CN102520249A - 一种测定半导体薄膜膜厚方向电导率的方法 - Google Patents

一种测定半导体薄膜膜厚方向电导率的方法 Download PDF

Info

Publication number
CN102520249A
CN102520249A CN2011104231425A CN201110423142A CN102520249A CN 102520249 A CN102520249 A CN 102520249A CN 2011104231425 A CN2011104231425 A CN 2011104231425A CN 201110423142 A CN201110423142 A CN 201110423142A CN 102520249 A CN102520249 A CN 102520249A
Authority
CN
China
Prior art keywords
film
conductivity
thin film
semiconductive thin
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104231425A
Other languages
English (en)
Inventor
张建生
杨君友
冯双龙
刘铭
李�根
刘正来
彭江英
肖也
付良威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN2011104231425A priority Critical patent/CN102520249A/zh
Publication of CN102520249A publication Critical patent/CN102520249A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明公开了一种绝缘衬底上的半导体薄膜厚度方向电导率的测量方法,首先在绝缘衬底上依次沉积第一条形导电金属薄膜、第一绝缘层、待测半导体薄膜、第二绝缘层及第二条形导电金属薄膜层;第一层绝缘层与第二层绝缘层在相同位置留有大小位置完全相同的导电小孔;其次,使上下两层金属薄膜与中间夹层半导体薄膜通过上下两导电小孔接触导通,形成串联的电流通路;然后,对该电流通路通入一定电流,并采集半导体薄膜两表面间对应于两开孔处的电压值;最后,根据所测得的电压值及对其所通电流值,即可求得半导体薄膜厚度方向的电导率。本发明原理简单,设备均为常见简单测试仪表,搭建和测试成本都成本低且简单易行,测试精度较高,数据处理极为简便。

Description

一种测定半导体薄膜膜厚方向电导率的方法
技术领域
本发明属于薄膜热物性测试技术领域,具体涉及一种半导体薄膜膜厚方向电导率的测定方法。
背景技术
对于微纳米材料、微电子微机电系统(MEMS)、纳米薄膜热电材料而言,电导率是非常重要的物性参数。对于各种材料薄膜膜厚方向电导率的测试已经有很多报道,但是由于薄膜在厚度方向尺寸极小,通常为微米甚至纳米级,因此无法直接测量,用于宏观尺寸样品的电导率测试方法均无法使用在薄膜样品厚度方向的测量中。如广泛使用的四探针法,在宏观样品的测试中,由于可以排除电路电阻以及接触电阻的影响,被广泛运用于各种材料的电导率测试,但由于薄膜膜厚方向尺寸极小,无法在厚度方法搭建4个探针,因此无法用于薄膜厚度方法的电导率测量。据文献报道,在薄膜膜厚方向电导率的测量中,广泛使用的为增强的传输线模型法(ETLM)(①R.Venkatasubramanian.in Recent Trends inThermoelectric Materials Research III(ed.Tritt,T.M.)Ch.4(Academic,SanDiego,2001),即在传输线模型(TLM)法(②H. H. Berger.J.Electrochem.Soc,1972,119(4):507)的基础上进行改进的一种测试方法,先由TLM法测得金属探针与薄膜的接触电阻,再进一步得到薄膜膜厚方向的电导率。但该方法需要加工出样品的台式结构,在样品台式结构上再加工出与台式结构相同的金属探针,加工难度较大;另外,由该方法实际上测得的薄膜电导率为台状结构的厚度方向的电导率,而并非薄膜本身的电导率,而该测量方法成立的前提是台式结构的电导率与薄膜本体的电导率相同,且不能随厚度有所变化。若薄膜电导率随厚度有所变化,则所测电导率并不一定与薄膜本体厚度方向的电导率相同。
因此,薄膜膜厚方向的电导率测量较为困难,方法较少,且加工较为困难,难以保证所测得电导率为所待测薄膜样品厚度方向的电导率。
发明内容
本发明目的在于提供一种半导体薄膜厚度方向电导率的测试方法,该方法仅需利用直流电源及精密电压表即可得到薄膜厚度方向的电导率,且样品制备较容易,数据处理简便,测试精度较高。
实现本发明的目的所采用的具体技术方案如下:
一种绝缘衬底上的半导体薄膜厚度方向电导率的测量方法,其特征在于,包括如下步骤:
首先,在绝缘衬底上由下而上依次沉积第一条形导电金属薄膜、第一绝缘层、待测半导体薄膜、第二绝缘层及第二条形导电金属薄膜层;其中第一层绝缘层与第二层绝缘层在相同位置留有大小位置完全相同的导电小孔;
其次,使上下两层金属薄膜与中间夹层半导体薄膜通过上下两导电小孔接触导通,形成串联的电流通路;
然后,对该电流通路通入一定电流,并采集半导体薄膜两表面上对应于两开孔位置处的电压值;
最后,根据所测得的电压值及对其所通电流值,再结合半导体薄膜与金属薄膜层的接触电阻,即可求得半导体薄膜厚度方向的电导率。
进一步地,所述半导体在薄膜厚度方向的电导率为:
G = d R ′ S
式中,上下两层绝缘层上的开孔面积均为S,d为半导体薄膜厚度,R’为半导体薄膜在厚度方向上面积为S的电阻值。
进一步地,所述电阻值R’通过如下公式得到:
R’=R-R1-R2
式中,R=U1/I1,U1为半导体薄膜两表面在对应开孔位置之间的电压值,I1为流过所述电流通路的电流,R1和R2分别为上下两接触电阻的阻值。
本方法所需设备为:可调直流电源一台,精密电流表、电压表各一个。将样品、电流表串联起来,由可调直流电源供电,精密电流表读取通过薄膜样品电流的大小,精密电压表直流测量样品中两个电压测试端的电压值。
本发明适用于沉积在绝缘衬底上的半导体薄膜厚度方向电导率的测试。要求衬底为绝缘衬底或在导体衬底上镀一层绝缘层。本发明采用了全新的微加工布线设计,在对薄膜厚度方向通电时,可以直接通过电压表测量两侧金属薄膜的电压测试端而得到半导体薄膜两侧的电压值,样品布线考虑了电路中电阻的影响,设计了电流通路与电压测试端分离,从而避免了电路中其它环节电阻的影响。再结合TLM法提前测试得到的金属薄膜与半导体薄膜的接触电阻,可通过简单的计算直接得到薄膜厚度方向的电导率。本发明使用简单的样品布线及电路设计实现了对半导体薄膜样品两侧电压信号的直接提取,通过简单运算即可得到薄膜厚度方向的电导率,解决了衬底上半导体薄膜厚度方向电导率的测量,且操作方便,测试设备价格低廉,易于购买和搭建。
附图说明
图1为本发明测试电路及样品剖视图;
图2为样品布线结构俯视图。
具体实施方式
下面结合附图和实例对本发明作进一步详细的说明。
本发明装置的结构包括样品布线和测试电路两个部分。
图1为衬底上样品结构剖面示意图,由待测半导体薄膜层、上下各一层导电金属薄膜以及起到绝缘导流作用的绝缘层组成,薄膜的沉积加工顺序依次为:导电金属薄膜2、绝缘层、待测半导体薄膜、绝缘层和导电金属薄膜1。在半导体薄膜两侧绝缘层的相同位置,通过掩模光刻的微加工方式加工出大小形状完全相同的小孔K1和K2下,小孔大小可根据具体情况进行选择,本实施例中可优选直径为10-20微米,采用其他尺寸也可。在带有小孔的绝缘薄膜层上镀膜,使上下两金属薄膜1、2与待测半导体薄膜接触导通。
如图1所示,A、B与C、D分别为导电金属薄膜1、2的两端,其中A、D分别为两电导金属薄膜的通电流端,B、C为电压采集端。
电路由可调直流电源P、精密电流表I和精密电压表U组成。电源连接导电金属薄膜1的A端和导电金属薄膜2的D端形成闭合回路,电流表I串联在回路中。两导电金属薄膜的B、C端接电压表U。
具体测试步骤如下:
1.打开可调直流电源P,调至适合电压,对半导体薄膜样品通电。
2.分别通过电流表I和电压表U读取电流值I1和电压值U1。由于电流流经导电金属薄膜1的A、小孔K1、半导体薄膜、小孔K2和导电金属薄膜2的D端。小孔K1与B端及小孔K2与C端无电流通过,因此,可以认为B、C两端电压U1即为小孔K1、K2之间的电压,即半导体薄膜两侧的电压差。
3.根据测得的电压值和电流值可求得半导体薄膜两侧的总电阻值为R=U1/I1。小孔K1和K2的面积即导电金属薄膜与半导体薄膜的接触面积可测量,记为S。根据TLM法测得的比接触电阻,可得到上下两接触电阻R1、R2,其中R1=R2,面积为S的半导体薄膜厚度方向的总电阻值为:R’=R-R1-R2。当半导体薄膜厚度为d时,根据电导率定义,可得待测半导体薄膜厚度方向的电导率为:
G = d R ′ S = d ( R - R 1 - R 2 ) · S
4.为了提高测量精度,可改变电源输出电压,得到不同电流I下薄膜两侧的电压值U,作UI曲线图,描点并拟合得到直线后,斜率即为半导体薄膜两侧的总电阻R。根据步骤3,最终可求得薄膜膜厚方向的电导率。

Claims (4)

1.一种绝缘衬底上的半导体薄膜厚度方向电导率的测量方法,其特征在于,包括如下步骤:
首先,在绝缘衬底上由下而上依次沉积第一条形导电金属薄膜、第一绝缘层、待测半导体薄膜、第二绝缘层及第二条形导电金属薄膜层;其中第一层绝缘层与第二层绝缘层在相同位置留有大小位置完全相同的导电小孔;
其次,使上下两层金属薄膜与中间夹层半导体薄膜通过上下两导电小孔接触导通,形成串联的电流通路;
然后,对该电流通路通入一定电流,并采集半导体薄膜上下两表面在对应于两开孔处之间的电压值;
最后,根据所测得的电压值及所通电流值,再结合半导体薄膜与金属薄膜层的接触电阻,即可求得半导体薄膜厚度方向的电导率。
2.根据权利要求1所述的的测量方法,其特征在于,所述半导体在薄膜厚度方向的电导率为:
G = d R ′ S
式中,上下两层绝缘层上的开孔面积均为S,d为半导体薄膜厚度,R’为半导体薄膜在厚度方向上面积为S的电阻值。
3.根据权利要求1或2所述的的测量方法,其特征在于,所述电阻值R’通过如下公式得到:
R’=R-R1-R2
式中,R=U1/I1,U1为半导体薄膜两表面在对应开孔位置之间的电压值,I1为流过所述电流通路的电流,R1和R2分别为上下接触电阻的阻值。
4.根据权利要求1-3之一所述的的测量方法,其特征在于,所述上下接触电阻的阻值R1和R2通过由TLM法测得的比接触电阻得到。
CN2011104231425A 2011-12-16 2011-12-16 一种测定半导体薄膜膜厚方向电导率的方法 Pending CN102520249A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104231425A CN102520249A (zh) 2011-12-16 2011-12-16 一种测定半导体薄膜膜厚方向电导率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104231425A CN102520249A (zh) 2011-12-16 2011-12-16 一种测定半导体薄膜膜厚方向电导率的方法

Publications (1)

Publication Number Publication Date
CN102520249A true CN102520249A (zh) 2012-06-27

Family

ID=46291237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104231425A Pending CN102520249A (zh) 2011-12-16 2011-12-16 一种测定半导体薄膜膜厚方向电导率的方法

Country Status (1)

Country Link
CN (1) CN102520249A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809696A (zh) * 2012-08-17 2012-12-05 福建南平南孚电池有限公司 金属夹具、具有该金属夹具的设备及其使用方法
CN105203849A (zh) * 2015-09-21 2015-12-30 武汉嘉仪通科技有限公司 一种精确测定薄膜材料膜厚方向电阻率的方法及其装置
CN110044955A (zh) * 2019-02-15 2019-07-23 上海海事大学 用于稳态法测量膏状材料导热性能的样品支架及测量方法
CN111750769A (zh) * 2020-06-18 2020-10-09 哈尔滨工程大学 一种适用于窄矩形通道内环状流液膜厚度测量的行列式电导探针系统及液膜厚度测量方法
CN115046833A (zh) * 2022-08-16 2022-09-13 中铝材料应用研究院有限公司 铝合金的金相覆膜方法及覆膜装置
CN116381345A (zh) * 2022-07-21 2023-07-04 微龛(广州)半导体有限公司 薄膜电阻测量结构、测量方法及测量系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564014A (zh) * 2004-03-26 2005-01-12 北京科技大学 一种燃料电池质子交换膜横向导电率的测试方法与装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564014A (zh) * 2004-03-26 2005-01-12 北京科技大学 一种燃料电池质子交换膜横向导电率的测试方法与装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809696A (zh) * 2012-08-17 2012-12-05 福建南平南孚电池有限公司 金属夹具、具有该金属夹具的设备及其使用方法
CN102809696B (zh) * 2012-08-17 2015-04-15 福建南平南孚电池有限公司 金属夹具、具有该金属夹具的设备及其使用方法
CN105203849A (zh) * 2015-09-21 2015-12-30 武汉嘉仪通科技有限公司 一种精确测定薄膜材料膜厚方向电阻率的方法及其装置
CN110044955A (zh) * 2019-02-15 2019-07-23 上海海事大学 用于稳态法测量膏状材料导热性能的样品支架及测量方法
CN110044955B (zh) * 2019-02-15 2024-04-02 上海海事大学 用于稳态法测量膏状材料导热性能的样品支架及测量方法
CN111750769A (zh) * 2020-06-18 2020-10-09 哈尔滨工程大学 一种适用于窄矩形通道内环状流液膜厚度测量的行列式电导探针系统及液膜厚度测量方法
CN111750769B (zh) * 2020-06-18 2022-04-05 哈尔滨工程大学 一种适用于窄矩形通道内环状流液膜厚度测量的行列式电导探针系统及液膜厚度测量方法
CN116381345A (zh) * 2022-07-21 2023-07-04 微龛(广州)半导体有限公司 薄膜电阻测量结构、测量方法及测量系统
CN116381345B (zh) * 2022-07-21 2023-10-31 微龛(广州)半导体有限公司 薄膜电阻测量结构、测量方法及测量系统
CN115046833A (zh) * 2022-08-16 2022-09-13 中铝材料应用研究院有限公司 铝合金的金相覆膜方法及覆膜装置
CN115046833B (zh) * 2022-08-16 2022-12-09 中铝材料应用研究院有限公司 铝合金的金相覆膜方法及覆膜装置

Similar Documents

Publication Publication Date Title
CN102520249A (zh) 一种测定半导体薄膜膜厚方向电导率的方法
CN108398456B (zh) 纳米尺度材料热导率的测试方法及装置
Ndip et al. Analytical, numerical-, and measurement–based methods for extracting the electrical parameters of through silicon vias (TSVs)
CN103743787B (zh) 一种三轴试验土样含水量分布测试装置
CN106683708B (zh) 一种测试3dnand字线电阻的方法
CN103698357B (zh) 一种基于mems双加热器的热导率和热扩散系数传感器
WO2007145729A2 (en) On-wafer test structures
CN101295002B (zh) 互连线失效检测方法
CN102446900A (zh) 多层金属互连金属线的电迁移可靠性测试结构及制备方法
KR102536597B1 (ko) 테스트 샘플의 전기적 특성을 측정하기 위한 방법
CN103472304B (zh) 一种弹性探针阵列多通道电阻测量方法和装置
ITUD20110166A1 (it) Dispositivo di test per collaudare piastre per circuiti elettronici e relativo procedimento
CN103063950B (zh) 一种忆阻器器件单元的电学特性测试方法
CN104390580B (zh) 金属膜膜厚量测系统及采用该系统进行膜厚量测的方法
CN205810498U (zh) 分流电阻器
CN105203849A (zh) 一种精确测定薄膜材料膜厚方向电阻率的方法及其装置
TW200300843A (en) Impedance standard substrate and method for calibrating vector network analyzer
CN206638621U (zh) 一种用于实时测试混凝土电阻率的试验装置
CN205786856U (zh) 染污绝缘子受潮表面电导率的测量装置
CN102495295B (zh) 一种半导体薄膜材料电容特性的测量方法及装置
CN103026169B (zh) 测量多个器件中的层的厚度的方法及生产的器件
CN208847794U (zh) 一种微电感测量装置
CN104409756A (zh) 燃料电池内部湿度-热流密度-电流密度分布测量插片
CN105203852B (zh) 用于集成无源器件的测试板以及测试方案
CN115312500A (zh) Mtj测试结构以及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120627