CN102474924A - 高频加热装置以及高频加热方法 - Google Patents

高频加热装置以及高频加热方法 Download PDF

Info

Publication number
CN102474924A
CN102474924A CN2010800300646A CN201080030064A CN102474924A CN 102474924 A CN102474924 A CN 102474924A CN 2010800300646 A CN2010800300646 A CN 2010800300646A CN 201080030064 A CN201080030064 A CN 201080030064A CN 102474924 A CN102474924 A CN 102474924A
Authority
CN
China
Prior art keywords
power
frequency
power unit
phase place
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800300646A
Other languages
English (en)
Other versions
CN102474924B (zh
Inventor
冈岛利幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN102474924A publication Critical patent/CN102474924A/zh
Application granted granted Critical
Publication of CN102474924B publication Critical patent/CN102474924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

本发明的高频加热装置具有:高频电力产生部(120);可变移相部(142a~142d),使由高频电力产生部(120)所产生的高频电力的相位变化;以及控制部(110),对第1~第4高频电力单元(140a~140d)以及高频电力产生部(120)设定频率,并且对可变移相部(142a~142d)设定移相量。第1~第4高频电力单元(140a~140d)的反向电力检测部,根据控制部(110)对高频电力产生部(120)设定的频率,分别检测反射电力与穿过电力,控制部(110)根据被检测出的反射电力及穿过电力的相位和振幅,决定加热被加热物时的高频电力产生部(120)的频率、以及各个可变移相部(142a~142d)的移相量。

Description

高频加热装置以及高频加热方法
技术领域
本发明涉及对被放置在加热室的被加热物进行加热的高频加热装置以及高频加热方法。
背景技术
以往的高频加热装置通常是由磁控管这样的真空管来构成高频电力产生部。
近年来,代替这些磁控管而使用氮化镓(GaN)等的半导体元件的高频加热装置的开发正在进行(例如,参照专利文献1)。在这样的高频加热装置的情况下,是小型廉价的结构,并且易于控制频率和相位。在专利文献1中,公开有如下技术:以反射电力最小的方式来控制从多个辐射部辐射的高频电力的频率以及相位差,在优选的状态下对被加热物进行加热。
先行技术文献
专利文献
专利文献1:日本专利特开2009-32638号公报
发明概要
发明要解决的问题
但是,在上述以往的结构中,在设定了的范围中使希望最优化的高频电力的频率和相位的条件个别地发生变化,必须在所有的条件的组合中检测反射电力。由此,存在如下问题:用户将被加热物放置在加热室后,按下使用开始按钮后到决定最优的加热条件之前需要时间。
发明内容
本发明解决了上述以往的问题,其目的提供高频加热装置,该高频加热装置以最短的时间决定最优的加热条件。
用于解决问题的手段
为了解决以往的问题,本发明涉及的高频加热装置是对被放置在加热室的被加热物进行加热的高频加热装置,具有:至少一个高频电力产生部,产生被设定了频率的高频电力;可变移相部,使由所述高频电力产生部所产生的高频电力的相位变化;多个高频电力单元,每个高频电力单元分别具有辐射部以及反向电力检测部,所述辐射部向所述加热室辐射由所述可变移相部改变了相位的高频电力,所述反向电力检测部检测作为由所述辐射部辐射的高频电力的一部分的、从所述加热室入射到所述辐射部的反向电力;以及控制部,对所述高频电力产生部设定频率,并且,对所述可变移相部设定移相量,所述反向电力检测部,根据由所述控制部对所述高频电力产生部设定的频率,检测反射波的振幅和相位以及穿过波的振幅和相位,所述反射波为一个所述高频电力单元的辐射部所辐射的高频电力的一部分反射后输入到该一个所述高频电力单元的辐射部的、因反射而形成的反向电力,所述穿过波为由其他的所述高频电力单元的辐射部所辐射的高频电力的一部分输入到所述一个高频电力单元的辐射部的反向电力,所述控制部,对所述高频电力产生部依次设定多个频率,按照设定的每个频率,使各个所述高频电力单元的所述反向电力检测部检测所述反射波的振幅和相位以及所述穿过波的振幅和相位,根据被检测出的多个所述反射波的振幅和相位以及所述穿过波的振幅和相位,决定加热被加热物时的、使所述高频电力产生部产生的高频电力的频率以及所述可变移相部的移相量,并对所述高频电力产生部以及所述可变移相部设定决定了的频率和移相量。
通过该结构,可不对各高频电力产生部的频率及各可变移相部的移相量的所有组合进行实测,而能求出照射功效率。由此,可在非常短时间内决定为了照射功效率成为最大的各高频电力产生部的设定频率及各可变移相部的设定移相量。
另外,所述控制部也可以使用被检测出的所述反射波的振幅和相位以及所述穿过波的振幅和相位,按照每个能够对所述高频电力产生部设定的频率,通过计算,对所述可变移相部的移相量的任意组合的所述反射波的振幅和相位以及所述穿过波的振幅和相位进行估计,根据按照每个频率检测出的所述反射波的振幅和相位以及所述穿过波的振幅和相位、按照每个频率估计的所述可变移相部的移相量的任意组合的所述反射波的振幅和相位以及所述穿过波的振幅和相位,决定加热所述被加热物时的、使所述高频电力产生部产生的高频电力的频率以及所述可变移相部的移相量的组合。
通过该结构,根据最低限的实测值通过计算能够求出在规定的条件的照射效率。
还有,所述控制部也可以从所述任意组合中决定各个所述高频电力单元的所述反向电力检测部检测出的所述反射波和所述穿过波的合计值为最小的所述组合。
另外,所述反向电力检测部具有正交检波部,该正交检波部通过使用由所述高频电力产生部所产生的高频电力来对所述反向电力进行正交检波,从而检测用于计算所述反射波的振幅和相位以及所述穿过波的振幅和相位的同相检波信号以及正交检波信号。
通过该结构,各高频电力单元因为能互相独立地向加热室辐射高频电力,所以能容易地检测出反射波及穿过波。
还有,所述多个高频电力单元的每一个还具有高频功率放大部,该高频功率放大部对由所述高频电力产生部所产生的高频电力进行放大,且该放大的增益是可变的,所述控制部进一步设定所述高频功率放大部的放大增益。
通过该结构可使控制部的控制简单化。
另外,所述高频加热装置具有一个所述高频电力产生部和多个所述高频电力单元,也可以进一步具有分配部,该分配部分配由一个所述高频电力产生部所产生的高频电力,并向所述多个高频电力单元供给分配的高频电力。
另外,所述控制部在一个所述高频电力单元的所述反向电力检测部检测所述穿过波的振幅和相位时,将所述高频电力产生部的频率设定为用于测量所述穿过波的频率,并且,设定所述高频功率放大部的放大增益,以使该一个高频电力单元的所述反射波的振幅比所述穿过波的振幅小。
另外,所述控制部也可以在一个所述高频电力单元的所述反向电力检测部检测所述反射波的振幅以及相位时,设定所述高频功率放大部的放大增益,以使该一个所述高频电力单元的所述穿过波的振幅比所述反射波的振幅小。
另外,所述高频加热装置具有多个所述高频电力产生部,多个所述高频电力产生部向多个所述高频电力单元供给产生的多个高频电力。
通过该结构,可进一步缩短检测反射波的需要的时间。另外,因为能够对多个高频电力产生部产生的高频电力的每一个频率进行独立地设定,所以能提高照射效率。
另外,多个所述高频电力产生部的一个与所述多个高频电力单元也可以一一对应地设置。
通过该结构可进一步缩短在反射波的检测上需要的时间。另外,能够进一步提高照射效率。
另外,所述多个高频电力单元与多个所述高频电力产生部对应地设置,所述控制部在一个所述高频电力单元的所述反向电力检测部检测所述穿过波的振幅以及相位时,对与该一个所述高频电力单元相对应的高频电力产生部和与另一个所述高频电力单元相对应的高频电力产生部设定相同频率,并且,设定所述高频功率放大部的放大增益,以使该一个所述高频电力单元的所述反射波的振幅比所述穿过波的振幅小。
另外,所述多个高频电力单元与多个所述高频电力产生部对应地设置,所述控制部在对与一个所述高频电力单元相对应的高频电力产生部设定的频率同对与另一个所述高频电力单元对应的高频电力产生部设定的频率相等、并且该一个所述高频电力单元的所述反向电力检测部检测所述反射波的振幅和相位时,设定所述高频功率放大部的放大增益,以使该一个所述高频电力单元的所述穿过波的振幅比该一个所述高频电力单元的所述反射波的振幅小。
另外,所述控制部在对所述被加热物进行加热处理前,执行决定所述高频电力产生部的频率以及所述可变移相部的移相量的处理,来作为预搜索处理,以及在对所述被加热物进行加热处理时,执行再次决定所述高频电力产生部的频率以及所述可变移相部的移相量的处理,来作为再搜索处理,在执行该预搜索处理或该再搜索处理时,设定所述多个高频电力单元的各个所述高频功率放大部的放大增益,以使所述多个高频电力单元的所述辐射部所辐射的高频电力的值比在加热处理时该辐射部所辐射的高频电力的值小。
通过该结构,能够防止高频加热装置、特别是含有半导体元件的高频电力放大部的损坏。
另外,所述控制部在对所述被加热物进行加热处理前,执行决定所述高频电力产生部的频率以及所述可变移相部的移相量的处理,来作为预搜索处理。
通过该结构,高频加热装置能够以加热前决定了的、最适合的加热条件对被加热物进行加热。
另外,所述控制部进一步正在对所述被加热物的进行加热处理时,执行再决定所述高频电力产生部的频率以及所述可变移相部的移相量的处理,来作为再搜索处理,对所述高频电力产生部设定由所述再搜索处理决定的新的频率,并对所述可变移相部设定新的移相量。
通过该结构,即使在加热中被加热物的温度和形状变化,也能够经常以最适合的加热条件进行加热。
另外,所述控制部正在对所述被加热物进行加热处理时,使所述多个高频电力单元的每一个检测所述反向电力,在被检测出的多个反向电力中的至少一个超过阈值的情况下,执行所述再搜索处理。
另外,所述可变移相部也可以是与所述多个高频电力单元的每一个对应地设置的移相器。
另外,所述可变移相部是锁相环电路,该锁相环电路与各个所述高频电力产生部的至少一个对应地设置,根据由所述控制部所设定的移相量使对应的所述高频电力产生部产生的高频电力的相位变化。
由此,能够使在比高频电力低的频率的移相量变化,并易于控制及设计。
另外,本发明涉及的高频加热方法是根据由多个高频电力单元所辐射高频电力对被放置在加热室的被加热物进行加热的高频加热方法,具有:设定步骤,设定由所述多个高频电力单元所辐射的高频电力的频率;第一检测步骤,根据被设定的频率,检测反射波的振幅和相位以及穿过波的振幅和相位,所述反射波为由一个所述高频电力单元所辐射的高频电力的一部分反射后输入到该一个所述高频电力单元的、因反射而形成的反向电力,所述穿过波为由其他的所述高频电力单元所辐射的高频电力的一部分输入到所述一个所述高频电力单元的反向电力;变更步骤,变更并设定由所述多个高频电力单元所辐射的高频电力的频率,第二检测步骤,根据由所述变更步骤所设定的频率,检测所述反射波的振幅和相位以及所述穿过波的振幅和相位;决定步骤,根据由所述第一检测步骤以及所述第二检测步骤所检测的所述反射波的振幅和相位以及所述穿过波的振幅和相位,决定加热所述被加热物时的所述多个高频电力单元所辐射的高频电力的频率和相位;以及加热步骤,通过从所述多个高频电力单元辐射被决定的频率和相位的高频电力,来加热所述被加热物。
另外,所述决定步骤也可以具有:估计步骤,使用由所述第一检测步骤及所述第二检测步骤所检测出的所述反射波的振幅和相位以及所述穿过波的振幅和相位,按照每个所述多个高频电力单元所辐射的高频电力的能够设定的频率,通过使用所述反射波的振幅和相位以及所述穿过波的振幅和相位来进行计算,从而估计所述多个高频电力单元所辐射的高频电力的相位的任意组合的、所述反射波的振幅和相位以及所述穿过波的振幅和相位;以及组合步骤,根据由所述第一检测步骤及所述第二检测步骤所检测出的所述反射波的振幅和相位以及所述穿过波的振幅和相位、以及由所述估计步骤所估计的所述反射波的振幅和相位以及所述穿过波的振幅和相位,来决定加热所述被加热物时的所述多个高频电力单元所辐射的高频电力的频率及相位的组合。
发明效果
本发明的高频加热装置及高频加热方法能够在短时间内决定最适合的加热条件。
附图说明
图1是示出实施方式1的高频加热装置的基本结构的的框图。
图2是示出高频电力产生部的具体结构的框图。
图3是示出第一高频电力单元的具体结构的框图。
图4是示出高频加热装置的基本的控制顺序的流程图。
图5是示出检测反射电力的控制顺序的流程图。
图6是示出检测穿过电力的控制顺序的流程图。
图7是示出预搜索处理的控制顺序的流程图。
图8是示出各频率的高频电力单元的反射电力以及各高频电力单元间的穿过电力的振幅和相位的表的一个例子。
图9是示出根据频率和移相量的组合来计算出各高频电力单元的照射损失的表。
图10是示出根据频率和移相量的组合来计算出各高频加热装置整体的照射损失的表。
图11是对于利用矢量合成的移相量的组合进行说明的图。
图12是示出再搜索处理的控制流程的流程图。
图13是示出实施方式2的高频加热装置的基本结构的框图。
图14是示出检测反射电力的控制流程的流程图。
图15是示出检测穿过电力的控制顺序的流程图。
图16是示出预搜索处理的控制顺序的流程图。
图17是示出再搜索处理的控制流程的流程图。
图18是示出实施方式3的高频加热装置的基本结构的框图。
图19是示出检测反射电力的控制流程的流程图。
图20是示出检测穿过电力的控制顺序的一个例子的流程图。
图21是示出检测穿过电力的控制顺序的另一个例子的流程图。
图22是高频加热装置的外观图。
具体实施方式
(实施方式1)
本发明涉及的高频加热装置是对被放置在加热室的被加热物进行加热的高频加热装置,具有:至少一个高频电力产生部,产生设定频率的高频电力;可变移相部,使在所述高频电力产生部产生的高频电力的相位变化;多个高频电力单元,分别具有辐射部以及反向电力检测部,所述辐射部向所述加热室辐射由所述可变移相部改变了相位的高频电力,所述反向电力检测部检测作为由所述辐射部辐射的高频电力一部分的、从所述加热室入射到所述辐射部的反向电力;以及控制部,对所述高频电力产生部设定频率,并且,对所述可变移相部设定移相量,所述反向电力检测部,根据由所述控制部在所述高频电力产生部设定的频率,对反射波的振幅和相位以及穿过波的振幅和相位进行检测,所述反射波为一个所述高频电力单元的辐射部辐射的高频电力的一部分反射后入射到该一个所述高频电力单元的辐射部的、因反射而形成的反向电力,所述穿过波由其他的所述高频电力单元的辐射部辐射的高频电力的一部分入射到所述一个高频电力单元的辐射部的反向电力,所述控制部,对所述高频电力产生部依次设定多个频率,按照每个设定的频率,使各个所述高频电力单元的所述反向电力检测部检测所述反射波的振幅和相位以及所述穿过波的振幅和相位,根据被检测出的多个所述反射波的振幅和相位以及所述穿过波的振幅和相位,决定加热被加热物时的、使所述高频电力产生部产生的高频电力的频率以及在所述可变移相部的移相量,对所述高频电力产生部以及所述可变移相部设定决定的频率和移相量。
下面,参照附图,对本发明的实施方式1进行说明。
图1是示出本发明实施方式1的高频加热装置的结构的框图。
在同图示出的高频加热装置100是对被放置在加热室的被加热物进行加热的高频加热装置,具有控制部110、高频电力产生部120、分配部130、第一高频电力单元140a、第二高频电力单元140b、第三高频电力单元140c、第四高频电力单元140d、以及辐射部150a~150d。下面,在对各高频电力单元(第一高频电力单元140a、第二高频电力单元140b、第三高频电力单元140c、第四高频电力单元140d)不进行特别区分的情况下,记载为高频电力单元140。另外,存在将第一高频电力单元140a、第二高频电力单元140b、第三高频电力单元140c、第四高频电力单元140d分别记载为高频电力单元140a、高频电力单元140b、高频电力单元140c、高频电力单元140d的情况。另外,在图1中,高频加热装置100具有4个高频电力单元,但高频电力单元的数量不限于此。
控制部110控制辐射部150a~150d辐射的多个高频电力的频率、相位以及输出的等级。具体地说,控制部110向高频电力产生部120输出指示频率的频率控制信号Cfreq,向各高频电力单元140输出移相量控制信号Cps1~Cps4以及放大增益控制信号Camp1~Camp4。该移相量制御信号Cps1~Cps4指示由该高频电力控制单元140产生的高频电力的移相量,该放大增益控制信号Camp1~Camp4示出该高频电力单元140的放大增益。另外,根据示出各高频电力单元140的检测结果的同相检波信号I(1)~I(4)以及正交检波信号Q(1)~Q(4)来决定最优加热条件。
高频电力产生部120是具有产生由控制部110设定的频率的高频电力的、频率可变的电力发生部。具体地说,是产生具有与由控制部110输入的频率控制信号Cfreq相应的频率的高频电力的电路、例如是PLL(PhaseLocked Loop:锁相环)电路。
图2是示出高频电力产生部120的具体的结构的框图。
同图示出的高频电力产生部120具有振荡部121、锁相电路122、以及放大部123。
振荡部121生成具有与由锁相电路122输出的电压相应的频率的高频信号,例如是VCO(Voltage Controlled Oscillator:压控振荡器)。
锁相电路122调整输出电压以使振荡部121产生的高频电力的频率和控制部110输入的表示设定频率的频率控制信号Cfreq成为相同频率。放大部123对由振荡部121产生的高频电力进行放大,例如是晶体管。
这样,高频电力产生部120产生具有由控制部110设定了的频率的高频电力。另外,在图2中,放大部123由一个功率放大器示出,但为了得到高输出且大功率的输出电力,也可以由多个功率放大器来构成放大部123。这种情况下,也可以通过将这些多个功率放大器进行多级串联连接或者并联连接来合成输出电力从而构成具有多个功率放大器的放大部123。
由高频电力产生部120产生的高频电力通过分配部130被分成4个部分,并被输入到高频电力单元140a~140d。
高频电力单元140a~140d分别通过分配部130使被输入的高频电力的相位以控制部110所设定的移相量进行变化,以由控制部110设定的放大增益对变更了相位的高频电力进行放大,并通过对应的辐射部150a~150d向加热室辐射。具体地说,该高频电力单元140a~140d根据表示由控制部110输入的移相量的移相量控制信号Cps1~Cps4使高频电力的相位改变。另外,根据表示由控制部110输入的放大增益的放大增益控制信号Camp1~Camp4对改变相位了的高频电力进行放大。
另外,高频电力单元140a~140d检测来自加热室通过对应的辐射部150a~150d而入射的反向电力。具体地说,通过辐射部150a~150d将作为用于检测被输入的反向电力的振幅以及相位的信号的同相检波信号I(1)~I(4)以及正交检波信号Q(1)~Q(4)向控制部110输出。关于这些高频电力单元140a~140d的详细的结构在后面进行说明。
辐射部150a~150d分别与高频电力单元140a~140d一一对应地设置,将由对应的高频电力单元140a~140d产生的高频电力向加热室辐射,并接收从加热室的入射的反向电力,例如是天线。另外,在图1中,辐射部150a~150d与高频电力单元140a~140d分别描述,但这只是一个例子,也可以在高频电力单元140a~140d包含辐射部150a~150d。
接着,对高频电力单元140a~140d的详细结构进行说明。
如图1所示,第一高频电力单元140a具有分配部141a、可变移相部142a、高频功率放大部143a、方向性耦合部144a以及正交检波部145a。第二高频电力单元140b具有分配部141b、可变移相部142b、高频功率放大部143b、方向性耦合部144b以及正交检波部145b。第三高频电力单元140c具有分配部141c、可变移相部142c、高频功率放大部143c、方向性耦合部144c以及正交检波部145c。第四高频电力单元140d具有分配部141d、可变移相部142d、高频功率放大部143d、方向性耦合部144d以及正交检波部145d。
另外,高频电力单元140a~140d分别具有同样的结构。即,分配部141a~141d、可变移相部142a~142d、高频功率放大部143a~143d、方向性耦合部144a~144d以及正交检波部145a~145d分别具有同样的结构。因此,下面仅对第一高频电力单元140a进行说明,有关第二高频电力单元140b、第三高频电力单元140c、以及第四高频电力单元140d也进行与第一高频电力单元140a相同的处理。另外,在下面存在以下情况:不分别对分配部141a~141d、可变移相部142a~142d、高频功率放大部143a~143d、方向性耦合部144a~144d以及正交检波部145a~145d进行特别的区别,而记载为分配部141、可变移相部142、高频功率放大部143、方向性耦合部144以及正交检波部145。另外,存在不对辐射部150a~150d进行特别的区别而记载为辐射部150的情况。另外,存在不分别对同相检波信号I(1)~I(4)、正交检波信号Q(1)~Q(4)特别区别而记载为同相检波信号I以及正交检波信号Q的情况。
图3为示出第一高频电力单元140a的具体结构的框图。另外,在同图中也示出与控制部110和第一高频电力单元140对应的辐射部150a。
如同图所示,第一高频电力单元140a具有分配部141、可变移相部142、高频功率放大部143、方向性耦合部144以及正交检波部145。该分配部141、可变移相部142、高频功率放大部143、方向性耦合部144以及辐射部150a以这样的顺序进行串联连接。正交检波部145与分配部141以及方向性耦合部144连接。另外,方向性耦合部144以及正交检波部145相当于本发明的反向电力检测部。
分配部141通过分配部130将从高频电力产生部120输入的高频电力分配成两部分。作为该分配部141可以使用电阻分配器、方向性耦合器以及混合耦合器的某一个。
可变移相部142将由分配部141分配为两部分的高频电力的相位以控制部110所设定的移相量进行变化。具体地说,该可变移相部142根据由控制部110输入的表示移相量的移相控制信号Cps1使输入的高频信号的相位变化。作为可变移相部142例如能够使用多位阶可变型移相器、连续可变型移相器。
多位阶可变型移相器(例如三位阶可变型移相器)用于数字控制,通过路径切换的组合阶段地控制几个阶段的移相量。移相量是根据移相量控制信号Cps1而决定的,该移相量制御信号Cps1为由外部输入的表示移相量的控制信号。
另一方面,连续可变型移相器用于模拟电压控制,例如公知使用了传输线的加载线型移相器、以及使用了90°混合耦合器的混合耦合型移相器。哪一个都是通过使变容二极管的偏置电压变化,使在两个谐振电路的反射相位变化,使输入-输出间的插入移相(挿入移相)变化。插入移相的变化量是根据移相量控制信号Cps1而决定的,该移相量制御信号Cps1为由外部输入的表示移相量的控制信号。
高频功率放大部143以根据由控制部110输入的放大增益控制信号Camp1的放大增益来对由可变移相部142改变了相位的高频电力信号进行放大。该高频功率放大部143具有可变衰减器151、以及高频功率放大器152,在可变衰减器151由控制部110输入放大增益控制信号Camp1。另外,在图3中,高频功率放大器152图示为由一个功率放大器构成,但为了得到高输出且大功率的输出电力,高频功率放大器152也可以由多个功率放大器构成。这种情况下,由多个功率放大器构成的高频功率放大器152也可以通过将这些多个功率放大器多级串联连接或者并联连接来合成输出电力而构成具有多个功率放大器的高频功率放大器152。
可变衰减器151将由可变移相部142改变相位的高频电力根据控制部110输入的放大增益控制信号Camp1的衰减量进行衰减。该可变衰减器151的结构周知,例如能够使用多位阶可变型衰减器、连续可变型衰减器。
多位阶可变型衰减器(例如三位阶可变型衰减器)用于数字控制,通过FET开关的ON/OFF和路径切换的组合,阶段地控制几阶段的衰减量。衰减量是根据从外部输入的表示衰减量的控制信号而决定的。
另一方面,连续可变型衰减器用于模拟电压控制,例如,公知使用了PIN连接二极管的连续可变型衰减器。通过使PIN连接二极管的反向偏置电压变化,来使两电极间的高频电阻值变化,而连续地使衰减量变化。衰减量是基于从外部输入的表示衰减量的控制信号而决定的。
高频功率放大器152将由可变衰减器151衰减的高频信号以规定的放大率放大,例如是三极管。
这样,高频功率放大部143根据由放大增益控制信号Camp1设定的衰减量对输入的高频电力进行衰减,对衰减了的高频电力以规定的放大率进行放大。即,是如下的放大器,利用根据由放大增益控制信号Camp1所设定的衰减量的放大增益,对被输入的高频信号进行放大、放大增益可变的放大器。
另外,也可以使用可变增益型放大器来代替可变衰减器151。这种情况下,放大增益是基于从外部输入的表示放大增益的控制信号而决定的。
方向性耦合部144将作为从辐射部150a向高频功率放大部143反向流的电力的反向电力的一部分分波输入到正交检波部145。另外,将由高频功率放大部143放大的高频电力向辐射部150a输出,防止流向作为接收侧电路的正交检波部145的、由高频功率放大部143放大的高频电力的返转。即,由高频功率放大部143放大的高频电力通过方向性耦合部144从辐射部150a向加热室辐射。该方向性耦合部144的具体结构周知。例如,作为方向性耦合部144可以使用方向性耦合器,也可以使用循环器、混合耦合器中的某一个。
正交检波部145使用由高频电力产生部120产生的高频电力对从辐射部150a经由方向性耦合部144输入的反向电力进行正交检波,从而对用于检测该反向电力的振幅及相位的同相检波信号I(1)以及正交检波信号Q(1)进行检测。该正交检波部145具有同相检波混频器153、正交检波混频器154、π/2移相器155、同相输出侧低通滤波器156以及正交输出侧低通滤波器157,同相输出侧低通滤波器156以及正交输出侧低通滤波器157分别与控制部110连接。
π/2移相器155被输入由分配部141分配的高频电力,对于所输入的高频电力,生成同相的同相高频电力和相位偏移π/2的正交高频电力。并且,同相高频电力向同相检波混频器153输出,正交高频电力向正交检波混频器154输出。另外,没有图示,但为了将正交检波部145的检波特性最优化,也可以在分配部141和正交检波部145之间设置高频功率放大器、固定衰减器、以至低通滤波器。
一方面作为由方向性耦合部144分波的反向电力输入到正交检波器145。被输入到正交检波器145的反向电力被分成两份,分别被输入到同相检波混频器153以及正交检波混频器154。另外,没有图示,但为了将正交检波部145的检波特性最优化,也可以在方向性耦合部144和正交检波部145之间设置高频功率放大器、固定衰减器、以至低通滤波器。
同相检波混频器153通过将反向分波电力与π/2移相器155输入的同相高频电力相乘,来进行检波。即,以同相高频电力对反向分波电力进行同步检波。该同步检波的结果,即、将同相检波信号I(1)作为两个输入信号的相乘结果通过同相输出侧低通滤波器156向控制部110输出。
同样,正交检波混频器154通过将反向分波电力与π/2移相器155输入的正交高频电力相乘,来进行检波。即,以正交高频电力对反向分波电力进行同步检波。该同步检波的结果,即、将正交检波信号Q(1)作为两个输入信号的相乘结果通过正交输出侧低通滤波器157向控制部110输出。
在这里,为了抑制邻频(隣接波電力)干扰而具备这些同相输出侧低通滤波器156以及正交输出侧低通滤波器157。从而,在加热处理中所使用的被预先规定的所有频率中,构成为抑制成为最小的、与任意两点的频率差相当的频率成分。
这样,第一高频电力单元140a对从高频功率产生部120通过分配部130输入的高频电力以与从控制部110输入的移相量控制信号Cps1相应的移相量使相位变化,并以与放大增益控制信号Camp1相应的放大增益来放大,通过辐射部150a向加热室辐射。另外,通过对从加热室入射的反向电力进行检波,向控制部110输出用于计算该反向电力的振幅以及相位的同相检波信号I(1)以及正交检波信号Q(1)。
从该第一高频电力单元140a输入的同相检波信号I(1)以及正交检波信号Q(1)的控制部110从输入的同相检波信号I(1)以及正交检波信号Q(1)中算出通过辐射部150a向第一高频电力单元140a输入的反向电力的振幅以及相位。具体地说,控制部110根据同相检波信号I(1)以及正交检波信号Q(1)的均方根求出反向电力的振幅,根据正交检波信号Q(1)除以同相检波信号I(1)的值的反正切值(tan-1),计算反向电力的相位。
控制部110通过对第二高频电力单元140b、第三高频电力单元140c、以及第四高频电力单元140d进行以上的处理,从而能够检测出在各高频电力单元检测出的反向电力的振幅以及相位。
通过以上结构,本实施方式所涉及的高频加热装置100能够分别检测出输入到第一~第四的高频电力单元140a~140d的每一个的反向电力的振幅以及相位。
另外,控制部110分别与可变移相部142a、142b、142c、142d、以及高频功率放大部143a、143b、143c、143d相连接。控制部110分别向各可变移相部142a、142b、142c、142d输出各自的移相量控制信号Cps1,Cps2,Cps3,Cps4,向各高频功率放大部143a、143b、143c、143d输出各自的放大增益控制信号Camp1、Camp2、Camp3、Camp4。
各可变移相部142a、142b、142c、142d根据控制部110输入的个别的移相量控制信号Cps1、Cps2、Cps3、Cps4来使移相量变化。各高频功率放大部143a、143b、143c、143d根据从控制部110输入的各自的放大增益控制信号Camp1、Camp2、Camp3、Camp4来使放大增益变化。
接着,对上述高频加热装置100的动作进行说明。
图4是示出图1的高频加热装置100的基本的控制顺序的流程图。图1的高频加热装置100在控制部110进行以下处理。
最初,控制部110检测每个频率的反射电力以及穿过电力的相位(步骤S1101)。具体地说,控制部110通过依次变更频率控制信号Cfreq使高频电力产生部120依次产生多个频率。即,高频电力产生部120一边时间性地切换频率,一边生产高频电力。另外,每次变更频率时,对实际辐射高频功率的情况下的、各高频电力单元140的反射电力以及穿过电力的振幅以及相位进行检测。更加具体地说,每次改变在高频电力产生部120产生的高频功率的频率时,取得从正交检波部145a,145b,145c,145d输出的同相检波信号I(1)~I(4)以及正交检波信号Q(1)~Q(4)。由此,对各高频电力单元140a、140b、140c、140d的反射电力的振幅和相位、以及穿过电力的振幅和相位分别地进行检测。
是这里,所谓「反射电力」是指从一个高频电力单元140的辐射部所辐射的高频电力的一部分反射,被输入到一个高频电力单元140的辐射部的、因反射形成的反向电力。即,表示如下的反向电力,该反向电力为由从与一个高频电力单元140对应的辐射部150辐射的高频电力的一部分反射,被输入到与该一个高频电力单元140对应的辐射部150的、因反射而形成的反向电力。例如,第一高频电力单元140的反射电力是指在从辐射部150a辐射的高频电力中因反射而入射到反射部150a的高频电力。
“穿过电力”是指从其他的高频电力单元140的辐射部辐射的高频电力的一部分,向一个所述高频电力单元140的辐射部输入的、穿过而形成的反向电力。即、表示从其他的所述高频电力单元140对应的辐射部150所辐射的高频电力的一部分被输入到与该一个高频电力单元140对应的辐射部150的反向电力。例如,在第一高频电力单元140a的来自第二高频电力单元140b的穿过电力表示从辐射部150b所辐射的高频电力中的向辐射部150a入射的高频电力。
另外,反射电力以及穿过电力仅由辐射高频电力的辐射部150和接收的辐射部150之间的相互关系决定的,辐射的高频电力通过什么样的路径没有影响。即,例如,来自第二高频电力单元140b向第一高频电力单元140a的穿过电力包含从第二高频电力单元140b透过辐射部150b辐射的高频电力中的、直接到达辐射部150a的高频电力、由加热室以及被加热物反射而到达辐射部150a的高频电力、以及透过被加热物而到达辐射部150a的高频电力等。
以下,″反射电力″和“因反射而形成的反向电力”作为表示相同电力来进行说明。另外,“穿过电力”和“因穿过而形成的反向电力”作为表示相同电力来进行说明。另外,反射电力与本发明的反射波同义。另外,穿过电力与本发明的穿过波同义。
这样,在步骤S1101检测到每个频率的反射电力以及穿过电力的振幅和相位后,控制部110决定照射效率成为最好的频率以及移相量(步骤S1102)。具体地说,基于各个高频电力单元140a、140b、140c、140d的反射电力以及穿过电力的实测的振幅以及相位,计算并决定照射效率最高的、使高频电力产生部120产生的高频电力的频率、以及各可变移相部142a、142b、142c、142d的移相量的值。即,通过计算决定使高频电力产生部120产生的高频电力的频率、和可变移相部142a的移相量、可变移相部142b的移相量、可变移相部142c的移相量、以及可变移相部142d的移相量的组合。另外,基于反射电力以及穿过电力的振幅以及相位的、频率和移相量的组合的决定方法在后面进行说明。
最后,控制部110对高频电力产生部120的频率以及在可变移相部142a、142b、142c、142d的移相量进行控制以使成为在步骤S1102决定的频率以及移相量,并执行加热处理(步骤S1103)。
根据上述高频加热装置100的结构,在使高频功率发生部120的频率实际发生变化并辐射高频电力的情况下,能够从在正交检波部145a,145b,145c,145d检测出的同相检波信号I(1)~I(4)和正交检波信号Q(1)~Q(4)中,检测出(求出)按照高频电力产生部120的每个频率的、因反射而形成的反向电力的振幅和相位以及因穿过而形成的反向电力的振幅和相位。使用按照这样得到的每个频率的因反射而形成的反向电力的振幅和相位以及因穿过形成的反向电力的振幅和相位的值,计算假设将高频电力产生部120的频率和各个可变移相部142a、142b、142c、142d的移相量设定为任意组合并进行动作时的照射损失。并且,根据该计算结果,能够决定频率加热装置100整体的照射效率最好的高频电力产生部120的频率的值和各个可变移相部142a、142b、142c、142d的移相量的值。
即,本实施方式涉及的高频加热装置100在高频电力产生部120的频率和各个可变移相部142a、142b、142c、142d的移相量的所有的组合中不进行实际的测量,因为能够从最低限度的实测值中通过计算求出最合适的照射效率,所以能够减少需要时间的实测。由此,能够缩短以下的准备时间,该准备时间为用于找到从用户向高频加热装置100的指示加热到实际加热开始之前的高效率的照射的准备时间。
另外,在这里说的照射效率是表示从各个的高频电力单元140a~140d通过辐射部150a~150d照射(辐射)的高频电力中的、被加热物所吸收的电力的比率。具体地说,是从高频电力单元140a~140d通过辐射部150a~150d照射的电力的总和中减去照射损失后的电力除以照射的电力的总和而得到的值。即,照射效率高表示从各高频电力单元140a~140d通过辐射部150a~150d辐射的多个辐射电力的能量中、最多的能量被加热物吸收的状态。另外,照射损失表示在各个的高频电力单元140的辐射部照射的高频电力中的反射电力以及穿过电力。即,表示没有被被加热物吸收而被某个辐射部150吸收的电力。有关照射损失的具体的求出方法在后面进行说明。
(反射电力的检测方法)
图5是本实施方式中的高频加热装置100的表示反射电力检测的控制顺序的流程图。
在高频加热装置100的控制部110通过以下控制流程对各个高频输入单元140a、140b、140c、140d的反射电力进行检测。
在图1示出的高频加热装置100将由一个高频电力产生部120产生的高频电力通过分配部130分配为四个部分,分别供给高频电力单元140a、140b、140c、140d。从而,各个高频电力单元140a、140b、140c、140d全部以相同的频率进行动作。
如图5所示,控制部110进行控制(步骤S1201)以使将要检测反射电力的一个高频波电力单元140(例如,第一高频电力单元140a)以外的高频电力单元140(例如第二、第三、以及第四高频电力单元140b,140c,140d)的输出电力成为不对将要检测反射电力的高频电力单元140(例如,第一高频电力单元140a)的反射电力的检测带来影响的等级。具体地说,控制部110向该一个高频电力单元140以外的高频电力单元140的高频功率放大部143例如通过指示-30dB,从而将可变衰减器151的衰减量设定在-30dB。由此,将从该一个高频电力单元140以外的高频电力单元140辐射的高频电力输出等级降低到不对作为反射电力检测对象的该一个高频电力单元140的反向电力的检测带来影响的等级。
接着,控制部110取得将要检测反射电力的高频电力单元140(例如第一高频电力单元140a)的同相检波信号I以及正交检波信号Q(例如同步检波信号I(1)以及正交检波信号Q(1)),来对将要检测反射电力的高频电力单元的反向电力的振幅和相位进行检测(步骤S1202)。
此时,从反射电力的检测对象的高频电力单元140以外所辐射的高频电力的输出等级与从检测对象的高频电力单元140所辐射的高频电力输出等级相比变得非常小。由此,向作为反射电力的检测对像的高频电力单元140入射的高频电力实质上仅为对由该检测对象的高频电力单元140所辐射的高频电力进行反射后的高频电力。从而,通过步骤S1201以及步骤S1202能够检测作为检测对象的高频电力单元140的反射电力。
控制部110也对其他所有的高频电力单元140执行以上动作。换言之,在所有的高频电力单元140a~140d中,对上述反射电力的检测是否完成进行判断(步骤S1203),在完成了的情况下(步骤S1203为是)结束该反射电力的检测。另一方面,在所有的高频电力单元140a~140d未结束上述的反射电力的检测的情况下(步骤S1203为否),将其他的高频电力单元140作为反射电力的检测对象(步骤S1204),返回到降低作为上述检测对象的一个高频电力单元140以外的高频电力单元140的输出电压的处理(步骤S1201),并继续进行处理。
如上所述,控制部110检测所有的高频电力单元140a~140d的反射电力的振幅和相位。
另外,在各正交检波部145a,145b,145c,145d进行正交检波的情况下,需要事先知道要检波高频电力的频率。控制部110因为设定了高频电力产生部120的频率,因此具有从各高频电力单元140a、140b、140c、140d所辐射的高频电力的频率的信息。通过使用该频率信息,不仅能进行各高频电力单元140a、140b、140c、140d的反射电力的正交检波,而且使用各自的各正交检波部145a,145b,145c,145d也能够进行对其他高频电力单元140的穿过电力的正交检波。这样,控制部110通过具有各高频电力单元140a、140b、140c、140d所辐射的高频电力的频率信息,能够取得反射电力的同相检波信号以及正交检波信号,并能够检测反射电力的振幅和相位。另外,取得穿过电力的同相检波信号以及正交检波信号的情况也相同。
(穿过电力的检测方法)
图6是示出本实施方式1涉及的高频加热装置100的穿过电力检测的控制流程的流程图。
高频加热装置100的控制部110通过以下控制流程,对各个的高频电力单元140a、140b、140c、140d间的穿过电力进行检测。
如图6所示,控制部110首先仅输出任意的一个高频电力单元140(例如第一高频电力单元140a)的高频电力,对其他高频电力单元140(例如第二、三、四高频电力单元140b,140c,140d)输出的电力进行控制(步骤S 1301),以使各高频电力单元140的反射电力的检测等级足够小。
具体地说,控制部110对该一个高频电力单元140以外的高频电力单元140的高频功率放大部143通过例如指示-30dB,来将可变衰减器151的衰减量设定为-30dB。由此,将该一个高频电力单元140以外的高频电力单元140的反射电力降低到从该一个高频电力单元140对该一个高频电力单元140以外的高频电力单元140的穿过电力的检测不带来影响的等级。例如,通过将第二高频电力单元140b的衰减器151b的衰减量设定为-30dB,从而将第二高频电力单元140b的反射电力降低到从第一高频电力单元140a向第二高频电力单元140b的穿过电力的检测不带来影响的等级。
接着,控制部110取得以将高频电力的输出等级变小方式来控制的其他高频电力单元140的同相检波信号I以及正交检波信号Q,来检测其他高频电力单元140的反向电力的振幅和相位(步骤S1302)。
在此,在对一个高频电力单元140以外的其他高频电力单元140的输出电力进行降低处理中(步骤S1301),由降低了输出电力(输出等级)的高频电力单元辐射的高频电力的输出等级与由未降低输出等级的一个高频电力单元140辐射的高频电力的输出等级相比较变得足够小。由此,在该处理中,入射到降低了输出电力的高频电力单元140的高频电力实质上仅为由未降低输出电力的该一个高频电力单元140辐射的高频电力。从而,通过在其他的高频电力单元140检测反向电力的振幅和相位的处理(步骤S1302)能够检测出从未降低输出电力的该一个高频电力单元140向降低了输出电力的高频电力单元140的穿过电力。
例如,在对一个高频电力单元140以外的其他高频电力单元140的输出电力进行降低处理(步骤S1301)时,在降低了第一高频电力单元140a以外的第二~第四高频波电力单元140b~140d的输出电力的情况下,在其他的高频电力单元140检测反向电力的振幅和相位的处理中(步骤S1302)能够检测到从第一高频电力单元140a向第二~第四高频波电力单元140b~d的每一个的穿过电力的振幅和相位。
控制部110对所有的高频波电力单元140是否完成了以上动作进行判断(步骤S1303)。换言之,判断对来自所有的高频波电力单元140b~140d的穿过电力检测是否完成。在检测完成了的情况下(步骤S1303中为是)结束该穿过电力检测处理。
另一方面,在未完成的情况下(步骤S1303为否),将其他的高频电力单元140作为检测对象(步骤S1304),返回到将作为上述检测对象的一个高频电力单元140以外的高频电力单元140的输出电力降低的处理(步骤S1301),继续进行处理。在此,检测对象的高频电力单元140是指辐射与检测的穿过电力相当的高频电力的高频电力单元140。即,通过降低检测对象的高频电力单元140以外的输出电力,从而检测从检测对象的高频电力单元140向降低了输出电力的各高频电力单元140的穿过电力。
如上所述,控制部110对所有的高频电力单元140a~140d间的相互穿过电力的振幅和相位进行检测。
(预搜索处理)
接着,使用上述的反射电力的检测方法以及穿过电力的检测方法,对决定加热被加热物时的、在高频电力产生部120产生的高频电力的频率和可变移相部142a~142d的移相量的组合的处理进行详细说明。该处理相当于图4所示的各步骤中对每个频率的反射电力以及穿过电力的振幅和相位进行检测的处理(步骤S1101)以及决定照射效率最好的频率以及移相量的处理(步骤S1102)。
图7是示出本实施方式1的高频加热处理装置100的本加热前的最合适加热条件的决定处理(预搜索处理)的控制顺序的流程图。
高频加热装置100的控制部110在加热处理前通过以下控制顺序进行预搜索处理。
如图7所示,首先设定高频电力产生部120的频率(步骤S1401)以使高频电力产生部120的频率成为预先规定的用于预搜索的初始频率(例如,频率A0)。即,将使高频电力产生部120产生的高频电力频率设定为用于预搜索的初始频率。
接着,通过上述的图5所述的反射电力检测控制顺序,检测所有高频电力单元140a、140b、140c、140d的反射电力的振幅和相位(步骤S1402)。
此后,在预搜索处理中预先规定的所有的频率中,判断是否检测完反射电力的振幅与相位(步骤S1403)。在所有频率中未检测到反射电力的振幅与相位的情况下(步骤S1403为否),换言之存在未检测到反射电力的振幅以及相位的频率的情况下进行以下处理。控制部110将使高频电力产生部120产生高频电力的频率设定在用于预搜索的预先规定的下一个频率(例如,频率A1)(步骤S1404),并反复进行上述步骤S1402以及S1403。由此,控制部110对所有的高频电力单元140a、140b、140c、140d的反射电力的振幅和相位进行检测。
一方面,在完成用于预搜索事先规定的所有频率中的、所有高频电力单元140a、140b、140c、140d的反射电力的振幅和相位检测的情况下(步骤S1403为是)接着通过上述的检测穿过电力的控制步骤,检测所有的高频电力单元140a、140b、140c、140d间的相互的穿过电力的振幅和相位(步骤S1405)。
此后,在预搜索处理中,在预先规定的所有频率中判断是否已检测完相互的穿过电力的振幅以及相位(步骤S1406)。在所有的频率未检测到穿过电力的振幅以及相位的情况下(步骤S1406为否),换言之,存在未检测到穿过电力的振幅以及相位的频率的情况下,进行以下处理。控制部110与上述步骤S1404相同将使高频电力产生部120产生的高频电力的频率设定在用于预搜索的下一个频率(步骤S1407),反复进行检测上述穿过电力的振幅和相位进行的处理(步骤S1405)以及判断在所有频率的穿过电力的振幅以及相位是否完成进行的处理(步骤S1406)。
反复进行该操作,对用于预搜索而规定的所有的频率的、所有的高频电力单元140a、140b、140c、140d间的穿过电力的振幅和相位进行检测。
另外,实际加热使用的频率即使是由1MHz间隔决定的情况下,也可以将预先规定用于预搜索的频率例如设定在2MHz间隔或5MHz间隔等,对实际的频率间拔。间拔的量使用实测值能够进行近似插补。与实测需要的时间相比插补计算需要的时间是能够忽略的极短的时间。即,通过对实测的频率进行间拔能够缩短预搜索处理需要的时间。
在用于预搜索事先规定的所有的频率中,通过完成对所有的高频电力单元140a、140b、140c、140d中反射电力的振幅和相位以及所有的高频电力单元140a、140b、140c、140d间的穿过电力的振幅和相位检测(步骤S1406为是),从而能够得到使用振幅和相位对在各频率的各高频电力单元140的反射电力特性以及各高频电力单元140间相互穿过电力特性进行表示的表(matrix)。
另外,从预搜索处理开始到此的处理相当于图4中的对每个频率的反射电力以及穿过电力的振幅和相位进行检测的处理(步骤S1101)。
在图8是示出各频率的高频电力单元的反射电力以及各高频电力单元间的穿过电力的振幅和相位的表的一个例子。
将各高频电力单元140a、140b、140c、140d的辐射部150a、150b、150c、150d考虑为高频电力的输入输出端子时,该表相当于在表示放大器和滤波器等的高频传送元件的各端口的反射特性以及各端口间的传送特性时通常所使用的S参数。下面,将上述的表(高频加热装置100的)称为S参数170来进行说明。
在此,使用图8对使用所得到的S参数170来计算照射损失的方法的事例进行说明。在图8中,是使用了4个高频电力单元140的例子(例如,将高频电力单元140a、140b、140c、140d分别定义为第一、二、三、四高频电力单元的情况的事例)。图8是S参数的例子,该S参数将预搜索的频带设定为从2400MHz到2500MHz,以1MHz间隔对该频带进行扫频对反射电力和穿过电力的振幅M和相位θ进行检测的结果。S参数的后缀相同的数字串表示反射电力。例如,S11表示第一高频电力单元140a的反射电力。S参数的后缀不同的数字串表示从最后的数字的高频电力单元140向最初的数字的高频电力单元140的穿过电力。例如,S12表示从第二高频电力单元140b向第一高频电力单元140a的穿过电力。如图8所示,使各频率扫频来进行正交检波,从而能够得到按照每个频率以反射电力以及穿过电力的振幅M以及相位θ表示的S参数。
例如,频率2402MHz的S31由振幅M2402.31、相位θ2402.31来表示。
在此,各高频电力单元140a、140b、140c、140d的各频率的照射损失使用由检测出的振幅和相位所表示的S参数来计算。例如,高频电力单元140a的照射损失通过计算高频电力产生部120所设定的频率S11、S12、S13、S14的和的大小而得到。在计算S参数的和的大小时,频率不同的情况下能够作为振幅成分的和进行计算,频率相同的情况下能够通过振幅成分和相位成分的矢量合成来进行计算。S参数的和的大小越小意味着照射损失越小。下面,照射损失作为与S参数的和的大小同义来进行说明。
在本实施方式中,如前所述,因为所有的高频电力单元140a、140b、140c、140d以相同的频率进行动作,所以S参数的和能够通过振幅成分和相位成分的矢量合成来计算。例如,在将某个频率的第一高频电力单元140a的反射电力S11的振幅设为M11、相位设为θ11,将从第二高频电力单元140b向第一高频电力单元140a的穿过电力S12的振幅设为M12、相位设为θ12,将从第三高频电力单元140c向第一高频电力单元140a的穿过电力S13的振幅设为M13、相位设为θ13,将从第四高频电力单元140d向第一高频电力单元140a的穿过电力S14的振幅设为M14、相位设为θ14的情况下,将第一高频电力单元140a的照射损失|S11+S12+S13+S14|由下面的式1-1表示。
算式1
| S 11 + S 12 + S 13 + S 14 | =
( M 11 · sin θ 11 + M 12 · sin θ 12 + M 13 · sin θ 13 + M 14 · sin θ 14 ) 2 + ( M 11 · cos θ 11 + M 12 · cos θ 12 + M 13 · cos θ 13 + M 14 · cos θ 14 ) 2
……(式1-1)
第二高频电力单元140b的照射损失|S21+S22+S23+S24|、第三高频电力单元140c的照射损失|S31+S32+S33+S34|、以及第四高频电力单元140d的照射损失|S41+S42+S43+S44|也能够由与式1-1同样的下面的式1-2~式1-4表示。
算式2
| S 21 + S 22 + S 23 + S 24 | =
( M 21 · sin θ 21 + M 22 · sin θ 22 + M 23 · sin θ 23 + M 24 · sin θ 24 ) 2 + ( M 21 · cos θ 21 + M 22 · cos θ 22 + M 23 · cos θ 23 + M 24 · cos θ 24 ) 2
……(式1-2)
算式3
| S 31 + S 32 + S 33 + S 34 | =
( M 31 · sin θ 31 + M 32 · sin θ 32 + M 33 · sin θ 33 + M 34 · sin θ 34 ) 2 + ( M 31 · cos θ 31 + M 32 · cos θ 32 + M 33 · cos θ 33 + M 34 · cos θ 34 ) 2
……(式1-3)
算式4
| S 41 + S 42 + S 43 + S 44 | =
( M 41 · sin θ 41 + M 42 · sin θ 42 + M 43 · sin θ 43 + M 44 · sin θ 44 ) 2 + ( M 41 · cos θ 41 + M 42 · cos θ 42 + M 43 · cos θ 43 + M 44 · cos θ 44 ) 2
……(式1-4)
由这些式1-1~式1-4所表示的所有的高频电力单元140的照射损失的合计值为在该频率的、高频加热装置100整体的照射损失。
接着,控制部110按照每个频率对使各移相量变化的情况下的照射效率进行估计(步骤S1408)。
在此,对假设使各个的高频电力单元140的可变移相部142的移相量变化后的照射损失的计算进行说明。
在使一个高频电力单元140的可变移相部142的移相量变化时,从使可变移相部142的移相量变化的高频电力单元140的辐射部150所辐射的高频电力的相位变化与变化移相量相应的量。例如,使第二高频电力单元140b的可变移相部142b的移相量变化
Figure BDA0000128556070000251
时,第二高频电力单元140b的反射电力S22、从第二高频电力单元140b向第一高频电力单元140a的穿过电力S12、从第二高频电力单元140b向第三高频电力单元140c的穿过电力S32、从第二高频电力单元140b向第四高频电力单元140d的穿过电力S42的相位成分变化
Figure BDA0000128556070000252
从而,此时的第一高频电力单元140a的照射损失能够通过将式1-1~式1-4的θm2(m=1~4)的值设置为
Figure BDA0000128556070000253
Figure BDA0000128556070000254
来进行计算。
同样,例如,在使第一高频电力单元140a的可变移相部142a的移相量变化
Figure BDA0000128556070000255
使第二高频电力单元140b的可变移相部142b的移相量变化
Figure BDA0000128556070000256
使第三高频电力单元140c的可变移相部142c的移相量变化
Figure BDA0000128556070000257
使第四高频电力单元140d的可变移相部142d的移相量变化
Figure BDA0000128556070000258
时,第一高频电力单元140a的照射损失|S11+S12+S13+S14|、第二高频电力单元140b的照射损失|S21+S22+S23+S24|、第三高频电力单元140c的照射损失|S31+S32+S33+S34|、以及第四高频电力单元140d的照射损失|S41+S42+S43+S44|分别由下面的式2-1~式2-4来表示。
算式5
| S 11 + S 12 + S 13 + S 14 | =
( M 11 · sin ( θ 11 + φ 1 ) + M 12 · sin ( θ 12 + φ 2 ) + M 13 · sin ( θ 13 + φ 3 ) + M 14 · sin ( θ 14 + φ 4 ) ) 2 + ( M 11 · cos ( θ 11 + φ 1 ) + M 12 · cos ( θ 12 + φ 2 ) + M 13 · cos ( θ 13 + φ 3 ) + M 14 · cos ( θ 14 + φ 4 ) ) 2
……(式2-1)
算式6
| S 21 + S 22 + S 23 + S 24 | =
( M 21 · sin ( θ 21 + φ 1 ) + M 22 · sin ( θ 22 + φ 2 ) + M 23 · sin ( θ 23 + φ 3 ) + M 24 · sin ( θ 24 + φ 4 ) ) 2 + ( M 21 · cos ( θ 21 + φ 1 ) + M 22 · cos ( θ 22 + φ 2 ) + M 23 · cos ( θ 23 + φ 3 ) + M 24 · cos ( θ 24 + φ 4 ) ) 2
……(式2-2)
算式7
| S 31 + S 32 + S 33 + S 34 | =
( M 31 · sin ( θ 31 + φ 1 ) + M 32 · sin ( θ 32 + φ 2 ) + M 33 · sin ( θ 33 + φ 3 ) + M 34 · sin ( θ 34 + φ 4 ) ) 2 + ( M 31 · cos ( θ 31 + φ 1 ) + M 32 · cos ( θ 32 + φ 2 ) + M 33 · cos ( θ 33 + φ 3 ) + M 34 · cos ( θ 34 + φ 4 ) ) 2
……(式2-3)
算式8
| S 41 + S 42 + S 43 + S 44 | =
( M 41 · sin ( θ 41 + φ 1 ) + M 42 · sin ( θ 42 + φ 2 ) + M 43 · sin ( θ 43 + φ 3 ) + M 44 · sin ( θ 44 + φ 4 ) ) 2 + ( M 41 · cos ( θ 41 + φ 1 ) + M 42 · cos ( θ 42 + φ 2 ) + M 43 · cos ( θ 43 + φ 3 ) + M 44 · cos ( θ 44 + φ 4 ) ) 2
……(式2-4)
使各自的高频电力单元140的可变移相部142的移相量变化任意的值时的、各个高频电力单元140的照射损失可使用上述式2-1~式2-4来计算。即,通过计算,能够将各个高频电力单元140的照射损失,与频率和各可变移相部142的移相量的组合对应地计算。
图9是示出频率与移相量的组合对应而计算出的各高频电力单元140的照射损失的表。具体地说,在同图中,示出第一高频电力单元的照射损失180a、第二高频电力单元的照射损失180b、第三高频电力单元的照射损失180c以及第4高频电力单元的照射损失180d。
在同图中,可变移相部142a~142d的移相量的组合由θps1,ps2,ps3,ps4(其中,ps1:可变移相部142a的移相量、ps2:可变移相部142b的移相量、ps3:可变移相部142c的移相量、ps4:可变移相部142d的移相量)来表示。另外,照射损失由Lu,f,ps1,ps2,ps3,ps4(u:高频电力单元(例如,第一高频电力单元140a的情况1)、f:频率(MHz))表示。
例如,在此前的各处理(步骤S1401~S1407)中,将可变移相部142a~142d的各个的移相量设定为0度情况下,图9示出的移相量的组合θ0、 0、0、0的照射损失是由实测得到的照射损失。即,移相量组合θ0、0、0、0以外的移相量组合的照射损失是所有由计算得到的照射损失。
这样本实施方式1涉及的高频加热装置100根据由实测得到的第一~第四高频电力单元140a~140d的每一个的照射损失,通过计算,能够估计改变可变移相部142a~142d的移相量的组合的情况下的第一~第四高频电力单元140a~140d的每一个的照射损失。
即,在各个的可变移相部142a~142d的移相量的所有的组合中,不进行实际的测定,能够求出在改变移相量的组合的情况下的第一~第四高频电力单元140a~140d的每一个的照射损失。由此,通过实际改变移相量的组合来进行实测,从而与求出改变移相量的组合的情况下的第一~第四高频电力单元140a~140d的每一个的照射损失的情况相比,能够大幅度降低在第一~第四的高频电力单元140a~140d的每一个的照射损失。
接着,控制部110根据图9示出的各高频电力单元140的照射损失,计算出高频加热装置100的整体的照射损失。
图10是示出根据频率和移相量的组合来计算高频加热装置100的整体的照射损失的表。
在同图所示,高频加热装置100整体照射损失190由Lsum,f,ps1,ps2,ps3, ps4表示。这与在图9中第一高频电力单元的照射损失180a、第二高频电力单元的照射损失180b、第三高频电力单元的照射损失180c、以及第四高频电力单元的照射损失180d的总和相当。
这样,在按照每个频率估计使各移相量变化时的情况下的照射效率的处理中(步骤S1408),控制部110基于由测量得到的各高频电力单元140的反射电力以及穿过电力的振幅和相位来计算假定将各可变移相部142a、142b、142c、142d设定为任意组合进行动作时的高频加热装置100整体的照射损失。由此,估计高频加热装置100的照射效率。
接着,控制部110决定高频加热装置100的照射效率最好的频率以及移相量的组合(步骤S1409)。换言之,决定高频加热装置整体的照射损失190最小的频率以及移相量的组合。
接着,分别设定使高频电力产生部120产生的高频电力的频率以及可变移相部142a、142b、142c、142d的移相量以使成为在步骤S1409决定的频率以及移相量(步骤S1410),并结束预搜索处理。
如上所述,本处理在设定频率中使用分别检测各高频电力单元140的反射电力以及穿过电力的振幅和相位的结果,计算假定将使高频电力产生部120的频率和可变移相部142a、142b、142c、142d的移相量设定为任意组合来进行动作时的照射损失。由此,通过至少实测一个移相量的组合而能够决定高频加热装置100整体的照射效率最好的高频电力产生部120的频率值和可变移相部142a、142b、142c、142d的移相量的组合。
由此,在与高频电力产生部120的所有的频率和可变移相部142a、142b、142c、142d的移相量的组合进行实测的情况下相比较时,按照上述的例子,可实现大幅度的时间缩短。因此,用户按高频加热装置100的使用开始按钮在实际进行本加热处理之前,能够在短时间进行决定最合适的加热的频率条件的预搜索处理。
例如,将可设定的频率作为从2.4GHz到2.5GHz中的1MHz间隔的101点,将可设定的移相量设为0度~360度的30度间隔的12点,考虑以四个高频电力单元140进行测量的情况。现在,为了测量频率1点,需要约0.1ms,完成作为所有的组合的124×101次实测,需要约210秒。即,在对高频电力产生部120的频率和各高频电力单元140的可变移相部142的移相量的所有的频率的组合实测的情况下,用户开始加热前约需要210秒。
与此相对,在本实施方式的结构中,对于从2.4GHz到2.5GHz中的频带的101点,以在某任意一点设定的各高频电力单元140的可变移相部142的移相量的状态,在各高频电力单元140实测反射电力和穿过电力的同相检波信号和正交检波信号,来仅计算振幅和相位,因此以有关101×4点的实测的时间40ms程度,能得到由每频率的因反射形成的反向电力的振幅及相位和因穿过形成的反向电力的振幅及相位。在得到由该101×4点的振幅和相位表示的S参数后,通过远远快于实测的控制部110的计算来决定能够实现最合适的照射频率的高频电力产生部120的频率、和各可变移相部142的移相量即可,作为用户的加热准备时间能够充分实现通常所允许的1秒以下的加热的准备时间。
进而,在计算各可变移相部142a、142b、142c、142d的移相量的最合适组合的过程中,通过利用矢量合成的性质,减少计算处理次数,进一步实现计算时间的缩短。
例如,考虑对振幅M1相位θ1的矢量和振幅M2相位θ2的矢量合成的情况。根据矢量合成的性质,两个矢量的相位相同的情况下,即,θ1=θ2时,合成矢量的大小由M1+M2表示,成为最大,两个矢量的相位差180度的情况下,即,在|θ12|=180度时,合成矢量的大小由|M1-M2|表示,成为最小,在M1=M2的情况下,合成矢量的大小成为0。
利用该性质,控制部110以由各高频电力单元140检测出反射电力和穿过电力的同相检波信号I和正交检波信号Q为基础,减去计算处理数,能够缩短计算时间。例如,分为振幅最大的矢量和此外的矢量,以振幅最大的矢量和此外的所有的矢量的合成矢量的相位差为180度,并且振幅最大的矢量的大小和此外的所有的矢量的合成矢量的大小相等的方式来决定移相量即可。即,不进行与移相量设定的所有的组合进行对比的计算,而能够求出所有矢量的合成矢量成为最小、即,照射损失最小的移相量的设定值。
图11是对利用矢量合成的移相量的组合进行说明的图。
以下,参照图11,利用矢量合成的性质,对求出照射损失最小的移相量的组合的具体例进行说明。
图11(a)是在某些状态利用各矢量表示由第一高频电力单元140a的正交检波部145a检测出的反向电力的振幅和相位的图。具体地说,第一高频电力单元140a的反射电力A_S11、从第二高频电力单元140b向第一高频电力单元140a的穿过电力A_S12、从第三高频电力单元140c向第一高频电力单元140a的穿过电力A_S13、从第四高频电力单元140d向第一高频电力单元140a的穿过电力A_S14、以及四个反向电力的矢量A_S11、A_S12、A_S13、A_S14的合成矢量A_SUM由各个矢量表示,箭线的长度表示矢量的大小,箭线的角度表示矢量的相位。4个反向电力的矢量A_S11、A_S12、A_S13、A_S14的合成矢量A_SUM的大小相当于第一高频电力单元140a的照射损失,通过使合成矢量A_SUM的大小变小,能够使第一高频电力单元140a的照射损失变小。
将检测出的四个矢量分为大小最大的矢量A_S11和此外的矢量A_S12、A_S13、A_S14,将此外的矢量A_S12、A_S13、A_S14进行矢量合成,计算辅助合成矢量A_sub的大小和相位。
接着对辅助合成矢量A_sub的相位决定第一高频电力单元140a的可变移相部142a的移相量(虚线箭线B以及C的方向)以使大小最大的矢量A_S11的相位的差为180度。
接着,决定第二高频电力单元140b的可变移相部142b以及第四高频电力单元140d的可变移相部142d的各自的移相量(虚线箭线A的方向),以使辅助合成矢量A_sub的大小与大小最大的矢量A_S11的大小相等。
图11(b)是以矢量示出在各个的可变移相部142设定被决定的各自的移相量的情况下的、以第1高频电力单元140a的正交检波部145a检测出的反向电力的振幅和相位的图。具体地说,第一高频电力单元140a的反射电力B_S11、从第二高频电力单元140b向第一高频电力单元140a的穿过电力B_S12、从第三高频电力单元140c向第一高频电力单元140a的穿过电力A_S13、从第四高频电力单元140d向第一高频电力单元140a的穿过电力A_S14、以及4个反向电力的矢量B_S11、B_S12、A_S13、B_S14的合成矢量B_SUM由各个矢量表示。大小最大的矢量B_SS11和此外的矢量B_S12、A_S13、B_S14的辅助合成矢量B_sub大小大体相等,相位差大体为180度,四个反向电力的合成矢量B_SUM的大小与设定移相量之前的四个反向电力的合成矢量A_SUM的大小相比成为极小。因此,意味着在第一高频电力单元140a的照射损失成为极小。
另外,在本实施方式中,以对所有的反射电力的振幅和相位进行检测后,检测所有的穿过电力的振幅和相位的方式进行说明,但也可以完成所有的穿过电力的振幅和相位的检测之后,进行所有的反射电力的振幅和相位的检测,也可以交互地检测反射电力的振幅和相位。另外,在检测穿过电力的振幅和相位时,对于输出高频电力的高频电力单元140因为能够同时检测出反射电力的振幅和相位,所以也可以对穿过电力的振幅和相位以及反射电力的振幅和相位同时进行检测。
(再搜索处理)
图12是示出本实施方式1所涉及的高频加热装置100的再搜索处理的控制顺序的流程图。
高频加热装置100的控制部110在加热处理中通过以下的控制顺序进行再搜索处理。
如图12所示,首先,通过所述反射电力检测的控制过程以及穿过电力检测的控制过程,对在当前加热处理所使用的频率以及移相量的、各高频电力单元140a、140b、140c、140d的反射电力以及穿过电力的振幅和相位进行检测,计算高频加热装置100的整体的当前的照射效率(步骤S1501)。
接着,控制高频电力产生部120的频率(步骤S1502)以成为预先规定的再搜索用频率,通过所述反射电力检测的控制过程,对所有的高频电力单元140a、140b、140c、140d的反射电力的振幅和相位进行检测(步骤S1503)
接着,通过如上所述穿过电力的控制过程对所有的高频电力单元140a、140b、140c、140d的穿过电力的振幅和相位进行检测(步骤S1504)。
此后,在再搜索处理中,对预先规定的所有的频率判断是否完成了检测(步骤S1505)。在未完成的情况下(步骤S1505为否),将使高频电力产生部120产生的高频电力的频率设定为用于再搜索规定的下一个频率(步骤S1506)、反复进行检测上述反射电力的振幅和相位的处理(步骤S1503)以及穿过电力的振幅和相位的处理(步骤1504)。
反复进行这些操作,以预先规定的所有的用于再搜索的频率,检测所有的高频电力单元140a、140b、140c、140d的反射电力以及穿过电力的振幅和相位。
在所有的再搜索频率,在完成所有的高频电力单元140a、140b、140c、140d的反射电力以及穿过电力的振幅和相位检测的情况下(步骤S1505为是),按照在预搜索处理的说明,基于反射电力以及穿过电力的振幅和相位的信息,通过计算来估计假设将高频电力产生部120的频率和各可变移相部142a、142b、142c、142d的移相量设定为任意组合而进行动作时的照射损失(步骤S1507)。另外,在该处理中(步骤S1507)的处理内容与图7所示的按照每个频率估计使各移相量变化的情况的照射效率的处理(步骤S1408)相同。
接着,计算高频加热装置100整体最好的照射效率的值(步骤S1508)。
并且,对通过再搜索计算出的高频加热装置100整体的最好的照射效率的值(由步骤S1508计算出的值)、以及之前计算出的高频加热装置100的整体的当前的照射效率的值(步骤S1501计算出的值)分别进行比较(步骤S1509)。
在此,在通过再搜索计算出的最好的照射效率的值与之前计算出的当前的照射效率的值相比成为更好的值的情况下,对高频电力产生部120的频率、以及可变移相部142a~142d的移相量分别进行控制(步骤S1510)来对由再搜索计算出的最好的照射效率的频率以及移相量进行组合。即,更新高频电力产生部120的频率以及可变移相部142a~142d的移相量。一方面,之前计算出的当前照射效率的值为比由再搜索计算出的最好的照射效率的值好的情况下,控制高频电力产生部120的频率(步骤S1511)以成为执行在搜索之前的原来的频率。
另外,即使通过再搜索计算出的某些频率以及相位条件的最好的照射效率的值为比当前的照射效率的值良好的情况下,例如一个高频电力单元140的反向电力的电力值超过预先规定的阈值的条件下,不需要选择。即,也可以在各高频电力单元140中的反向电力的电力值未超过预先规定的阈值的条件中选出成为最好照射效率的条件。该阈值例如为了防止包含半导体元件的放大器故障也可以由每个放大器具有的频率的耐电压特性决定。
由此,本实施方式涉及的高频加热装置100即使在因加热处理中的被加热物的温度和形状变化所致最适宜的加热条件变化的情况下,能够通过再搜索处理进行通常最合适加热条件下的加热。
另外,在计算高频加热装置100整体的最好的照射效率的值的处理(步骤S1508)中,计算最好的照射效率时,在设定频率使用分别对各高频电力单元的反射电力以及穿过电力的振幅和相位进行检测的结果,计算假设将高频电力产生部120的频率和可变移相部的移相量设定为任意组合而进行动作时的照射损失,能够决定照射效率最好的高频电力产生部120的频率的值和各可变移相部142a、142b、142c、142d的移相量的值。由此,对将高频电力产生部120的所有的频率和各可变移相部142a、142b、142c、142d的所有的移相量的组合进行实测时候的情况进行比较时,按照上面的例子能够实现大幅度的时间缩短。从而,能够短时间进行再搜索处理,能够缩短包含因被加热物的温度变化等而再设定需要时间的加热时间的延长,减少用户的加热的等待时间。
另外,在加热处理中,再搜索处理的开始时刻也可以经常或者定期地对根据检测出的反射电力的振幅与相位计算出的电力值和预先决定的阈值进行比较,在至少一个以上的高频电力单元140的反向电力的电力值超过该阈值的情况下执行再搜索处理。上述反射电力的振幅与相位为根据从各自的高频电力信号单元140a、140b、140c、140d取得同相检波信号I(1)~I(4)以及正交检波信号Q(1)~Q(4)而检测出的反射电力的振幅与相位。
由此,在加热处理中,即使在因被加热物的温度和形状变化导致反射电力以及穿过电力的大小变化了的情况下,通过预先规定阈值,并在超过该阈值的情况下进行再搜索处理,由此本实施方式涉及的高频加热装置100能够经常在最优的加热条件下对被加热物进行加热。
另外,在执行所述预搜索处理以及再搜索处理时,控制部110为了防止搜索处理中的过大的反射电力或者穿过电力所致的高频加热装置100故障也可以进行如下的操作。尤其为了防止包含半导体元件的放大器的故障也可以进行如下的动作。具体地说,也可以分别对高频功率放大部143a、143b、143c、143d的放大增益进行控制,以使从各个高频电力单元140a、140b、140c、140d输出的高频电力的值成为比该加热时的高频电力的值小的值。
如上所述,本实施方式涉及的高频加热装置100是对被放置在加热室的被加热物进行加热的高频加热装置,具有至少一个高频电力产生部120,产生设定频率的高频电力;可变移相部142a~142d,使在所述高频电力产生部120产生的高频电力的相位变化;多个高频电力单元140a~140d,分别具有辐射部150以及反向电力检测部140a~140d,所述辐射部150向加热室辐射由可变移相部142a~142d改变了相位的高频电力,所述反向电力检测部对作为由辐射部150辐射的高频电力一部分的、从加热室入射到辐射部的反向电力进行检测;以及控制部110,对高频电力产生部120设定频率,并且,对可变移相部142a~142d设定移相量。另外,反向电力检测部如上所述相当于方向耦合部144和正交检波部145。
正交检波部145基于由控制部110对高频电力产生部120设定的频率来检测反射波的振幅和相位、以及穿过波的振幅和相位,所述反射波为从一个高频电力单元140的辐射部150辐射的高频电力的一部分反射,而输入到该一个高频电力单元140的辐射部150的、因反射而形成的反向电力,所述穿过波为从其他高频电力单元140的辐射部150辐射的高频电力的一部分输入到一个高频电力单元140的辐射部150的反向电力。
控制部110对高频电力产生部120依次设定多个频率,按照每个设定的频率,使各个高频电力单元140的正交检波部145检测反射波的振幅和相位以及穿过波的振幅和相位,基于所检测的多个反射波的振幅和相位以及穿过波的振幅和相位,决定加热被加热物时的、使高频电力产生部产生的高频电力的频率以及在可变移相部的移相量,对高频电力产生部120以及可变移相部142a~142d设定决定了的频率和移相量。
由此,根据由实测得到的第一~第四高频电力单元140a~140d的每个的照射损失,能够在短时间求出改变可变移相部142a~142d的移相量的组合情况下的第一~第四高频电力单元140a~140d的每一个的照射损失。其结果,在用户按下高频加热装置100的使用开始按钮进行进行实际该加热处理之前,能够在短时间决定最合适的频率以及移相量的组合,提高用户的便利性。
另外,根据实施方式1的结构,因为高频加热装置100具有一个高频电力产生部120,所有的高频电力单元140以相同的频率进行动作,所以决定加热的条件的参数少也可以完成。即,因为仅使高频电力产生部120的频率改变来进行测量即可,所以能够抑制实测的次数、以简单的控制决定加热条件。该结果能够以非常短的时间进行预搜索处理以及再搜索处理。
(实施方式2)
本实施方式涉及的高频加热装置具有两个高频加热电力产生部这点不同于实施方式1涉及的高频加热装置100具有一个高频加热产生部120。根据该结构,通过分别设定两个高频电力产生部的频率,能够进一步提高最大照射率。
下面,对本实施方式涉及的高频加热装置以与实施方式1涉及的高频加热装置100的不同点为中心参照附图进行说明。另外,在本实施方式2的说明中,对与上述的实施方式1具有相同功能的结构元件使用相同的参照符号,并省略说明。另外,对于具有与上述实施方式1相同作用的内容也省略说明。
图13是示出本发明的实施方式2所涉及的、高频加热装置的结构的框图。
在同图示出的高频加热装置200与图1示出的实施方式1涉及的高频加热装置100比较,代替高频电力产生部120具有第一高频电力产生部220a和第二高频电力产生部220b。代替分配部130具有第一分配部230a和第二分配部230b,代替控制部110具有控制部210。
第一高频波电力产生部220a产生由控制部210输入的频率控制信号Cfreq 1所设定的频率的高频电力。产生的高频电力由第一分配部230a分配,被输入到第一高频电力单元140a以及第二高频电力单元140b。即,第一高频电力产生部220a向第一高频电力单元140a以及第二高频电力单元140b供给高频电力。
第二高频电力产生部220b产生由控制部210输入的频率控制信号Cfreq2所设定的频率的高频电力。产生的高频电力由第二分配部230b分配,被输入到第三高频电力单元140c以及第四高频电力单元140d。即,第二高频电力产生部220b向第三高频电力单元140c以及第四高频电力单元140d供给高频电力。另外,以下存在将第一高频电力产生部220a以及第二高频电力产生部220b分别记载为高频电力产生部220a以及高频电力产生部220b的情况。
控制部210与图1示出的控制部110进行比较,将频率控制信号Cfreq1以及频率控制信号Cfreq2向两个高频电力产生部即第一高频电力产生部220a以及以及第二高频电力产生部220b输出。由此,控制部210相互独立地设定使第一高频电力产生部220a产生的高频电力频率以及第二高频电力产生部220b产生的高频电力的频率。另外,相互独立地设定频率是指使第一高频电力产生部220a产生的高频电力频率和使第二高频电力产生部220b产生的高频电力的频率不依存。即,这些两个高频电力频率可以相同也可以不同。
在本实施方式涉及的高频加热装置200的基本的控制顺序是与所述实施方式1说明的高频加热装置100的基本的控制顺序相同。但是,在上述图1中说明的高频加热装置100相对于所有的高频电力单元140a、140b、140c、140d以同样的频率进行动作,在本实施方式的图13所示的高频加热装置200中,第一高频电力单元140a、第二高频电力单元140b以第一高频电力产生部220a的频率进行动作,第三高频电力单元140c、第四高频电力单元140d以第二高频电力产生部220b的频率进行动作。
由此,在使各高频电力产生部(第一高频电力产生部220a以及第二高频电力产生部220b)的频率实际变化而辐射高频电力的情况下,根据在正交检波部145a,145b,145c,145d检测出的同相检波信号I(1)~I(4)和正交检波信号Q(1)~Q(4),能够检测(求出)与高频电力产生部220a以及220b的每一个的频率的组合对应的、因反射而形成的反向电力的振幅和相位以及因穿过而形成的反向电力的振幅以及相位。
按照每个频率的组合,使用检测的反射电力的振幅和相位以及穿过电力的振幅和相位的值,来计算假定将移相量设定为任意组合来进行动作时的照射损失,根据计算的结果能够决定高频加热装置200的整体的照射效率最好的频率的组合以及移相量的组合。即,在各个高频电力产生部220a以及220b的频率、和各个可变移相部142a、142b、142c、142d的移相量所有的组合中不进行实际测定,根据最底限度的实测值通过计算能够求出最合适的照射效率。由此,能够减少需要时间的实测。由此,能够缩短用于发现从用户开始加热高频加热装置之后到实际加热开始之前的高效率照射的准备时间。
因为高频电力产生部220a以及220b的具体的结构与由上述的实施方式1所说明的、图2示出的高频电力产生部120的具体的结构相同,所以省略说明。
另外,在图13中,高频加热装置200由两个高频电力产生部(第一高频电力产生部220a以及第二高频电力产生部220b)、四个高频电力单元(第一高频电力单元140a、第二高频电力单元140b、第三高频电力单元140c、以及第四高频电力单元140d)构成,但高频电力产生部以及高频电力单元的数量不限于此,具有多个高频电力产生部以及多个高频电力单元即可。
(反射电力的检测方法)
图14是示出本实施方式2涉及的高频加热装置200的、反射电力检测的控制顺序的流程图。
高频加热装置200的控制部210通过以下控制顺序对各个的高频电力单元140a、140b、140c、140d的反射电力进行检测。
同图示出的反射电力检测方法与图5示出的实施方式1的反射电力的检测方法进行比较,在第一高频电力产生部220a和第二高频电力产生部220b以不同的频率进行动作时和以相同的频率进行动作时,分开处理的点不同。
首先,通过第一高频电力产生部220a以及第二高频电力产生部220b判断产生的高频电力的频率是否彼此不同(步骤S2101)。
在第一高频电力产生部220a以及第二高频电力产生部220b以不同的频率进行动作的情况下(步骤S2101为是),控制部210分为以相同的频率进行动作的高频电力单元的组,来检测各自的高频电力单元的反射电力。换言之,分为从第一高频电力产生部220a供给高频电力的第一高频电力单元140a和第二高频电力单元140b,以及从第二高频电力产生部220b供给高频电力的第三高频电力单元140c和第四高频电力单元140d。
首先,说明对在辐射由第一高频电力产生部220a产生的高频电力的高频电力单元140a以及140b的组中的各个高频电力单元140a以及140b的反射电力进行检测的顺序。
如图14所示,控制部210进行控制以使将要检测反射电力的一个高频电力单元140(例如第一高频电力单元140a)以外的高频电力单元140(例如第二高频电力单元140b)的输出电力等级成为对将要检测反射电力的高频电力单元140(例如第一高频电力单元140a)的反射电力的检测不带来影响的等级(步骤S2102)。
接着,对将要进行反射电力检测的高频电力单元140以外的高频电力单元140(例如第二高频电力单元140b)的高频功率放大部143的进行放大增益控制后,控制部210取得将要检测反射电力的高频电力单元140(例如第一高频电力单元140a)的同相检波信号I以及正交检波信号Q,来检测反向电力的振幅和相位(步骤S2103)。
由此,例如,检测第一高频电力单元140a的反射电力的振幅以及相位。
接着,判断在与第一高频电力产生部220a对应的所有的高频电力单元140(例如,第一以及第二高频电力单元140a以及140b)的反射电力的检测是否结束(步骤S2104)。在未结束的情况下(步骤S2104为否),将其他的高频电力单元作为检测对象(步骤S2105),反复进行对作为上述检测对象的一个高频电力单元140以外的高频电力单元140的输出电压进行降低的处理(步骤S2102)以及作为该检测对象的高频电力单元140的反向电力的振幅和相位进行检测的处理(步骤S2103)。
一方面,在与第一高频电力产生部220a对应的所有的高频电力单元140完成了反射电力检测的情况下(步骤S2104为是),结束对辐射由第一高频电力产生部220a产生的高频电力的高频电力单元140的组的反射电力的振幅以及相位的检测。
此时,以同样的顺序,与步骤S2102~S2105的处理并行,对辐射由第二高频电力产生部220b产生的高频电力的第三以及第四高频电力单元140c以及140d的各个反射电力进行检测(步骤S2110~S2112)。
此时,各个组因为进行动作的频率不同,所以在反射电力检测中为产生组间的相互干扰。因此,各自的每个组的反射电力检测的顺序(从S2101到S2105的顺序和从S2110到S2113的顺序)能够并行地同时执行。
由此,本实施方式涉及的高频加热装置200能够缩短检测在第一~第四高频电力单元140a、140b、140c、140d的反射电力的振幅和相位所需要的时间,并能够缩短后述的预搜索处理以及再搜索处理执行所需要的时间,与实施方式1涉及的高频电力装置100相比较,能够进一步缩短从用户的加热开始指示到完成加热处理的时间。
一方面,在第一高频电力产生部220a以及第二高频电力产生部220b以相同的频率进行动作的情况下(步骤S2101为否),第一~第四高频电力单元140a、140b、140c、140d全部成为以相同的频率进行相同的动作的状态,控制部210检测反射电力的顺序,成为与上述的实施方式1的反射电力检测的控制顺序(图5)相同的顺序(步骤S1201~S1204)。
(穿过电力的检测方法)
图15是本实施方式2涉及的高频加热装置200的穿过电力检测的控制顺序的流程图。
高频加热装置200的控制部210通过以下的控制顺序,对各个高频电力单元140a、140b、140c、140d间相互的穿过电力进行检测。
同图示出的穿过电力的检测方法与图6示出的实施方式1的穿过电力的检测方法进行比较,在第一高频电力产生部220a以及第二高频电力产生部220b以不同的频率进行动作的情况下,与以相同频率进行动作的情况下分开处理这点不同。
首先,判断由第一高频电力产生部220a和第二高频电力产生部220b产生的高频电力频率是否相互不同(步骤S2201)。
第一高频电力产生部220a以及第二高频电力产生部220b以不同的频率进行动作的情况下(步骤S2201为是)控制部210首先仅输出一个高频电力单元140(例如第一高频电力单元140a)的高频电力。并且,控制部210控制各个高频电力单元140的高频功率放大部143的放大增益,以使其他的高频电力单元140(例如第二、第三以及第四高频电力单元140b,140c,140d)的输出电力充分小于各高频电力单元140的反射电力的检测等级(步骤S2202)。
接着,控制部210将与输出高频电力的一个高频电力单元140(例如第一高频电力单元140a)对应的高频电力产生部120(例如第一高频电力产生部220a)的频率设定为与该高频电力产生部120设定了不同频率的高频电力产生部220(例如第二高频电力产生部220b)的频率。
接着,读取以减小高频电力的输出等级来控制的其他高频电力单元140的同相检波信号I以及正交检波信号Q,并对反向电力的振幅以及相位进行检测(步骤S2204)。由此,检测从输出高频电力的一个高频电力单元140向其他各个高频电力单元140的穿过电力(例如从第一高频电力单元140a向第二高频电力单元140b、第三高频电力单元140c的穿过电力、以及向第四高频电力单元140d的穿过电力)的振幅以及相位。
对以减小高频电力输出等级来进行控制的其他的高频电力单元140(例如第二、第三、以及第四高频电力单元140b,140c,140d)完成读取同相检波信号I(2)~I(4)以及正交检波信号Q(2)~Q(4)后,将变更了频率设定的高频电力产生部(例如第二高频电力产生部220b)的频率设定为变更之前的频率(步骤S2205)。但是,接着检测高频电力单元间相互的穿过电力的其他组合的情况下,在下一次的穿过电力检测顺序时,在输出高频电力的一个高频电力单元是与这次输出高频电力的一个高频电力单元(例如第一高频电力单元140a)相同的频率进行动作的高频电力单元(例如是第二高频电力单元140b)的情况下,也可以跳过如下的处理,该处理是将变更了频率设定的高频电力产生部(例如第二高频电力产生部220b)的频率设定为变更之前的频率的处理(步骤S2205)。
判断来自所有的高频电力单元140的穿过电力的检测是否完成(步骤S2206),在未完成的情况下(步骤S2206为否),将其他的高频电力单元140作为检测对象(步骤S2207)反复进行从降低作为上述检测对象的一个高频电力单元140的以外的高频电力单元140的输出电压的处理(步骤S2202)到将高频电力产生部的频率设定为原频率的处理(步骤S2205)。
一方面,在完成来自所有的高频电力单元140的穿过电力检测的情况下(步骤S2206为是)结束该穿过电力检测处理。
由此,能够检测出在所有的高频电力单元140间的相互穿过电力的振幅以及相位。
一方面,在第一高频电力产生部220a、第二高频电力产生部220b以相同的频率进行动作的情况下(步骤S2201为否),所有的高频电力单元140a、140b、140c、140d成为以相同的频率进行动作的状态。此时,控制部210检测穿过电力的顺序与图6示出的实施方式1的穿过电力的检测顺序相同。
(预搜索处理)
图16是示出本实施方式2涉及的高频加热装置200的在该加热前的最合适的加热条件的决定处理(与搜索处理)的控制顺序的流程图。
在同图中示出的预搜索处理,与图7示出的实施方式1的预搜索处理大体相同,但是第一高频电力产生部220a以及第二高频电力产生部220b独立地设定频率这点不同。
高频加热装置200的控制部210在加热处理前通过以下的控制流程,进行预搜索处理。另外,以下将第一高频电力产生部220a仅记载为高频电力产生部220a,将第二高频电力产生部220b仅记载为高频电力产生部220b。
如图16所示,首先,分别控制各自的高频电力产生部220a以及220b的频率(步骤S2301),以使将各个的高频电力产生部220a以及220b的频率成为预先规定的预搜索用初始频率(例如将第一高频电力产生部220a的频率设为A0,将第二高频电力产生部220b的频率设为B0)。
接着,通过上述的反射电力监测的控制流程,对所有的高频电力单元140a、140b、140c、140d的反射电力的振幅和相位进行检测(步骤S2302)。
如果完成对所有的高频电力单元140a、140b、140c、140d的反射电力的检测,接着,在预搜索处理预先规定的所有的频率判断是否检测出反射电力的振幅和相位(步骤S2303)。
在所有的频率未检测到反射电力的振幅以及相位的情况下(步骤S2303为否),控制部210控制各个的高频电力产生部220a、220b的频率,以使各个高频电力产生部220a、220b的频率成为预搜索预先规定的下一个频率(例如、第一高频电力产生部220a频率设定为A1,第二高频电力产生部220b频率设定为B1)。并且,以被事先规定的用于预搜索的频率反复进行上述反射电力的振幅和相位的检测处理(步骤S2302)。
由此,控制部210检测预先规定的所有的频率中的、所有的高频电力单元140a、140b、140c、140d的反射电力的振幅和相位(步骤S2303为是)。
在完成预先规定的用于再搜索的所有的频率中的、所有的高频电力单元140a、140b、140c、140d的反射电力的振幅和相位的检测的情况下(步骤S2303为是),接着,通过上述穿过电力检测的控制流程对所有的高频电力单元140a、140b、140c、140d间的相互的穿过电力的振幅和相位进行检测(步骤S2305)。
此后,判断在预搜索处理中预先规定的所有频率是否检测出相互的穿过电力的振幅以及相位(步骤S2306)。在所有的频率未检测出穿过电力的振幅以及相位的情况下(步骤S2306为否),换言之在存在未检测出穿过电力的振幅以及相位的频率的情况下,控制部210进行以下的处理。控制部210与预先规定的用于上述预搜索的下一个频率的处理相同(步骤S2304),控制各个高频电力产生部220a、220b的频率(步骤S2307)以使各个的高频电力产生部220a、220b产生的高频电力的频率成为预先规定的用于再搜索的下一个频率,来反复进行检测上述穿过电力的振幅和相位的处理(步骤S2305)。
由此,控制部210对预先规定的用于预搜索的所有的频率中的、所有的高频电力单元140a、140b、140c、140d中的相互的穿过电力的振幅和相位进行检测(步骤S2306为是)。
在预先规定的用于预搜索的所有的频率中,通过对所有的高频电力单元140a、140b、140c、140d的反射电力的振幅和相位以及所有的高频电力单元140a、140b、140c、140d间的相互的穿过电力的振幅和相位完成检测(步骤S2306为是),从而得到与上述实施方式1相同的,使用振幅和相位来表示各频率的、各高频电力产生单元的反射电力特性以及各高频电力产生单元间的相互穿过电力特性如在图8示出的表。
在此,使用所得到的参数,对计算高频加热装置200的照射损失的方法的事例进行如下说明。
各高频电力单元140a、140b、140c、140d的任意的频率的组合的照射损失能够使用由检测到的振幅和相位来表示的S参数来进行计算。例如,通过计算高频电力产生部220a设定的频率的S11和S12以及高频电力产生部220b设定的频率的S13和S14的总和的大小,能够得到高频电力单元140a的照射损失。S参数的和在频率不同的情况下能够计算为振幅成分的和,在频率相同的情况下,能够由振幅成分和相位成分的矢量合成来进行计算。
在本实施方式中,因为具备两个高频电力产生部220a以及220b,所以通过在各自的高频电力产生部220a以及220b设定的频率的组合,在第一高频电力产生部220a设定的频率和在第二高频电力产生部220b设定的频率是相同频率的情况下,所有的高频电力单元140a、140b、140c、140d以相同的频率进行动作。由此,S参数的和与上述的实施方式1相同,能够由振幅成分和相位成分的矢量合成来进行计算(式1-1~式1-4)。
另一方面,在第一高频电力产生部220a设定的频率与第二高频电力产生部220b设定的频率为不同频率的情况下,第一高频电力单元140a与第二高频电力单元140b以相同的频率进行动作,所以通过矢量合成能够计算第一高频电力单元140a的反射电力S11、第二高频电力单元140b的反射电力S22、以及第一以及第二高频电力单元140a、140b间相互的穿过电力S12、S21的S参数的和。同样,因为第三高频电力单元140c和第四高频电力单元140d以相同的频率进行动作,所以通过矢量合成能够计算第三高频电力单元140c的反射电力S33、第四高频电力单元140d的反射电力S44、以及第三和第四高频电力单元140c、140d间相互的穿过电力S34、S43的S参数的和。
但是,因为第一以及第二高频电力单元140a、140b与第三以及高频电力单元140c、140d的动作频率不同,所以第一以及第二高频电力单元140a、140b与第三以及第四高频电力单元140c、140d间相互穿过电力S13,S14,S23,S24,S31,S32,S41,S42的S参数的和能够计算为振幅成分的和。
例如,第一以及第二高频电力产生部220a、220b设定为相互不同的频率时的、第一高频电力单元140a的反射电力S11的振幅设为M11、相位设为θ11、从第二高频电力单元140b向第一高频电力单元140a的穿过电力S12的振幅设为M12、相位设为θ12、从第三高频电力单元140c向第一高频电力单元140a的穿过电力S13的振幅设为M13、相位设为θ13,从第四高频电力单元140d向第一高频电力单元140a的穿过电力S14的振幅设为M14、相位设为θ14的情况下,第一高频电力单元140a的照射损失|S11+S12+S13+S14|能够下式3-1表示。
算式9
| S 11 + S 12 + S 13 + S 14 | =
( M 11 · sin θ 11 + M 12 · sin θ 12 ) 2 + ( M 11 · cos θ 11 + M 12 · cos θ 12 ) 2
+ ( M 13 · sin θ 13 + M 14 · sin θ 14 ) 2 + ( M 13 · cos θ 13 + M 14 · cos θ 14 ) 2
……(式3-1)
第二高频电力单元140b的照射损失|S21+S22+S23+S24|、第三高频电力单元140c的照射损失|S31+S32+S33+S34|、以及第四高频电力单元140d的照射损失|S41+S42+S43+S44|也能够由与式3-1相同的下式3-2~式3-4表示。
算式10
| S 21 + S 22 + S 23 + S 24 | =
( M 21 · sin θ 21 + M 22 · sin θ 22 ) 2 + ( M 21 · cos θ 21 + M 22 · cos θ 22 ) 2
+ ( M 23 · sin θ 23 + M 24 · sin θ 24 ) 2 + ( M 23 · cos θ 23 + M 24 · cos θ 24 ) 2
……(式3-2)
算式11
| S 31 + S 32 + S 33 + S 34 | =
( M 31 · sin θ 31 + M 32 · sin θ 32 ) 2 + ( M 31 · cos θ 31 + M 32 · cos θ 32 ) 2
+ ( M 33 · sin θ 33 + M 34 · sin θ 34 ) 2 + ( M 33 · cos θ 33 + M 34 · cos θ 34 ) 2
……(式3-3)
算式12
| S 41 + S 42 + S 43 + S 44 | =
( M 41 · sin θ 41 + M 42 · sin θ 42 ) 2 + ( M 41 · cos θ 41 + M 42 · cos θ 42 ) 2
+ ( M 43 · sin θ 43 + M 44 · sin θ 44 ) 2 + ( M 43 · cos θ 43 + M 44 · cos θ 44 ) 2
……(式3-4)
所有的高频电力单元140a~140d的照射损失的合计值成为该频率的组合的所有的高频加热装置200的整体的照射损失。
接着,对各自的高频电力单元140的可变移相部142的移相量变化时的、照射损失的计算进行说明。
例如,与上述相同,第一、第二高频电力产生部220a、220b在分别设定为不同的频率时、使第一高频电力单元140a的可变移相部142a的移相量变化使第二高频电力单元140b的可变移相部142b的可变移相量变化
Figure BDA0000128556070000448
使第三高频电力单元140c的可变移相部142c的可变移相量变化
Figure BDA0000128556070000449
使第四高频电力单元140d的可变移相部142d的可变移相量变化时的第一高频电力单元140a的照射损失|S11+S12+S13+S14|、第二高频电力单元140b的照射损失|S21+S22+S23+S24|、第三高频电力单元140c的照射损失|S31+S32+S33+S34|以及第四高频电力单元140d的照射损失|S41+S42+S43+S44|分别由式4-1~式4-4表示。
算式13
| S 11 + S 12 + S 13 + S 14 | =
( M 11 · sin ( θ 11 + φ 1 ) + M 12 · sin ( θ 12 + φ 2 ) ) 2 + ( M 11 · cos ( θ 11 + φ 1 ) + M 12 · cos ( θ 12 + φ 2 ) ) 2
+ ( M 13 · sin ( θ 13 + φ 3 ) + M 14 · sin ( θ 14 + φ 4 ) ) 2 + ( M 13 · cos ( θ 13 + φ 3 ) + M 14 · cos ( θ 14 + φ 4 ) ) 2
··(式4-1)
算式14
| S 21 + S 22 + S 23 + S 24 | =
( M 21 · sin ( θ 21 + φ 1 ) + M 22 · sin ( θ 22 + φ 2 ) ) 2 + ( M 21 · cos ( θ 21 + φ 1 ) + M 22 · cos ( θ 22 + φ 2 ) ) 2
+ ( M 23 · sin ( θ 23 + φ 3 ) + M 24 · sin ( θ 24 + φ 4 ) ) 2 + ( M 23 · cos ( θ 23 + φ 3 ) + M 24 · cos ( θ 24 + φ 4 ) ) 2
··(式4-2)
算式15
| S 31 + S 32 + S 33 + S 34 | =
( M 31 · sin ( θ 31 + φ 1 ) + M 32 · sin ( θ 32 + φ 2 ) ) 2 + ( M 31 · cos ( θ 31 + φ 1 ) + M 32 · cos ( θ 32 + φ 2 ) ) 2
+ ( M 33 · sin ( θ 33 + φ 3 ) + M 34 · sin ( θ 34 + φ 4 ) ) 2 + ( M 33 · cos ( θ 33 + φ 3 ) + M 34 · cos ( θ 34 + φ 4 ) ) 2
··(式4-3)
算式16
| S 41 + S 42 + S 43 + S 44 | =
( M 41 · sin ( θ 41 + φ 1 ) + M 42 · sin ( θ 42 + φ 2 ) ) 2 + ( M 41 · cos ( θ 41 + φ 1 ) + M 42 · cos ( θ 42 + φ 2 ) ) 2
+ ( M 43 · sin ( θ 43 + φ 3 ) + M 44 · sin ( θ 44 + φ 4 ) ) 2 + ( M 43 · cos ( θ 43 + φ 3 ) + M 44 · cos ( θ 44 + φ 4 ) ) 2
··(式4-4)
使各自的高频电力单元140的可变移相部142的移相量变化任意的值时的、各个的高频电力单元的照射损失能够使用上述的式4-1到式4-4计算,高频加热装置200的整体照射损失也能够计算。
如上所述,基于反射电力以及穿过电力的振幅和相位的信息,计算假设将各个的高频电力产生部220a、220b的频率和各可变移相部142a、142b、142c、142d的移相量设定为任意组合而进行动作时的照射损失,决定高频波加热装置200的整体的照射效率最好的各个高频电力产生部220a、220b的频率以及可变移相部142a、142b、142c、142d的移相量的组合(步骤S2309)。
接着,分别对各个高频电力产生部220a、220b的频率以及可变移相部142a、142b、142c、142d的移相量进行设定,以使成为在步骤S2309决定的频率和移相量进行组合(步骤S2310),并结束预搜索处理。
如上所述,本处理与实施方式1的预搜索处理进行比较,因为能够独立地设定第一高频电力产生部220a产生的高频电力的频率和第二高频电力产生部220b产生的高频电力的频率,所以能够以更短时间执行反射电力以及穿过电力的检测。
另外,与实施方式1的预搜索处理相同,在预搜索处理的设定频率使用在对各高频电力单元140的反射电力以及穿过电力分别检测的振幅和相位的结果,按照每个高频电力产生部220a、220b的频率,对假设可变移相部142a、142b、142c、142d的移相量的设定为任意组合而进行动作时照射损失进行计算。由此,通过仅对至少一个移相量的组合进行实测,能够决定高频加热装置200的整体的照射效率最好的高频电力产生部220a、220b的频率的组合和可变移相部142a、142b、142c、142d的移相量组合。
由此,与对所有的高频电力产生部220a、220b的频率以及可变移相部142a、142b、142c、142d的移相量的组合实测的情况进行比较时,按照上述的例子,可实现大幅度的时间缩短。从而,用户按下高频加热装置200的使用开始按钮来进行实际的该加热处理之前,能够在短时间内进行决定最合适的加热的频率条件的预搜索处理。
例如,将能够设定的频率设置为从2.4GHz到2.5GHz中的1MHz的间隔的101个点,将能够设定的移相量设置为0度~360度的30度间隔的12个点,考虑以4各高频电力单元140进行测量的情况。当前为了测量频率的一点需要约0.1ms,完成测量所有的组合124×1012次需要约6个小时。即,在对高频电力产生部220a以及220b的频率的组合、以及各高频电力单元的可变移相部142的移相量的组合进行实测的情况下,用户开始加热前需要约6个小时,因此不现实。
与此相对,在本实施方式的结构中,对于从2.4GHz开始到2.5GHz的频带的101个点能够以在某任意一个点设定各高频电力单元140的可变移相部142的移相量的状态,在各高频电力单元140实测反射电力和穿过电力的同相检波信号I和正交检波信号Q来仅计算振幅和相位,所以101×4个点的实测所需的时间是40ms左右,能够得到每个频率因反射而形成的反向电力的振幅和相位以及因穿过而形成的反向电力的振幅和相位。得到该101×4点的振幅和相位所表示的S参数后,根据远远快于实测的实测控制部的计算,决定能够实现最合适的照射效率的各高频电力产生部220a以及220b的频率的组合、以及各可变移相部142的移相量的组合即可,作为用户的加热准备时间,能够充分实现通常所允许的一秒以下的加热前准备时间。
进而,根据本实施方式的结构,与所述实施方式1相同,在计算各可变移相量142a、142b、142c、142d的移相量的最合适的组合的过程中,通过利用矢量合成的性质,从而能够减少计算处理次数,进一步实现计算时间的缩短。
另外,在本实施方式中,检测出所有的反射电力的振幅和相位之后,以检测所有的穿过电力的振幅和相位来进行说明,但既可以是完成所有的穿过电力的振幅和相位的检测之后进行所有的反射电力的振幅和相位的检测,也可以是交互地检测反射电力的振幅和相位以及穿过电力的振幅和相位。另外,在检测穿过电力的振幅和相位时,对于输出高频电力的高频电力产生单元,因为能够同时检测出反射电力的振幅和相位,所以也可以同时检测出穿过电力的振幅和相位以及反射电力的振幅和相位。
(再搜索处理)
图17是示出本实施方式2涉及的高频加热装置200的、再搜索处理的控制顺序的流程图。
高频加热装置200的控制部210在加热处理中通过以下的控制顺序进行再搜索处理。
同图所示的再搜索处理与图12示出的实施方式1的再搜索处理大体相同,但第一高频电力产生部220a以及第二高频电力产生部220b独立地设定频率这点不同。
如图17所示,控制部210首先通过图14以及图15所示的反射电力检测控制顺序以及穿过电力检测控制顺序检测在当前加热处理中所使用的频率以及移相量的、各高频电力单元140a、140b、140c、140d的反射电力以及穿过电力的振幅和相位,来计算高频加热装置200的整体的当前的照射效率(步骤S2401)。
接着,进行控制以使各个的高频电力产生部220a、220b的频率成为预先决定了的用于再搜索的频率(步骤S2402),通过上述反射电力检测的控制顺序,检测所有高频电力单元140a、140b、140c、140d的反射电力的振幅和相位(步骤S2403)。
此后,通过上述的穿过电力检测的控制流程,对所有的高频电力单元140a~140d间的穿过电力的振幅以及相位进行检测(步骤S2404)。
接着,判断在再搜索处理中的预先规定的所有的频率中是否检测完反射电力以及穿过电力(步骤S2405)。在所有的频率未检测出反射电力以及穿过电力的振幅和相位的情况下(步骤S2405为否),换言之在存在未检测反射电力以及穿过电力的振幅以及相位的频率的情况下,进行以下的处理。控制部210通过对高频电力产生部220a以及220b进行控制,以使各自的高频电力产生部220a以及220b产生的高频电力的频率成为用于再搜索的预先规定的下一个频率,从而设定下一个频率(步骤S2406)并反复进行检测上述的反射电力的振幅和相位处理(步骤S2403)以及检测穿过电力的振幅和相位的处理(步骤S2404)。
反复进行这些处理,一边对预先规定的所有的用于再搜索频率进行更新,一边对在所有的高频电力单元140a、140b、140c、140d的反射电力以及穿过电力的振幅和相位进行检测。
在所有的再搜索用频率,完成了对所有的高频电力单元140a、140b、140c、140d的反射电力以及穿过电力的振幅和相位的检测(步骤S2405为是)的情况下,按照以预搜索处理的说明,基于反射电力以及穿过电力的振幅和相位的信息,通过计算对假设将各自的高频电力产生部220a、220b的频率与各可变移相部142a、142b、142c、142d的移相量设定为任意组合而进行动作时的照射损失进行估计(步骤S2407)。另外,在该处理(步骤S2407)的处理内容与图16示出的按照每个频率对使各移相量变化的情况下的照射率进行估计的处理(步骤S2308)相同。
接着,计算出高频加热装置200整体的最好的照射效率的值(步骤S2408)。
并且,对由再搜索计算出的最好的照射效率的值(在步骤S2408计算出的值)与之前算出的高频加热装置200的整体的当前照射效率的值分别进行比较(步骤S2409)。
在此,由再搜索计算出的最好的照射效率的值与之前计算出的当前照射效率的值相比为良好的值的情况下,分别对对应的高频电力产生部220a以及220b的频率以及可变移相部142a~142d的移相量进行控制,以使成为通过再搜索处理计算出的成为最好的照射效率的频率和移相量(步骤S2410)。即,对高频电力产生部220a以及220b的频率、以及可变移相部142a~142d的移相量进行更新。一方面,之前计算出的当前的照射效率的值与由再搜索计算出的最好的照射效率的值相比成为良好的值的情况下,对对应的高频电力产生部220a以及220b的频率进行控制以使成为执行在搜查处理前的原来的频率(步骤S2411)。
另外,由再搜索计算出的某些频率和相位条件最优的照射效率的值即使为比现在的照射效率的值更好的值的情况下,例如,如果是一个高频电力单元140的反向电力的电力值超过了预先规定的阈值的条件下,则不需要选择。即,也可以在各高频电力单元140的反向电力的电力值未超过预先规定的阈值的条件中选择出成为最优照射效率的条件。该阈值例如为了防止具有半导体元件的放大器的故障,由按照放大器具有的每个频率的耐压特性来决定即可。
由此,本实施方式所涉及的高频加热单元200即使在加热处理中因被加热物的温度以及形状的变化所致最合适加热条件变化的情况下,也能够通过再搜索处理在通常加热条件下进行加热。
另外,在计算高频加热装置200的整体的最优的照射效率的值的处理(步骤S2408)中,计算出最优的照射效率时,在设定频率使用分别检测各高频电力单元140的反射电力以及穿过电力的振幅和相位的结果,对假设将高频电力产生部220a、220b的频率和可变移相部142a、142b、142c、142d的移相量设定为任意组合而进行动作时的照射损失进行计算,能够决定照射效率最好的各个高频电力产生部220a、220b的频率的值和各可变移相部142a、142b、142c、142d的移相量的值。由此,在与对高频电力产生部220a、220b的频率和各可变移相部142a、142b、142c、142d的所有移相量的组合的进行实测的情况进行比较时,如上述的例子,能够大幅度缩短时间。因此,能够在短时间内进行再搜索处理,能够缩短包含因被加热物的温度变化等而再设定需要的时间的加热时间的延长,减少用户的加热等待时间。
另外,再搜索处理的开始时刻与实施方式1相同,在加热处理中,也可以经常或者定期地将从检测的反射电力的振幅和相位中算出的电力值与事先决定的阈值进行比较,在至少一个以上的高频电力单元的反向电力的电力值超过该阈值的情况下执行再搜索处理,该反射电力的振幅和相位为从各自的高频电力单元140a、140b、140c、140d中取得的同相检波信号I(1)~I(4)以及正交检波信号Q(1)~Q(4)而检测的反射电力的振幅和相位。
由此,根据在加热处理中被加热物的温度或形状变化,即使在反射电力以及穿过电力的大小变化的情况下,通过预先规定阈值,在超过该阈值的情况下进行再搜索处理,从而本实施方式涉及的高频加热装置200与实施方式1涉及的高频加热装置100相同,能够经常在最合适的加热条件下对被加热物进行加热。
另外,在执行上述预搜索处理以及再搜索处理时,控制部210为了防止在搜索处理中过大的反射电力或穿过电力所致的高频加热装置200的故障,也可以进行如下的处理。特别为了防止包含半导体元件的放大器的故障也可以进行如下的动作。具体地说,也可以对各自的高频功率放大部143a、143b、143c、143d的放大增益进行控制,以使将各个高频电力单元140a、140b、140c、140d输出的高频电力的值成为比该加热时的高频电力的值小的值。
如上所述,本实施方式涉及的高频加热装置200具有多个作为高频电力产生部的第一高频电力产生部220a以及第二高频电力产生部220b。由此,与实施方式1涉及的高频加热装置100比较,能够缩短各个高频电力单元140的反射电力检测所需要的时间。由此,在用户按下高频加热装置200的使用按钮来进行实际进行该加热处理之前,能够在更短时间内决定最合适的频率的组合以及移相量的组合,提高用户的方便性。
另外,与实施方式1涉及的高频加热装置100进行比较,具有作为2个高频电力产生部的第一高频电力产生部220a以及第二高频电力产生部220b,它们能够相互独立地产生高频电力的频率。由此,高频加热装置200因为向加热室辐射的多个高频电力的频率的自由度变高,所以最大照射效率提高。
(实施方式3)
本实施方式涉及的高频加热装置相对实施方式2涉及的高频加热装置200具有两个高频电力产生部存在以下的不同:高频加热装置具有分别向4个高频电力单元供给高频电力的4个高频电力产生部。通过该结构,因为能够分别控制从所有的高频电力单元产生的高频的频率,所以能够进一步提高最大照射效率。以下,以与实施方式2的不同点为中心,参照附图对本发明的实施方式3进行说明。另外,在本实施方式3的说明中,对于与上述实施方式1以及实施方式2具有相同功能的结构元件使用相同参照符号,并省略说明。另外,对与上述的实施方式1以及实施方式2具有相同作用的内容也省略说明。
图18表示在本发明的实施方式3中的、高频加热装置结构的框图。
同图示出的高频加热装置300与图13示出的高频加热装置200比较,代替第一高频电力产生部220a以及第二高频电力产生部220b具有第一高频电力产生部320a、第二高频电力产生部320b、第三高频电力产生部320c、以及第四高频电力产生部320d,代替控制部210具有控制部310。各个高频电力单元140a、140b、140c、140d的结构因为与上述的实施方式1以及实施方式2相同,所以省略说明。另外,存在将第一~第四高频电力产生部320a~320d记载为高频电力产生部320a~320d的情况。
由第一高频电力产生部320a产生的高频电力输入到第一高频电力单元140a,由第二高频电力产生部320b产生的高频电力输入到第二高频电力单元140b,由第三高频电力产生部320c产生的高频电力输入到第三高频电力单元140c,由第四高频电力产生部320d产生的高频电力输入到第四高频电力单元140d。从各个的高频电力产生部320a、320b、320c、320d输入到各个高频电力单元140a、140b、140c、140d的高频电力分别通过分配部141a、141b、141c、141d,被输入到可变移相部142a、142b、142c、142d。输入到可变移相部142a、142b、142c、142d的高频电力被实施移相处理,并被输入到高频功率放大部143a、143b、143c、143d。输入到高频功率放大部143a、143b、143c、143d的高频电力被放大为适合对象物加热处理的电力,通过方向耦合部144a、144b、144c、144d,由辐射部150a、150b、150c、150d向对象物照射。
控制部310与图13示出的控制部210比较,分别将频率控制信号Cfreq1~Cfreq 4输出到高频功率放大部143a~143d。具体地说,控制部310分别与高频电力产生部320a、320b、320c、320d、可变移相部142a、142b、142c、142d、以及高频功率放大部143a、143b、143c、143d相连接,将各自的频率控制信号Cfreq1、Cfreq2、Cfreq3、Cfreq4输出到各个高频电力产生部320a、320b、320c、320d。
各个的高频电力产生部320a、320b、320c、320d根据控制部310输入的各个的高频控制信号Cfreq1、Cfreq2、Cfreq3、Cfreq4使各个的频率变化。
图18的高频加热装置300的基本的控制流程与由上述的实施方式1说明的图4示出的、示出图1的高频加热装置100的基本的控制流程的流程图相同。
但是,相对于由上述的图1说明的高频加热装置100的所有的高频电力单元140a、140b、140c、140d以相同的频率进行动作,在本实施方式的图18示出的高频加热装置300中,第一高频电力单元140a以第一高频电力产生部320a的频率进行动作,第二高频电力单元140b以第二高频电力产生部320b的频率进行动作,第三高频电力单元140c以第三高频电力产生部320c的频率进行动作,第四高频电力单元140d以第四高频电力产生部320d的频率进行动作。
根据上述高频加热装置300的结构,在使各个的高频电力产生部320a、320b、320c、320d的频率实际变化而辐射了高频电力的情况下,根据在正交检波部145a,145b,145c,145d检测出的同相检波信号I(1)~I(4)以及正交检波信号Q(1)~Q(4),能够检测出(求出)各个高频电力产生部320a、320b、320c、320d的每一个频率的、因反射而形成的反向电力的振幅和相位以及因穿过而形成的反向电力的振幅以及相位。
使用得到的每个频率的因反射而形成的反向电力的振幅与相位以及因穿过而形成的反向电力的振幅与相位的值,对假设将各自的高频电力产生部320a、320b、320c、320d的频率与各个的可变移相部142a、142b、142c、142d的移相量设定为任意组合而进行动作时的照射损失进行计算。并且,根据计算结果,能够决定高频加热装置300整体的照射效率最好的各个高频电力产生部320a、320b、320c、320d的频率的组合以及各个可变移相部142a、142b、142c、142d的移相量的组合。即,在各个高频电力产生部320a、320b、320c、320d的频率与各个可变移相部142a、142b、142c、142d的移相量的所有组合未进行实际测量,而能根据最低限度的实测值通过计算求出最合适的照射效率。由此,能够减少需要时间的实测。由此,用户能够缩短用于发现开始高频加热装置的加热之后到实际加热开始前的高效率的照射的准备时间。
高频电力产生部320a、320b、320c、320d的具体结构因为与由上述的实施方式1说明的、在图2示出的高频电力产生部120的具体的结构相同,因此省略说明。
另外,在图18中,高频加热装置300由四个高频电力产生部和四个高频电力单元140构成,但只要高频电力产生部的数量与高频电力单元140的数量相同即可,不需要限定其数量。
(反射电力的检测方法)
图19是示出本实施方式3涉及的高频加热装置300的反射电力检测的控制顺序的流程图。
高频加热装置300的控制部310通过以下的控制流程,对各自的高频电力单元140a、140b、140c、140d的反射电力进行检测。
同图示出的反射电力检测方法中,各个的高频电力产生部320a、320b、320c、320d在以所有不同的频率进行动作的情况以及两个以上的高频电力产生部以相同频率动作的情况不同。
首先,判断在第一~第四高频电力产生部320a~320d产生的高频电力的频率是否相互不同(步骤S3101)。
在各个的高频电力产生部320a、320b、320c、320d以全部不同的频率进行动作的情况下(步骤S3101为是),控制部310取得来自各自的高频电力单元140a、140b、140c、140d的同相检波信号I(1)~I(4)以及正交检波信号Q(1)~Q(4),检测各个高频电力单元140a、140b、140c、140d的反向电力的振幅和相位(步骤S3102)。该处理能够在各高频电力单元140间并行地执行。由此,能够以短时间检测出各个高频电力单元140a、140b、140c、140d的反向电力。
一方面,两个以上的高频电力产生部在以相同频率进行动作的情况下(步骤S3101为否,例如第一高频电力产生部320a以频率A进行动作、第二以及第三高频电力产生部320b、320c以频率B进行动作、第四高频电力产生部320d以频率C进行动作的情况下),判断是否与其他的高频电力单元140频率重复(步骤S3103)。
控制部310对与其他高频电力单元140的频率不重复的高频电力单元(步骤S3103为否,例如,第一以及第四高频电力单元140a,140d)取得不重复的高频电力单元140的同相检波信号以及正交检波信号,并检测不重复的高频电力单元140的反向电力的振幅和相位(步骤S3104)。该处理能够在与其他高频电力单元140的频率不重复的高频电力单元140间并行地实施。由此,能够以短时间检测出与其他高频电力单元140频率不重复的高频电力单元140的反射电力。
另一方面,对于与其他高频电力单元140频率重复的高频电力单元140(步骤S3103为是,例如第二以及第三高频电力单元140b,140c)(步骤S3103为是的情况下),控制部310进行控制,以使一个高频电力单元140(例如第二高频电力单元140b)以外的高频电力单元140(例如第三高频电力单元140c)的输出电力不对该一个高频电力单元140的反射电力的检测产生影响(步骤S3105)。对该一个高频电力单元140以外的高频电力单元140的、高频功率放大部的放大增益进行控制后,控制部310取得将要检测反射电力的该一个高频电力单元140的同相检波信号以及正交检波信号,并对该一个高频电力单元140的反向电力的振幅和相位进行检测(步骤S3106)。
接着,在所有的高频电力单元140判断上述处理是否完成(步骤S3107),在没有完成的情况下(步骤S3107为否),将其他高频电力单元140作为检测对象(步骤S3108)反复进行降低作为上述的检测对象的一个高频电力单元140以外的高频电力单元140的输出电压的处理(步骤S3105)以及检测作为该检测对象的高频电力单元140的反向电力的振幅和相位的处理(步骤S3106)。
另一方面,在所有的高频电力单元140中,完成了上述处理的情况下(步骤S3107为是),结束处理。由此,能够检测出与其他高频电力单元140频率重复的高频电力单元140的反射电力。
如上所述,对于与其他高频电力单元140频率不重复的高频电力单元140,因为能同时检测出反射电力,所以能够在短时间检测反射电力。本实施方式涉及的高频加热装置300与各高频电力单元140对应,因为能够独立地设定频率,所以与实施方式2涉及的高频加热装置200比较能够在更短时间内检测反射电力的振幅以及相位。
(穿过电力的检测方法)
图20是示出本实施方式3涉及的高频加热装置300的穿过电力检测的第一控制流程的流程图。
高频加热装置300的控制部310通过以下控制流程,对各自的高频电力单元140a、140b,140c、140d间相互的穿过电力进行检测。
如同图所示,控制部310首先仅输出任意的一个高频电力单元140(例如以频率A进行动作时的第一高频电力单元140a)高频电力,控制各个的高频电力单元140的高频功率放大部的放大增益(步骤S3201),以使其他的高频电力单元140(例如,以任意的频率进行动作的第二、第三、第四高频电力单元140b,140c,140d)的输出电力充分小于各高频电力单元140的反射电力检测等级(步骤S3201)。
接着,控制部310对各个的高频电力产生部(例如,第2,第3,第4高频电力产生部320b,320c,320d)的频率进行控制(步骤S3202),以使将高频电力的输出等级变小的方式控制的、分别对其他高频电力单元140(例如,第2、第3、第4高频电力单元140b,140c,140d)供给高频电力的、高频电力产生部(例如,第2、第3、第4高频电力产生部320b、320c、320d)的频率成为与向输出高频电力的一个高频电力单元140(例如,第1高频电力单元140a)供给高频电力的、高频电力产生部(例如,第1高频电力产生部320a)相同的频率(例如,频率A)。
控制部310取得其他各个的高频电力单元140(例如,第二、第三、第四的高频电力单元140b、140c、140d)的同相检波信号和正交检波信号,对从输出高频电力的一个高频电力单元140(例如,第一高频电力单元140a)向其他的各自的高频电力单元140(例如,第二、第三、第四的高频电力单元140b、140c、140d)的穿过电力(例如,从第一高频电力单元140a向第二高频电力单元140b的穿过电力、从第一高频电力单元140a向第三高频电力单元140c的穿过电力、以及从第一高频电力单元140a向第四高频电力单元140d的穿过电力)的振幅和相位进行检测(步骤S3203)。
接着,判断是否完成来自所有的高频电力单元140的穿过电力的检测(步骤S3204),在未完成的情况下(步骤S3204为否),将其他的高频电力单元140作为检测对象(步骤S3205),反复进行从降低作为上述的检测对象的一个高频电力单元140以外的高频电力单元140的输出电压的处理(步骤S3202)到检测在其他的高频电力单元140的反向电力的振幅和相位的处理(步骤S3203)。
另一方面,在来自所有的高频电力单元140的穿过电力检测结束了的情况下(步骤S3204为是),结束该穿过电力检测处理。
由此,对所有的高频电力单元140间的相互的穿过电力的振幅和相位进行检测。
另外,穿过电力的检测也可以如下地实施。
图21是示出本实施方式的高频加热装置300的、穿过电力检测的第二控制顺序的流程图。
如同图所示,控制部310首先对高频功率放大部的放大增益进行控制(步骤S3301)以使仅任意的一个高频电力单元140(例如以频率A进行动作的、第一高频电力单元140a)的输出电力充分小于该高频电力单元140的反射电力检测等级。
接着,控制部310进行控制,以使向输出电力控制为较小的一个高频电力单元140(例如,第一高频电力单元140a)供给高频电力的高频电力产生部(例如,第一高频电力产生部320a)的频率成为与向其他高频电力单元(例如,以频率B进行动作的第二高频电力单元140b、以频率C进行动作的第三高频电力单元140c、以及以频率D进行动作的第四高频电力单元140d)中的某一个高频电力单元(例如第二高频电力单元140d)供给高频电力的、高频电力产生部(例如第二高频电力产生部320b)进行动作的频率(例如,频率B)相同的频率(步骤S3302)。
接着,控制部310取得以输出电力变小来控制的一个高频电力单元140(例如第一高频电力单元140a)的同相检波信号以及正交检波信号,对从以相同频率进行动作的其他的一个高频电力单元140(例如第二高频电力单元140b)向输出电力变小而控制的一个高频电力单元140(例如第一高频电力单元140a)的反向电力的振幅和相位进行检测(步骤S3303)。
并且,判断是否完成从其他所有的高频电力单元140向输出电力变小而控制的一个高频电力单元140的反向电力的振幅和相位的检测(步骤S3304)。
在未结束的情况下(步骤S3304为是)将与输出电力较小地控制的一个高频电力单元140对应的频率设定为与其他的一个高频电力单元140对应的频率(例如频率C)(步骤S3305),反复进行如下的处理。即,反复进行将与上述输出电力较小地控制的一个高频电力单元140对应的频率设定为与其他的一个高频电力单元140对应的频率的处理(步骤S3302)以及检测反向电力的振幅和相位的处理(步骤S3303)。
由此,对从其他所有的高频电力单元140(例如第二~第四的高频电力单元140b~140d)向输出电力变小地进行控制的一个高频电力单元140(例如第一高频电力单元140a)的穿过电力的振幅和相位进行检测(步骤S3304为是)。
接着,控制部310判断在所有的高频电力单元140是否完成了穿过电力的检测(步骤S3306),在没有完成的情况下(步骤S3306为否),将接下来任意的一个高频电力单元140(例如以频率B进行动作的、第二高频电力单元140b)作为检测对象(步骤S3307)。
并且,反复进行降低作为新的检测对象的一个高频处理单元140的输出电力的处理(步骤S3301)以后的处理。
另一方面,在所有的高频电力单元140中,在穿过电力检测结束的情况下(步骤S3306为是),结束该穿过电力检测处理。
由此,能够检测出所有的高频电力单元140间的相互穿过电力的振幅和相位。
(预搜索处理)
本实施方式3的该加热前的最合适加热条件的决定处理(预搜索处理)以与实施方式2示出的图16相同的控制流程来进行。
在事先规定用于预搜索的所有的频率中,通过完成所有的高频电力单元140a、140b、140c、140d的反射电力的振幅和相位以及所有的高频电力单元140a、140b、140c、140d间的相互的穿过电力的振幅和相位检测,从而得到与所述实施方式1以及实施方式2同样的、使用振幅和相位来表现各频率的各高频电力产生单元的反射电力特性以及各高频电力产生单元间的相互的穿过电力特性的、如图8示出的表。
在此,使用得到的S参数对高频加热装置300的照射损失进行计算的方法的事例说明如下。
各高频电力单元140a、140b、140c、140d的任意的频率的组合的照射损失可使用由所检测的振幅和相位来表示的S参数来进行计算。
例如,第一高频电力单元140a的照射损失通过计算第一高频电力产生部320a设定的频率S11、第二高频电力产生部320b设定的频率S12、第三高频电力产生部320c设定的频率S13、以及第四高频电力产生部320d设定的频率S14的总和的大小而得到。计算S参数的和时,在频率不同的情况下可作为振幅成分的和来计算,在频率相同的情况下,可通过振幅成分和相位成分的矢量合成来进行计算。
在本实施方式中,具有四个高频电力产生部320a、320b、320c、320d和四个高频电力单元140a、140b、140c、140d,各自的高频电力产生部320a、320b、320c、320d因为与各自的高频电力单元140a、140b、140c、140d一一对应,所以与通过各自的高频电力产生部320a、320b、320c、320d设定的频率的组合来计算各高频电力单元140的、S参数的和的方法不同。
在所有的高频电力产生部320a、320b、320c、320d以相同的频率进行动作的情况下,与所述实施方式1相同,各自的高频电力单元140的S参数的和可通过振幅成分和相位成分的矢量合成来进行计算(式1-1~式1-4)。
接着,在所有的高频电力产生部320a、320b、320c、320d以不同的频率进行动作的情况下(例如,第一高频电力产生部320a以频率A进行动作,第二以及第三高频电力产生部320b,320c以频率B进行动作,第四高频电力产生部320d以频率C进行动作情况下),各个高频电力单元140的S参数的和能够计算为振幅成分的和。
例如,各个的高频电力产生部320a、320b、320c、320d全部设定为不同的频率时的、第一高频电力单元140a的反射电力S11的振幅设为M11,相位设为θ11,从第二高频电力单元140b向第一高频电力单元140a的穿过电力S12的振幅设为M12,相位设为θ12,从第三高频电力单元140c向第一高频电力单元140a的穿过电力S13的振幅设为M13,相位设为θ13,从第四高频电力单元140d向第一高频电力单元140a的穿过电力S14的振幅设为M14,相位设为θ14的情况下,第一高频电力单元140a的照射损失|S11+S12+S13+S14|由下式表示。
|S11+S12+S13+S14|=M11+M12+M13+M14·····(式5-1)
第二高频电力单元140b的照射损失|S21+S22+S23+S24|、第三高频电力单元140c的照射损失|S31+S32+S33+S34|、以及第四高频电力单元140d的照射损失|S41+S42+S43+S44|也于式5-1相同,可分别由下面的式进行计算。
|S21+S22+S23+S24|=M21+M22+M23+M24·····(式5-2)
|S31+S32+S33+S34|=M31+M32+M33+M34·····(式5-3)
|S41+S42+S43+S44|=M41+M42+M43+M44·····(式5-4)
所有的高频电力单元140的照射损失的合计值成为在该频率的组合的、装置整体的照射损失。
接着,在以相同的频率进行动作的高频电力产生部和以不同频率进行动作的高频电力产生部混合存在的情况下,例如第二以及第三高频电力产生部320b,320c以相同的频率进行动作,第一高频电力产生部320a、第二高频电力产生部320b(或者,第三高频电力产生部320c)、第四高频电力产生部320d以不同的频率进行动作的情况下(例如,第一高频电力产生部320a以频率A进行动作,第二以及第三高频电力产生部320b、320c以频率B进行动作,第四高频电力产生部320d以频率C进行动作的情况下),在各个高频电力单元140的S参数的和作为频率不同的S参数之间振幅成分的和来进行动作,在频率相同的S参数之间可通过振幅成分和相位成分的矢量合成来进行计算。
例如,如上述的例子,第二以及第三的高频电力产生部320b、320c以相同的频率进行动作,第一高频电力产生部320a与第二高频电力产生部320b(或者第三高频电力产生部320c)以及第四高频电力产生部320d以不同的频率进行动作时,将第一高频电力单元140a的反射电力S11的振幅设为M11,将相位设为θ11,将从第二高频电力单元140b向第一高频电力单元140a的穿过电力S12的振幅设为M12、相位设为θ12,将从第三高频电力单元140c向第一高频电力单元140a的穿过电力S13的振幅设为M13、相位设为θ13,将从第四高频电力单元140d向第一高频电力单元140a的穿过电力S14的振幅设为M14、相位设为θ14的情况下,第一高频电力单元140a的照射损失|S11+S12+S13+S14|由下式表示。
算式17
| S 11 + S 12 + S 13 + S 14 | =
M 11 + M 14 + ( M 12 · sin θ 12 + M 13 · sin θ 13 ) 2 + ( M 12 · cos θ 12 + M 13 · cos θ 13 ) 2
·····(式6-1)
第二高频电力单元140b的照射损失|S21+S22+S23+S24|、第三高频电力单元140c的照射损失|S31+S32+S33+S34|、以及第四高频电力单元140d的照射损失|S41+S42+S43+S44|也于式6-1相同,可分别由下面的式进行计算。
算式18
| S 21 + S 22 + S 23 + S 24 | =
M 21 + M 24 + ( M 22 · sin θ 22 + M 23 · sin θ 23 ) 2 + ( M 22 · cos θ 22 + M 23 · cos θ 23 ) 2
·····(式6-2)
算式19
| S 31 + S 32 + S 33 + S 34 | =
M 31 + M 34 + ( M 32 · sin θ 32 + M 33 · sin θ 33 ) 2 + ( M 32 · cos θ 32 + M 33 · cos θ 33 ) 2
·····(式6-3)
算式20
| S 41 + S 42 + S 43 + S 44 | =
M 41 + M 44 + ( M 42 · sin θ 42 + M 43 · sin θ 43 ) 2 + ( M 42 · cos θ 42 + M 43 · cos θ 43 ) 2
·····(式6-4)
所有的高频电力单元140的照射损失的合计值成为在该频率的组合的、装置整体的照射损失。
接着,对各自的高频电力单元140的可变移相部142的移相量变化时的照射损失的计算进行说明。
例如,与上述相同,第二以及第三的高频电力产生部320b、320c以相同的频率进行动作,第一高频电力产生部320a、第二高频电力产生部320b(或者第三高频电力产生部320c)、以及第四高频电力产生部320d以不同的频率进行动作时的、第一高频电力单元140a的可变移相部142a的移相量变化
Figure BDA0000128556070000611
第二高频电力单元140b的可变移相部142b的移相量变化
Figure BDA0000128556070000612
第三高频电力单元140c的可变移相部142c的移相量变化
Figure BDA0000128556070000613
第四高频电力单元140d的可变移相部142d的移相量变化时的、第一高频电力单元140a的照射损失|S11+S12+S13+S14|、第二高频电力单元140b的照射损失|S21+S22+S23+S24|、第三高频电力单元140c的照射损失|S31+S32+S33+S34|、以及第四高频电力单元140d的照射损失|S41+S42+S43+S44|分别由下面的式表示。
算式21
| S 11 + S 12 + S 13 + S 14 | =
M 11 + M 14 + ( M 12 · sin ( θ 12 + φ 2 ) + M 13 · sin ( θ 13 + φ 3 ) 2 + ( M 12 · cos ( θ 12 + φ 2 ) + M 13 · cos ( θ 13 + φ 3 ) ) 2 ·····(式7-1)
算式22
| S 21 + S 22 + S 23 + S 24 | =
M 21 + M 24 + ( M 22 · sin ( θ 22 + φ 2 ) + M 23 · sin ( θ 23 + φ 3 ) ) 2 + ( M 22 · cos ( θ 22 + φ 2 ) + M 23 · cos ( θ 23 + φ 3 ) ) 2 ·····(式7-2)
算式23
| S 31 + S 32 + S 33 + S 34 | =
M 31 + M 34 + ( M 32 · sin ( θ 32 + φ 2 ) + M 33 · sin ( θ 33 + φ 3 ) ) 2 + ( M 32 · cos ( θ 32 + φ 2 ) + M 33 · cos ( θ 33 + φ 3 ) ) 2 ·····(式7-3)
算式24
| S 41 + S 42 + S 43 + S 44 | =
M 41 + M 44 + ( M 42 · sin ( θ 42 + φ 2 ) + M 43 · sin ( θ 43 + φ 3 ) ) 2 + ( M 42 · cos ( θ 42 + φ 2 ) + M 43 · cos ( θ 43 + φ 3 ) ) 2 ·····(式7-4)
使各自的高频电力单元140的可变移相部142的移相量变化任意的值时的、各个高频电力单元140的照射损失能够使用上述的式7-1到式7-4进行计算,也能够计算装置整体的照射损失。
如上所述,基于反射电力以及穿过电力的振幅和相位的信息,计算假设对各个高频电力产生部320a、320b、320c、320d的频率以及各可变移相部142a、142b、142c、142d的移相量设定为任意组合并进行动作时的照射损失,并决定高频加热装置300的整体的照射效率最好的各个的高频电力产生部320a、320b、320c、320d的频率以及可变移相部142a、142b、142c、142d的移相量。
接着,对各个高频电力产生部320a、320b、320c、320d的频率以及可变移相部142a、142b、142c、142d的移相量分别进行控制,以使成为决定的频率以及移相量。
如上所述,本处理在各设定频率中使用对各高频电力单元140的反射电力以及穿过电力分别进行检测的振幅和相位的结果,对假设将高频电力产生部320a、320b、320c、320d的频率和可变移相部142a、142b、142c、142d的移相量设定为任意组合而进行动作时的照射损失进行计算,能够决定高频加热装置300的整体照射效率最好的高频电力产生部320a、320b、320c、320d的频率的值和可变移相部142a、142b、142c、142d的移相量的值。由此,在与对所有的高频电力产生部320a、320b、320c、320d的频率和可变移相部142a、142b、142c、142d的移相量的组合进行了实测时的情况进行比较时,按照上述的例子能够实现大幅度的时间缩短。因此,在用户按下高频加热装置300的开始使用的按钮后进行实际加热处理前,能够在短时间内进行决定了最合适的加热的频率条件的预搜索处理。
例如将能够设定的频率设为从2.4GHz到2.5GHz的1MHz的间隔的101个点,将可设定的移相量设为0度~360度的30度间隔的12个点,考虑以4个高频电力单元140测量的情况。当前,为了测量频率的一个点,需要约0.1ms,在完成所有的组合的124×1014次的实测需要约6万小时。即,对高频电力产生部的频率和各高频电力单元140的可变移相部142的移相量的所有的频率的组合进行实测的情况下,用户开始加热前需要约6万小时的时间,是不现实的。
对此,在本实施方式的结构中,对于从2.4GHz到2.5GHz的频带的101个点,在将各高频电力单元140的可变移相部142的移相量设定为任意的一点的状态下,因为仅对各高频电力单元140反射电力和穿过电力的同相检波信号和正交检波信号进行实测来计算振幅和相位,所以需要101×4点的实测的时间是40ms左右,能够得到每个频率的因反射而成的反向电力的振幅和相位以及因穿过而成的反向电力的振幅和相位。在得到该101×4点的振幅和相位所表示的S参数后,通过远远快于实测的控制部310的计算,只要决定了能够实现最合适的照射效率各高频电力产生部320a~320d的频率的组合和各可变移相部142的移相量的组合即可,作为用户加热准备时间能够充分实现通常所允许的一秒以下的加热前的准备时间。
进而,与上述的实施方式1和2相同,在计算各可变移相部142a、142b、142c、142d的移相量的最合适的组合的过程中,通过利用矢量合成的性质,能够减少计算处理数量,实现计算时间的进一步缩短。
另外,在本实施方式中,在检测所有的反射电力的振幅和相位后,以检测所有的穿过电力的振幅和相位来进行说明,但既可以在所有的穿过电力的振幅和相位的检测结束后,进行所有的反射电力的振幅和相位的检测,也可以对反射电力的振幅和相位以及穿过电力的振幅和相位进行交互地检测。另外,在检测穿过电力的振幅和相位时,对于输出高频电力的高频电力产生单元因为能够同时检测出反射电力的振幅以及相位,所以也可以同时检测出穿过电力的振幅和相位以及反射电力振幅和相位。
(再搜索处理)
本实施方式3的再搜索处理以与实施方式2示出的图17相同的控制流程来进行。
本处理中,即使在因在加热处理中被加热物的温度、形状变化导致最合适加热条件变化的情况下,通过再搜索处理也能够在通常最合适的加热条件下进行加热。另外,在计算最优的照射效率时,在设定的频率使用对各高频电力单元140的反射电力以及穿过电力的振幅和相位分别进行检查的结果,计算假设将高频电力产生部320a、320b、320c、320d的频率和可变移相部142a、142b、142c、142d的移相量设定为任意组合而进行动作时的照射损失,能够决定照射效率最好的各个高频电力产生部320a、320b、320c、320d的频率值和各可变移相部142a、142b、142c、142d的移相量的值。
由此,在与实测所有的各个高频电力产生部320a、320b、320c、320d的频率和各可变移相部142a、142b、142c、142d的所有移相量的组合的情况进行比较时,按照上述的例子,能够实现大幅度地缩短时间。从而,能够在短时间内进行再搜索,能够缩短包含因被加热物的温度变化等而再设定需要时间的加热时间的延长,减少用户加热等待时间。
另外,即使再搜索处理计算出的某些频率以及相位条件的最优的照射效率的值比当前照射效率的值良好的情况下,例如,如果一个高频电力单元140的反向电力的电力值没有超过预先规定的阈值的条件,则不需要选择。即,在各高频电力单元140的反向电力的电力值在没有超过预先规定的阈值的条件中,也可以选出成为最好的照射效率的条件。该阈值例如为了防止含有半导体元件的放大器故障,由放大器具有的每个频率的耐电压特性决定即可。
另外,在再搜索处理的开始时刻,与实施方式1相同,在加热处理中,也可以经常或者定期地将从检测出的反向电力的振幅和相位计算出的电力值与预先规定的阈值进行比较,在至少一个以上的高频电力单元140的反射电力的电力值超过该阈值的情况下执行再搜索处理,该反向电力的振幅和相位为从各自的高频电力单元140a、140b、140c、140d中取得同步检波信号I(1)~I(4)以及正交检波信号Q(1)~Q(4)而检测出的反向电力的振幅和相位。
由此,即使在加热处理中因被加热物的温度、形状变化导致反射电力以及穿过电力的大小变化的情况下,通过预先规定阈值、在超过这些阈值的情况下进行再搜索处理,从而能够经常在最合适的加热条件下对被加热物进行加热。
另外,在执行上述的预搜索处理以及再搜索处理时,为了防止在搜索处理中过大的反射电力以及穿过电力所致的高频加热装置尤其是含有半导体元件的放大器故障,也可以对各自的高频功率放大部143a、143b、143c、143d的放大增益进行控制,以使从各自的高频电力单元140a、140b、140c、140d输出的高频电力的值比该加热时的高频电力的值小。
如上所述,本实施方式涉及的高频电力装置300具有与各高频电力单元140一一对应的高频电力产生部320a~320d。由此,与实施方式2涉及的高频加热装置200比较,能够进一步缩短各个高频电力单元140的检测反射电力需要的时间。由此,用户按下高频加热装置300的使用开始按钮来实际进行该加热处理前,能够在更短时间内决定最合适的频率组合以及移相量的组合,更进一步提高用户的方便性。
另外,与实施方式2涉及的高频加热装置200比较,各个高频电力产生部320a~320d产生的高频电力的频率彼此独立。由此,高频加热装置300因为向加热室辐射的多个高频电力的频率的自由度变高,所以能够进一步提高最大照射效率。
以上,对于本发明涉及的高频加热装置,基于各实施方式进行说明,但本发明不限于这些实施方式。只要不脱离本发明的主旨,在该实施方式中施加的本领域技术人员想到的各种变形、以及将在不同实施方式内的结构元件组合而构成的实施方式也包含在本发明的范围内。
这样的高频加热装置例如能够作为图22示出的微波炉使用,以短时间检测最合适的加热条件,对被加热物进行加热。由此,提高了用户的使用方便性。
另外,在上述各实施方式中,第一~第四的高频电力单元140a~140d的每一个具有可变移相部142a~142d,但在实施方式2中第一~第四高频电力单元140a~140d的每一个也可以不具备可变移相部。
具体地说,在第二实施方式中,第一高频电力产生部220a和第一分配部230a之间具有一个可变移相部,第二高频电力产生部220b和第二分配部230b之间具有另外一个可变移相部。
另外,在实施方式2以及3中第一~第四高频电力单元140a~140d的每一个也可以不具有可变移相部142a~142d,而通过高频电力产生部(第一高频电力产生部220a以及第二高频电力产生部220b或者第一~第四高频电力产生部320a~320d)使所产生的高频电力的相位变化。即,可变移相部也可以是设置在每一个高频电力产生部中,根据控制部(控制部110、210、或者310)所设定的移相量,使高频电力产生部产生的高频电力的相位变化的PLL电路。由此,在比高频电力产生部所产生的高频电力低的频率能够使相位变化,控制以及设计变得容易。
另外,在实施方式3中,在上述说明中第一~第四高频电力产生部320a~320d与第一~第四高频电力单元140a~140d分别设置,但也可以在第一~第四高频电力单元140a~140d内设置对应的第一~第四高频电力产生部320a~320d。
另外,高频加热装置不限于设定照射效率最好的频率以及移相量的组合,也可以在所期望的状态决定能够加热被加热物的频率以及移相量的组合,以决定的频率以及移相量的组合对被加热物进行加热。例如,在被加热物是盒饭的情况下,也可以决定饭加热而菜不加热这样的频率以及移相量的组合。
另外,在第一~第四高频电力单元140a~140d中,高频功率放大部143a~143d与可变移相部142a~142d的后级连接,但高频功率放大部143a~143d也可以在与可变移相部142a~142d相比的前级连接。
另外,在图9中,各高频电力单元140的照射损失180a~180d按照每个在步骤S1101(具体地说,步骤S1401、步骤S1404以及步骤S1407)设定的频率,通过计算来估计用于实测的移相量组合θ0、0、0、0以外的移相量组合的照射损失。但是,除了在步骤S1101设定的频率,还可以通过计算,来估计能够在高频电力产生部(高频电力产生部120、第一高频电力产生部220a以及第二高频电力产生部220b或者第一~第四高频电力产生部320a~320d)设定的频率(例如,2401.5MHz等)的照射损失180a~180d。即,例如在存在可设定的频率201点的情况下,也可以是实测的频率101点、估计的频率是100个点。
另外,在实施方式2以及3中,使反射电力检测的控制流程根据高频电力产生部的频率的关系而不同,但也可以不涉及频率的组合,而与在图5示出的实施方式1的反射电力检测的控制流程相同。
同样地,在实施方式2以及3中,使穿过电力检测的控制流程根据高频电力产生部的频率的关系而不同,但也可以不涉及频率的组合,而与在图6示出的实施方式1的穿过电力检测的控制流程相同。
另外,本发明不仅可作为装置来实现,也能够作为高频加热方法来实现,该高频加热方法将该装置的处理手段作为步骤。
产业上利用的可能性
本发明在具有至少一个高频电力产生单元和多个高频电力单元的高频加热装置中,因为能够在短时间内决定最合适的加热条件,所以可作为微波炉等烹饪家电等来使用。
符号说明
100,200,300高频加热装置
110,210,310控制部
120高频电力产生部
121振荡部
122锁相电路
123放大部
130,141,141a、141b、141c、141d分配部
140高频电力单元
140a第1高频电力单元
140b第2高频电力单元
140c第3高频电力单元
140d第4高频电力单元
142,142a,142b,142c,142d可变移相部
143,143a,143b,143c,143d高频功率放大部
144,144a,144b,144c,144d方向性耦合部
145,145a,145b,145c,145d正交检波部
150,150a,150b,150c,150d辐射部
151可变衰减器
152高频功率放大器
153同相检波混频器
154正交检波混频器
155π/2移相器
156同相输出侧低通滤波器
157正交输出侧低通滤波器
170 S参数
180a~180d照射损失
220a,320a第1高频电力产生部
220b,320b第2高频电力产生部
230a第1分配部
230b第2分配部
320c第3高频电力产生部
320d第4高频电力产生部

Claims (20)

1.一种高频加热装置,对被放置在加热室的被加热物进行加热,所述高频加热装置具有:
至少一个高频电力产生部,产生被设定了频率的高频电力;
可变移相部,使由所述高频电力产生部所产生的高频电力的相位变化;
多个高频电力单元,每个高频电力单元分别具有辐射部以及反向电力检测部,所述辐射部向所述加热室辐射由所述可变移相部改变了相位的高频电力,所述反向电力检测部检测作为由所述辐射部所辐射的高频电力的一部分的、从所述加热室入射到所述辐射部的反向电力;以及
控制部,对所述高频电力产生部设定频率,并且,对所述可变移相部设定移相量,
所述反向电力检测部,
根据由所述控制部对所述高频电力产生部设定的频率,检测反射波的振幅和相位以及穿过波的振幅和相位,所述反射波为一个所述高频电力单元的辐射部所辐射的高频电力的一部分反射后输入到该一个所述高频电力单元的辐射部的、因反射而形成的反向电力,所述穿过波为由其他的所述高频电力单元的辐射部所辐射的高频电力的一部分输入到所述一个高频电力单元的辐射部的反向电力,
所述控制部,
对所述高频电力产生部依次设定多个频率,按照设定的每个频率,使各个所述高频电力单元的所述反向电力检测部检测所述反射波的振幅和相位以及所述穿过波的振幅和相位,根据被检测出的多个所述反射波的振幅和相位以及所述穿过波的振幅和相位,决定加热被加热物时的、使所述高频电力产生部产生的高频电力的频率以及所述可变移相部的移相量,并对所述高频电力产生部以及所述可变移相部设定决定了的频率和移相量。
2.如权利要求1所述的高频加热装置,
所述控制部使用被检测出的所述反射波的振幅和相位以及所述穿过波的振幅和相位,按照每个能够对所述高频电力产生部设定的频率,通过计算,对所述可变移相部的移相量的任意组合的所述反射波的振幅和相位以及所述穿过波的振幅和相位进行估计,根据按照每个频率检测出的所述反射波的振幅和相位以及所述穿过波的振幅和相位、按照每个频率估计的所述可变移相部的移相量的任意组合的所述反射波的振幅和相位以及所述穿过波的振幅和相位,决定加热所述被加热物时的、使所述高频电力产生部产生的高频电力的频率以及所述可变移相部的移相量的组合。
3.如权利要求2所述的高频加热装置,
所述控制部从所述任意组合中决定各个所述高频电力单元的所述反向电力检测部检测出的所述反射波和所述穿过波的合计值为最小的所述组合。
4.如权利要求2所述的高频加热装置,
所述反向电力检测部具有正交检波部,该正交检波部通过使用由所述高频电力产生部所产生的高频电力来对所述反向电力进行正交检波,从而检测用于计算所述反射波的振幅和相位以及所述穿过波的振幅和相位的同相检波信号以及正交检波信号。
5.如权利要求4所述的高频加热装置,
所述多个高频电力单元的每一个还具有高频功率放大部,该高频功率放大部对由所述高频电力产生部所产生的高频电力进行放大,且该放大的增益是可变的,
所述控制部进一步设定所述高频功率放大部的放大增益。
6.如权利要求5所述的高频加热装置,
所述高频加热装置具有一个所述高频电力产生部和多个所述高频电力单元,
还具有分配部,该分配部分配由一个所述高频电力产生部所产生的高频电力,并向所述多个高频电力单元供给分配的高频电力。
7.如权利要求6所述的高频加热装置,
所述控制部在一个所述高频电力单元的所述反向电力检测部检测所述穿过波的振幅和相位时,将所述高频电力产生部的频率设定为用于测量所述穿过波的频率,并且,设定所述高频功率放大部的放大增益,以使该一个高频电力单元的所述反射波的振幅比所述穿过波的振幅小。
8.如权利要求6所述的高频加热装置,
所述控制部在一个所述高频电力单元的所述反向电力检测部检测所述反射波的振幅以及相位时,设定所述高频功率放大部的放大增益,以使该一个所述高频电力单元的所述穿过波的振幅比所述反射波的振幅小。
9.如权利要求5所述的高频加热装置,
所述高频加热装置具有多个所述高频电力产生部,多个所述高频电力产生部向多个所述高频电力单元供给产生的多个高频电力。
10.如权利要求9所述的高频加热装置,
多个所述高频电力产生部的一个与所述多个高频电力单元为一一对应地设置。
11.如权利要求9或10所述的高频加热装置,
所述多个高频电力单元与多个所述高频电力产生部对应地设置,
所述控制部在一个所述高频电力单元的所述反向电力检测部检测所述穿过波的振幅以及相位时,对与该一个所述高频电力单元相对应的高频电力产生部和与另一个所述高频电力单元相对应的高频电力产生部设定相同频率,并且,设定所述高频功率放大部的放大增益,以使该一个所述高频电力单元的所述反射波的振幅比所述穿过波的振幅小。
12.如权利要求9或10所述的高频加热装置,
所述多个高频电力单元与多个所述高频电力产生部对应地设置,
所述控制部在对与一个所述高频电力单元相对应的高频电力产生部设定的频率同对与另一个所述高频电力单元相对应的高频电力产生部设定的频率相等、并且该一个所述高频电力单元的所述反向电力检测部检测所述反射波的振幅和相位时,设定所述高频功率放大部的放大增益,以使该一个所述高频电力单元的所述穿过波的振幅比该一个所述高频电力单元的所述反射波的振幅小。
13.如权利要求5至12中任一项所述的高频加热装置,
所述控制部在对所述被加热物进行加热处理前,执行决定所述高频电力产生部的频率以及所述可变移相部的移相量的处理,来作为预搜索处理,以及在对所述被加热物进行加热处理时,执行再次决定所述高频电力产生部的频率以及所述可变移相部的移相量的处理,来作为再搜索处理,在执行该预搜索处理或该再搜索处理时,设定所述多个高频电力单元的各个所述高频功率放大部的放大增益,以使所述多个高频电力单元的所述辐射部所辐射的高频电力的值比在加热处理时该辐射部所辐射的高频电力的值小。
14.如权利要求1至4中任一项所述的高频加热装置,
所述控制部在对所述被加热物进行加热处理前,执行决定所述高频电力产生部的频率以及所述可变移相部的移相量的处理,来作为预搜索处理。
15.如权利要求1至4中任一项所述的高频加热装置,
所述控制部进一步在对所述被加热物的进行加热处理时,执行再次决定所述高频电力产生部的频率以及所述可变移相部的移相量的处理,来作为再搜索处理,对所述高频电力产生部设定由所述再搜索处理决定的新的频率,并对所述可变移相部设定新的移相量。
16.如权利要求15所述的高频加热装置,
所述控制部在对所述被加热物进行加热处理时,使所述多个高频电力单元的每一个检测所述反向电力,在被检测的多个反向电力中的至少一个超过阈值的情况下,执行所述再搜索处理。
17.如权利要求1所述的高频加热装置,
所述可变移相部是与所述多个高频电力单元的每一个对应地设置的移相器。
18.如权利要求1所述的高频加热装置,
所述可变移相部是锁相环电路,该锁相环电路与所述至少一个高频电力产生部分别对应地设置,根据由所述控制部所设定的移相量使对应的所述高频电力产生部产生的高频电力的相位变化。
19.一种高频加热方法,通过由多个高频电力单元所辐射的高频电力对被放置在加热室的被加热物进行加热,所述高频加热方法具有:
设定步骤,设定由所述多个高频电力单元所辐射的高频电力的频率;
第一检测步骤,根据被设定的频率,检测反射波的振幅和相位以及穿过波的振幅和相位,所述反射波为由一个所述高频电力单元所辐射的高频电力的一部分反射后输入到该一个所述高频电力单元的、因反射而形成的反向电力,所述穿过波为由其他的所述高频电力单元所辐射的高频电力的一部分输入到所述一个所述高频电力单元的反向电力;
变更步骤,变更并设定由所述多个高频电力单元所辐射的高频电力的频率,
第二检测步骤,根据由所述变更步骤所设定的频率,检测所述反射波的振幅和相位以及所述穿过波的振幅和相位;
决定步骤,根据由所述第一检测步骤以及所述第二检测步骤所检测的所述反射波的振幅和相位以及所述穿过波的振幅和相位,决定加热所述被加热物时的所述多个高频电力单元所辐射的高频电力的频率和相位;以及
加热步骤,通过从所述多个高频电力单元辐射被决定的频率和相位的高频电力,来加热所述被加热物。
20.如权利要求19所述的高频加热方法,
所述决定步骤具有:
估计步骤,使用由所述第一检测步骤及所述第二检测步骤所检测出的所述反射波的振幅和相位以及所述穿过波的振幅和相位,按照所述多个高频电力单元所辐射的高频电力的能够设定的每个频率,通过使用所述反射波的振幅和相位以及所述穿过波的振幅和相位来进行计算,从而估计所述多个高频电力单元所辐射的高频电力的相位的任意组合的、所述反射波的振幅和相位以及所述穿过波的振幅和相位;以及
组合步骤,根据由所述第一检测步骤及所述第二检测步骤所检测出的所述反射波的振幅和相位以及所述穿过波的振幅和相位、以及由所述估计步骤所估计的所述反射波的振幅和相位以及所述反射波的振幅和相位,来决定加热所述被加热物时的所述多个高频电力单元所辐射的高频电力的频率及相位的组合。
CN2010800300646A 2009-09-29 2010-09-15 高频加热装置以及高频加热方法 Active CN102474924B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009225651 2009-09-29
JP2009-225651 2009-09-29
PCT/JP2010/005631 WO2011039961A1 (ja) 2009-09-29 2010-09-15 高周波加熱装置および高周波加熱方法

Publications (2)

Publication Number Publication Date
CN102474924A true CN102474924A (zh) 2012-05-23
CN102474924B CN102474924B (zh) 2013-08-14

Family

ID=43825814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800300646A Active CN102474924B (zh) 2009-09-29 2010-09-15 高频加热装置以及高频加热方法

Country Status (5)

Country Link
US (1) US8796593B2 (zh)
EP (1) EP2485565A4 (zh)
JP (1) JP4995350B2 (zh)
CN (1) CN102474924B (zh)
WO (1) WO2011039961A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654381A (zh) * 2015-02-12 2015-05-27 广东美的厨房电器制造有限公司 半导体微波炉及用于微波炉的半导体功率源
CN104676671A (zh) * 2014-05-28 2015-06-03 广东美的厨房电器制造有限公司 半导体微波炉及其半导体微波源
CN105375918A (zh) * 2014-08-07 2016-03-02 恩智浦有限公司 用于检测向rf信号施加的相移的电路
CN109156052A (zh) * 2016-04-01 2019-01-04 伊利诺斯工具制品有限公司 微波加热装置以及用于操作微波加热装置的方法
CN109315029A (zh) * 2016-06-30 2019-02-05 松下知识产权经营株式会社 高频加热装置
US10588182B2 (en) 2014-05-28 2020-03-10 Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd. Semiconductor microwave oven and semiconductor microwave source thereof

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653482B2 (en) 2006-02-21 2014-02-18 Goji Limited RF controlled freezing
EP2345304B1 (en) 2008-11-10 2014-01-08 Goji Limited Device and method for heating using rf energy
CN102598851B (zh) 2009-11-10 2015-02-11 高知有限公司 使用rf能量进行加热的装置和方法
EP2958399B1 (en) * 2010-07-01 2019-10-09 Goji Limited Processing objects by radio frequency (rf) energy
EP2469975B1 (en) * 2010-12-21 2016-05-11 Whirlpool Corporation Control of microwave source efficiency in a microwave heating apparatus
EP2637477B1 (en) * 2012-03-05 2022-03-09 Whirlpool Corporation Microwave heating apparatus
US9510396B2 (en) 2012-06-07 2016-11-29 Panasonic Intellectual Property Management Co., Ltd. High-frequency heating device
WO2014006510A2 (en) 2012-07-02 2014-01-09 Goji Ltd. Rf energy application based on electromagnetic feedback
US9043525B2 (en) * 2012-12-14 2015-05-26 Lam Research Corporation Optimizing a rate of transfer of data between an RF generator and a host system within a plasma tool
US10560986B2 (en) 2013-08-20 2020-02-11 Whirlpool Corporation Method for detecting the status of popcorn in a microwave
JP6368371B2 (ja) 2013-12-23 2018-08-01 ワールプール コーポレイション 無線周波数発生器用の遮断回路
EP3087807A4 (en) * 2013-12-23 2017-08-16 Whirlpool Corporation Method of calibrating a multifeed radio frequency device
US10667337B2 (en) 2013-12-23 2020-05-26 Whirlpool Corporation Method of control of a multifeed radio frequency device
CN104676670A (zh) * 2014-05-28 2015-06-03 广东美的厨房电器制造有限公司 半导体微波炉及其半导体微波源
JP2017528884A (ja) 2014-09-17 2017-09-28 ワールプール コーポレイション パッチアンテナを介した直接加熱
WO2016144872A1 (en) 2015-03-06 2016-09-15 Whirlpool Corporation Method of calibrating a high power amplifier for a radio frequency power measurement system
JP7027891B2 (ja) 2015-06-03 2022-03-02 ワールプール コーポレイション 電磁調理のための方法および装置
WO2017119910A1 (en) 2016-01-08 2017-07-13 Whirlpool Corporation Multiple cavity microwave oven insulated divider
US11483905B2 (en) 2016-01-08 2022-10-25 Whirlpool Corporation Method and apparatus for determining heating strategies
US10820382B2 (en) 2016-01-28 2020-10-27 Whirlpool Corporation Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff
CN108702817B (zh) 2016-02-15 2021-09-10 松下电器产业株式会社 用于传送射频电磁能量以对食料进行烹调的方法和装置
US10412794B2 (en) * 2016-03-11 2019-09-10 Illinois Tool Works Inc. Microwave heating device and method for operating a microwave heating device
US10772166B2 (en) * 2016-03-11 2020-09-08 Illinois Tool Works, Inc. Microwave heating device
EP3516927B1 (en) 2016-09-22 2021-05-26 Whirlpool Corporation Method and system for radio frequency electromagnetic energy delivery
WO2018075030A1 (en) 2016-10-19 2018-04-26 Whirlpool Corporation System and method for food preparation utilizing a multi-layer model
EP3530074A4 (en) 2016-10-19 2020-05-27 Whirlpool Corporation MODULATION OF THE COOKING TIME OF FOOD
WO2018075026A1 (en) 2016-10-19 2018-04-26 Whirlpool Corporation Method and device for electromagnetic cooking using closed loop control
JP6742510B2 (ja) * 2016-12-21 2020-08-19 パナソニック株式会社 無線周波数電磁エネルギー供給の方法、システム、および装置
WO2018118066A1 (en) 2016-12-22 2018-06-28 Whirlpool Corporation Method and device for electromagnetic cooking using non-centered loads management through spectromodal axis rotation
WO2018118065A1 (en) 2016-12-22 2018-06-28 Whirlpool Corporation Method and device for electromagnetic cooking using non-centered loads
WO2018118077A1 (en) 2016-12-23 2018-06-28 Whirlpool Corporation Method of diagnosing an electromagnetic cooking device
WO2018125147A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
EP3563631B1 (en) 2016-12-29 2022-07-27 Whirlpool Corporation Detecting changes in food load characteristics using q-factor
WO2018125145A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for detecting changes in food load characteristics using coefficient of variation of efficiency
US11917743B2 (en) * 2016-12-29 2024-02-27 Whirlpool Corporation Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device
WO2018125146A1 (en) * 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic boiling detection and method of controlling cooking in the electromagnetic cooking device
EP3563630B1 (en) 2016-12-29 2021-09-08 Whirlpool Corporation System and method for controlling a heating distribution in an electromagnetic cooking device
WO2018125137A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for analyzing a frequency response of an electromagnetic cooking device
US11503679B2 (en) 2016-12-29 2022-11-15 Whirlpool Corporation Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device
US11184960B2 (en) 2016-12-29 2021-11-23 Whirlpool Corporation System and method for controlling power for a cooking device
WO2018125144A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for detecting cooking level of food load
EP3563637B1 (en) 2016-12-29 2022-07-27 Whirlpool Corporation Electromagnetic cooking device with automatic anti-splatter operation and method of controlling cooking in the electromagnetic device
WO2018125182A1 (en) 2016-12-30 2018-07-05 Whirlpool Corporation Cost effective hybrid protection for high power amplifier.
US11013357B2 (en) * 2017-03-06 2021-05-25 Illinois Tool Works Inc. Modified S-parameter measurement and usage in solid state RF oven electronics
US10827569B2 (en) 2017-09-01 2020-11-03 Whirlpool Corporation Crispness and browning in full flat microwave oven
US11039510B2 (en) 2017-09-27 2021-06-15 Whirlpool Corporation Method and device for electromagnetic cooking using asynchronous sensing strategy for resonant modes real-time tracking
US10772165B2 (en) 2018-03-02 2020-09-08 Whirlpool Corporation System and method for zone cooking according to spectromodal theory in an electromagnetic cooking device
US11404758B2 (en) 2018-05-04 2022-08-02 Whirlpool Corporation In line e-probe waveguide transition
US10912160B2 (en) 2018-07-19 2021-02-02 Whirlpool Corporation Cooking appliance
US11576408B2 (en) * 2019-04-15 2023-02-14 Bsh Home Appliances Corporation Ice processing system
KR20210125289A (ko) * 2020-04-08 2021-10-18 엘지전자 주식회사 복수 개의 안테나를 포함하는 오븐 및 그 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523921A (ja) * 2003-04-16 2006-10-19 リム テクノロジーズ コーポレイション エヌ・ヴェ 3つのデカップルされた発振器を含むマイクロ波又は無線波装置
JP2008108491A (ja) * 2006-10-24 2008-05-08 Matsushita Electric Ind Co Ltd マイクロ波処理装置
CN101317499A (zh) * 2005-11-25 2008-12-03 松下电器产业株式会社 用于高频电介质加热的功率控制装置及其功率控制方法
JP2009032638A (ja) * 2007-07-05 2009-02-12 Panasonic Corp マイクロ波処理装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522199B2 (ja) * 1994-04-20 1996-08-07 日本電気株式会社 電力増幅装置
JP3804129B2 (ja) 1996-11-12 2006-08-02 株式会社トキメック 濃度計
US5968587A (en) * 1996-11-13 1999-10-19 Applied Materials, Inc. Systems and methods for controlling the temperature of a vapor deposition apparatus
US5963840A (en) * 1996-11-13 1999-10-05 Applied Materials, Inc. Methods for depositing premetal dielectric layer at sub-atmospheric and high temperature conditions
US6015465A (en) * 1998-04-08 2000-01-18 Applied Materials, Inc. Temperature control system for semiconductor process chamber
JP2000357583A (ja) 1999-06-15 2000-12-26 Mitsubishi Electric Corp 電子レンジ
US7602127B2 (en) * 2005-04-18 2009-10-13 Mks Instruments, Inc. Phase and frequency control of a radio frequency generator from an external source
EP1954098B1 (en) 2005-11-25 2016-09-14 Panasonic Corporation Power control device for high-frequency dielectric heating and its control method
JP5064924B2 (ja) * 2006-08-08 2012-10-31 パナソニック株式会社 マイクロ波処理装置
JP4940922B2 (ja) 2006-12-08 2012-05-30 パナソニック株式会社 マイクロ波処理装置
JP5167678B2 (ja) * 2007-04-16 2013-03-21 パナソニック株式会社 マイクロ波処理装置
US20100176123A1 (en) 2007-07-13 2010-07-15 Makoto Mihara Microwave heating apparatus
JP5127038B2 (ja) 2007-12-03 2013-01-23 パナソニック株式会社 高周波処理装置
JP5092863B2 (ja) 2008-04-17 2012-12-05 パナソニック株式会社 マイクロ波処理装置
JP2009301747A (ja) * 2008-06-10 2009-12-24 Panasonic Corp 大電力高周波出力装置
JP2010004453A (ja) * 2008-06-23 2010-01-07 Panasonic Corp 高周波電力増幅器および高周波電力増幅器を備えた高周波電力出力装置
WO2010140342A1 (ja) 2009-06-01 2010-12-09 パナソニック株式会社 高周波加熱装置および高周波加熱方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523921A (ja) * 2003-04-16 2006-10-19 リム テクノロジーズ コーポレイション エヌ・ヴェ 3つのデカップルされた発振器を含むマイクロ波又は無線波装置
CN101317499A (zh) * 2005-11-25 2008-12-03 松下电器产业株式会社 用于高频电介质加热的功率控制装置及其功率控制方法
JP2008108491A (ja) * 2006-10-24 2008-05-08 Matsushita Electric Ind Co Ltd マイクロ波処理装置
JP2009032638A (ja) * 2007-07-05 2009-02-12 Panasonic Corp マイクロ波処理装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676671A (zh) * 2014-05-28 2015-06-03 广东美的厨房电器制造有限公司 半导体微波炉及其半导体微波源
US10588182B2 (en) 2014-05-28 2020-03-10 Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd. Semiconductor microwave oven and semiconductor microwave source thereof
CN105375918A (zh) * 2014-08-07 2016-03-02 恩智浦有限公司 用于检测向rf信号施加的相移的电路
CN105375918B (zh) * 2014-08-07 2018-05-08 恩智浦有限公司 用于检测向rf信号施加的相移的电路
CN104654381A (zh) * 2015-02-12 2015-05-27 广东美的厨房电器制造有限公司 半导体微波炉及用于微波炉的半导体功率源
CN109156052A (zh) * 2016-04-01 2019-01-04 伊利诺斯工具制品有限公司 微波加热装置以及用于操作微波加热装置的方法
CN109156052B (zh) * 2016-04-01 2021-06-29 伊利诺斯工具制品有限公司 微波加热装置以及用于操作微波加热装置的方法
US11617240B2 (en) 2016-04-01 2023-03-28 Illinois Tool Works Inc. Microwave heating device and method for operating a microwave heating device
CN109315029A (zh) * 2016-06-30 2019-02-05 松下知识产权经营株式会社 高频加热装置
CN109315029B (zh) * 2016-06-30 2021-12-07 松下知识产权经营株式会社 高频加热装置

Also Published As

Publication number Publication date
JPWO2011039961A1 (ja) 2013-02-21
US8796593B2 (en) 2014-08-05
JP4995350B2 (ja) 2012-08-08
US20120103972A1 (en) 2012-05-03
EP2485565A1 (en) 2012-08-08
EP2485565A4 (en) 2013-05-15
WO2011039961A1 (ja) 2011-04-07
CN102474924B (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
CN102474924B (zh) 高频加热装置以及高频加热方法
CN101502170B (zh) 微波处理装置
CN102124814B (zh) 高频加热装置及高频加热方法
EP3563628B1 (en) System and method for detecting changes in food load characteristics using coefficient of variation of efficiency
CN103533690A (zh) 自动调整工作频率的微波功率源和方法
EP3563636B1 (en) System and method for controlling power for a cooking device
CN106993347B (zh) 一种获取均匀微波场的恒波系统及获取均匀微波场的方法
EP3534675B1 (en) System and method for zone cooking according to spectromodal theory in an electromagnetic cooking device
EP3563631B1 (en) Detecting changes in food load characteristics using q-factor
EP3563637B1 (en) Electromagnetic cooking device with automatic anti-splatter operation and method of controlling cooking in the electromagnetic device
EP3563635B1 (en) Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
EP3563633B1 (en) System and method for detecting cooking level of food load
EP3563629B1 (en) System and method for analyzing a frequency response of an electromagnetic cooking device
EP3563630B1 (en) System and method for controlling a heating distribution in an electromagnetic cooking device
EP3563634B1 (en) Electromagnetic cooking device with automatic boiling detection and method of controlling cooking in the electromagnetic cooking device
EP3563638B1 (en) Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device
WO2018118065A1 (en) Method and device for electromagnetic cooking using non-centered loads
WO2018118066A1 (en) Method and device for electromagnetic cooking using non-centered loads management through spectromodal axis rotation
Alexandropoulos et al. HYBRID RECONFIGURABLE INTELLIGENT METASURFACES

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant