CN102545906A - 电流型数模转换方法和装置 - Google Patents

电流型数模转换方法和装置 Download PDF

Info

Publication number
CN102545906A
CN102545906A CN2012100293111A CN201210029311A CN102545906A CN 102545906 A CN102545906 A CN 102545906A CN 2012100293111 A CN2012100293111 A CN 2012100293111A CN 201210029311 A CN201210029311 A CN 201210029311A CN 102545906 A CN102545906 A CN 102545906A
Authority
CN
China
Prior art keywords
current
error
msb
lsb
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100293111A
Other languages
English (en)
Other versions
CN102545906B (zh
Inventor
朱循宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xin Chuangzhi (Beijing) Microelectronics Co., Ltd.
Original Assignee
INTERNATIONAL GREEN CHIP (TIANJIN) CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNATIONAL GREEN CHIP (TIANJIN) CO Ltd filed Critical INTERNATIONAL GREEN CHIP (TIANJIN) CO Ltd
Priority to CN201210029311.1A priority Critical patent/CN102545906B/zh
Publication of CN102545906A publication Critical patent/CN102545906A/zh
Application granted granted Critical
Publication of CN102545906B publication Critical patent/CN102545906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

本发明涉及一种电流型数模转换方法,其特征在于,所述转换方法包括:对最高有效位MSB阵列中每一个MSB单元电流与最低有效位LSB阵列中全部LSB单元总电流之间的电流误差转为时间误差进行测量、计算出所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差;根据所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差,对输入数字信号进行消除误差预处理;对经过预处理的数字信号进行数模转换,从而输出精确的模拟信号。本发明克服了由于芯片上工艺的因素而产生的MSB单元之间存在不匹配的问题,从而实现高精度的DAC。

Description

电流型数模转换方法和装置
技术领域
本发明涉及数字信号处理领域,尤其涉及一种电流型数模转换方法和装置。
背景技术
随着数字信号处理技术的飞速发展,对数模转换器(Digital toAnalog Converter,DAC)的速度要求和精度要求越来越高。
在现有技术中,电流型DAC一直是数模转换器DAC的最优选择结构。但是,在电流型DAC中,电流源是最重要的单元,尤其电流源匹配程度的好坏直接决定了数模转换器的性能参数。
n位精度电流型DAC电路一般由两部分组成,一部分由MSB(MostSignificant Bit,最高有效位)单元电流源组成的2a-1个单元阵列,称为MSB阵列;另一部分是由LSB(Least Significant Bit,最低有效位)单元电流源组成的2b-1个单元阵列,称为LSB阵列,且满足
n=a+b                                                   (1)
IMSB=2b·ILSB                                           (2)
Itotal=(2a-1)·IMSB+(2b-1)·ILSB                        (3)
其中n是DAC电路的精度位数,IMSB是MSB单元的电流,ILSB是LSB单元的电流,Itotal是DAC电路的总电流。
图1是电流型DAC结构示意图,其中,左图是由MSB单元组成的MSB块示意图,右图是由LSB单元组成的LSB块示意图。
图1中,MSB块和LSB块分别由两个不同的偏置(bias)电路设置偏置电压来产生电流。由于芯片上工艺的因素,会造成MSB的电流与LSB的静态电流不匹配,这在高精度的DAC设计中是十分致命的。为了匹配MSB和LSB电流,通常会在芯片中加入一个校准电路(calibration)模块,使得MSB与LSB电流的误差不影响DAC的静态性能。
图2是现有技术的DAC校准电路结构框图,该校准电路包括MSB单元、LSB单元、开关K1、开关K2、时钟L1、时钟L2、电容C、比较器OA1、比较器OA2、电压源V1、电压源V2、校准模块310。
图2中的校准电路利用两个比较器来调节MSB单元电流的大小,使MSB单元与LSB单元之间电流误差达到可以忽略不计。该校准电路只是校准一个MSB单元,然后默认该MSB单元和其他的MSB单元之间是没有误差的。然而,由于芯片上工艺的因素,MSB单元之间也存在不匹配的问题,这样直接导致高精度的DAC的微分非线性(Differential Non Linearity,DNL)和积分非线性(Integral Non Linearity,INL)这两个指标的值变得很差。因此,要想实现高精度的电流型DAC,必须解决MSB单元之间也存在不匹配的问题,而图2中的校准电路还无法实现高精度的电流型DAC。
发明内容
本发明的目的是针对现有技术的缺陷,提供一种电流型数模转换方法和装置。该方法和装置能够解决MSB单元之间的不匹配问题,使得DNL和INL这两个指标很低,从而实现高精度的电流型DAC。
为实现上述目的,本发明实施例公开了一种电流型数模转换方法,其特征在于,所述转换方法包括:
对最高有效位MSB阵列中每一个MSB单元电流与最低有效位LSB阵列中全部LSB单元总电流之间的电流误差转为时间误差进行测量、计算出所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差;
根据所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差,对输入数字信号进行消除误差预处理;
对经过预处理的数字信号进行数模转换,从而输出精确的模拟信号。
优选的,在计算出所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差之后,还进一步包括:把计算得到的所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差记录在寄存器中。
优选的,对于温度码型数模转换器DAC,在对所述输入数字信号进行消除误差预处理之前,还进一步包括:将所述输入的数字信号转换为温度计码;根据所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差对输入的温度计码进行消除误差预处理。
本发明实施例公开了一种电流型数模转换装置,其特征在于,所述转换装置包括:
校准单元,用于对所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差转为时间误差进行测量,从而计算出所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差;
预处理单元,用于根据所述校准单元的的所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差,对输入数字信号进行消除误差预处理;
DAC核单元,用于对经过预处理的数字信号进行数模转换,从而输出精确的模拟信号。
优选的,所述校准单元包括:误差测量子单元,用于对所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差转为时间误差来测量;误差计算子单元,用于对所述每一个MSB单元与所述全部LSB单元对电容的充电时间误差来计算所述每一个MSB单元电流与所述全部LSB单元总电流的电流误差;误差存储子单元,用于把计算得到的所述每一个MSB单元电流与所述全部LSB单元总电流的电流误差记录在寄存器中。
进一步优选的,所述误差测量子单元包括:误差测量电路,用于实现对所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差用时间误差来测量;控制模块,用于控制误差测量电路的测量。
更进一步优选的,所述误差测量电路包括MSB阵列、LSB阵列、第一开关、第二开关、第一时钟、第二时钟、电容、比较器、电压源;所述MSB阵列和第一时钟分别与所述第一开关相连,所述LSB阵列和第二时钟分别与第二开关相连,所述第一开关和第二开关分别与所述电容相连;所述比较器的同相端分别与所述第一开关、第二开关和电容相连,所述比较器的反相端与所述电压源相连;所述MSB阵列、第一开关和第二开关分别与所述控制模块相连接。
优选的,所述校准单元位于高精度电流型DAC实现装置的本体内或位于高精度电流型DAC实现装置的本体外。
优选的,所述预处理单元包括:温度译码器,用于温度码型DAC中,对输入的所述数字信号转换为温度计码。
本发明的电流型数模转换方法和装置,通过对每一个MSB单元电流与全部LSB单元总电流之间的电流误差用时间误差来测量并保存在寄存器中,对输入数据进行预处理,把相应的误差消除,从而得到精确的输出。本发明克服了由于芯片上工艺的因素而产生的MSB单元之间存在不匹配的问题,从而实现高精度的DAC。
附图说明
图1为电流型DAC结构示意图;
图2为现有技术的DAC校准电路结构框图;
图3为本发明电流型数模转换方法的校准电路图;
图4为本发明电流型数模转换方法的校准流程图;
图5为本发明电流型数模转换方法的流程图;
图6为本发明电流型数模转换装置的结构框图;
图7为本发明电流型数模转换装置的校准单元结构框图;
图8为本发明电流型数模转换装置的误差测量子单元电路图。
具体实施方式
下面通过附图和以温度计码结构的DAC为实施例,对本发明的技术方案做进一步的详细描述。
本发明实施例公开了一种电流型数模转换方法,其特征在于,所述DAC实现方法包括以下步骤:
对MSB阵列中每一个MSB单元电流IMSB与LSB阵列中全部LSB单元总电流I LSB(总)之间的电流误差ΔI转为时间误差Δt进行测量、计算出每一个MSB单元电流与全部LSB单元总电流之间的电流误差ΔI;
根据每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差ΔI,对输入数字信号进行消除误差预处理;
对经过预处理的数字信号进行数模转换,从而输出精确的模拟信号。
优选的,还进一步包括:对每一个MSB单元电流IMSB与全部LSB单元总电流I LSB(总)之间的电流误差ΔI用时间误差Δt来测量,根据对每一个MSB单元和全部LSB单元对电容的充电时间误差Δt来计算每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)的电流误差ΔI,把计算得到的每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差ΔI记录在寄存器中,此过程一直持续到所有的MSB单元都校准完为止。
优选的,对于温度码型DAC,还进一步包括:首先将输入的数字信号转换为温度计码;然后,根据每一个MSB单元电流IMSB与全部LSB单元总电流ILSB (总)之间的电流误差ΔI对输入的温度计码进行消除误差预处理。
其中定义:每一个MSB单元电流用IMSB表示,第i个MSB单元电流用IMSB(i)表示,1≤i≤2a;每一个LSB单元电流用ILSB表示,第i个MSB单元电流用ILSB(i)表示,1≤i≤2b
ΔI是每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差ΔI;
ΔIi是第i个MSB单元电流用IMSB(i)与全部LSB单元总电流ILSB(总)之间的电流误差;
ΔI=IMSB-ILSB(总)                                        (4)
ΔIi=IMSB(i)-ILSB(总)                                     (5)
Δt是对每一个MSB单元与全部LSB单元对电容的充电时间误差;
全部LSB单元总电流用ILSB(总)表示。
计算全部LSB单元总电流用ILSB(总)有两种方式:
a、若2b个LSB单元之间的误差忽略不计的情况下,
ILSB(总)=2b×ILSB                                       (6)
b、若2b个LSB单元之间的误差需要考虑的情况下,
Figure BSA00000666333000061
图3为本发明电流型数模转换方法的校准电路图。该校准电路图由校准电路和控制模块301两部分组成。校准电路包括MSB阵列、LSB阵列、第一开关K1、第二开关K2、第一时钟L1、第二时钟L2、电容C、比较器、电压源Vref。其中,IMSB(i)为MSB阵列中第i个MSB单元电流,ILSB(总)为LSB阵列中全部LSB单元总电流。
MSB阵列与第一开关K1相连,LSB阵列与第二开关K2相连,第一时钟L1输出时钟信号至第一开关K1,第二时钟L2也输出时钟信号至第二开关K2。
第一开关K1、第K2与电容C连接于a点,具体地,MSB阵列中一个MSB单元在第一开关K1闭合时对电容C进行充电,LSB阵列即全部LSB单元在第二开关K2闭合时对电容C进行充电。第一开关K1、第二开关K2与电容C之间的连接点为a点。
比较器同相端与电容C、第一开关K1、第二开关K2相连(连接点为a),因此比较器同相输入电压Vin即为MSB阵列中一个MSB单元或LSB阵列即全部LSB单元对电容C进行充电的充电电压;比较器反相端与电压源Vref相连,因此该比较器用于比较Vin与Vref的大小。
下面详细阐述控制模块301、MSB阵列、LSB阵列、第一开关K1、第二开关K2的工作原理。
第一,控制模块301选择MSB阵列中哪一个MSB单元需要校准,并控制第一开关K1和第二开关K2皆打开,此时Vin端电容C放电,当控制模块501检测到比较器的输出端Vout为低电平时控制第一开关K1闭合,同时第一时钟L1输出时钟信号至第一开关K1,经过第一时间t1,当控制模块301检测到比较器的输出端Vout的输出跳变为高电平时,打开第一开关K1并记录下第一开关K1闭合t1。
第二,Vin端电容C放电,当控制模块301检测到比较器的输出端Vout为低电平时控制第二开关K2闭合,同时第二时钟L2输出时钟信号至第二开关K2,经过第二时间t 2,当控制模块301检测到比较器的输出端Vou t的输出跳变为高电平时,打开第二开关K2并记录下第二开关K2闭合时间t 2,校正结束。
图4为本发明电流型数模转换方法的校准流程图。
首先,对每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差转为时间误差来测量;然后,根据对每一个MSB单元和全部LSB单元对电容的充电时间误差来计算每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)的电流误差;最后,把计算得到的每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差记录在寄存器中,此过程一直持续到所有的MSB单元都校准完为止。
具体步骤如下:
步骤410,开始对高精度电流型DAC进行校准。
步骤420,校准一个MSB单元。利用图3所示校准电路和控制模块301校准一个MSB单元,首先,控制模块301选择哪一个MSB单元需要校准,并控制第一开关K1和第二开关K2皆打开,此时a端电容C放电,当控制模块301检测到比较器的输出端Vout为低电平时控制第一开关K1闭合,同时第一时钟L1输出时钟信号至第一开关K1,经过第一时间t1,当控制模块301检测到比较器的输出端Vout的输出跳变为高电平时,打开第一开关K1并记录下开关K1闭合时间即第一时间t1;然后,a端电容C放电,当控制模块301检测到比较器的输出端Vout为低电平时控制第二开关K2闭合,同时第二时钟L2输出时钟信号至第二开关K2,经过第二时间t2,当控制模块301检测到比较器的输出端Vout的输出跳变为高电平时,打开第二开关K2并记录下第二开关K2闭合时间即第二时间t2;最后,校准一个MSB单元结束。
步骤430,计算误差并将结果存入寄存器中。首先,根据第一时间t1、第二时间t 2,计算时间差Δt=t1-t2,然后将,从而由时间误差Δt计算出电流误差ΔI;然后,将计算得到的IMSB和ILSB(总)之间的误差ΔI记录到寄存器中。该步骤可由软件完成,也可有硬件电路实现。
Δt=t1-t2                                            (8)
Figure BSA00000666333000081
步骤440,判断所有的MSB单元是否校准完?若对所有的MSB单元还没有校准完,则回到步骤420继续对剩余的MSB单元进行校准。若对所有的MSB单元已经校准完,则进入下一步骤。
步骤450,对高精度电流型DAC校准结束。
图5为本发明电流型数模转换方法的流程图。
首先,对每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差ΔI转为时间误差Δt进行测量、计算出每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差;然后,根据每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差,对输入数字信号进行消除误差预处理;最后,对经过预处理的数字信号进行数模转换,从而输出精确的模拟信号。
对于温度码型DAC,还进一步包括:将输入的数字信号转换为温度计码;根据每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差对输入的温度计码进行消除误差预处理。
具体步骤如下:
步骤510,开始,即高精度电流型DAC开始工作。
步骤520,DAC输入数据,将需要数模转换的数字信号输入到高精度电流型DAC中。对于温度码型DAC,还进一步包括:将输入的数字信号转换为温度计码;
步骤530,对输入数据进行预处理。利用图3所示校准电路和控制模块301对每一个MSB单元进行时间误差Δt测量,由时间误差Δt计算出电流误差ΔI并记录在寄存器中。取出存在寄存器中的每一个MSB单元IMSB与全部LSB单元总电流ILSB(总)之间的误差ΔIi,根据输入数字信号的值N,由公式(10)得到消除误差的数字信号。
N ′ = N - Σ i = 1 i = N ΔIi - - - ( 10 )
其中,1≤N≤2a-1,ΔIi为第i个MSB单元电流IMSB(i)与全部LSB单元总电流ILSB(总)之间的误差,n位精度电流型DAC电路的MSB阵列是由MSB单元电流源组成的2a-1个单元阵列。
输入的数字信号与经过预处理的数字信号相比,经过预处理的数字信号已经克服了现有技术中由于芯片上工艺的因素而产生的MSB单元之间存在不匹配的问题,从而使得高精度电流型DAC的微分非线性(DifferentialNon Linearity DNL)和积分非线性(Integral Non Linearity INL)这两个指标达到很低的值。
步骤540,处理后的数据输入到DAC核,即经过预处理的数字信号输入到DAC核中。
步骤550,DAC输出数据,即经过预处理的数字信号经过DAC转换输出模拟信号。
步骤560,高精度电流型DAC工作结束。
图6为本发明电流型数模转换装置的结构框图,图6包括校准单元611、预处理单元612、DAC核单元613。其中,校准单元611对每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)进行校准;预处理单元612对DAC输入数据进行预处理,将相应的误差消除;DAC核单元613将数字信号转换为模拟信号。
还有,x(n)601为输入DAC的未经过预处理的数字信号,ΔIi602为第i个MSB单元电流IMSB与全部LSB单元总电流ILSB之间的误差,N′603为输入DAC的经过预处理消除误差的数字信号,x(t)604为DAC输出的模拟信号。
下面详细阐述校准单元611、预处理单元612和DAC核单元613的工作原理。
第一,输入数字信号x(n)601到预处理单元612,预处理单元612取出校准单元611存储的每个MSB单元校准后的误差ΔI602,根据输入数字信号x(n)601的值N,由公式(10)得到消除误差的数字信号N′603;
第二,输入数字信号N′603到DAC核单元613,经过DAC核单元313的数模转换得到模拟信号604x(t)。
图7为本发明电流型数模转换装置的校准单元结构框图,图中701为误差测量单元,702为误差计算单元,703为误差存储单元。
误差测量子单元701利用比较电容充电时间的方法来校准DAC的每个MSB单元的不匹配误差。
误差计算子单元702根据误差测量单元701得到的第一时间t1、第二时间t2,代入公式(8)和公式(9)中,从而分别得到第一时间t1、第二时间t2的时间差Δt和IMSB和ILSB(总)之间的误差ΔI。
此误差计算单元可由软件完成,也可有硬件电路实现。
误差存储子单元703将误差计算单元702计算得出的误差记录在寄存器中,如表1所示。在表1中,MSBi为第i个MSB单元,ΔIi为第i个MSB单元电流IMSB(i)与全部LSB单元和电流ILSB(总)之间的误差。校正结束后,将计算得到的误差ΔIi记录到寄存器中,当全部MSB单元都校准结束,则全部的MSB单元IMSB(i)与全部LSB单元总电流ILSB(总)之间的误差都被记录到寄存器中。
表1
本发明电流型数模转换装置的误差测量子单元电路图,该误差测量子单元包括误差测量电路和控制模块801。
该校准电路包括MSB阵列、LSB阵列、第一开关K1、第二开关K2、第一时钟L1、第二时钟L2、第一电容C1、第二电容C2、比较器、电压源Vref。
MSB阵列与第一开关K1相连,LSB阵列与第二开关K2相连,第一时钟L1输出第一时钟信号至第一开关K1,第二时钟L2也输出第二时钟信号至第二开关K2。
第一开关K1与第一电容C1相连、第二开关K2与第二电容C2相连,具体地,MSB阵列中一个MSB单元在第一开关K1闭合时对第一电容C1进行充电,LSB阵列即全部LSB单元在第二开关K2闭合时对第二电容C2进行充电。比较器同相端与a或b端相连,因此比较器同相输入电压即为MSB阵列中一个MSB单元对第一电容C1或LSB阵列即全部LSB单元对第二电容C2进行充电的充电电压Va或Vb;比较器反相端与电压源Vref相连,因此该比较器用于比较Va或Vb与Vref的大小。
下面详细阐述控制模块801、MSB阵列、LSB阵列、第一开关K1、第二开关K2的工作原理。
第一,控制模块801选择MSB阵列中哪一个MSB单元需要校准,并控制比较器同相端与a端相连并且第一开关K1打开,此时a端电容C1放电,当控制模块801检测到比较器的输出端Vout为低电平时控制第一开关K1闭合,同时时钟L1输出时钟信号至第一开关K1,经过第一时间t1,当控制模块801检测到比较器的输出端Vout的输出跳变为高电平时,打开第一开关K1并记录下第一开关K1闭合时间t1。
第二,控制模块801控制比较器同相端与b端相连并且第二开关K2打开,此时b端电容C2放电,当控制模块801检测到比较器的输出端Vout为低电平时控制第二开关K2闭合,同时第二时钟L2输出时钟信号至第二开关K2,经过第二时间t2,当控制模块801检测到比较器的输出端Vout的输出跳变为高电平时,打开第二开关K2并记录下第二开关K2闭合时间t2。
值得指出的是,本发明实施例的误差测量子单元使用图3和图8均能完成误差测量的功能,不同点是图3使用一个电容,图8使用两个电容。只有图8中两个电容的误差很小,可以忽略不计的情况下才可以使用图8电路图。同时也可以是使用多个电容的方式,也就是说,MSB阵列中每一个MSB单元都与一个电容相连,对每一个MSB单元各自的电容充放电,并记录下各自的电容的充电时间,与LSB阵列即全部LSB单元的充电时间做比较,计算出每一个MSB单元与LSB阵列即全部LSB单元的电流误差。其中,选取的每一个电容之间的误差很小,可以忽略不计。
本发明的电流型数模转换方法和装置,通过对每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差转为时间误差来测量并保存在寄存器中,对输入数据进行预处理,把相应的误差消除,从而得到精确的输出。本发明克服了由于芯片上工艺的因素而产生的MSB单元之间存在不匹配的问题,从而使得高精度电流型DAC的微分非线性和积分非线性这两个指标达到很低的值。
本发明不单局限于这种温度计码结构的DAC中,先将输入的数字信号转换为温度计码,然后,根据每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差对输入的温度计码进行消除误差预处理。还可应用于二进制码的DAC中,直接根据每一个MSB单元电流IMSB与全部LSB单元总电流ILSB(总)之间的电流误差对输入的数字信号进行误差预处理,这样可以节省更多的芯片面积。同样,这发明不单局限于DAC中,还可以应用于芯片中某些模块的不匹配设计中,例如不同偏置电流(bias current)的匹配(matching)校正中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种电流型数模转换方法,其特征在于,所述转换方法包括:
对最高有效位MSB阵列中每一个MSB单元电流与最低有效位LSB阵列中全部LSB单元总电流之间的电流误差转为时间误差进行测量、计算出所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差;
根据所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差,对输入数字信号进行消除误差预处理;
对经过预处理的数字信号进行数模转换,从而输出精确的模拟信号。
2.如权利要求1所述的电流型数模转换方法,其特征在于,在计算出所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差之后,还进一步包括:
把计算得到的所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差记录在寄存器中。
3.如权利要求1所述的电流型数模转换方法,其特征在于,对于温度码型数模转换器DAC,在对所述输入数字信号进行消除误差预处理之前,还进一步包括:
将所述输入的数字信号转换为温度计码;
根据所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差对输入的温度计码进行消除误差预处理。
4.一种电流型数模转换装置,其特征在于,所述转换装置包括:
校准单元,用于对所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差转为时间误差进行测量,从而计算出所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差;
预处理单元,用于根据所述校准单元的的所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差,对输入数字信号进行消除误差预处理;
DAC核单元,用于对经过预处理的数字信号进行数模转换,从而输出精确的模拟信号。
5.如权利要求4所述的电流型数模转换装置,其特征在于,所述校准单元包括:
误差测量子单元,用于对所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差转为时间误差来测量;
误差计算子单元,用于对所述每一个MSB单元与所述全部LSB单元对电容的充电时间误差来计算所述每一个MSB单元电流与所述全部LSB单元总电流的电流误差;
误差存储子单元,用于把计算得到的所述每一个MSB单元电流与所述全部LSB单元总电流的电流误差记录在寄存器中。
6.如权利要求5所述的电流型数模转换装置,其特征在于,所述误差测量子单元包括
误差测量电路,用于实现对所述每一个MSB单元电流与所述全部LSB单元总电流之间的电流误差用时间误差来测量;
控制模块,用于控制误差测量电路的测量。
7.如权利要求6所述的电流型数模转换装置,其特征在于,所述误差测量电路包括MSB阵列、LSB阵列、第一开关、第二开关、第一时钟、第二时钟、电容、比较器、电压源;
所述MSB阵列和第一时钟分别与所述第一开关相连,所述LSB阵列和第二时钟分别与第二开关相连,所述第一开关和第二开关分别与所述电容相连;
所述比较器的同相端分别与所述第一开关、第二开关和电容相连,所述比较器的反相端与所述电压源相连;
所述MSB阵列、第一开关和第二开关分别与所述控制模块相连接。
8.如权利要求4所述的电流型数模转换装置,其特征在于,所述校准单元位于高精度电流型DAC实现装置的本体内或位于高精度电流型DAC实现装置的本体外。
9.如权利要求4所述的电流型数模转换装置,其特征在于,所述预处理单元还包括:
温度译码器,用于温度码型DAC中,对输入的所述数字信号转换为温度计码。
CN201210029311.1A 2012-02-10 2012-02-10 电流型数模转换方法和装置 Active CN102545906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210029311.1A CN102545906B (zh) 2012-02-10 2012-02-10 电流型数模转换方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210029311.1A CN102545906B (zh) 2012-02-10 2012-02-10 电流型数模转换方法和装置

Publications (2)

Publication Number Publication Date
CN102545906A true CN102545906A (zh) 2012-07-04
CN102545906B CN102545906B (zh) 2015-01-07

Family

ID=46351976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210029311.1A Active CN102545906B (zh) 2012-02-10 2012-02-10 电流型数模转换方法和装置

Country Status (1)

Country Link
CN (1) CN102545906B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078630A (zh) * 2012-12-20 2013-05-01 香港应用科技研究院有限公司 用于滤波器的带宽校准
CN104333382A (zh) * 2014-10-28 2015-02-04 长沙瑞达星微电子有限公司 一种电流舵dac的校准方法
CN106712770A (zh) * 2016-12-28 2017-05-24 广东大普通信技术有限公司 一种提高数模转换器的输出精度的方法和装置
CN111431528A (zh) * 2020-04-10 2020-07-17 上海安路信息科技有限公司 Dac误差补偿方法及误差补偿系统
CN113595552A (zh) * 2021-07-22 2021-11-02 中国科学院微电子研究所 一种应用于数模转换器的非线性校准方法及装置
CN113799489A (zh) * 2020-06-12 2021-12-17 深圳市汉森软件有限公司 喷头驱动电压的校正方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060061500A1 (en) * 2004-09-20 2006-03-23 Analog Devices, Inc. Digital-to-analog converter structures
CN101771415A (zh) * 2008-12-31 2010-07-07 台湾积体电路制造股份有限公司 Dac变量跟踪校准
CN101951262A (zh) * 2010-09-03 2011-01-19 英特格灵芯片(天津)有限公司 Dac校准电路及校准方法
CN102006079A (zh) * 2010-12-22 2011-04-06 复旦大学 数模转换器
CN102075188A (zh) * 2010-12-31 2011-05-25 北京时代民芯科技有限公司 一种dac数字静态校准电路
CN202424690U (zh) * 2012-02-10 2012-09-05 英特格灵芯片(天津)有限公司 电流型数模转换装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060061500A1 (en) * 2004-09-20 2006-03-23 Analog Devices, Inc. Digital-to-analog converter structures
CN101771415A (zh) * 2008-12-31 2010-07-07 台湾积体电路制造股份有限公司 Dac变量跟踪校准
CN101951262A (zh) * 2010-09-03 2011-01-19 英特格灵芯片(天津)有限公司 Dac校准电路及校准方法
CN102006079A (zh) * 2010-12-22 2011-04-06 复旦大学 数模转换器
CN102075188A (zh) * 2010-12-31 2011-05-25 北京时代民芯科技有限公司 一种dac数字静态校准电路
CN202424690U (zh) * 2012-02-10 2012-09-05 英特格灵芯片(天津)有限公司 电流型数模转换装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078630A (zh) * 2012-12-20 2013-05-01 香港应用科技研究院有限公司 用于滤波器的带宽校准
CN103078630B (zh) * 2012-12-20 2015-09-30 香港应用科技研究院有限公司 用于滤波器的带宽校准
CN104333382A (zh) * 2014-10-28 2015-02-04 长沙瑞达星微电子有限公司 一种电流舵dac的校准方法
CN106712770A (zh) * 2016-12-28 2017-05-24 广东大普通信技术有限公司 一种提高数模转换器的输出精度的方法和装置
WO2018120346A1 (zh) * 2016-12-28 2018-07-05 广东大普通信技术有限公司 提高数模转换器的输出精度的方法和装置
CN106712770B (zh) * 2016-12-28 2020-02-18 深圳市英特瑞半导体科技有限公司 一种提高数模转换器的输出精度的方法和装置
US10917099B2 (en) 2016-12-28 2021-02-09 Guangdong DAPU Telecom Technology Co., Ltd. Method and device for improving output accuracy of digital-to-analogue converter
CN111431528A (zh) * 2020-04-10 2020-07-17 上海安路信息科技有限公司 Dac误差补偿方法及误差补偿系统
CN111431528B (zh) * 2020-04-10 2023-11-28 上海安路信息科技股份有限公司 Dac误差补偿方法及误差补偿系统
CN113799489A (zh) * 2020-06-12 2021-12-17 深圳市汉森软件有限公司 喷头驱动电压的校正方法、装置、设备及存储介质
CN113799489B (zh) * 2020-06-12 2023-03-24 深圳市汉森软件有限公司 喷头驱动电压的校正方法、装置、设备及存储介质
CN113595552A (zh) * 2021-07-22 2021-11-02 中国科学院微电子研究所 一种应用于数模转换器的非线性校准方法及装置

Also Published As

Publication number Publication date
CN102545906B (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
CN102647187B (zh) Adc校准装置
CN102545906A (zh) 电流型数模转换方法和装置
US9362938B2 (en) Error measurement and calibration of analog to digital converters
CN103580695B (zh) 预测性逐渐逼近式模拟数字转换装置及其方法
US7705765B1 (en) Systems and methods for characterizing component ratios and generating a digital representation of same
EP0698315B1 (en) Algorithmic a/d converter with digitally calibrated output
US7796077B2 (en) High speed high resolution ADC using successive approximation technique
US8174423B2 (en) Pipelined analog-to-digital converter and sub-converter stage
CN109861691B (zh) 基于延迟锁相环的两步式混合结构sar tdc的模数转换器电路
CN107994903B (zh) 模数转换电路及流水线模数转换器
EP3557766A1 (en) Analog-to-digital converter (adc) having calibration
CN101322313A (zh) 包含校正数模转换器的数字校正连续逼近例程转换器
CN102082572A (zh) 电容器阵列的校正方法和电容器阵列的校正装置
US7659845B2 (en) Analog-to-digital converter with capacitor array
US9191018B2 (en) Analog-digital converter
CN106953637A (zh) 电荷域幅度误差校准电路及采用该校准电路的dds电路
CN104467857B (zh) 逐次逼近模数转换器系统
CN102723951B (zh) 一种具有平移技术的流水线型adc数字后台校正电路
CN111628775B (zh) 基于多数表决的比较器失调校准装置和校准方法
US20230198535A1 (en) Calibration method of capacitor array type successive approximation register analog-to-digital converter
CN202424690U (zh) 电流型数模转换装置
US6504500B1 (en) A/D converter and A/D converting method
CN115642915B (zh) 一种流水线逐次逼近型adc位权校准系统和方法
RU2399156C1 (ru) Способ коррекции погрешностей аналого-цифрового преобразования и устройство для его осуществления
CN113328748B (zh) 模数转换电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190618

Address after: 100176 Beijing Daxing Economic and Technological Development Zone No. 10 Ronghua Middle Road Building A 9-storey 915

Patentee after: Xin Chuangzhi (Beijing) Microelectronics Co., Ltd.

Address before: Room 210, Software South Building, Tianda Science Park, 80 Fourth Avenue, Jinshi Development Zone, 300457

Patentee before: International Green Chip (Tianjin) Co.,Ltd.