CN102515819B - 一种多孔二氧化锆陶瓷的制备方法 - Google Patents

一种多孔二氧化锆陶瓷的制备方法 Download PDF

Info

Publication number
CN102515819B
CN102515819B CN 201110387144 CN201110387144A CN102515819B CN 102515819 B CN102515819 B CN 102515819B CN 201110387144 CN201110387144 CN 201110387144 CN 201110387144 A CN201110387144 A CN 201110387144A CN 102515819 B CN102515819 B CN 102515819B
Authority
CN
China
Prior art keywords
zirconium dioxide
add
premixed liquid
gel
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110387144
Other languages
English (en)
Other versions
CN102515819A (zh
Inventor
周军
汪长安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 201110387144 priority Critical patent/CN102515819B/zh
Publication of CN102515819A publication Critical patent/CN102515819A/zh
Application granted granted Critical
Publication of CN102515819B publication Critical patent/CN102515819B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种多孔二氧化锆陶瓷的制备方法。该方法包括如下步骤:(1)将水、单体化合物和交联剂进行混合得到预混液;(2)向所述预混液中加入氧氯化锆和缓释剂得到澄清溶液;(3)向所述澄清溶液中加入加入催化剂和引发剂注入模具中进行聚合反应得到凝胶;(4)所述凝胶依次经干燥、排胶和烧结即得所述多孔二氧化锆陶瓷。本发明采用改进的高分子网络凝胶法制备高气孔率、纳米至亚微米气孔尺寸、多孔二氧化锆陶瓷材料,采用有机高分子聚合物构建三维网络的方式提供模板和支撑构架,使纳米陶瓷晶粒原位合成并使之构建成孔壁,然后在逐步缓释应力的情况下使有机网络逐步缩小并消失,最终形成具有高气孔率、纳米至亚微米孔径的多孔二氧化锆陶瓷材料。

Description

一种多孔二氧化锆陶瓷的制备方法
技术领域
本发明涉及一种多孔二氧化锆陶瓷的制备方法,属于多孔陶瓷材料制备技术领域。
背景技术
多孔陶瓷具有耐高温、抗氧化、抗化学侵蚀、热膨胀系数小、热导率低、体积稳定性好和电绝缘性强等性质,广泛应用于冶金、化工、环保、能源、生物、食品和医药等领域,作为过滤、分离、隔热、吸声、生物陶瓷、化学传感器和催化剂载体等元件材料。二氧化锆材料具有熔点高、热导率低、热膨胀系数接近金属材料、抗热震性好、强度高等优点,被广泛应用于防/隔热等领域。二氧化锆是同时具有表面酸性位和碱性位的过渡金属氧化物,同时还有优良的离子交换性能及表面富集的氧缺位,因而在催化领域它既可以单独作为催化剂使用,也可以载体或助剂的角色出现。另外,其优良的高温导电性和良好的离子交换性能可使其用作电极材料、固体电解质和气体传感材料等。因此制备出气孔尺寸较小、气孔率较高的二氧化锆材料具有极大的应用价值。
目前多孔陶瓷的制备主要采用反应烧结法、发泡法、模板法和凝胶注模等方法。反应烧结法、发泡法和模板法制备的多孔材料气孔分布不均匀,气孔尺寸较大。而凝胶注模工艺制备的多孔二氧化锆的最高气孔率只有76%左右,平均气孔尺寸为1μm左右,很难再减小[Hu LF,et al.,J.Mater.Sci.,(2010)45:3242-3246]。
高分子网络凝胶法是Douy A.和Odier P.发明的一种最初用来制备纳米粉的工艺[Douy A.and Odier P.,Mater.Res.Bull.,(1989)24:1119]。其原理和凝胶注模的原理非常相似,但使用的原料是所需制备的陶瓷粉对应的水溶性硝酸盐或氯化盐等。制备过程是把原料(硝酸盐或氯化盐等)、单体(丙烯酰胺)和交联剂(N,N’-亚甲基双丙烯酰胺)溶于水中,加入引发剂(过硫酸铵、过硫酸钾等)以后聚合成纳米级的三维空间网络并形成凝胶,凝胶干燥的过程中这些水溶性硝酸盐或氯化盐析出,并受此三维空间网络的限制形成纳米晶粒,在随后的排胶过程中形成无团聚的纳米粉。该工艺与传统的溶胶凝胶工艺相比工艺简单,成本较低,不使用价格高昂的有机酸和醇盐等原料。
但一直以来,高分子网络凝胶工艺仅局限在陶瓷粉体制备方面。主要原因是凝胶干燥和煅烧过程中比较容易开裂。凝胶干燥和煅烧过程中的开裂问题一方面是由于存在毛细管力等内应力;另一方面,干凝胶不像湿凝胶一样具有弹性,当瞬间的收缩比较大时,其内应力将会超过临界值致使凝胶开裂。
发明内容
本发明的目的是提供一种多孔二氧化锆陶瓷的制备方法,所制得的高气孔率为70%~95%。
本发明提供的一种多孔二氧化锆陶瓷的制备方法,包括如下步骤:
(1)将水、单体化合物和交联剂进行混合得到预混液;所述单体化合物为丙烯酰胺、甲基丙烯酰胺、羟甲基丙烯酰胺、烷基丙烯酰胺、丙烯酸、甲基丙烯酸、甲氧基-聚(乙烯基乙二醇)甲基丙烯酸、丙烯酸烷基酯、甲基丙烯酸烷基酯、烷氧基丙烯酸烷基酯、烷氧基甲基丙烯酸烷基酯、丁二烯、二甲基羟乙基丙烯酸甲酯、羟丙基丙烯酸甲酯、苯乙烯、甲基苯乙烯、N-乙烯基吡咯烷酮或二甲基丙烯酰胺;
(2)向所述预混液中加入氧氯化锆和缓释剂得到澄清溶液;所述缓释剂为蔗糖、果糖、尿素、葡萄糖、羧甲基淀粉、醋酸淀粉、聚乙烯醇、聚乙二醇、羟甲基纤维素、羧甲基纤维素、聚乙烯吡咯烷酮、氯化铵和氯化钠中至少一种;
(3)向所述澄清溶液中加入催化剂和引发剂注入模具中进行聚合反应得到凝胶;
(4)所述凝胶依次经干燥、排胶和烧结即得所述多孔二氧化锆陶瓷材料。
上述的方法中,所述烷基丙烯酰胺可为甲基丙烯酰胺、乙基丙烯酰胺或丙基丙烯酰胺;所述丙烯酸烷基酯可为丙烯酸甲酯、丙烯酸乙酯或丙烯酸丁酯;所述甲基丙烯酸烷基酯可为甲基丙烯酸甲酯、甲基丙烯酸乙酯或甲基丙烯酸丁酯。
上述的方法中,步骤(1)中所述交联剂可为N,N′-亚甲基双丙烯酰胺、丙烯基丙烯酸甲酯或聚(乙烯基乙二醇)双甲基丙烯酸(PEGDMA)等;步骤(1)中水、单体化合物与交联剂的质量份数比为(67~94.5)∶(5~30)∶(0.3~3),具体可为73.2∶25∶1.8、78.8∶20∶1.2、84.4∶15∶0.6或84.7∶15∶0.3。
上述的方法中,步骤(2)中还包括向所述预混液中加入稳定剂的步骤,所述稳定剂可为硝酸钇、硝酸铈、硝酸钙和硝酸镁中至少一种。
上述的方法中,步骤(2)所述稳定剂与氧氯化锆的摩尔份数比可为(1~30)∶(70~99),具体可为6∶94、12∶88或16∶84;氧氯化锆的加入量为所述预混液质量的5%~60%、具体可为15%、20%或25%;所述缓释剂的加入量为所述预混液质量的0.1%~60%,具体可为7.5%、11.25%、15%或30%。
上述的方法中,在步骤(3)之前所述方法还可包括调控所述澄清溶液的pH值至0~7的步骤。
上述的方法中,步骤(3)所述催化剂可为N,N,N′,N′-四甲基乙二胺;所述引发剂可为过硫酸铵、过硫酸钠、过硫酸钾、偶氮二异丁腈、偶氮双氰基戊酸钠、双氧水、过氧化苯甲酸、偶氮(2-(2-咪哇琳)丙烷)盐酸钠,偶氮(2-脒基丙烷)盐酸盐、偶氮二异丁脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二异丁咪唑啉和偶氮二氰基戊酸中至少一种;所述引发剂的加入量为所述单体化合物质量的0.1%~10%,具体可为1.6%、2%或2.7%,所述催化剂的加入量为所述单体化合物质量的0.05%~2%,具体可为0.2%、0.3%或0.7%。
上述的方法中,步骤(3)中所述催化剂可以催化剂水溶液的形式存在,所述催化剂水溶液的质量百分含量可为5%~80%,具体可为20%;所述引发剂可以引发剂水溶液的形式存在,所述引发剂水溶液的质量百分含量可为5%~80%,具体可为40%。
上述的方法中,步骤(3)中所述聚合反应的温度为30℃~60℃,具体可为35℃、40℃、45℃或50℃,所述聚合反应的时间可为30min~120min,具体可为30min,40min,50min或60min。
上述的方法中,步骤(4)所述干燥的温度可为40℃~80℃,具体可为40℃、50℃或60℃,相对湿度为70%~99%RH,具体可为80%RH、85%RH、90%RH或92%RH。时间可为1天~7天,具体可为3天、4天、5天或6天;所述排胶的温度可为200℃~650℃,具体可为600℃,时间可为1.5小时~9小时,具体可为4小时或6小时;所述烧结的温度可为600℃~1500℃,具体可为1200℃、1300℃或1500℃,所述烧结的时间可为1小时~6小时,具体可为2小时或3小时。
上述的方法中,所述排胶步骤中,控制升温速率可为0.2℃/min~5℃/min升温至200℃~300℃,保温0.5小时~3小时,如以2℃/min的升温速率升至300℃并保温0.5小时,然后控制升温速率为0.2℃/min~5℃/min升温至400℃~650℃,保温1~6小时,如以2℃/min的升温速率升至550℃并保温4小时;所述烧结步骤中,控制升温速率可为0.5℃/min~10℃/min升温至所述烧结温度,具体可为1℃/min、2℃/min或5℃/min。
本发明采用改进的高分子网络凝胶法制备高气孔率、纳米至亚微米气孔尺寸、多孔二氧化锆陶瓷材料,采用有机高分子聚合物构建三维网络的方式提供模板和支撑构架,使纳米陶瓷晶粒原位合成并使之构建成孔壁,然后在逐步缓释应力的情况下使有机网络逐步缩小并消失,最终形成具有高气孔率(70%~95%)、纳米至亚微米孔径(50~500nm)的多孔二氧化锆陶瓷材料,晶粒尺寸为100~500nm。该工艺具有工艺简单、成本较低的优点。
附图说明
图1为实施例1制得的干凝胶在不同温度下烧结后的XRD衍射图。
图2为实施例1制备的二氧化锆多孔陶瓷的显微照片。
图3为实施例2制备的二氧化锆多孔陶瓷的显微照片。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、二氧化锆多孔陶瓷的制备
在室温条件下,将丙烯酰胺单体、N,N′-亚甲基双丙烯酰胺和去离子水按照25∶1.8∶73.2的质量比配制成20ml预混液;然后分别加入4g氧氯化锆(占该预混液的质量百分含量为20%)、0.96g硝酸钇(其加入量与氧氯化锆的摩尔份数比为16∶84)、3g蔗糖(占该预混液的质量百分含15%),搅拌1小时,获得澄清的溶液;向该澄清的溶液中依次加入0.06ml的20wt%四甲基乙二胺水溶液(四甲基乙二胺的加入量占丙烯酰胺单体的质量的0.2%)和0.2ml的40wt%过硫酸铵水溶液(过硫酸铵的加入量占丙烯酰胺单体的质量的1.6%),搅拌均匀后注入模具,在40℃恒温下保持30min形成凝胶;然后将湿凝胶在40℃、湿度大于80%RH的条件下干燥4天,得到干凝胶;所得干凝胶在马弗炉中以0.3℃/min的升温速率升至600℃保温4h,然后以1℃/min的升温速率升至1200℃,保温2h,最终得到气孔率约为89%、平均气孔尺寸约为300nm的8mol%氧化钇稳定二氧化锆多孔陶瓷。
上述的制备过程中,将制得的干凝胶直接分别在600℃、800℃、1000℃和1200℃的条件下进行烧结保温2小时后的XRD衍射如图1所示,由该图可知,600℃即开始生成YSZ晶粒,至1000℃即结晶良好。
该实施例制备的氧化钇稳定二氧化锆多孔陶瓷的显微照片如图2所示,由该图可以看出,气孔分布均匀,孔径大小一致,晶粒结合良好,尺寸均不超过500nm。
实施例2、二氧化锆多孔陶瓷的制备
在室温条件下,将丙烯酰胺单体、N,N′-亚甲基双丙烯酰胺和去离子水按照20∶1.2∶78.8的质量比配制成20ml预配液;然后分别加入4g氧氯化锆(占该预混液的质量百分含量为20%)、0.96g硝酸钇(其加入量与氧氯化锆的摩尔份数比为16∶84)、2.25g蔗糖(占该预混液的质量百分含量为11.25%),搅拌1小时,获得澄清的溶液;向该澄清的溶液中依次加入0.05ml的20wt%四甲基乙二胺水溶液(四甲基乙二胺的加入量占丙烯酰胺单体的质量的0.3%)和0.2ml的40wt%过硫酸铵水溶液(过硫酸铵的加入量占丙烯酰胺单体的质量的2%),搅拌均匀后注入模具,在45℃恒温下保持40min形成凝胶;然后将湿凝胶在50℃、湿度大于85%RH的条件下干燥3天,所得干凝胶在马弗炉中以1℃/min的升温速率升至300℃保温0.5h,继续升至550℃保温4h,然后以2℃/min的升温速率升至1300℃,保温3h,最终得到气孔率约为85%、平均气孔尺寸约为270nm的8mol%氧化钇稳定二氧化锆多孔陶瓷。
该实施例制备的氧化钇稳定二氧化锆多孔陶瓷的显微照片如图3所示,由该图可以看出气孔细小且分布均匀,晶粒结合良好。
实施例3、二氧化锆多孔陶瓷的制备
在室温条件下,将丙烯酰胺单体、N,N′-亚甲基双丙烯酰胺和去离子水按照15∶0.6∶84.4的质量比配制成20ml预混液,分别加入3g氧氯化锆(占该预混液的质量百分含量为15%)、0.23g硝酸钇(其加入量与氧氯化锆的摩尔份数比为6∶94)、6g尿素(占该预混液的质量百分含量为30%),搅拌2小时,获得澄清的溶液,加入稀硝酸调节pH值为1;向该澄清的溶液中依次加入0.1ml的20wt%四甲基乙二胺水溶液(四甲基乙二胺的加入量占丙烯酰胺单体的质量的0.7%)和0.2ml的40wt%过硫酸铵水溶液(过硫酸铵的加入量占丙烯酰胺单体的质量的2.7%),搅拌均匀后注入模具,在50℃恒温下保持50min形成凝胶,之后将湿凝胶在60℃、湿度大于90%RH的条件下干燥5天,所得干凝胶在马弗炉中以2℃/min的升温速率升至600℃保温6h,然后以5℃/min的升温速率升至1500℃,保温2h,最终得到气孔率约为82%、平均气孔尺寸约为200nm的3mol%氧化钇稳定二氧化锆多孔陶瓷。
实施例4、二氧化锆多孔陶瓷的制备
在室温条件下,将丙烯酰胺单体、N,N′-亚甲基双丙烯酰胺和去离子水按照15∶0.3∶84.7的质量比配制成20ml预混液,分别加入5g氧氯化锆(占该预混液的质量百分含量为25%)、0.81g硝酸钇(其加入量与氧氯化锆的摩尔份数比为12∶88)、1.5g氯化铵(占该预混液的质量百分含量为7.5%),搅拌1.5小时,获得澄清的溶液,加入稀硝酸调节pH值为3;向该澄清的溶液中依次加入0.1ml的20wt%四甲基乙二胺水溶液(四甲基乙二胺的加入量占丙烯酰胺单体的质量的0.7%)和0.15ml的40wt%过硫酸铵水溶液(过硫酸铵的加入量占丙烯酰胺单体的质量的2%),搅拌均匀后注入模具,在35℃恒温下保持60min形成凝胶,之后将湿凝胶在40℃、湿度约92%RH的条件下干燥6天,所得干凝胶在马弗炉中以0.5℃/min的升温速率升至600℃保温3h,然后以1℃/min的升温速率升至1200℃,保温1h,最终得到气孔率约为83%的6mol%氧化钇稳定二氧化锆多孔陶瓷。

Claims (8)

1.一种多孔二氧化锆陶瓷的制备方法,包括如下步骤:
(1)将水、单体化合物和交联剂进行混合得到预混液;所述单体化合物为丙烯酰胺、羟甲基丙烯酰胺、烷基丙烯酰胺、丙烯酸、甲基丙烯酸、甲氧基-聚(乙烯基乙二醇)甲基丙烯酸、丙烯酸烷基酯、甲基丙烯酸烷基酯、烷氧基丙烯酸烷基酯、烷氧基甲基丙烯酸烷基酯、丁二烯、二甲基羟乙基丙烯酸甲酯、羟丙基丙烯酸甲酯、苯乙烯、甲基苯乙烯或N-乙烯基吡咯烷酮;
(2)向所述预混液中加入氧氯化锆和缓释剂得到澄清溶液;所述缓释剂为蔗糖、果糖、尿素、葡萄糖、羧甲基淀粉、醋酸淀粉、聚乙烯醇、聚乙二醇、羟甲基纤维素、羧甲基纤维素、聚乙烯吡咯烷酮、氯化铵和氯化钠中至少一种;
(3)向所述澄清溶液中加入催化剂和引发剂注入模具中进行聚合反应得到凝胶;
(4)所述凝胶依次经干燥、排胶和烧结即得所述多孔二氧化锆陶瓷;
步骤(1)中所述交联剂为N,N'-亚甲基双丙烯酰胺、丙烯基丙烯酸甲酯或聚(乙烯基乙二醇)双甲基丙烯酸;步骤(1)中水、单体化合物与交联剂的质量份数比为(67~94.5):(5~30):(0.3~3);
所述氧氯化锆的加入量为所述预混液质量的5%~60%;所述缓释剂的加入量为所述预混液质量的0.1%~60%;
步骤(3)所述催化剂为四甲基乙二胺;所述引发剂为过硫酸铵、过硫酸钾、偶氮二异丁脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二异丁咪唑啉和偶氮二氰基戊酸中至少一种;所述引发剂的加入量为所述单体化合物质量的0.1%~10%,所述催化剂的加入量为所述单体化合物质量的0.05%~2%。
2.根据权利要求1所述的方法,其特征在于:步骤(2)中还包括向所述预混液中加入稳定剂的步骤,所述稳定剂为硝酸钇、硝酸铈、硝酸钙和硝酸镁中至少一种。
3.根据权利要求2所述的方法,其特征在于:步骤(2)所述稳定剂与氧氯化锆的摩尔份数比为(1~30):(70~99)。
4.根据权利要求3所述的方法,其特征在于:在步骤(3)之前所述方法还包括调控所述澄清溶液的pH值至0~7的步骤。
5.根据权利要求4所述的方法,其特征在于:步骤(3)中所述催化剂以催化剂水溶液的形式存在,所述催化剂水溶液的质量百分含量为5%~80%;所述引发剂以引发剂水溶液的形式存在,所述引发剂水溶液的质量百分含量为5%~80%。
6.根据权利要求1-5中任一所述的方法,其特征在于:步骤(3)中所述聚合反应的温度为30℃~60℃,所述聚合反应的时间为30min~120min。
7.根据权利要求1-5中任一所述的方法,其特征在于:步骤(4)所述干燥的温度为40℃~80℃,相对湿度为70%~99%RH,时间为1天~7天;所述排胶的温度为200℃~650℃,时间为1.5小时~9小时;所述烧结的温度为600℃~1500℃,所述烧结的时间为1小时~6小时。
8.根据权利要求7所述的方法,其特征在于:所述排胶步骤中,控制升温速率为0.2℃/min~5℃/min升温至200℃~300℃,保温0.5小时~3小时,然后控制升温速率为0.2℃/min~5℃/min升温至400℃~650℃,保温1~6小时;所述烧结步骤中,控制升温速率为0.5℃/min~10℃/min升温至所述烧结温度。
CN 201110387144 2011-11-29 2011-11-29 一种多孔二氧化锆陶瓷的制备方法 Expired - Fee Related CN102515819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110387144 CN102515819B (zh) 2011-11-29 2011-11-29 一种多孔二氧化锆陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110387144 CN102515819B (zh) 2011-11-29 2011-11-29 一种多孔二氧化锆陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN102515819A CN102515819A (zh) 2012-06-27
CN102515819B true CN102515819B (zh) 2013-09-04

Family

ID=46286963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110387144 Expired - Fee Related CN102515819B (zh) 2011-11-29 2011-11-29 一种多孔二氧化锆陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN102515819B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745119B (zh) * 2016-11-22 2018-10-30 中南大学 一种镁铝尖晶石粉末的合成方法
CN108004682B (zh) * 2017-12-08 2020-08-18 西安理工大学 一种静电纺丝制备荷正电杂化纤维膜的方法
CN108585841A (zh) * 2018-05-18 2018-09-28 淄博松阳锆业科技有限公司 一种新型氧化锆陶瓷钩刀制备工艺
CN111825450B (zh) * 2020-07-21 2022-05-17 宁德三祥纳米新材料有限公司 一种凝胶-水热工艺制备纳米氧化锆的方法
CN111646506B (zh) * 2020-07-21 2023-01-03 宁德三祥纳米新材料有限公司 一种内凝胶法制备纳米氧化锆的方法
CN114671674B (zh) * 2022-03-14 2023-09-15 上海轩邑新能源发展有限公司 一种二氧化硅泡沫陶瓷及其制备方法
CN115319647B (zh) * 2022-08-09 2024-01-19 河南科技大学 干凝胶及制备方法、有机-无机复合结合剂、刚玉磨具及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631796A (zh) * 2004-11-30 2005-06-29 中国科学院山西煤炭化学研究所 一种具有高热稳定性的介孔二氧化锆的制备方法
CN101172882A (zh) * 2007-10-26 2008-05-07 华南理工大学 一种高强度抗震隔热多孔陶瓷的制备方法
CN101239828A (zh) * 2008-02-19 2008-08-13 山东红阳耐火保温材料有限公司 氧化锆耐火纤维的制备方法
CN101913650A (zh) * 2010-08-16 2010-12-15 河北工业大学 有序层状纳米/介孔结构氧化锆多晶粉体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631796A (zh) * 2004-11-30 2005-06-29 中国科学院山西煤炭化学研究所 一种具有高热稳定性的介孔二氧化锆的制备方法
CN101172882A (zh) * 2007-10-26 2008-05-07 华南理工大学 一种高强度抗震隔热多孔陶瓷的制备方法
CN101239828A (zh) * 2008-02-19 2008-08-13 山东红阳耐火保温材料有限公司 氧化锆耐火纤维的制备方法
CN101913650A (zh) * 2010-08-16 2010-12-15 河北工业大学 有序层状纳米/介孔结构氧化锆多晶粉体的制备方法

Also Published As

Publication number Publication date
CN102515819A (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN102515819B (zh) 一种多孔二氧化锆陶瓷的制备方法
Yuan et al. Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process
CN104080285B (zh) 一种陶瓷壳体结构件及其制备方法
CN102311134B (zh) 一种球形整体式大孔氧化铝及其制备方法
TW424016B (en) Core compositions and articles with improved performance for use in castings for gas turbine applications
Mao et al. Gelcasting of alumina foams consolidated by epoxy resin
CN101830717B (zh) 锆溶胶增强刚玉莫来石制品及其生产方法
CN105254323A (zh) 一种微孔刚玉-莫来石陶瓷分离膜支撑体及其制备方法
CN101503298A (zh) 一种利用凝胶注模法制备氮化硅多孔陶瓷的方法
CN104129979A (zh) 一种结构可控、性能可调的钙长石多孔陶瓷及其制备方法
CN102173852A (zh) 乳状液结合凝胶注模工艺制备氧化铝多孔陶瓷的方法
CN105272189A (zh) 一种微孔莫来石陶瓷分离膜支撑体及其制备方法
CN104311095A (zh) 用活性氧化铝前驱体制备多孔陶瓷的方法
Kritikaki et al. Fabrication of porous alumina ceramics from powder mixtures with sol–gel derived nanometer alumina: effect of mixing method
JP2009527438A (ja) 高耐熱多孔質セラミック材料の製造方法
CN105110813A (zh) 一种多孔钛酸铝陶瓷的制备方法
CN106830989A (zh) 一种泡沫注凝成形‑低温烧结制备铁尾矿多孔陶瓷的方法
Zhao et al. A simple and effective method for gel casting of zirconia green bodies using phenolic resin as a binder
CN109678478A (zh) 一种质轻、高强度和低热导率的钙长石多孔陶瓷材料及其制备方法
CN101698607B (zh) 一种环保型凝胶注膜成型制备氧化铝基陶瓷材料的方法
CN108395240A (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN1315754C (zh) 陶瓷坯体的半水基注模凝胶法精密成型方法
CN105272209B (zh) 掺铝钛氧化锌靶材的制备方法
CN106830962A (zh) 一种二氧化硅改性的多孔氧化锆陶瓷及其制备方法
CN101358388B (zh) 一种pzt压电纤维及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130904

Termination date: 20211129

CF01 Termination of patent right due to non-payment of annual fee