,由于反应性的醌形成共价的二DOPA交联物,醌峰衰退为宽的一般吸收(图15,左上)。醌和伯胺之间的交联(图15,左下)导致比二DOPA交联更宽的一般吸收。所以,多巴胺的氧化和交联化学表现得如在多巴胺共聚物中预期的。由于氧化交联,多巴胺共聚物迅速形成水凝胶(图15,A&C)。氧化的磷酸多巴胺3不会自身凝胶化(图15B),但当与4混合时迅速凝胶化(图15D)。PO4共聚物之间的分子间二DOPA交联被抑制但是不抑制分子间DOPA-胺交联。这提供了对于配制和递送合成粘合剂可能有用的交联控制机制。
pH引发的DOPA介导的交联。为了探索DOPA氧化的pH依赖性和动力学,通过UV-Vis光谱评估多巴胺共聚物的交联。图16中示出了使用p(EGMP[92)-DMA[8])(3)的结果。在加入化学计算量的NaIO4后,随时间增加获得UV-Vis光谱。在pH5.0(上),多巴醌吸收(398nm)在~15分钟内到达最大并维持稳定数小时(插图)。在pH6.0下,398nm处的吸收在<1分钟内达到峰值并演变成具有310nm处和525nm处的峰的宽吸收。由于未形成凝胶,宽吸收谱不是由多巴醌交联引起的(图16)。为了对比,6在低pH下被氧化但以明显较低的速率交联(未示出)。
结果表明,多巴醌在低pH下是稳定的且在磷酸多巴胺共聚物中二DOPA的交联在较高pH下被抑制。在多胺存在下,共价交联向着分子间胺-DOPA键发展。这是重要的发现,因为其铺开了通向合成粘合剂的可控递送和凝结的道路。
体外细胞毒性。每一种40wt%的3和4的溶液在低pH下混合以形成聚合电解质复合物。在临应用到无菌的玻璃盖玻片上之前,用NaIO4部分氧化溶液并用NaOH碱化。将粘合剂处理的盖玻片放置到培养板的孔的底部并将含血清培养基内的人包皮成纤维细胞、人气管成纤维细胞和大鼠原代星形胶质细胞以30K细胞/孔加入到分隔开的孔中(图17)。24小时后,用4%的多聚甲醛固定细胞,然后对中间丝蛋白、波形蛋白免疫染色以显示细胞形态(绿色,A-B),对细胞周纤连蛋白免疫染色以评估ECM分泌(红色,B),对胶质纤维蛋白免疫染色以观察原代星形胶质细胞形态(绿色,C),并对DAPI蛋白免疫染色以观察核(蓝色,C)。粘合剂的粒子团自动发出橙红色荧光(A-C)。
在代表性的图像(图17)中,所有细胞类型具有与生长在不含粘合剂的玻璃上的细胞难以区分的形态。细胞具有正常运动性且一些情况下具有直接接触粘合剂的延伸过程。没有明显毒性。
大鼠颅面骨缺损模型。图18A-F中示出了断裂缺损的产生和使用粘合复合物凝聚层的修复。用氯胺酮(65mg/kg)、甲苯噻嗪(7.5mg/kg)和乙酰丙嗪(0.5mg/kg)的混合物麻醉雄性Sprague Dawley大鼠(256-290g)(Harlan)。在深度麻醉下,用眼药膏涂抹眼睛,剃头,并用异丙醇和丁二烯消毒头皮。对于立体定向架中准备好的大鼠,使用立体定向的细齿操纵器降低以~5000RPM运行的压缩空气驱动型钻头。在开颅位置连续应用无菌的盐水或PBS,同时将定制的环钻工具降低600微米(事先确定的实验中所用年龄的大鼠的颅面骨厚度)。结果是穿过颅面骨的圆的、准确的孔,对下面的硬脑膜或血管几乎没有可观察到的影响(图18A-B)。用细弯钳恢复骨栓并使用止血钳和小骨钳打碎成片段(图18B)。将骨片段放回缺损处(图18C)并用微量移液器应用5μl受试粘合剂(在断裂处应用之前立即混合的3和4)(图18D)。低粘度粘合剂溶液(在即将递送前与固化溶液混合的预形成的PEC)容易地且洁净地导入断裂处。5分钟内,碎片被充分固定以使其可被钳子剧烈敲击而不移位。在其固化时,粘合剂继续变成深红棕色(图18E-F)。
II.由胺修饰的聚合物产生的粘合复合物凝聚层
A.材料和方法
材料。低内毒素、非胶凝的明胶(MW 3.5kDa)由Gelita,Inc.(Souix市,爱荷华州)提供。1-乙基-3-[3-二甲基氨基丙基]碳化二亚胺盐酸盐(EDC)和乙二胺二盐酸盐购自Thermo Scientific,Inc.。单丙烯酰氧乙基磷酸酯(MAEP)、2,2’-偶氮二异丁腈(AIBN)购自Polysciences,Inc.。高碘酸钠(NaIO4)、Sephadex LH-20、多巴胺盐酸盐从Sigma-Aldrich获得。
聚磷酸多巴酰胺(Polyphosphodopamide)的合成。通过使用偶氮二异丁腈(AIBN)为引发剂的MAEP和多巴胺甲基丙烯酰胺(DMA)的自由基聚合合成聚磷酸多巴酰胺共聚物(聚(MAEP85-DMA15小))。通过在Sephadex LH-20柱子(Sigma-Aldrich)上在MeOH中的尺寸排阻色谱(SEC)回收共聚物。去除MeOH,在水中重悬共聚物、冻干并储存在-80℃。通过UV/Vis光谱测定共聚物中的多巴酰胺侧链的mol%:多巴胺的儿茶酚形式具有279nm处的吸收峰(λ279=2600M-1cm-1)。
明胶修饰。图21中提供了用于产生胺修饰的明胶的一般反应方案。将明胶(100mg/ml)与乙二胺二盐酸盐(相对于明胶的羧基以1∶1摩尔比)混合。用6M HCl调整pH至5.2。搅拌下向反应混合物中加入以相对于乙二胺二盐酸盐1.2∶1摩尔比的EDC。反应在室温下持续进行2小时。胺修饰的明胶对DI水透析3天,然后冻干。使用甘氨酸作为标准品通过茚三酮测试确定伯胺侧链的浓度。使用Malvern Zetasizer Nano-ZS ZEN 3600(Malvern Instruments Ltd.,Worcestershire,英国)通过电泳测定明胶(1mg/ml溶于水中)的ζ电位测量值。
明胶凝聚层形成。搅拌下逐滴地向含有不同比例的二价阳离子(Ca2+或Mg2+)的聚(MAEP85-DOPA15)的50mg/ml水溶液(pH5.0)中加入胺修饰的明胶的50mg/ml水溶液(pH5.0),直至达到胺/磷酸根的目标比例。用NaOH将混合物的pH升至7.4。允许凝聚层相静置24小时。分离凝聚层相和平衡相并测量它们的体积。冻干凝聚层相并称重以确定它们的质量和浓度。
动态流变学。在应力控制的流变仪(TA Instruments,AR500)上通过锥板构造(直径20mM,锥度4℃)测量弹性模量(G’)和储存模量(G”)。为比较凝聚层组合物,当以0.5℃/分钟的速率将温度从0℃升至40℃时,用恒定频率1Hz和动态应变0.1%进行测量。
粘合剂粘结强度。用水锯从5052铝片(0.050英寸)切下受试铝粘合体,0.12×0.6×5cm。用600粒度超细砂纸磨光粘合体且然后根据ASTMD2651的方法净化。简单地,在MeOH中超声粘合体两次,风干,浸入到硫酸和nochromix的溶液中持续15分钟,然后用DI水彻底冲洗并储存在DI水中直到被粘结。粘合体在清洗12小时内粘结。对于每个粘合剂样品,粘合9个湿润的受试铝样本。将以相对于多巴酰胺侧链1∶2摩尔比的NaIO4均匀地应用到两种铝粘合体的粘结区域。用移液器将受试凝聚层溶液(6μl)应用到湿润的粘合体上,然后以大约25mm的重叠将其压在一起、夹住并立即浸没在用NaOH调整为pH7.4的水中。在规定温度下,将粘结样本完全浸没在水中固化~24小时。当粘合体被完全浸没在装载在带有100N承载元件的Instron 3342材料测试系统上的温度控制水浴中的同时,测量剪切强度。使用Bluehill Lite软件(Instron,Inc.)控制仪器并获取数据。
B结果
使用低MW(3-5kda)非胶凝的胶原水解酶为聚阳离子制造粘合复合物凝聚层。如公认的,在生理pH下,胶原水解酶不与磷酸dopa共聚物(聚(MAEP)85-共-多巴酰胺15)形成复合物凝聚层。羧酸侧链用乙二胺的胺化作用将胺浓度增加到~16mol%并将pI从5.5变为10.4。在宽范围的组合物中,胺化的胶原在25℃形成稠密的凝聚层。在pH5下,在从0.5-1.0的胺与磷酸侧链比例和高达0.8的Ca2+与磷酸根比例下形成浓缩的凝聚层(图23A)。任何组合物都不沉淀。在pH7.4下,凝聚层的空间被更大地限制;在Ca2+比例高于0.2时,共聚物沉淀为硬质固体,反映了随着pH增加混合的聚合电解质和Ca2+的溶解度降低(图23B)。
对Mg2+对聚合电解质的凝聚的单独影响的研究表明与Ca2+相比的明显区别。在pH5下,凝聚区域较大。在高达1∶1的Mg2+与磷酸根的比例下,任何组合物都不沉淀(图23C)。Mg2+存在下,共聚物凝缩为更浓缩的凝聚层,在某些情况下>380mg/ml,比起始共聚物浓度增加近8倍。在pH7.4下,凝聚范围变宽且在高Mg2+比例下,由于随着pH增加而下降的溶解度,形成具有流体和固体的混合相的组合物(图23D)。在较高pH下扩大的凝聚层空间再次表明稠密的流体凝聚层是可溶性聚合电解质和不溶性固体之间的稳定平衡的中间体。处于较高Mg2+比例下的固化态的物理性质是非流体的,但比硬质的Ca2+沉淀更柔软且更像凝胶,反映了可能是相对于流体凝聚层和固体的去溶剂化的过渡态。Mg2+复合物的不同物理性质和溶解度特征可能是Mg2+离子与Ca2+离子相比更小半径、更高的电荷密度和更小的配位数的结果。因为多配位体不适合环绕小离子,Mg2+倾向于与单个的体积大的配位体配位,如磷酸根。因此,其大部分的溶剂化范围(solvationsphere)被保留。另一方面,较大的Ca2+,可容纳多个大体积的配体,导致其溶化剂范围的转移和配体之间交联形成。用混合的Mg2+和Ca2+制备的凝聚层占据个体阳离子的凝聚区之间的空间。
根据经验,图23中的相图表明分泌的颗粒和海水之间的不同pH如何引发相变,相变驱动天然粘合剂的快速的但时机正好的初始凝结反应。凝缩的流体复合物凝聚层相在稳定的胶体复合物和胶凝的或沉淀的聚合盐之间热动态平衡。可调整天然粘合剂的组成以正好落入分泌通路的凝聚边界内,但位于海水的高pH下的凝聚区域之外。换句话说,它们被组成以经历分泌时的pH依赖的相变。例如,0.4的Ca2+与大于0.3的胺的比例的第4行的组合物(图23A和B)在pH5下凝聚但在pH7.4和更高的pH下是固态的。
在0℃下,图23B中的凝聚区域被下移约一行,而在37℃下,其被上移一行(未示出)。通过动态振动流变学更详细地研究了在pH7.4下具有不断增加的Ca2+比例和固定的胺比例0.6的多种组合物的温度依赖的相变(图24A)。在低温下,与复合物凝聚层的流体特征一致,粘性剪切模量(G”)大于弹性模量(G’)。随着温度增加,G’以Ca2+比例依赖方式S形上升。对于Ca2+比例分别为0.15、0.20、0.25和0.30时,被认为是其中组合物开始从粘性流体向受荷弹性固体变化的转变温度,即G’=G”时的变换点(图24A,插图)是36、21、12和9℃。含有Mg2+的凝聚层显示出质上相似的行为:在pH7.4下,在Mg2+与磷酸根比例高达0.8时没有G’和G”的变换,在较高比例下,变换温度再次随Mg2+比例增加而降低。与固化的Mg2+凝聚层的更水化的凝胶样性质一致,在37℃下对于Mg2+的弹性模量比对于Ca2+的弹性模量低得多(图24B)。
用完全浸没在37℃下,即刚好大于组合物的转变温度的温度控制的水浴中的磨光的铝粘合体测试在Ca2+比例从0至0.3变化而胺比例固定在0.6时形成的粘结物。随着Ca2+增加至高达0.3的比例,搭接剪切强度增加(图25A,黑色柱)。在10℃和20℃的略低于其各自的转变温度下,还测试了0.2和0.25Ca2+/0.6胺的组合物。在这两种情况中,高于转变温度的粘结强度大于低于转变温度的粘结强度(图25A,白色柱)。在测试设置的条件下,可能几乎没有多磷酸盐的多巴酰胺侧链和明胶的胺之间的共价氧化交联:dopa在pH7.4下的氧化速率比pH8.2下的氧化速率慢得多,溶解O2向粘结狭缝(62μm)的扩散被限制,且没有表示dopa氧化的粘合剂的明显褐色变化。因此,高于转变温度的粘结强度的增加主要是由粘合剂的状态变化引起的。以1.0Mg2+比例进行的相似测试显示了更明显的增加,高于转变温度比低于该温度在粘结强度方面增加了大于6倍(图25B)。实际上,这些结果表明可将温度差异用作引发合成粘合剂的起始凝结的便捷方法且表明通过二价阳离子比例的小变化可在生理相关范围内调节温度引发。
下一步,通过在粘结程序期间添加相对于多巴酰胺侧链的0.5当量的NaIO4引发多磷酸盐多巴酰胺侧链和明胶胺之间的氧化偶联以研究共价交联对合成粘合剂的粘结强度的贡献。在37℃下同时完全浸没在调节至pH7.4的水中固化和测试粘结物。粘结强度随着用于Ca2+和Mg2+二者的二价阳离子比例的增加而增加(图25,阴影柱)。对于Mg2+的最大粘结强度是Ca2+的粘结强度的2倍,达到765kPa。
总之,粘合复合物凝聚层是不稳定地平衡于可溶性聚合物和不溶性聚合盐之间的稠密的、部分水不混溶的流体(见图22A中的白色箭头)。参考图22B,上面一行代表聚合电解质的相态特征。下面一行衔接了相态特征的特征与解决制造水下胶的多个问题。pH、温度或两者的变化引发从流体复合物凝聚层向不溶性固体的变化、起始的凝结反应。通过儿茶酚和伯胺侧链的氧化偶联,发生共价硬化。
III.可光交联的聚合物的制备
甲基丙烯酸酯接枝的多磷酸盐的合成(图26)。在甲醇(90wt%)中溶解N-(3-氨基丙基)甲基丙烯酰胺盐酸盐(5mol%)、单甲基丙烯酰氧乙基磷酸酯(94.95mol%)和FITC-甲基丙烯酰胺(0.05mol%)的混合物。加入引发剂AIBN(2mol%)并用氩持续净化溶液30分钟。聚合在65℃进行24小时。为甲基丙烯酸化共聚物的胺侧链,加入极小量的叔辛基邻苯二酚、2.1当量的三乙胺和1当量的甲基丙烯酰基氯并持续搅拌反应物30分钟。通过在LH-20 sephadex上在MeOH中的尺寸排阻色谱纯化甲基丙烯酸酯接枝的共聚物。通过旋转蒸发浓缩共聚物,然后溶解在去离子水中并冻干。
甲基丙烯酸酯接枝的多胺的合成(图26)。在最小量的甲醇中溶解被保护的单体N-(t-BOC-氨基丙基)甲基丙烯酰胺(10mol%)并用水稀释。加入单体N-(3-氨基丙基)甲基丙烯酰胺盐酸盐(5mol%)和羟丙基甲基丙烯酰胺(85mol%)和引发剂AIBN(2mol%,溶于最小量的甲醇中)。总的单体浓度为2wt%。用氩持续净化溶液30分钟,然后在65℃持续加热24小时。通过在去离子水中持续透析(12,000-14,000MWCO)3天纯化三元共聚物,然后冻干以获得为白色固体的聚合物。
在DMF中溶解甲基丙烯酸酯三元共聚物,然后加入相对于游离胺基2.1当量的三乙胺随后加入1当量的甲基丙烯酰基氯。持续搅拌反应物30分钟。通过加入5当量的TFA而去除t-BOC基。用二乙醚沉淀去保护的三元共聚物,重悬在DI水中并冻干。使用乙烯基质子信号与乙基和丙基质子信号的比例,通过1H NMR计算甲基丙烯酰基的取代度。
光交联(图26)。向甲基丙烯酸酯化的共聚物的5wt%水溶液中加入光引发剂IRGACURE 2959(0.1wt%)。用Novacure光固化光源在365nm辐照溶液。
贯穿本申请,引用了各种出版物。在此通过引用将这些出版物的公开内容全部并入到本申请中以更充分地描述本文所述的化合物、组合物和方法。
可对本文所述的化合物、组合物和方法作出各种修改和改变。通过考虑本文公开的化合物、组合物和方法的说明和实践,本文所述的化合物、组合物和方法的其他方面将是明显的。本说明和实施例将被认为是示例性的。
Figure IDA0000139024810000011
Figure IDA0000139024810000031
Figure IDA0000139024810000051
Figure IDA0000139024810000061
Figure IDA0000139024810000071
Figure IDA0000139024810000081
Figure IDA0000139024810000091
Figure IDA0000139024810000111
Figure IDA0000139024810000121
Figure IDA0000139024810000131
Figure IDA0000139024810000141
Figure IDA0000139024810000151
Figure IDA0000139024810000161
Figure IDA0000139024810000171
Figure IDA0000139024810000181
Figure IDA0000139024810000191
Figure IDA0000139024810000201
Figure IDA0000139024810000221
Figure IDA0000139024810000231
Figure IDA0000139024810000251

Claims (70)

1.一种可生物降解粘合复合物凝聚层,所述可生物降解粘合复合物凝聚层包括至少一种聚阳离子和至少一种聚阴离子,其中至少一种聚阳离子和/或聚阴离子是可生物降解的,且所述聚阳离子和聚阴离子包括至少一个能够彼此交联的基团。
2.根据权利要求1所述的凝聚层,其中所述聚阳离子包括多糖、蛋白质或合成多胺。
3.根据权利要求2所述的凝聚层,其中所述蛋白质包括重组蛋白质或遗传修饰的蛋白质。
4.根据权利要求1所述的凝聚层,其中所述聚阳离子包括胺修饰的天然聚合物。
5.根据权利要求1所述的凝聚层,其中所述聚阳离子包括胺修饰的蛋白质。
6.根据权利要求4所述的凝聚层,其中所述胺修饰的天然聚合物包括经一个或多个烷基氨基、杂芳基、或经一个或多个氨基取代的芳族基团修饰的明胶或胶原。
7.根据权利要求1所述的凝聚层,其中所述聚阳离子包括被乙二胺修饰的明胶。
8.根据权利要求1所述的凝聚层,其中所述聚阳离子在生理pH下具有大于7的pI值。
9.根据权利要求1所述的凝聚层,其中所述聚阴离子包括一种或多种硫酸根、磺酸根、羧酸根、硼酸根(borate)、硼酸根(boronate)、膦酸根、磷酸根,或其任何组合。
10.根据权利要求1所述的凝聚层,其中所述聚阴离子包括多磷酸盐化合物。
11.根据权利要求10所述的凝聚层,其中所述多磷酸盐化合物包括天然化合物、化学修饰的天然化合物或合成类似物。
12.根据权利要求11所述的凝聚层,其中所述天然化合物包括DNA、环状多膦酸盐或蛋白质。
13.根据权利要求11所述的凝聚层,其中所述化学修饰的天然化合物包括磷酸化的蛋白质或多糖。
14.根据权利要求10所述的凝聚层,其中所述多磷酸盐化合物包括侧链连接至所述聚合物骨架的至少一个磷酸基团和/或掺入所述聚合物骨架的至少一个磷酸基团。
15.根据权利要求1所述的凝聚层,其中所述聚阴离子包括含有一个或多个侧链磷酸基团的聚丙烯酸酯。
16.根据权利要求1所述的凝聚层,其中所述聚阴离子包括含有至少一个含有式II的片段的聚合物
其中R4为氢或烷基,且n为从1至10,或其药学可接受的盐。
17.根据权利要求16所述的凝聚层,其中R4为甲基且n为2。
18.根据权利要求10所述的凝聚层,其中所述多磷酸盐化合物包括从10至90摩尔%的磷酸基团。
19.根据权利要求1所述的凝聚层,其中所述聚阴离子和/或聚阳离子包括能够经历氧化的至少一个二羟基芳族基团,其中所述二羟基芳族基团共价地连接到所述聚阴离子上。
20.根据权利要求1所述的凝聚层,其中所述凝聚层包括至少一种多价金属阳离子。
21.根据权利要求1所述的凝聚层,其中所述多价阳离子包括一种或多种二价阳离子或一种或多种过渡金属离子或稀土金属。
22.根据权利要求21所述的凝聚层,其中所述多价阳离子包括Ca+2和/或Mg+2
23.根据权利要求1所述的凝聚层,其中所述组合物还包括一种或多种生物活性剂。
24.根据权利要求1所述的凝聚层,其中所述凝聚层还包括可逆氧化剂复合物。
25.根据权利要求1所述的凝聚层,其中所述聚阳离子上的交联基团包括亲核基团且所述聚阴离子上的交联基团包括亲电基团。
26.根据权利要求1所述的凝聚层,其中所述聚阳离子上的交联基团包括亲电基团且所述聚阴离子上的交联基团包括亲核基团。
27.根据权利要求1所述的凝聚层,其中所述聚阳离子和聚阴离子上的交联基团包括能够经历氧化交联的邻-二羟基芳族基团。
28.根据权利要求1所述的凝聚层,其中所述聚阴离子上的交联基团包括邻-二羟基芳族基团且所述聚阳离子包括能够与所述交联基团反应以形成共价键的亲核基团。
29.根据权利要求1所述的凝聚层,其中所述聚阳离子上的交联基团包括邻-二羟基芳族基团且所述聚阴离子包括能够与所述交联基团反应以形成共价键的亲核基团。
30.根据权利要求1所述的凝聚层,其中所述聚阴离子和所述聚阳离子上的交联基团包括光化学上可交联的基团。
31.根据权利要求30所述的凝聚层,其中所述光化学上可交联的基团包括烯属基团。
32.根据权利要求31所述的凝聚层,其中所述烯属基团包括丙烯酸酯基、甲基丙烯酸酯基、丙烯酰胺基、甲基丙烯酰胺基、烯丙基、乙烯基、乙烯酯基或苯乙烯基。
33.根据权利要求1所述的凝聚层,其中所述聚阳离子包括含有一个或多个侧链氨基的聚丙烯酸酯。
34.根据权利要求1所述的凝聚层,其中所述聚阳离子包括含有一个或多个侧链咪唑基团的聚丙烯酸酯。
35.根据权利要求1所述的凝聚层,其中所述凝聚层还包括聚合引发剂和可选择的共引发剂。
36.根据权利要求35所述的凝聚层,其中所述聚合引发剂包括(1)自由基引发剂、热引发剂或光引发剂的一种或多种,或(2)两种或多种自由基引发剂、热引发剂或光引发剂。
37.根据权利要求36所述的凝聚层,其中所述光引发剂和可选择的共引发剂共价连接到所述聚阳离子和/或聚阴离子上。
38.根据权利要求36所述的凝聚层,其中所述光引发剂包括包含核黄素、曙红、曙红Y或玫瑰红的水溶性引发剂。
39.根据权利要求36所述的凝聚层,其中所述光引发剂包括氧化膦、过氧化物、叠氮化合物、α-羟基酮或α-氨基酮。
40.一种粘合剂,所述粘合剂通过包括以下的方法生产:
(a)加热权利要求1-39所述的粘合复合物凝聚层;和
(b)将所述凝聚层中的所述聚阳离子和聚阴离子交联,
其中,可在步骤(b)之前,在步骤(b)后,或与步骤(b)同时进行步骤(a)以生产所述粘合剂。
41.根据权利要求40所述的粘合剂,其中步骤(b)包括使用氧化剂以有利于所述聚阳离子和聚阴离子之间的交联。
42.根据权利要求41所述的粘合剂,其中所述氧化剂包括O2、NaIO4、过氧化物、或过渡金属氧化剂、或可逆氧化剂复合物。
43.一种粘合剂,所述粘合剂通过包括以下的方法生产:
(a)制备权利要求1-39的粘合复合物凝聚层;
(b)调节所述粘合复合物凝聚层的pH;和
(c)将所述凝聚层中的所述聚阳离子和聚阴离子交联,
其中可在步骤(c)之前,在步骤(c)后,或与步骤(c)同时进行步骤(b)以生产所述粘合剂。
44.根据权利要求43所述的粘合剂,其中多价阳离子为钙和/或镁,所述聚阳离子为多胺,所述聚阴离子为多磷酸盐,且钙与胺/磷酸基团的比例为从0.1至0.3,且镁与胺/磷酸基团的比例为从0.8至1.0。
45.根据权利要求43所述的粘合剂,其中步骤(b)包括将所述粘合复合物凝聚层的pH升至大于或等于7.0的pH。
46.根据权利要求45所述的粘合剂,其中步骤(b)包括将所述粘合复合物凝聚层的pH升至高达8.0的pH。
47.根据权利要求43所述的粘合剂,其中步骤(c)包括使用氧化剂以有利于所述聚阳离子和聚阴离子之间的交联。
48.根据权利要求47所述的粘合剂,其中所述氧化剂包括O2、NaIO4、过氧化物、过渡金属氧化剂、或可逆氧化剂复合物。
49.一种化合物,所述化合物包括含有能够经历氧化交联的至少一个二羟基芳族基团的聚阴离子或聚阳离子,其中所述二羟基芳族基团共价地连接到所述聚阴离子或聚阳离子上。
50.根据权利要求49所述的化合物,其中所述聚阴离子包括多磷酸盐。
51.根据权利要求50所述的聚阴离子,其中所述多磷酸盐化合物包括天然化合物、化学修饰的天然化合物或合成类似物。
52.根据权利要求50所述的化合物,其中所述多磷酸盐化合物包括侧链连接至所述聚合物骨架的至少一个磷酸基团和/或掺入所述聚合物骨架的至少一个磷酸基团。
53.根据权利要求49所述的化合物,其中所述聚阴离子包括含有一个或多个侧链磷酸基团的聚丙烯酸酯。
54.根据权利要求49所述的化合物,其中所述二羟基芳族基团包括DOPA或儿茶酚部分。
55.根据权利要求49所述的化合物,其中所述聚阴离子为(1)磷酸丙烯酸酯和/或磷酸甲基丙烯酸酯与(2)含有二羟基芳族基团的第二丙烯酸酯和/或第二甲基丙烯酸酯之间的聚合产物,所述二羟基芳族基团共价键合至所述第二丙烯酸酯或第二甲基丙烯酸酯。
56.根据权利要求49所述的化合物,其中所述聚阴离子为单丙烯酰氧乙基磷酸酯和多巴胺甲基丙烯酰胺之间的聚合产物。
57.一种用于修复受治疗者的骨折的方法,所述方法包括(a)将折断的骨与权利要求1-39所述的粘合复合物凝聚层接触和(b)将所述凝聚层中的所述聚阳离子和聚阴离子交联。
58.根据权利要求57所述的方法,其中所述骨折包括完全骨折、不完全骨折、线形骨折、横向骨折、斜形骨折、压缩骨折、螺旋形骨折、粉碎性骨折、碾压骨折、开放性骨折、关节内骨折、或颅面骨骨折。
59.根据权利要求57所述的方法,其中所述方法包括将骨碎片粘合至现存的骨。
60.一种用于将基材粘合至受治疗者的骨的方法,所述方法包括(a)将所述骨和/或基材与权利要求1-39所述的粘合复合物凝聚层接触;(b)将所述基材应用至所述骨;和(c)将所述凝聚层中的所述聚阳离子和聚阴离子交联。
61.根据权利要求60所述的方法,其中所述基材包括金属基材、箔、纤维或布片。
62.一种用于将骨-组织支架粘合至受治疗者的骨的方法,所述方法包括(a)将所述骨和/或组织与权利要求1-39所述的粘合复合物凝聚层接触;(b)将所述骨-组织支架应用到所述骨和组织上;和(c)将所述凝聚层中的所述聚阳离子和聚阴离子交联。
63.根据权利要求62所述的方法,其中所述组织包括软骨、韧带、腱、软组织、器官、膜组织、或其合成衍生物。
64.根据权利要求62所述的方法,其中所述支架包括有利于所述骨和组织的生长或修复的一种或多种药物。
65.根据权利要求1-39所述的粘合复合物凝聚层在牙科应用中的用途。
66.根据权利要求65所述的用途,其中所述用途包括治疗牙齿缺陷。
67.一种用于固定牙科植入物的方法,所述方法包括(a)将权利要求1-39所述的粘合复合物凝聚层应用到口腔基材和/或牙科植入物;(b)将所述牙科植入物连接到所述基材上;和(c)将所述凝聚层中的所述聚阳离子和聚阴离子交联。
68.一种用于递送一种或多种生物活性剂的方法,所述方法包括向受治疗者施用权利要求1-39所述的粘合复合物凝聚层。
69.一种用于修复受治疗者的角膜撕裂和/或结膜撕裂的方法,所述方法包括(a)将权利要求1-39所述的粘合复合物凝聚层应用到所述撕裂和(b)将所述凝聚层中的所述聚阳离子和聚阴离子交联。
70.一种用于抑制受治疗者的血管内的血流的方法,所述方法包括(a)将权利要求1-39所述的粘合复合物凝聚层引入到所述血管中和(b)将所述凝聚层中的所述聚阳离子和聚阴离子交联。
CN2010800383973A 2009-07-23 2010-07-23 粘合复合物凝聚层及其制备和使用方法 Pending CN102548581A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/508,280 US8283384B2 (en) 2008-01-24 2009-07-23 Adhesive complex coacervates and methods of making and using thereof
US12/508,280 2009-07-23
PCT/US2010/043009 WO2011011658A1 (en) 2009-07-23 2010-07-23 Adhesive complex coacervates and methods of making and using thereof

Publications (1)

Publication Number Publication Date
CN102548581A true CN102548581A (zh) 2012-07-04

Family

ID=43499829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800383973A Pending CN102548581A (zh) 2009-07-23 2010-07-23 粘合复合物凝聚层及其制备和使用方法

Country Status (7)

Country Link
US (3) US8283384B2 (zh)
EP (1) EP2456466B1 (zh)
JP (1) JP5928825B2 (zh)
CN (1) CN102548581A (zh)
AU (1) AU2010275504A1 (zh)
CA (1) CA2768501A1 (zh)
WO (1) WO2011011658A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103751837A (zh) * 2014-01-20 2014-04-30 西南交通大学 可控交联仿生组织粘合剂及其用途
CN104623725A (zh) * 2014-12-31 2015-05-20 深圳清华大学研究院 生物粘合剂及其制备方法
CN105431465A (zh) * 2012-11-09 2016-03-23 高露洁-棕榄公司 用于牙釉质防护的嵌段共聚物
CN108371728A (zh) * 2018-03-09 2018-08-07 西南交通大学 一种用于组织修复的仿贻贝接触抗菌水凝胶的制备方法
CN109293947A (zh) * 2018-05-16 2019-02-01 华东理工大学 一种超高强度矿化水凝胶及其合成方法
CN109890428A (zh) * 2016-10-13 2019-06-14 阿勒根公司 用于真皮填充剂应用的凝聚层透明质素水凝胶
CN110180021A (zh) * 2019-06-17 2019-08-30 西南交通大学 贻贝仿生粘合剂-磷酸钙高强度骨修复材料、高强度复合CaP支架及其制备方法
CN110373153A (zh) * 2019-08-22 2019-10-25 中国科学院长春应用化学研究所 一种高粘合强度的生物粘合剂及其制备方法
CN110642980A (zh) * 2018-06-27 2020-01-03 华东理工大学 一种超高强度矿化水凝胶、合成方法及其应用
CN111849386A (zh) * 2020-07-22 2020-10-30 上海交通大学 一种絮凝酵母生物粘合剂及其制备和使用方法
CN114010359A (zh) * 2021-04-30 2022-02-08 中国计量大学 用于协助口腔牙齿敷药治疗器具的制取方法
CN114225109A (zh) * 2021-12-22 2022-03-25 上海交通大学 一种人工神经鞘水凝胶修复系统及其制备方法和应用
CN115843780A (zh) * 2022-11-18 2023-03-28 广州瑞泰生物科技有限公司 生物膜保存液及其制备方法和应用

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283384B2 (en) 2008-01-24 2012-10-09 University Of Utah Research Foundation Adhesive complex coacervates and methods of making and using thereof
JP5530934B2 (ja) 2008-01-24 2014-06-25 ユニバーシティ オブ ユタ リサーチ ファンデーション 接着複合コアセルベートならびにその作製および使用方法
ES2616857T3 (es) 2008-11-12 2017-06-14 Howmedica Osteonics Corp. Composiciones organofosforadas a base de fosfato tetracálcico y métodos
WO2011025158A2 (ko) * 2009-08-25 2011-03-03 포항공과대학교 산학협력단 홍합 접착 단백질 또는 이의 변이체에 음이온성 고분자가 포함된 코아세르베이트
CA2788998A1 (en) * 2010-02-26 2011-09-01 University Of Utah Research Foundation Adhesive complex coacervates produced from electrostatically associated block copolymers and methods for making and using the same
US9119605B2 (en) 2010-05-06 2015-09-01 Zimmer, Inc. Synthetic polymer adhesives and methods for making, using and delivering the same
CA2798710C (en) 2010-05-11 2019-08-27 Venkat R. Garigapati Organophosphorous, multivalent metal compounds, & polymer adhesive interpenetrating network compositions & methods
EP2575906B1 (en) 2010-05-24 2014-12-10 University of Utah Research Foundation Reinforced adhesive complex coacervates and methods of making and using thereof
CA2812599A1 (en) * 2010-11-12 2012-05-18 University Of Utah Research Foundation Simple adhesive coacervates and methods of making and using thereof
WO2012158527A2 (en) 2011-05-13 2012-11-22 Howmedica Osteonics Organophosphorous & multivalent metal compound compositions & methods
CN104136602B (zh) * 2011-06-23 2017-06-09 成功大学 细胞组织胶黏剂
AU2012275516A1 (en) * 2011-06-28 2014-01-23 University Of Utah Research Foundation Adhesive complex coacervates and methods of making and using thereof
CN109602944A (zh) * 2011-11-13 2019-04-12 克里斯龙公司 原位可交联的聚合物组合物及其方法
WO2013074748A1 (en) * 2011-11-16 2013-05-23 The University Of North Carolina At Chapel Hill Gelatinous hydroxyapatite-nanocomposites
EP2798027A4 (en) * 2011-11-28 2015-10-07 Boxin Zhao METHOD AND APPARATUS FOR COLLAGE ASSEMBLY IN AQUEOUS MEDIUM
EP2607446A1 (en) 2011-12-19 2013-06-26 Shell Internationale Research Maatschappij B.V. Method for consolidating and/or sealing a void in a subsurface formation
WO2013134269A2 (en) * 2012-03-06 2013-09-12 Kci Licensing, Inc. New compositions, the preparation and use thereof
CN104884545B (zh) 2012-10-29 2017-03-22 阿里斯特医疗公司 聚合物涂料组合物和涂覆的产品
US10077324B2 (en) 2013-02-06 2018-09-18 Kci Licensing, Inc. Polymers, preparation and use thereof
WO2014164731A1 (en) 2013-03-11 2014-10-09 University Of Utah Research Foundation Sensor systems
US20150018964A1 (en) * 2013-07-09 2015-01-15 Arthrex, Inc. Bone void plugs and methods of use
US20150086602A1 (en) * 2013-09-25 2015-03-26 Colorado State University Research Foundation Methods for coating bone allografts with periosteum-mimetic tissue engineering scaffolds
US9814778B2 (en) 2014-03-06 2017-11-14 The University Of Toledo Ionically crosslinked polyelectrolytes as underwater adhesives as controlled release vehicles
GB2537770B (en) 2014-04-22 2017-09-13 Ariste Medical Llc Methods and processes for application of drug delivery polymeric coatings
WO2016011028A1 (en) 2014-07-14 2016-01-21 University Of Utah Research Foundation In situ solidifying complex coacervates and methods of making and using thereof
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10611927B2 (en) 2015-05-26 2020-04-07 Japan Science And Technology Agency Catechol-containing adhesive hydrogel, composition for preparing adhesive hydrogel, and compositions each including said adhesive hydrogel
ES2875098T3 (es) 2015-06-22 2021-11-08 Cresilon Inc Andamiaje de polímero adhesivo hemostático de alta eficacia
JP6851377B2 (ja) * 2015-09-01 2021-03-31 トリンプ アイピー ピーティーワイ リミテッド 骨再生のための生物活性重合体
US10087344B2 (en) 2015-10-30 2018-10-02 E Ink Corporation Methods for sealing microcell containers with phenethylamine mixtures
CA2914315C (en) * 2015-12-09 2023-04-25 Nova Chemicals Corp. Hot fill process with closures made from high density unimodal polyethylene
CA2914353C (en) * 2015-12-10 2023-01-24 Nova Chemicals Corp. Hot fill process with closures made from high density polyethylene compositions
US9861562B2 (en) * 2015-12-16 2018-01-09 Colgate-Palmolive Company Occlusive personal care composition
EP3435961B1 (en) 2016-03-29 2024-01-03 SafeWhite, Inc. Polyelectrolyte dental adhesives for whitening teeth and teeth components
WO2018044124A1 (ko) * 2016-09-01 2018-03-08 포항공과대학교 산학협력단 신규한 줄기 세포 전달체 및 이의 제조 방법
KR102092782B1 (ko) * 2016-11-16 2020-03-25 포항공과대학교 산학협력단 홍합 접착 단백질을 포함하는 신규한 지혈제 및 이의 제조 방법
US20190021966A1 (en) * 2017-07-19 2019-01-24 Dentsply Sirona Inc. Water-soluble hydrogel-based dental composition and methods of making and using same
EP3687479A4 (en) * 2017-09-29 2021-07-14 SafeWhite, Inc. POLYELECTROLYTE DENTAL COATINGS
WO2019147922A2 (en) 2018-01-26 2019-08-01 Fluidx Medical Technology, Llc Apparatus and method of using in situ solidifying complex coacervates for vascular occlusion
EP3801396A4 (en) 2018-06-11 2022-06-15 Histogenics Corporation SCAFFOLD WITH ADHESIVE FOR ARTICULATE RESTORATION
KR102462168B1 (ko) * 2019-08-14 2022-11-02 (주)네이처글루텍 홍합접착단백질로 코팅된 치과용 임플란트
WO2023086358A1 (en) * 2021-11-10 2023-05-19 University Of Massachusetts Liquid complex coacervates, articles derived therefrom, and methods for the manufacture thereof
CN114210216B (zh) * 2021-12-07 2024-06-21 沈阳工业大学 一种离子液体改性聚多巴胺包覆的三氧化二铝制备混合基质膜的方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010056301A1 (en) * 2000-03-13 2001-12-27 Goupil Dennis W. Hydrogel biomedical articles
US20020164364A1 (en) * 2001-05-02 2002-11-07 3M Innovative Properties Company Active material immobilized in stable hydrogel microbeads
US20060122290A1 (en) * 1997-04-21 2006-06-08 California Institute Of Technology, California Multifunctional polymeric tissue coatings

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458360A (en) 1966-08-17 1969-07-29 Us Army Alkaline cell having silver-magnesium alloy electrode
US3458460A (en) 1967-11-27 1969-07-29 Hooker Chemical Corp Unsaturated polyesters cross-linked by diels-alder reaction
US3950296A (en) 1972-04-28 1976-04-13 The Dow Chemical Company Reversible coacervation of anion-containing aqueous disperse systems with amphoteric polyelectrolytes
US3947396A (en) 1972-04-28 1976-03-30 The Dow Chemical Company Coacervation of anion-containing aqueous disperse systems with amphoteric polyelectrolytes
US4767463A (en) 1987-04-15 1988-08-30 Union Carbide Corporation Glycosaminoglycan and cationic polymer combinations
US4913743A (en) 1987-04-15 1990-04-03 Biomatrix, Inc. Processes for managing keratinous material using glycosaminoglycan and cationic polymer combinations
US5529914A (en) 1990-10-15 1996-06-25 The Board Of Regents The Univeristy Of Texas System Gels for encapsulation of biological materials
TW328535B (en) 1993-07-02 1998-03-21 Novartis Ag Functional photoinitiators and their manufacture
AU7634694A (en) 1993-08-20 1995-03-21 University Of Medicine And Dentistry Of New Jersey Bridged polycationic polymer-oligonucleotide conjugates and methods for preparing same
DE19810965A1 (de) 1998-03-13 1999-09-16 Aventis Res & Tech Gmbh & Co Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung
US6428978B1 (en) 1998-05-08 2002-08-06 Cohesion Technologies, Inc. Methods for the production of gelatin and full-length triple helical collagen in recombinant cells
US6497729B1 (en) 1998-11-20 2002-12-24 The University Of Connecticut Implant coating for control of tissue/implant interactions
WO2000043050A1 (en) 1999-01-22 2000-07-27 St. Jude Medical, Inc. Medical adhesives
US6312725B1 (en) 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition
AU5995400A (en) 1999-07-08 2001-01-30 Quantumbeam Limited Signalling system
US6916488B1 (en) 1999-11-05 2005-07-12 Biocure, Inc. Amphiphilic polymeric vesicles
US20020006886A1 (en) 1999-11-19 2002-01-17 Peter William Beerse Personal care articles comprising cationic polymer coacervate compositions
ES2223914T3 (es) 2000-08-02 2005-03-01 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Produccion de capsulas de polielectrolitos mediante precipitacion superficial.
US6488870B1 (en) 2000-11-27 2002-12-03 Xerox Corporation Encapsulation process
WO2002067908A1 (en) 2001-02-26 2002-09-06 Duke University Novel dendritic polymers and their biomedical uses
US6568398B2 (en) 2001-03-07 2003-05-27 Edgar C. Cohen Method for hemostasis
FR2824756B1 (fr) 2001-05-16 2005-07-08 Mainelab Microcapsules a base de proteines vegetales
MXPA03011263A (es) * 2001-06-07 2004-02-26 Surmodics Inc Macromeros reticulables.
US6559233B2 (en) 2001-07-13 2003-05-06 Rhodia Chimie Composition comprising a copolymer at least two charged blocks and type of opposite charge
US7204997B2 (en) 2002-01-29 2007-04-17 Supratek Pharma Inc. Responsive microgel and methods related thereto
EP1482994A1 (en) 2002-03-11 2004-12-08 First Water Limited Absorbent hydrogels
JP4058283B2 (ja) 2002-03-22 2008-03-05 株式会社リコー 振動検出装置
US7060798B2 (en) * 2002-05-13 2006-06-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Modified protein adhesives and lignocellulosic composites made from the adhesives
US6958848B2 (en) 2002-05-23 2005-10-25 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US6800663B2 (en) 2002-10-18 2004-10-05 Alkermes Controlled Therapeutics Inc. Ii, Crosslinked hydrogel copolymers
US8105652B2 (en) 2002-10-24 2012-01-31 Massachusetts Institute Of Technology Methods of making decomposable thin films of polyelectrolytes and uses thereof
CN1446590A (zh) 2003-01-21 2003-10-08 华东理工大学 新型聚肽/磷酸钙复合骨水泥
DE10334753A1 (de) 2003-07-30 2005-03-10 Constr Res & Tech Gmbh Selbstvernetzende hochmolekulare Polyurethan-Dispersion
US9340595B2 (en) 2003-08-11 2016-05-17 University Of Utah Research Foundation Crosslinking within coordination complexes
US7544770B2 (en) 2003-08-29 2009-06-09 Louisiana Tech Foundation, Inc. Multilayer films, coatings, and microcapsules comprising polypeptides
EP1518568B1 (en) 2003-09-25 2009-05-27 Wageningen Universiteit, Agrotechnologie en Voedingswetenschappen Complex coacervate core micelles as anti-fouling agents
US7608674B2 (en) 2003-11-03 2009-10-27 Ilypsa, Inc. Pharmaceutical compositions comprising cross-linked small molecule amine polymers
CA2536041A1 (en) 2003-11-10 2005-05-26 Angiotech International Ag Medical implants and fibrosis-inducing agents
US7780873B2 (en) 2004-02-23 2010-08-24 Texas A&M University System Bioactive complexes compositions and methods of use thereof
WO2007024972A2 (en) 2005-08-22 2007-03-01 Quick-Med Technologies, Inc. Non-leaching absorbent wound dressing
US7854924B2 (en) 2004-03-30 2010-12-21 Relypsa, Inc. Methods and compositions for treatment of ion imbalances
KR101148445B1 (ko) 2004-04-28 2012-07-05 안지오디바이스 인터내셔널 게엠베하 가교된 생합성물질을 형성하기 위한 조성물 및 시스템, 및 이와 관련된 제조 및 사용 방법
WO2006023207A2 (en) * 2004-08-19 2006-03-02 The United States Of America As Represented By The Secretary Of Health And Human Services, Nih Coacervate of anionic and cationic polymer forming microparticles for the sustained release of therapeutic agents
US20060039950A1 (en) 2004-08-23 2006-02-23 Zhengrong Zhou Multi-functional biocompatible coatings for intravascular devices
US20060116682A1 (en) 2004-11-18 2006-06-01 Longo Marc N Surgical implant and methods of making and using the same
US7795359B2 (en) * 2005-03-04 2010-09-14 Novartis Ag Continuous process for production of polymeric materials
EP1888729A4 (en) 2005-06-01 2009-07-08 Rhodia COACERVATION SYSTEMS HAVING ANTI-DEPOSITION PROPERTIES AND ANTI-ADHERENCE OF SOIL ON HYDROPHILIC SURFACES
US8691542B2 (en) * 2005-09-09 2014-04-08 Cytex Therapeutics, Inc. Tissue engineering methods and compositions
WO2007082061A2 (en) 2006-01-11 2007-07-19 Hyperbranch Medical Technology, Inc. Crosslinked gels comprising polyalkyleneimines, and their uses as medical devices
US9198981B2 (en) 2006-02-01 2015-12-01 The University Of Kentucky Modulation of angiogenesis
US20090169532A1 (en) 2006-02-27 2009-07-02 Ying Jackie Y Curable bone cement
JP5597836B2 (ja) 2006-08-04 2014-10-01 ケンジー ナッシュ コーポレイション バイオミメティック化合物およびその合成方法
DE102007015698B4 (de) 2007-03-27 2009-05-14 Innotere Gmbh Implantatmaterial auf Basis eines Polymersystems und dessen Verwendung sowie Applikationsset
JP2009084224A (ja) 2007-09-28 2009-04-23 Fujifilm Corp マイクロカプセル及びその製造方法
WO2009085952A1 (en) 2007-12-20 2009-07-09 Brookwood Pharmaceuticals, Inc. Process for preparing microparticles having a low residual solvent volume
JP5530934B2 (ja) 2008-01-24 2014-06-25 ユニバーシティ オブ ユタ リサーチ ファンデーション 接着複合コアセルベートならびにその作製および使用方法
US8283384B2 (en) 2008-01-24 2012-10-09 University Of Utah Research Foundation Adhesive complex coacervates and methods of making and using thereof
CA2731072C (en) 2008-07-18 2016-11-08 Quick-Med Technologies, Inc. Polyelectrolyte complex for imparting antimicrobial properties to a substrate
WO2010021930A1 (en) 2008-08-16 2010-02-25 Synedgen, Inc. Prevention and treatment of mrsa infections with chitosan-derivatives
JP2009084292A (ja) 2008-11-14 2009-04-23 Cell-Medicine Inc 免疫アジュバント
US8618250B2 (en) 2009-07-17 2013-12-31 The Texas A&M University System Designer collagens and use thereof
EP2473042B1 (en) 2009-09-02 2017-08-02 Synedgen, Inc. Methods and compositions for disrupting biofilm utilizing chitosan-derivative compounds
CA2788998A1 (en) 2010-02-26 2011-09-01 University Of Utah Research Foundation Adhesive complex coacervates produced from electrostatically associated block copolymers and methods for making and using the same
EP2575906B1 (en) 2010-05-24 2014-12-10 University of Utah Research Foundation Reinforced adhesive complex coacervates and methods of making and using thereof
CA2812599A1 (en) 2010-11-12 2012-05-18 University Of Utah Research Foundation Simple adhesive coacervates and methods of making and using thereof
CN109602944A (zh) 2011-11-13 2019-04-12 克里斯龙公司 原位可交联的聚合物组合物及其方法
WO2016011028A1 (en) 2014-07-14 2016-01-21 University Of Utah Research Foundation In situ solidifying complex coacervates and methods of making and using thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060122290A1 (en) * 1997-04-21 2006-06-08 California Institute Of Technology, California Multifunctional polymeric tissue coatings
US20010056301A1 (en) * 2000-03-13 2001-12-27 Goupil Dennis W. Hydrogel biomedical articles
US20020164364A1 (en) * 2001-05-02 2002-11-07 3M Innovative Properties Company Active material immobilized in stable hydrogel microbeads

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431465A (zh) * 2012-11-09 2016-03-23 高露洁-棕榄公司 用于牙釉质防护的嵌段共聚物
CN105431465B (zh) * 2012-11-09 2018-04-27 高露洁-棕榄公司 用于牙釉质防护的嵌段共聚物
CN103751837B (zh) * 2014-01-20 2015-08-05 西南交通大学 可控交联仿生组织粘合剂及其用途
CN103751837A (zh) * 2014-01-20 2014-04-30 西南交通大学 可控交联仿生组织粘合剂及其用途
CN104623725A (zh) * 2014-12-31 2015-05-20 深圳清华大学研究院 生物粘合剂及其制备方法
CN104623725B (zh) * 2014-12-31 2017-01-18 深圳清华大学研究院 生物粘合剂及其制备方法
CN109890428A (zh) * 2016-10-13 2019-06-14 阿勒根公司 用于真皮填充剂应用的凝聚层透明质素水凝胶
CN109890428B (zh) * 2016-10-13 2022-06-10 阿勒根公司 用于真皮填充剂应用的凝聚层透明质素水凝胶
CN108371728A (zh) * 2018-03-09 2018-08-07 西南交通大学 一种用于组织修复的仿贻贝接触抗菌水凝胶的制备方法
CN108371728B (zh) * 2018-03-09 2020-12-18 西南交通大学 一种用于组织修复的仿贻贝接触抗菌水凝胶的制备方法
CN109293947A (zh) * 2018-05-16 2019-02-01 华东理工大学 一种超高强度矿化水凝胶及其合成方法
CN110642980A (zh) * 2018-06-27 2020-01-03 华东理工大学 一种超高强度矿化水凝胶、合成方法及其应用
CN110180021A (zh) * 2019-06-17 2019-08-30 西南交通大学 贻贝仿生粘合剂-磷酸钙高强度骨修复材料、高强度复合CaP支架及其制备方法
CN110180021B (zh) * 2019-06-17 2020-10-27 西南交通大学 贻贝仿生粘合剂-磷酸钙高强度骨修复材料、高强度复合CaP支架及其制备方法
CN110373153A (zh) * 2019-08-22 2019-10-25 中国科学院长春应用化学研究所 一种高粘合强度的生物粘合剂及其制备方法
CN110373153B (zh) * 2019-08-22 2021-04-06 中国科学院长春应用化学研究所 一种高粘合强度的生物粘合剂及其制备方法
CN111849386A (zh) * 2020-07-22 2020-10-30 上海交通大学 一种絮凝酵母生物粘合剂及其制备和使用方法
CN114010359A (zh) * 2021-04-30 2022-02-08 中国计量大学 用于协助口腔牙齿敷药治疗器具的制取方法
CN114225109A (zh) * 2021-12-22 2022-03-25 上海交通大学 一种人工神经鞘水凝胶修复系统及其制备方法和应用
CN114225109B (zh) * 2021-12-22 2022-08-23 上海交通大学 一种人工神经鞘水凝胶修复系统及其制备方法和应用
CN115843780A (zh) * 2022-11-18 2023-03-28 广州瑞泰生物科技有限公司 生物膜保存液及其制备方法和应用

Also Published As

Publication number Publication date
EP2456466A4 (en) 2014-07-23
US20130189313A1 (en) 2013-07-25
CA2768501A1 (en) 2011-01-27
EP2456466A1 (en) 2012-05-30
JP5928825B2 (ja) 2016-06-01
EP2456466B1 (en) 2019-05-08
US20180272027A1 (en) 2018-09-27
WO2011011658A1 (en) 2011-01-27
US20100120923A1 (en) 2010-05-13
US9913926B2 (en) 2018-03-13
US8283384B2 (en) 2012-10-09
JP2013500072A (ja) 2013-01-07
AU2010275504A1 (en) 2012-02-02
US10517987B2 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
CN102548581A (zh) 粘合复合物凝聚层及其制备和使用方法
RU2530653C2 (ru) Адгезивные комплексные коацерваты и способы их получения и применения
US9421300B2 (en) Simple coacervates and methods of use thereof
US20160250375A1 (en) Reinforced adhesive complex coacervates and methods of making and using thereof
KR101850424B1 (ko) 조직접착용 포스파젠계 고분자, 이의 제조방법 및 용도
AU2014203210A1 (en) Adhesive complex coacervates and methods of making and using thereof
AU2011258511A1 (en) Reinforced adhesive complex coacervates and methods of making and using thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120704