CN114773628A - 一种可自固化的3d打印水凝胶墨水、制备方法以及组织工程支架 - Google Patents

一种可自固化的3d打印水凝胶墨水、制备方法以及组织工程支架 Download PDF

Info

Publication number
CN114773628A
CN114773628A CN202210551582.7A CN202210551582A CN114773628A CN 114773628 A CN114773628 A CN 114773628A CN 202210551582 A CN202210551582 A CN 202210551582A CN 114773628 A CN114773628 A CN 114773628A
Authority
CN
China
Prior art keywords
hydrogel ink
group
molecular polymer
crosslinking
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210551582.7A
Other languages
English (en)
Inventor
李自伊
陈永明
刘利新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202210551582.7A priority Critical patent/CN114773628A/zh
Publication of CN114773628A publication Critical patent/CN114773628A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/10Heparin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/10Heparin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明提供了一种可自固化的3D打印水凝胶墨水的制备方法,包括如下步骤:步骤一、将高分子聚合物进行醛基化,得到醛基化的高分子聚合物,醛基含量用TNBS方法定量,醛基化度为1.0‑80.0%;步骤二、将三嵌段共聚物进行氧胺基团封端得到AOPF聚合物,用1HNMR表征氧胺的取代度,氧胺的取代度范围为1.0‑100.0%;步骤三、将醛基化高分子聚合物和氧胺基团封端的三嵌段聚合物分别溶于水溶液中;步骤四、将步骤三得到的溶液按照一定的醛基与氧胺官能团比混合,放置于一定温度的环境中进行凝胶一段时间,制备出双交联水凝胶墨水。本发明的水凝胶墨水是基于良好的温敏性和双交联方法制备的,在低温(4‑20℃)下凝胶仅以动态共价键交联,可以从3D打印机直接挤出;在高温(25‑50℃)下凝胶通过分子间的疏水作用自发形成二次交联,凝胶强度显著增强,提高了打印成品的保真度和稳定性。

Description

一种可自固化的3D打印水凝胶墨水、制备方法以及组织工程 支架
技术领域
本发明涉及生物医用材料技术领域,尤其是一种可自固化的3D打印水凝胶墨水、制备方法以及组织工程支架。
背景技术
水凝胶是一种以水为分散介质,由高分子聚合物通过交联而形成的三位网络结构。水凝胶交联方式可分为化学交联和物理交联。其中化学交联策略是通过聚合物分子之间的官能团共价反应偶联而形成水凝胶,包括自由基链聚合反应、点击反应、席夫碱反应和碳二亚胺介导的活化反应。物理交联策略是利用聚合物分子之间的非共价相互作用,如离子相互作用、氢键、静电相互作用、疏水相互作用、蛋白质相互作用和热缠结。近年来,多种聚合物交联方式为开发新型水凝胶提供了支持。
此外,水凝胶高度含水的三维网络结构与人体组织相似,具有良好的营养物质及氧气的渗透性。因而,水凝胶在组织修复、细胞培养、药物递送等生物医用材料得到了广泛研究。但是,水凝胶在用作3D打印墨水方面仍然面临着巨大挑战。目前的3D打印水凝胶墨水往往需要紫外光交联、二次离子交联、支撑材料等辅助手段,操作复杂,难以在温和条件下自固化,同时面临光引发剂的残存、后处理交联或支撑材料去除等问题,这对临床应用造成潜在风险,在生物医学应用受到了限制。
发明内容
本发明的主要目的在于提供一种可自固化的3D打印水凝胶墨水、制备方法以及组织工程支架,本发明的自固化水凝胶墨水具有良好的温度敏感性和双交联特征,在低温下仅以自发的共价肟键交联,能够直接挤出打印;在较高温度下(如体温)形成二次疏水相互作用交联,凝胶强度显著增大,有利于提高打印支架的保真度。从而具有在温和条件下实现3D打印支架的自固化制备得优势,并且可负载生物活性因子或细胞,用作组织工程材料。
为达到以上目的,本发明采用的技术方案为:一种可自固化的3D打印水凝胶墨水的制备方法,其特征在于,包括如下步骤:
步骤一、将高分子聚合物进行醛基化,得到醛基化的高分子聚合物,醛基含量用TNBS方法定量,醛基化度为1.0-80.0%;
步骤二、将三嵌段共聚物进行氧胺基团封端得到AOPF聚合物,用1HNMR表征氧胺的取代度,氧胺的取代度范围为1.0-100.0%;氧胺基团封端的三嵌段共聚物的结构式如下:
Figure BDA0003650194240000021
步骤三、将醛基化高分子聚合物和氧胺基团封端的三嵌段聚合物分别溶于水溶液中;
步骤四、将步骤三得到的溶液按照一定的醛基与氧胺官能团比混合,放置于一定温度的环境中进行凝胶一段时间,制备出双交联水凝胶墨水。
优选地,在步骤一中,所述醛基化高分子聚合物包括合成高分子聚合物和多糖,所述合成高分子聚合物包括聚乙二醇,所述多糖为透明质酸、葡聚糖、壳聚糖、海藻酸盐、淀粉、糖元、纤维素、菊糖、琼脂、硫酸软骨素、硫酸皮肤素、肝素、硫酸乙酰肝素的一种或多种。
优选地,醛基占糖环总量的范围为1.0-80.0%。
优选地,步骤三中的所述水溶液为PBS缓冲溶液、超纯水、蒸馏水、PBS溶液、生理盐水、细胞培养液中的一种。
优选地,步骤四中所述醛基与氧胺的官能团配比为10:1-1:10。
本发明还提供了一种可自固化的3D打印水凝胶墨水,采用以上制备方法。
本发明还提供了一种组织工程支架的生产方法,包括如下步骤:
步骤a、将水凝胶墨水加入到3D打印机料筒中并放于4~20℃的环境中一段时间完成一次交联成胶;
步骤b、再将水凝墨水放到3D打印机的热台上一段时间进行二次交联成胶,热台温度为20~50℃;
步骤c、按照预定的3D打印参数设置3D打印机,并将绘制的3D模型输入到3D打印机中,3D打印机工作,最终得到所述组织工程支架。
优选地,步骤c中,打印速度1~10mm/min,挤出压强为0.1~0.8kPa。
与现有技术相比,本发明具有以下有益效果:
本发明的水凝胶墨水是基于良好的温敏性和双交联方法制备的,在低温(4-20℃)下凝胶仅以动态共价键交联,可以从3D打印机直接挤出;在高温(25-50℃)下凝胶通过分子间的疏水作用自发形成二次交联,凝胶强度显著增强,提高了打印成品的保真度和稳定性。该水凝胶墨水具有3D打印操作简单易行,不需要额外的添加剂或紫外光交联固化,不需要后处理,具有可自固化的优点。此外,此水凝胶墨水制备条件温和,自发的肟键点击反应及疏水相互作用交联有利于包载细胞或生物活性物质,可作为组织工程支架材料使用。
附图说明
图1(A)为水凝胶墨水的凝胶强度随时间的变化曲线;
图1(B)为水凝胶墨水的复合粘度随时间的变化曲线;
图2为水凝胶墨水的凝胶强度及复合粘度随温度的变化曲线;
图3(A)为组织工程支架的宏观图片;
图3(B)为组织工程支架的围观图片。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例一
一种可自固化的3D打印水凝胶墨水的制备方法,具体包括如下步骤:
步骤一、将高分子聚合物或多糖进行醛基化,得到醛基化的高分子聚合物(ADPS),醛基含量用TNBS方法定量,醛基化度为1.0-80.0%;
步骤二、将三嵌段共聚物如聚氧化乙烯-聚氧化丙烯-聚氧化乙烯(Poloxamer)进行氧胺基团封端得到AOPF聚合物,用1HNMR表征氧胺的取代度,氧胺的取代度范围为1.0-100.0%;氧胺基团封端的三嵌段共聚物的结构式如下:
Figure BDA0003650194240000031
所述三嵌段聚合物在水中具有疏水相互作用;端基经过化学改性变为氧胺基团。
步骤三、将醛基化高分子聚合物和氧胺基团封端的三嵌段聚合物分别溶于水溶液中,也可在这些溶液中加入生物活性成分,水溶剂余量。
步骤四、水凝胶墨水的制备:将步骤三得到的溶液按照醛基与氧胺官能团比简单混合,放置于37℃湿润的环境中成凝胶,观察成凝胶状态;实现动态肟键交联和疏水相互作用交联,制备出双交联水凝胶墨水;其官能团配比为20:1-1:100;所述凝胶的固含量为1-50%。
优选的,步骤一中,所述醛基化高分子聚合物包括合成高分子聚合物(如聚乙二醇等)或多糖(如透明质酸、葡聚糖、壳聚糖、海藻酸盐、淀粉、糖元、纤维素、菊糖、琼脂、硫酸软骨素、硫酸皮肤素、肝素、硫酸乙酰肝素)的一种或多种;所述醛基含量范围为10.0-40.0%。
优选的,步骤二中所述氧胺的取代度范围为60.0-100.0%。
优选的,步骤三中所述水溶液为PBS缓冲溶液(pH=7.4,0.01M)、超纯水、蒸馏水、PBS溶液、生理盐水、细胞培养液等中的一种。
优选的,步骤四中所述醛基与氧胺的官能团配比为10:1-1:10,优选地,可以为10:1、1:1、1:10。凝胶的固含量为5-30%。
实施例二
该实施例为采用实施例一中生产的水凝胶墨水打印组织工程支架的方法,具体包括如下步骤:
步骤a、将水凝胶墨水加入到3D打印机料筒中并放于低温下(如4~20℃)一段时间完成一次交联成胶;
步骤b、再将水凝墨水放到3D打印机的热台上一段时间进行二次交联,热台温度为20~50℃;
步骤c、按照预定的3D打印参数设置3D打印机,并将绘制的3D模型输入到3D打印机中,3D打印机工作,最终得到所述组织工程支架。
优选的,打印速度1~10mm/min,挤出压强为0.1~0.8kPa。
图3中为所述组织工程支架,该水凝胶墨水能够通过3D打印机挤出打印,打印的支架结构清晰,未见塌陷,说明打印结构的保真度及稳定性良好。
实验例一
在该实验例中,采用醛基与氧胺的官能团配比为1:1配置得到的水凝胶墨水。
利用HAAK流变仪测试水凝胶墨水的凝胶强度及复合粘度随时间的变化曲线。将水凝胶墨水加入到带有圆形平板模具的流变仪的测试平台上,平板模具的直径为20mm,两平板之间的兼具保持在0.5mm。用硅油封装以减少水凝胶墨水测试过程中水分的蒸发。记录37℃和固定频率(1Hz)、固定应变(1%)条件下凝胶的储能模量(G’)、损耗模量(G”)及复合粘度(η*)随时间的变化曲线以跟踪成凝胶过程。
结果参见图1,图1是实验例一的3D打印水凝胶墨水的流变学时间扫描曲线测试结果图。如图1A所示,在整个测试开始阶段,储能模量G’大于损耗模量G”,表明两种溶液混合后迅速形成水凝胶墨水。随着时间的增加,凝胶的强度显著增加,表明交联反应的不断进行,凝胶网络更加致密,在3600s(即2小时)内,此凝胶的储能模量达到6300Pa,说明此水凝胶墨水具有优良的力学强度,可以作为组织工程支架提供力学支撑。此外,如图1B所示,水凝胶墨水的复合粘度随时间的增加也在不断增大,在3600s(即2小时)内,此水凝胶墨水的复合粘度接近1000Pa.s,进一步反映了该水凝胶墨水交联程度随时间不断增大,水凝胶墨水的稳定性增加。
实验例二
在该实验例中,采用醛基与氧胺的官能团配比为1:1配置得到的水凝胶墨水。
利用HAAK流变仪测试水凝胶墨水的凝胶强度及复合粘度随温度的变化曲线。将水凝胶墨水放于37℃条件和湿润的环境中充分交联6小时,再将所得水凝胶墨水放到带有圆形平板模具的流变仪的测试平台上,平板模具的直径为20mm,两平板之间的夹具保持在0.5mm,用硅油封装以减少水凝胶墨水测试过程中水分的蒸发。记录不同温度条件下水凝胶墨水的储能模量(G’)、损耗模量(G”)及复合粘度(η*)随温度的变化曲线,本实验例中温度扫描测试范围设为4-35℃,升温速度为1℃/min。
结果参见图2,如图2所示,在较低的温度条件下(4-20℃),凝胶强度较弱,仅为1200Pa左右,此时凝胶网络内部仅以动态肟键交联为主,随着温度升高,凝胶强度显著增大,在(30-35℃),凝胶强度接近6000Pa,这是由于温度的提高促使凝胶内部交联的增强引起的,即AOPF127分子之间的疏水相互作用形成二次交联,反映了水凝胶墨水的温敏性。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (8)

1.一种可自固化的3D打印水凝胶墨水的制备方法,其特征在于,包括如下步骤:
步骤一、将高分子聚合物进行醛基化,得到醛基化的高分子聚合物,醛基含量用TNBS方法定量,醛基化度为1.0-80.0%;
步骤二、将三嵌段共聚物进行氧胺基团封端得到AOPF聚合物,用1HNMR表征氧胺的取代度,氧胺的取代度范围为1.0-100.0%;氧胺基团封端的三嵌段共聚物的结构式如下:
Figure FDA0003650194230000011
步骤三、将醛基化高分子聚合物和氧胺基团封端的三嵌段聚合物分别溶于水溶液中;
步骤四、将步骤三得到的溶液按照一定的醛基与氧胺官能团比混合,放置于一定温度的环境中进行凝胶一段时间,制备出双交联水凝胶墨水。
2.根据权利要求1的制备方法,其特征在于,在步骤一中,所述醛基化的高分子聚合物包括合成高分子聚合物或多糖,所述合成高分子聚合物包括聚乙二醇,所述多糖为透明质酸、葡聚糖、壳聚糖、海藻酸盐、淀粉、糖元、纤维素、菊糖、琼脂、硫酸软骨素、硫酸皮肤素、肝素、硫酸乙酰肝素的一种或多种。
3.根据权利要求2的制备方法,其特征在于,醛基占糖环总量的范围为1.0-80.0%。
4.根据权利要求1的制备方法,其特征在于,步骤三中的所述水溶液为PBS缓冲溶液、超纯水、蒸馏水、PBS溶液、生理盐水、细胞培养液中的一种。
5.根据权利要求1的制备方法,其特征在于,步骤四中所述醛基与氧胺的官能团配比为10:1-1:10。
6.一种可自固化的3D打印水凝胶墨水,采用权利要求1-5任一项所述的制备方法。
7.一种组织工程支架的生产方法,包括如下步骤:
步骤a、将水凝胶墨水加入到3D打印机料筒中并放于4~20℃的环境中一段时间完成一次交联成胶,所述水凝胶墨水为权利要求6中的可自固化的3D打印水凝胶墨水;
步骤b、再将水凝墨水放到3D打印机的热台上一段时间进行二次交联成胶,热台温度为20~50℃;
步骤c、按照预定的3D打印参数设置3D打印机,并将绘制的3D模型输入到3D打印机中,3D打印机工作,最终得到所述组织工程支架。
8.根据权利要求7所述的生产方法,步骤c中,打印速度1~10mm/min,挤出压强为0.1~0.8kPa。
CN202210551582.7A 2022-05-18 2022-05-18 一种可自固化的3d打印水凝胶墨水、制备方法以及组织工程支架 Pending CN114773628A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210551582.7A CN114773628A (zh) 2022-05-18 2022-05-18 一种可自固化的3d打印水凝胶墨水、制备方法以及组织工程支架

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210551582.7A CN114773628A (zh) 2022-05-18 2022-05-18 一种可自固化的3d打印水凝胶墨水、制备方法以及组织工程支架

Publications (1)

Publication Number Publication Date
CN114773628A true CN114773628A (zh) 2022-07-22

Family

ID=82408323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210551582.7A Pending CN114773628A (zh) 2022-05-18 2022-05-18 一种可自固化的3d打印水凝胶墨水、制备方法以及组织工程支架

Country Status (1)

Country Link
CN (1) CN114773628A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117565386A (zh) * 2024-01-17 2024-02-20 中国科学院化学研究所 一种细胞或类器官芯片及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108478867A (zh) * 2018-03-13 2018-09-04 中山大学 基于酰腙键的可注射高分子水凝胶、其制备方法及高分子水凝胶注射剂
CN109316630A (zh) * 2018-11-19 2019-02-12 重庆凝骄生物科技有限公司 一种生物仿生基质的3d打印墨水及其制备方法
CN109575683A (zh) * 2018-11-26 2019-04-05 西安理工大学 一种适用于3d生物打印的水凝胶墨水的制备方法
CN110522948A (zh) * 2019-08-29 2019-12-03 南京工业大学 可注射水凝胶及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108478867A (zh) * 2018-03-13 2018-09-04 中山大学 基于酰腙键的可注射高分子水凝胶、其制备方法及高分子水凝胶注射剂
CN109316630A (zh) * 2018-11-19 2019-02-12 重庆凝骄生物科技有限公司 一种生物仿生基质的3d打印墨水及其制备方法
CN109575683A (zh) * 2018-11-26 2019-04-05 西安理工大学 一种适用于3d生物打印的水凝胶墨水的制备方法
CN110522948A (zh) * 2019-08-29 2019-12-03 南京工业大学 可注射水凝胶及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUNFENG LIU等: ""One-step preparation of a highly transparent, stretchable and conductive ionic nanocomposite hydrogel"", 《CHEMICAL PHYSICS LETTERS》, vol. 754, 1 June 2020 (2020-06-01), pages 137667, XP086250596, DOI: 10.1016/j.cplett.2020.137667 *
ZIYI LI等: ""Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness"", 《CARBOHYDRATE POLYMERS》, vol. 291, 14 May 2022 (2022-05-14), pages 119616, XP087092781, DOI: 10.1016/j.carbpol.2022.119616 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117565386A (zh) * 2024-01-17 2024-02-20 中国科学院化学研究所 一种细胞或类器官芯片及其制备方法与应用
CN117565386B (zh) * 2024-01-17 2024-03-22 中国科学院化学研究所 一种细胞或类器官芯片及其制备方法与应用

Similar Documents

Publication Publication Date Title
Pourjavadi et al. Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands
CN110698697B (zh) 一种具有自愈合性能的聚乙烯亚胺-聚乙烯醇水凝胶的制备方法
Arslan et al. Cyclodextrin embedded covalently crosslinked networks: Synthesis and applications of hydrogels with nano-containers
CN110522948B (zh) 可注射水凝胶及其制备方法和应用
CN109575269B (zh) 一种具有双重动态网络的自愈性水凝胶及其制备方法
WO2003085001A1 (fr) Polysaccharide contenant un groupe phosphorylcholine et procede de production correspondant
CN110804194A (zh) 一种可降解型改性聚乳酸-聚乙二醇水凝胶及其制法
CN110845743A (zh) 基于四重氢键的聚氨基酸基自愈合水凝胶及其制备方法
CN114773628A (zh) 一种可自固化的3d打印水凝胶墨水、制备方法以及组织工程支架
AU2022211848B2 (en) Bifunctional modified biopolymer based polymers and hydrogels obtainable from such bifunctional modified biopolymer based polymers
Kim et al. Norbornene-functionalized methylcellulose as a thermo-and photo-responsive bioink
CN116903884A (zh) 一种透明质酸-聚谷氨酸水凝胶及其制备方法
CN110128594B (zh) 一种温度/pH双敏型高强度纳米复合水凝胶及其制备方法
CN111333990A (zh) 一种自修复型双网络交联可降解丙烯酸水凝胶及其制法
CN113248743B (zh) 一种生物相容的可降解的三维纤维素凝胶及其制备方法和应用
CN105418861A (zh) 一种基于聚氨基酸分子交联水凝胶及其制备方法
CN113416293A (zh) 一种高拉伸性能医用水凝胶及其制备方法和应用
Ustürk et al. Pullulan/polyHEMA cryogels: Synthesis, physicochemical properties, and cell viability
JP4149098B2 (ja) 水膨潤性医療用高分子ゲルの製造法及び水膨潤性医療用高分子ゲル
Bazghaleh et al. Preparation and characterization of oxidized pectin/N-succinyl chitosan/graphene oxide hydrogels
Salazar et al. Synthesis and characterization of a novel polysaccharide-based self-healing hydrogel
CA2402546C (en) Environment responsive gelling copolymer
Shao et al. Dynamics in cellulose-based hydrogels with reversible cross-links
CN112662001A (zh) 基于锆鞣剂构建互传网络结构的生物质材料膜的制备方法
Cao et al. A facile strategy to construct biocompatible poly (vinyl alcohol)-based self-healing hydrogels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination