CN110642980A - 一种超高强度矿化水凝胶、合成方法及其应用 - Google Patents

一种超高强度矿化水凝胶、合成方法及其应用 Download PDF

Info

Publication number
CN110642980A
CN110642980A CN201810679341.4A CN201810679341A CN110642980A CN 110642980 A CN110642980 A CN 110642980A CN 201810679341 A CN201810679341 A CN 201810679341A CN 110642980 A CN110642980 A CN 110642980A
Authority
CN
China
Prior art keywords
hydrogel
mineralized
dissolved
bmap
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810679341.4A
Other languages
English (en)
Inventor
张锐
姚远
周天旭
彭宏伟
朱学栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201810679341.4A priority Critical patent/CN110642980A/zh
Publication of CN110642980A publication Critical patent/CN110642980A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/10Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0654Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cell Biology (AREA)
  • Rheumatology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及一种超高强度矿化水凝胶、合成方法及其应用,其制备方法是:(1)令阳离子型聚合物占整个体系的10wt%,将其分别溶于20wt%、30wt%、40wt%、50wt%的水中;(2)待其溶解完毕后分别加入70wt%、60wt%、50wt%、40wt%的磷酸氢二(甲基丙烯酰氧乙基)酯(BMAP),光引发剂0.02‑0.1g,混合于玻璃模具内超声分散30min,放置于紫外灯下照射20‑60min后得到未矿化的水凝胶;(3)在阳离子溶解完成后的体系加入与BMAP物质的量相同的氯化钙固体,待其溶解完成后重复上述步骤(2)的合成方法即可得到高强度矿化水凝胶。该水凝胶具有超高的抗压性能以及良好的生物相容性。

Description

一种超高强度矿化水凝胶、合成方法及其应用
技术领域
本发明涉及高分子材料领域,具体为制备超高强度矿化水凝胶及其合成方法。
背景技术
水凝胶是指由亲水性高分子经物理、化学交联后形成的三维网状高分子聚合物。由于水凝胶自身的亲水性、良好的渗透性和优异的生物相容性,近年来在生物组织培养和药物控释等领域受到广泛的关注。传统制备水凝胶的方法是利用小分子交联剂构建三维网络,这样制备的凝胶力学性能较差,受到外力作用易发生破碎,制约着水凝胶在工业上的应用。在水凝胶的实际应用中,除了优异的机械性能外,还需要有潜在的应用价值,例如良好的生物相容性、刺激响应性、形状记忆性、自修复性等,因此制备智能化的高性能水凝胶依然是难以解决的问题。
酰基化反应是指反应物上的伯胺或仲胺与酰氯等酰基化试剂发生反应,氨基上的氢原子可被酰基取代,生成N-取代酰胺或N,N’-二取代酰胺的过程。这个过程可在反应物上引入不饱和的碳碳双键,作为合成高分子聚合物的单体。
无规共聚反应是指由几种含有不饱和双键的单体发生聚合,各单体单元无规则排列生成聚合物的过程。
发明内容
本发明的目的是利用酰胺化反应和无规共聚反应制备阳离子型共聚物,并将此阳离子型聚合物作为大分子交联剂用于水凝胶的合成。
本发明的具体技术方案是:
一种超高强度矿化水凝胶水凝胶,该水凝胶内部结构比较致密,孔道较少,一般最大压缩率在10%左右。
进一步的,所述水凝胶经矿化过程后其内部能形成球形的无机矿层。
进一步的,所述水凝胶经矿化过程后能承受的最大压强在5MPa以上。
进一步的,所述水凝胶经矿化之后热分解温度会有所提升。
进一步的,所述水凝胶的生物相容性优良,可用于成骨细胞培育的模板。
本发明还提出了一种超高强度的水凝胶的合成方法:使得阳离子型聚合物占整个体系的10wt%,将其溶于20wt%、30wt%、40wt%、50wt%的水中。待其溶解完毕后分别加入70wt%、60wt%、50wt%、40wt%的磷酸氢二(甲基丙烯酰氧乙基)酯(BMAP),光引发剂0.02-0.1g,混合于玻璃模具,并超声30min后,放置于紫外灯下照射20-60min后得到水凝胶。
进一步的,在阳离子溶解完成后的体系加入与BMAP物质的量相同的氯化钙固体,待其溶解完成后重复发明内容[0011]所述的合成方法即可得到高强度的矿化水凝胶。
进一步的,所述阳离子型聚合物是按如下方法合成的,
(1)酰基化反应制备含碳碳双键的多巴胺:取5-15g(优选8-12g)多巴胺盐酸盐单体,3-9ml(优选4.8-7.2ml)甲基丙烯酰氯,9-27ml(优选14.4-21.6ml)三乙胺,50-150ml(优选80-120ml)去甲醇于双口烧瓶中,恒温磁力搅拌。反应温度调节至273-293K(优选278-288K),反应0.5-3h(优选1-2h)后,体系经减压悬蒸除去大部分甲醇,残余物溶于100-300ml(优选150-250ml)的乙酸乙酯中,使用0.1-3mol/L(优选0.5-2mol/L)的盐酸溶液50-100ml(优选70-80ml)洗涤乙酸乙酯,静置后分离出上层清液,悬蒸除去溶剂即可得到含碳碳双键的多巴胺(DMA)。
(2)DMA与阳离子型单体(甲基丙烯酰氧乙基三甲基氯化铵,以下简称DMC)进行无规共聚:称取0.5-3g(优选0.8-2g)的DMA于两口烧瓶中,用40-140ml(优选60-100ml)的甲醇中溶解,机械搅拌均匀后,加入5-20ml(优选8-15ml)的DMC和0.03-0.15g(优选0.05-0.14g)的偶氮二异丁腈(AIBN),323-353K(优选338-348K)下反应6-16h(优选8-14h),所得产物用200-600ml(优选300-500ml)的无水乙醚沉淀即可得到阳离子型共聚物(DMCDMA)。
矿化水凝胶应用于培育成骨细胞的模板(以水含量30%的矿化水凝胶为基础,交联剂含量为10%、20%):取预先经过373-413K(优选383-403K)高温蒸汽处理1-3h(优选2-2.5h)的水凝胶0.5-2g(优选1-1.5g)于培养基上,使用磷酸盐缓冲液将培养氛围的pH调节至6-8(优选6.8-7.6),保持pH恒定5-12d(优选6-10d)后,将牛成骨细胞接种在水凝胶上培养5-14d(优选7-12d)。成骨细胞培育实验的数据表明,该水凝胶具有优良的生物相容性,可作为培育成骨细胞的模板。
附图说明
图1未矿化水凝胶合成示意图;
图2矿化水凝胶合成示意图;
图3未矿化水凝胶内部结构扫描电镜图(以BMAP含量为60wt%的水凝胶为例);
图4矿化水凝胶内部结构扫描电镜图(以BMAP含量为60wt%的水凝胶为例);
图5交联剂含量10%四种不同BMAP含量未矿化水凝胶压缩性能测试曲线图;
图6交联剂含量10%四种不同BMAP含量矿化水凝胶的压缩性能测试曲线图;
图7交联剂含量10%四种不同BMAP含量水凝胶矿化前后最大承压力对比图;
图8水凝胶矿化前后热分解曲线变化图(以BMAP含量为60wt%的水凝胶为例);
图9交联剂含量为10%的矿化水凝胶共聚焦显微镜图(以BMAP含量为60wt%的水凝胶为例);
图10交联剂含量为20%的矿化水凝胶共聚焦显微镜图(以BMAP含量为60wt%的水凝胶为例)。
具体实施方式
阳离子型聚合物(DMCDMA)的合成
(1)酰基化反应制备含碳碳双键的多巴胺:10g多巴胺盐酸盐单体,5ml甲基丙烯酰氯,18ml三乙胺,100ml甲醇于二口烧瓶中,氮气氛围283K下反应2h,经过减压悬蒸除去大部分甲醇,残余物溶于200ml的乙酸乙酯中,使用2mol/L的盐酸溶液70ml洗涤乙酸乙酯,静置后分离出上层清液,悬蒸除去溶剂即可得到含碳碳双键的多巴胺(DMA)。
(2)DMA与DMC进行无规共聚:取1.2g的DMA在70ml甲醇中溶解完毕后加入10ml的DMC和0.13g AIBN,均匀混合后体系升温至343K反应12h,产物用400ml无水乙醚沉淀即可得到阳离子型聚合物DMCDMA。
超高强度矿化水凝胶的制备(如图1、2所示):
(1)高强度未矿化水凝胶的制备(BMAP含量为60wt%的水凝胶为例):取1g上述合成的阳离子型聚合物DMCDMA溶解在3ml水中,待体系均匀后分别加人6g的BMAP和0.05g光引发剂,混合于玻璃模具,并超声30min后,放置于紫外灯下照射30min后得到未矿化水凝胶。
(2)超高强度矿化水凝胶的制备(BMAP含量为60wt%的水凝胶为例):取1g上述合成的阳离子型聚合物DMCDMA和2g氯化钙(CaCl2)溶解在3ml水中,待体系均匀后分别加人6g的BMAP和0.05g光引发剂,混合于玻璃模具,并超声30min后,放置于紫外灯下照射30min后得到矿化水凝胶。
下表是实施例1~4的四种不同BMAP含量(70wt%、60wt%、50wt%、40wt%)的水凝胶组分含量
DD含量10%各水凝胶的组成配比表
Figure BDA0001710015770000041
注:实施例1~4水凝胶在矿化过程中应引入的CaCl2分别为2.4g、2.0g、1.7g、1.4g
矿化水凝胶应用于培育成骨细胞的模板:取预先经过393K高温蒸汽处理2h的水凝胶1g于培养基上,使用磷酸盐缓冲液将培养氛围的pH调节至7.0,保持pH恒定7d后,将牛成骨细胞接种在水凝胶上培养12d。
本发明超高强度矿化水凝胶结构表征和性能测试:
图3对该水凝胶(以BMAP含量为60wt%的水凝胶为例)的内部微观结构的扫描电镜图表明,该水凝胶内部具有比较致密的结构,孔道较少,因此在通常状态下就可以抵抗较大的压力而不发生明显的形变
图4对该矿化水凝胶(以BMAP含量为60wt%的水凝胶为例)的内部微观结构的扫描电镜图表明,经过矿化后在水凝胶的内部会形成球形的无机矿层。
图5-7压缩性能测试数据表明,矿化前该水凝胶在不发生明显形变的情况下也能承受较大的压力,最高可承受的压强可到4.6MPa;在相同压缩率下BMAP的含量越高其对应水凝胶的承压力也大;经过矿化后的各组水凝胶的最大承压力都有了明显的提升:70wt%BMAP的水凝胶最大压强从4.6MPa提升至14.7MPa,60wt%BMAP的水凝胶最大压强从2.1MPa提升至10.3MPa,50wt%BMAP的水凝胶最大压强从1.0MPa提升至5.1MPa。但经矿化后成胶所需的最小主体量也在上升(未矿化时BMAP含量在40%以上即可成胶,矿化后BMAP含量在50%以上方才可成胶)。
图8水凝胶矿化前后热重的曲线(BMAP含量为60wt%的水凝胶)表明:水凝胶经矿化之后分解相同重量所需要的温度会有所提升,与矿化前相比分解温度能上升50℃左右,证明该水凝胶矿化效果良好。
图9-10矿化水凝胶共聚焦显微镜图像显示:该水凝胶具有优良的生物相容性,且随着水凝胶中交联剂(有效成分为多巴胺)含量的增加,单位面积上细胞的分布密度也越高。(BMAP含量为60wt%的水凝胶)。

Claims (6)

1.一种超高强度矿化水凝胶的合成方法,具体步骤如下:
(1)令阳离子型聚合物占整个体系的10wt%,将其分别溶于20wt%、30wt%、40wt%、50wt%的水中;
(2)待其溶解完毕后分别加入70wt%、60wt%、50wt%、40wt%的磷酸氢二(甲基丙烯酰氧乙基)酯(BMAP),光引发剂0.02-0.1g,混合于玻璃模具内超声分散30min,放置于紫外灯下照射20-60min后得到未矿化的水凝胶;
(3)在阳离子溶解完成后的体系加入与BMAP物质的量相同的氯化钙固体,待其溶解完成后重复上述步骤(2)的合成方法即可得到高强度矿化水凝胶。
2.根据权利要求1所述的超高强度矿化水凝胶的合成方法,其特征在于,所述阳离子型聚合物是按如下方法合成的:
(1)酰基化反应制备含碳碳双键的多巴胺:取5-15g(优选8-12g)多巴胺盐酸盐单体,3-9ml(优选4.8-7.2ml)甲基丙烯酰氯,9-27ml(优选14.4-21.6ml)三乙胺,50-150ml(优选80-120ml)去甲醇于双口烧瓶中,恒温磁力搅拌。反应温度调节至273-293K(优选278-288K),反应0.5-3h(优选1-2h)后,体系经减压悬蒸除去大部分甲醇,残余物溶于100-300ml(优选150-250ml)的乙酸乙酯中,使用0.1-3mol/L(优选0.5-2mol/L)的盐酸溶液50-100ml(优选70-80ml)洗涤乙酸乙酯,静置后分离出上层清液,悬蒸除去溶剂即可得到含碳碳双键的多巴胺(DMA);
(2)DMA与阳离子型单体(甲基丙烯酰氧乙基三甲基氯化铵,以下简称DMC)进行无规共聚:称取0.5-3g(优选0.8-2g)的DMA于两口烧瓶中,用40-140ml(优选60-100ml)的甲醇中溶解,机械搅拌均匀后,加入5-20ml(优选8-15ml)的DMC和0.03-0.15g(优选0.05-0.14g)的偶氮二异丁腈(AIBN),323-353K(优选338-348K)下反应6-16h(优选8-14h),所得产物用200-600ml(优选300-500ml)的无水乙醚沉淀即可得到阳离子型共聚物(DMCDMA)。
3.根据权利要求1或2所述合成方法制得的超高强度矿化水凝胶,其特征在于,所述水凝胶内部结构致密,最大压缩率达到10%。
4.根据权利要求1或2所述合成方法制得的超高强度矿化水凝胶,其特征在于,所述水凝胶经矿化过程后其内部形成球形的无机矿层。
5.一种超高强度矿化水凝胶的应用,其特征在于,该水凝胶用于成骨细胞培育的模板。
6.根据权利要求5所述的应用,其特征在于,所述矿化水凝胶应用于培育成骨细胞的模板(以水含量30%的矿化水凝胶为基础,交联剂含量为10%、20%):取预先经过373-413K(优选383-403K)高温蒸汽处理1-3h(优选2-2.5h)的水凝胶0.5-2g(优选1-1.5g)于培养基上,使用磷酸盐缓冲液将培养氛围的pH调节至6-8(优选6.8-7.6),保持pH恒定5-12d(优选6-10d)后,将牛成骨细胞接种在水凝胶上培养5-14d(优选7-12d),作为培育成骨细胞的模板。
CN201810679341.4A 2018-06-27 2018-06-27 一种超高强度矿化水凝胶、合成方法及其应用 Pending CN110642980A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810679341.4A CN110642980A (zh) 2018-06-27 2018-06-27 一种超高强度矿化水凝胶、合成方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810679341.4A CN110642980A (zh) 2018-06-27 2018-06-27 一种超高强度矿化水凝胶、合成方法及其应用

Publications (1)

Publication Number Publication Date
CN110642980A true CN110642980A (zh) 2020-01-03

Family

ID=69009046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810679341.4A Pending CN110642980A (zh) 2018-06-27 2018-06-27 一种超高强度矿化水凝胶、合成方法及其应用

Country Status (1)

Country Link
CN (1) CN110642980A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426683A (zh) * 2022-02-20 2022-05-03 浙江工业大学 一种高强度矿化水凝胶的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548581A (zh) * 2009-07-23 2012-07-04 犹他大学研究基金会 粘合复合物凝聚层及其制备和使用方法
CN103435830A (zh) * 2013-09-02 2013-12-11 苏州大学张家港工业技术研究院 一种材料表面功能化的改性方法
CN105126163A (zh) * 2015-09-21 2015-12-09 西南交通大学 用于软骨修复的具有组织诱导性的水凝胶的制备方法
US20150362437A1 (en) * 2014-06-13 2015-12-17 Industry-Academic Cooperation Foundation Yonsei University HYDROGEL, PREPARATION METHOD THEREOF, AND pH SENSOR COMPRISING THE SAME
CN106237376A (zh) * 2016-03-28 2016-12-21 上海交通大学医学院附属第九人民医院 壳聚糖季铵盐基复合膜改性的钛基医用生物材料及其制备方法
CN106267367A (zh) * 2015-06-03 2017-01-04 中国科学院理化技术研究所 一种可用于糖尿病患者的牙种植体的制备方法
CN107987578A (zh) * 2017-12-08 2018-05-04 山东交通学院 一种具有防污杀菌功能的表面涂层产品的制备方法
CN109293947A (zh) * 2018-05-16 2019-02-01 华东理工大学 一种超高强度矿化水凝胶及其合成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548581A (zh) * 2009-07-23 2012-07-04 犹他大学研究基金会 粘合复合物凝聚层及其制备和使用方法
CN103435830A (zh) * 2013-09-02 2013-12-11 苏州大学张家港工业技术研究院 一种材料表面功能化的改性方法
US20150362437A1 (en) * 2014-06-13 2015-12-17 Industry-Academic Cooperation Foundation Yonsei University HYDROGEL, PREPARATION METHOD THEREOF, AND pH SENSOR COMPRISING THE SAME
CN106267367A (zh) * 2015-06-03 2017-01-04 中国科学院理化技术研究所 一种可用于糖尿病患者的牙种植体的制备方法
CN105126163A (zh) * 2015-09-21 2015-12-09 西南交通大学 用于软骨修复的具有组织诱导性的水凝胶的制备方法
CN106237376A (zh) * 2016-03-28 2016-12-21 上海交通大学医学院附属第九人民医院 壳聚糖季铵盐基复合膜改性的钛基医用生物材料及其制备方法
CN107987578A (zh) * 2017-12-08 2018-05-04 山东交通学院 一种具有防污杀菌功能的表面涂层产品的制备方法
CN109293947A (zh) * 2018-05-16 2019-02-01 华东理工大学 一种超高强度矿化水凝胶及其合成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426683A (zh) * 2022-02-20 2022-05-03 浙江工业大学 一种高强度矿化水凝胶的制备方法
CN114426683B (zh) * 2022-02-20 2023-07-25 浙江工业大学 一种高强度矿化水凝胶的制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles
CN110551296B (zh) 一种果胶基双物理交联水凝胶及制备方法和应用
Wei et al. Tough and fully recoverable hydrogels
JP6234358B2 (ja) 生分解性吸水剤
CN111171342B (zh) 一种高强韧自修复荧光双网络水凝胶及其制备方法
CN114133486B (zh) 一种仿生各向异性杂化交联水凝胶及其制备方法和应用
CN110283337B (zh) 一种具有自愈合功能的丝胶水凝胶及其制备方法和应用
CN110194877B (zh) 一种纳米复合水凝胶及其制备方法和用途
CN104829780A (zh) 一种高强度pH、温度快速双响应水凝胶的制备方法
CN115029926B (zh) 纤维接枝可膨胀树脂堵漏材料组成与制备方法及其固井防漏堵漏应用
CN111777772A (zh) 一种微生物矿化增强水凝胶的方法
CN110642980A (zh) 一种超高强度矿化水凝胶、合成方法及其应用
CN110540659B (zh) 一种高拉伸性自修复水凝胶及其制备方法
CN113150208B (zh) 基于高分子引发交联一体化技术的高韧性水凝胶制备方法及水凝胶
CN114957730A (zh) 一种高反应活性水凝胶微球及其制备方法和应用
CN111253535A (zh) 一种新型光诱导自修复纳米复合水凝胶的制备方法
CN112661918B (zh) 一种温度-pH双重响应的水凝胶及其制备方法和应用
CN112708277A (zh) 一种高强度柔性聚硅氧烷气凝胶及制备方法
CN114702632A (zh) 一种水基钻井液用降滤失剂及其制备方法
CN111393779B (zh) 一种低膨型高强度物理交联凝胶颗粒及其制备方法与应用
KR102381042B1 (ko) 하이드로 겔 및 이의 제조 방법
CN109293947A (zh) 一种超高强度矿化水凝胶及其合成方法
CN100509886C (zh) 一种纳米水凝胶材料及其制备方法和用途
CN108424532B (zh) 一种高强度高断裂韧性的磁性水凝胶的制备方法
CN110256696B (zh) 一种具有高伸长率的大豆蛋白复合水凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200103