CN102498585A - 半导体发光器件 - Google Patents

半导体发光器件 Download PDF

Info

Publication number
CN102498585A
CN102498585A CN2010800413771A CN201080041377A CN102498585A CN 102498585 A CN102498585 A CN 102498585A CN 2010800413771 A CN2010800413771 A CN 2010800413771A CN 201080041377 A CN201080041377 A CN 201080041377A CN 102498585 A CN102498585 A CN 102498585A
Authority
CN
China
Prior art keywords
semiconductor layer
type
type semiconductor
layer
electric current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800413771A
Other languages
English (en)
Inventor
李海权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QUANTUM DEVICE Inc
Original Assignee
QUANTUM DEVICE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QUANTUM DEVICE Inc filed Critical QUANTUM DEVICE Inc
Publication of CN102498585A publication Critical patent/CN102498585A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Abstract

本发明涉及一种半导体发光器件,该半导体发光器件包括:基板;n型半导体层,给其施加电压时提供电子;p型半导体层,给其施加电压时提供空穴;导电性n型电极,其用于给上述n型半导体层施加电压;导电性p型电极,其用于给上述p型半导体层施加电压;活性层,其设置于上述n型半导体层与上述p型半导体层之间,具有量子阱结构以激活电子与空穴的结合;电流扩散及空穴注入层,其设置于上述p型半导体层与上述p型电极之间,用于上述p型电极与上述p型半导体层间的电流的扩散及空穴的注入的n型杂质及p型杂质一同掺杂于该电流扩散及空穴注入层。由此,不仅能够降低半导体发光器件的电极与半导体层之间的接触电阻,改善电流的流动,使得电流的扩散更加均匀,还能够同时改善空穴的注入,因而能够实现器件效率的极大化。

Description

半导体发光器件
技术领域
本发明涉及一种半导体发光器件,更详细地,涉及一种能够提高电极与半导体层之间的电流的扩散以及空穴的注入的半导体发光器件。
背景技术
半导体发光器件利用于LCD背光、照明、显示器等各种领域,且作为“LED”广为人知。当给p-n接合半导体施加顺向偏置电压时,发射出与传导带和价电子带的能隙相当的波带的光,半导体发光器件利用这种现象进行发光。
这种半导体发光器件对量子效率、光子提取效率、封装、可靠性等各项设计指标的要求高。在这些指标中,尤其电极与半导体层之间的电流的扩散和空穴的注入在设计上是重要的指标。
图1表示以往技术的半导体发光器件的剖面。以往技术的半导体发光器件1,在基板101上设置缓冲层102,在该缓冲层102的上部层压n型半导体层103,在该n型半导体层103的上部层压活性层105及p型半导体层106。并且,半导体发光器件1还具有分别给n型半导体层103和p型半导体层106施加电压的n型电极104和p型电极108。
半导体发光器件1还在p型电极108与p型半导体层106之间还具有透明电极107。透明电极107作为具有传导性的透明或半透明层,可由添加有p型杂质或n型杂质中任一种的ZnO类化合物实现。更具体地,要提高电流的扩散时,采用往透明电极107掺杂n型杂质的方法,要提高空穴的注入时,则采用往透明电极107掺杂p型杂质的方法。像这样,通过往透明电极107掺杂n型杂质或p型杂质中任一种来使电流的扩散顺利进行,或者通过提高空穴的注入来提高元件的欧姆接触特性。
然而,以往技术只将p型杂质及n型杂质中任一种掺杂于透明电极107。例如,如图1所示,所利用的是在与p型半导体层106接触的透明电极107掺杂用于空穴的注入的p型杂质的方法。
但是,像以往技术一样,只添加有p型杂质或n型杂质中任一种的透明电极107虽然能够改善电流的扩散或空穴的注入中任一种,但无法期待同时改善两者的效果。例如,在利用ZnO在GaN类半导体层实现透明电极107的情况下,如果只掺杂p型杂质,虽能够通过提高空穴的浓度来将空穴的注入提高至某种水平,但存在难以大幅改善电流的流动与扩散的问题。
发明内容
技术问题
由此,本发明的目的在于,提供一种既能够改善电极与半导体层之间的电流的流动并使得扩散更加均匀又能够提高空穴的注入,因而能够实现效率最大化的半导体发光器件。
技术解决方案
本发明的上述目的可通过提供一种如下的半导体发光器件达成。该半导体发光器件包括:基板;n型半导体层,给其施加电压时提供电子;p型半导体层,给其施加电压时提供空穴;活性层,其设置于上述n型半导体层与上述p型半导体层之间,具有量子阱结构以激活电子与空穴的结合;导电性n型电极,其用于给上述n型半导体层施加电压;导电性p型电极,其用于给上述p型半导体层施加电压;电流扩散及空穴注入层,其设置于上述p型半导体层与上述p型电极之间,用于上述p型电极与上述p型半导体层之间的电流的扩散及空穴的注入的n型杂质及p型杂质一同掺杂于该电流扩散及空穴注入层。
上述电流扩散及空穴注入层可使由电子及空穴的结合引起的光的至少一部分透过。
上述电流扩散及空穴注入层可包含ZnO的化合物。
上述n型半导体层及上述p型半导体层中的至少一种可包含GaN类化合物。
上述电流扩散及空穴注入层可通过分子束外延法(MBE,Molecular Beam Epitaxy method)形成。本发明的半导体发光器件还可包括形成于上述基板与上述n型半导体层之间的缓冲层。
本发明的上述目的还可通过提供一种如下的半导体发光器件达成。该导体发光器件包括:基板;n型半导体层,给其施加电压时提供电子;p型半导体层,给其施加电压时提供空穴;活性层,其设置于上述n型半导体层与上述p型半导体层之间,具有量子阱结构以激活电子与空穴的结合;导电性n型电极,其用于给上述n型半导体层施加电压;导电性p型电极,其用于给上述p型半导体层施加电压;电流扩散及空穴注入层,其设置于上述n型电极与上述n型半导体层之间,用于上述n型电极与上述n型半导体层间的电流的扩散及空穴的注入的n型杂质及p型杂质一同掺杂于该电流扩散及空穴注入层。
有利的效果
如上所述,根据本发明,既能够改善电流的流动并使得电流的扩散更加均匀又能够提高空穴的注入,因而能够实现器件效率的最大化。
附图说明
图1是表示以往技术的半导体发光器件的结构的剖视图。
图2是表示本发明一实施例的半导体发光器件的结构的剖视图。
图3是表示本发明一实施例的半导体发光器件的电流扩散及空穴注入层的工序过程的流程图。
图4是用于说明对在图2中所示的半导体发光器件施加工作电压的情况下的动作的图。
具体实施方式
下面,将对本发明的一实施例进行详细说明。图2是表示本发明一实施例的半导体发光器件的剖视图。图2中示出的半导体发光器件2包括例如“LED”等发光器件。
如图2所示,本发明一实施例的半导体发光器件2可在给半导体发光器件2施加顺向偏置电压的情况下发光。本发明一实施例的半导体发光器件2的发光方向不受限制,可根据其结构或用途向各种方向发光。
如图2所示,本实施例的半导体发光器件2可包括基板201、缓冲层202、n型半导体层203、活性层205、p型半导体层206、电流扩散及空穴注入层207、n型电极204、p型电极205。
本实施例的基板201用于使半导体层成长,可由蓝宝石等材料实现。作为再一实施例,本发明一实施例的基板可鉴于与半导体层间保持一致的晶格常数而由SiC、GaN、ZnO等实现。
本实施例的缓冲层202层压于基板201上。本实施例的缓冲层202使因基板201与n型半导体层203的晶格常数及热膨胀系数不一致而导致的晶体缺陷(crystal defect)最小化。
本实施例的n型半导体层203层压形成于缓冲层202上。当给n型半导体层203施加顺向偏置电压时,该n型半导体层203提供电子。本实施例的n型半导体层203可通过金属有机物化学气相沉淀(MOCVD,Metal Organic Chemical Vapor Deposition)法使化合物半导体成长形成。例如为蓝色或紫外线(UV)LED的情况下,本实施例的n型半导体层203可由掺杂有n型杂质的GaN类化合物实现。本实施例的n型杂质可以是Si。
在本实施例的n型半导体层203上可层压形成活性层205。本实施例的活性层205具有量子阱(quantum well)结构,能够进一步激活n型半导体层203的电子与p型半导体层206的空穴的结合。
用本实施例的活性层205的阱(well)可使InGaN层成长,用阻挡层(barrier layer)可使(Al)GaN层成长。作为再一例,为蓝色LED的情况下,可使用InGaN/GaN多重量子阱结构,为UV LED的情况下,还可使用GaN/AlGaN、InAlGaN/InAlGaN、InGaN/AlGaN等多重量子阱结构。就本实施例的活性层205而言,可通过改变In或Al的组成比例来调节光的波长或者通过改变活性层205内的量子阱的深度、活性层的数量和厚度等来提高LED的内部量子效率。作为另一例,为了增加载波限制(carrier confinement)效果,还可以在以活性层205为中心的上下部插入n型或p型AlGaN/GaN超晶格层(superlattice)。
本实施例的p型半导体层206层压形成于活性层205的上部。当给p型半导体层206施加顺向偏置电压时,该p型半导体层206提供空穴。本实施例的p型半导体层206也可通过金属有机物化学气相沉淀(MOCVD)法使化合物半导体成长形成。例如为蓝色或紫外线(UV)LED的情况下,本实施例的p型半导体层206可由掺杂有p型杂质的GaN类化合物实现。本实施例的p型杂质可以是Mg、Zn等。
在本实施例的p型半导体层206的上部形成电流扩散及空穴注入层207。电流扩散及空穴注入层207由使p型电极208与p型半导体层206之间的电流的扩散顺利进行的导电性物质实现。并且,本实施例的电流扩散及空穴注入层207可以是能够使因电子与空穴的结合而在活性层205产生的光的至少一部分透过的透明或半透明物质。例如,本实施例的电流扩散及空穴注入层207可以是ZnO。
n型杂质及p型杂质这两种杂质一同掺杂于本实施例的电流扩散及空穴注入层207。本实施例的电流扩散及空穴注入层207的n型杂质提供电子,而p型杂质提供空穴。由此,电流扩散及空穴注入层207进一步使p型电极208与p型半导体层206之间的电流的扩散顺利进行。掺杂于本实施例的电流扩散及空穴注入层207的n型杂质可以是Ga等第三主族元素,p型杂质可以是As等第五主族元素。
图3是表示本发明一实施例的半导体发光器件2的电流扩散及空穴注入层207的工序过程的流程图。本实施例的电流扩散及空穴注入层207的工序过程可由所谓分子束外延法(MBE,Molecular BeamEpitaxy method)的方法实现。在本实施例中,设为如下:电流扩散及空穴注入层207为ZnO层,要掺杂的n型及p型杂质分别利用Ga等第三主族元素及As等第五主族元素。
如图3所示,首先,将基板201的温度提升至适度热处理温度再降至预定成长温度来准备好(过程301)。在过程301中,本实施例的基板201的热处理温度可以约为500~700℃。另一方面,与进行过程301的同时,电流扩散及空穴注入层207的各材料亦将温度提升再维持适度温度以待成长(过程302)。在过程302中,各材料的温度可根据工序过程而有所不同,也可根据成长程度而有所不同。并且,用于准备各材料的电池(cell)或坩埚的温度也会根据装在电池中的材料的量、电池的结构等而有所不同。
例如,就Zn而言可以约为300℃至600℃,就Ga而言可以约为500℃至800℃,就As而言可以约为200℃至300℃。只是,本说明书中所公开的温度只作为一种实施例,相应温度可根据使用装置等进行改变。
通过过程301及过程302准备好的状态下,如果基板201的湿度得以设定,便使基板201进行旋转(过程303)。接着,开放旋转的基板201及备好各材料的坩埚或电池的挡板(shutter)(过程304、过程305),来使由各材料的蒸发产生的分子及原子从坩埚移到基板201。如过程304及过程305,当一边使基板201旋转一边开放基板201和各坩埚的挡板时,各材料的分子及原子从坩埚进出来附着于基板201,由此形成电流扩散及空穴注入层207的薄膜(过程306)。
在过程304至过程306中,大部分Zn与氧(O)结合而形成氧化锌(ZnO)的单结晶,Ga亦与氧(O)相遇产生电子。就氧而言,一般情况下氧以分子状态存在,若要将其分解形成原子状态,例如可利用射频等离子源(RF Plasma source)装置等。另一方面,有关空穴的生成,Zn与As相遇产生空穴,由此在一个薄膜内将同时存在电子和空穴。
接着,如果电流扩散及空穴注入层207的成长进行到某种程度,则关闭各材料的坩埚挡板,来结束电流扩散及空穴注入层207的成长(过程307)。
图4是用于说明对本发明一实施例的半导体发光器件施加工作电压的情况下的动作的图。为了便于图示,省略了基板201及缓冲层202的图示。在本实施例的电流扩散及空穴注入层207,基于n型杂质及p型杂质这两种杂质而同时存在电子(-)和空穴(+)。电流扩散及空穴注入层207的电子(-)通过降低p型电极208与p型半导体层206之间的接触电阻来改善电流的流动,并使得电流更加均匀地扩散。另一方面,电流扩散及空穴注入层207的空穴(+)帮助空穴向p型半导体层206流入,促使更加均匀且更多的电流流动。由此,本实施例的半导体发光器件2通过降低工作电压并提高发光效率来实现器件效率的极大化。
本实施例的n型电极204和p型电极205分别促使电压施加于n型半导体层203和p型半导体层206。本实施例使n型电极204与n型半导体层203接触,使p型电极205与电流扩散及空穴注入层207接触。n型电极204可通过在直到将电流扩散及空穴注入层207层压之后蚀刻活性层205、p型半导体层206及电流扩散及空穴注入层207的一部分来形成。n型电极204与p型电极205可通过Ti、Au或Al等金属材料实现。
本实施例的n型电极204在与p型电极205相同的方向水平形成,但这只作为一种实施例,作为再一实施例,n型电极204可以按以活性层205为中心与p型电极205相向的方式垂直形成。
以上,通过优选实施例对本发明进行了详细说明,但本发明不局限于此,可在权利要求书内进行各种实施。
例如,上述的实施例以与p型半导体层206对应地形成电流扩散及空穴注入层207的情况为例进行了说明,但这只是例示性的,本发明一实施例的电流扩散及空穴注入层也可以与n型半导体层对应地形成。
并且,作为不同于上述实施例的其他实施例,半导体发光器件根据设计上的需要也可以不具有缓冲层202。

Claims (7)

1.一种半导体发光器件,其特征在于,包括:
基板;
n型半导体层,给其施加电压时提供电子;
p型半导体层,给其施加电压时提供空穴;
活性层,其设置于上述n型半导体层与上述p型半导体层之间,具有量子阱结构以激活电子与空穴的结合;
导电性n型电极,其用于给上述n型半导体层施加电压;
导电性p型电极,其用于给上述p型半导体层施加电压;
电流扩散及空穴注入层,其设置于上述p型半导体层与上述p型电极之间,用于上述p型电极与上述p型半导体层之间的电流的扩散及空穴的注入的n型杂质及p型杂质一同掺杂于该电流扩散及空穴注入层。
2.根据权利要求1所述的半导体发光器件,其特征在于,上述电流扩散及空穴注入层使由电子及空穴的结合引起的光的至少一部分透过。
3.根据权利要求2所述的半导体发光器件,其特征在于,上述电流扩散及空穴注入层包含ZnO的化合物。
4.根据权利要求1至3中任一项所述的半导体发光器件,其特征在于,上述n型半导体层及上述p型半导体层中的至少一种包含GaN类化合物。
5.根据权利要求4所述的半导体发光器件,其特征在于,上述电流扩散及空穴注入层通过分子束外延法形成。
6.根据权利要求4所述的半导体发光器件,其特征在于,还包括缓冲层,该缓冲层设置于上述基板与上述n型半导体层之间。
7.一种半导体发光器件,其特征在于,包括:
基板;
n型半导体层,给其施加电压时提供电子;
p型半导体层,给其施加电压时提供空穴;
活性层,其设置于上述n型半导体层与上述p型半导体层之间,具有量子阱结构以激活电子与空穴的结合;
导电性n型电极,其用于给上述n型半导体层施加电压;
导电性p型电极,其用于给上述p型半导体层施加电压;
电流扩散及空穴注入层,其设置于上述n型电极与上述n型半导体层之间,用于上述n型电极与上述n型半导体层间的电流的扩散及空穴的注入的n型杂质及p型杂质一同掺杂于该电流扩散及空穴注入层。
CN2010800413771A 2009-09-17 2010-06-07 半导体发光器件 Pending CN102498585A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090088009A KR101067474B1 (ko) 2009-09-17 2009-09-17 반도체 발광소자
KR10-2009-0088009 2009-09-17
PCT/KR2010/003641 WO2011034273A1 (ko) 2009-09-17 2010-06-07 반도체 발광소자

Publications (1)

Publication Number Publication Date
CN102498585A true CN102498585A (zh) 2012-06-13

Family

ID=43758848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800413771A Pending CN102498585A (zh) 2009-09-17 2010-06-07 半导体发光器件

Country Status (9)

Country Link
US (1) US20120168718A1 (zh)
EP (1) EP2479808A4 (zh)
JP (1) JP2013505574A (zh)
KR (1) KR101067474B1 (zh)
CN (1) CN102498585A (zh)
CA (1) CA2774413A1 (zh)
SG (1) SG179080A1 (zh)
TW (1) TW201112443A (zh)
WO (1) WO2011034273A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098878A (zh) * 2016-06-28 2016-11-09 华灿光电(苏州)有限公司 一种发光二极管外延片及其制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581453B (zh) * 2014-12-23 2017-05-01 錼創科技股份有限公司 半導體發光元件
EP3916817A1 (en) 2016-02-09 2021-12-01 Lumeova, Inc Ultra-wideband, wireless optical high speed communication devices and systems
US10297714B1 (en) * 2018-04-05 2019-05-21 Wisconsin Alumni Research Foundation Heterogeneous tunneling junctions for hole injection in nitride based light-emitting devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111059A (ja) * 2000-09-29 2002-04-12 Stanley Electric Co Ltd 光半導体素子及び光半導体装置
JP2004158528A (ja) * 2002-11-05 2004-06-03 Sumitomo Electric Ind Ltd ZnSe系発光素子の構造
US20040104399A1 (en) * 2002-10-16 2004-06-03 Chen Ou Light emitting diode having a dual dopant contact layer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223741A (ja) 1999-01-29 2000-08-11 Sharp Corp 窒化物半導体発光素子
JP4126332B2 (ja) * 1999-08-13 2008-07-30 学校法人高知工科大学 低抵抗p型単結晶酸化亜鉛およびその製造方法
JP2002094114A (ja) * 2000-09-13 2002-03-29 National Institute Of Advanced Industrial & Technology ZnO系酸化物半導体層を有する半導体装置およびその製法
JP2002164570A (ja) * 2000-11-24 2002-06-07 Shiro Sakai 窒化ガリウム系化合物半導体装置
KR100638732B1 (ko) * 2005-04-15 2006-10-30 삼성전기주식회사 수직구조 질화물 반도체 발광소자의 제조방법
WO2007021047A1 (en) 2005-08-19 2007-02-22 Postech Foundation Light--emitting device comprising conductive nanorods as transparent electrodes
KR100716645B1 (ko) * 2005-10-31 2007-05-09 서울옵토디바이스주식회사 수직으로 적층된 발광 다이오드들을 갖는 발광 소자
JP4959184B2 (ja) * 2005-12-14 2012-06-20 昭和電工株式会社 窒化物系半導体発光素子の製造方法
WO2008087856A1 (ja) * 2007-01-15 2008-07-24 Stanley Electric Co., Ltd. ZnO系半導体発光素子とその製造方法
KR100907510B1 (ko) * 2007-06-22 2009-07-14 서울옵토디바이스주식회사 발광 다이오드 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111059A (ja) * 2000-09-29 2002-04-12 Stanley Electric Co Ltd 光半導体素子及び光半導体装置
US20040104399A1 (en) * 2002-10-16 2004-06-03 Chen Ou Light emitting diode having a dual dopant contact layer
JP2004158528A (ja) * 2002-11-05 2004-06-03 Sumitomo Electric Ind Ltd ZnSe系発光素子の構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098878A (zh) * 2016-06-28 2016-11-09 华灿光电(苏州)有限公司 一种发光二极管外延片及其制作方法

Also Published As

Publication number Publication date
SG179080A1 (en) 2012-04-27
US20120168718A1 (en) 2012-07-05
EP2479808A4 (en) 2014-04-09
WO2011034273A1 (ko) 2011-03-24
TW201112443A (en) 2011-04-01
JP2013505574A (ja) 2013-02-14
KR101067474B1 (ko) 2011-09-27
KR20110030066A (ko) 2011-03-23
CA2774413A1 (en) 2011-03-24
EP2479808A1 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN106415854B (zh) 包括n型和p型超晶格的电子装置
CN1606177B (zh) 氮化物基发光器件及其制造方法
US6881602B2 (en) Gallium nitride-based semiconductor light emitting device and method
US8524517B2 (en) Copper blend I-VII compound semiconductor light-emitting devices
US6847052B2 (en) Light-emitting diode device geometry
US20120104432A1 (en) Semiconductor light emitting device
Jeong et al. Monolithic inorganic ZnO/GaN semiconductors heterojunction white light-emitting diodes
TWI403002B (zh) 半導體發光元件
JP7228176B2 (ja) Iii族窒化物半導体発光素子
TW200531270A (en) Quantum dot dispersing light-emitting element and manufacturing method thereof
KR20100103866A (ko) 고성능 헤테로구조 발광 소자 및 방법
CN103811609A (zh) 氮化物半导体发光二极管外延片、器件及其制备方法
KR20040073307A (ko) 반도체 발광 소자
US7002180B2 (en) Bonding pad for gallium nitride-based light-emitting device
CN111048636A (zh) 一种氧化镓基紫外发光二极管及其制备方法
CN102498585A (zh) 半导体发光器件
TW201232824A (en) Transparent thin film, light emitting device comprising the same, and methods for preparing the same
JP2001068728A (ja) AlGaInP発光ダイオード
KR101761310B1 (ko) 발광 소자 및 그 제조 방법
KR101369155B1 (ko) 반도체 발광 디바이스
KR101483230B1 (ko) 질화물 반도체 발광 소자
KR100855340B1 (ko) 발광 다이오드 소자의 제조 방법
CN111640829A (zh) 一种具有复合电子阻挡层的发光二极管及其制备方法
WO2010085754A1 (en) Semiconductor devices having dopant diffusion barriers
KR100862366B1 (ko) 발광 다이오드 소자의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120613