CN102465009B - 多级沸腾床重油加氢处理方法 - Google Patents

多级沸腾床重油加氢处理方法 Download PDF

Info

Publication number
CN102465009B
CN102465009B CN201010536230.1A CN201010536230A CN102465009B CN 102465009 B CN102465009 B CN 102465009B CN 201010536230 A CN201010536230 A CN 201010536230A CN 102465009 B CN102465009 B CN 102465009B
Authority
CN
China
Prior art keywords
catalyzer
catalyst
accordance
reactor
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010536230.1A
Other languages
English (en)
Other versions
CN102465009A (zh
Inventor
方向晨
孙素华
朱慧红
王刚
刘杰
杨光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201010536230.1A priority Critical patent/CN102465009B/zh
Priority to CA2754870A priority patent/CA2754870C/en
Priority to TW100136969A priority patent/TWI534258B/zh
Priority to US13/272,993 priority patent/US20120091039A1/en
Priority to PL11185042T priority patent/PL2441817T3/pl
Priority to EP11185042.6A priority patent/EP2441817B1/en
Publication of CN102465009A publication Critical patent/CN102465009A/zh
Application granted granted Critical
Publication of CN102465009B publication Critical patent/CN102465009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种多级沸腾床重油催化加氢处理方法,设置串联的3台沸腾床反应器,即第一台沸腾床反应器,以下简称R101,第二台沸腾床反应器,以下简称R102,和第三台沸腾床反应器,以下简称R103,R101和R102为切换操作方式。本发明方法投资较低,保证运转周期与催化裂化同步,为催化裂化提供合格的原料油。

Description

多级沸腾床重油加氢处理方法
技术领域
本发明涉及一种多级沸腾床重油加氢处理方法,特别适用于重金属含量较高的重质烃油多级沸腾床加氢处理过程。
背景技术
随着石油资源日趋变重变劣,如何合理利用劣质重油或渣油是炼油工业面临的重要课题。在现有渣油加氢技术中,固定床因其技术成熟,操作简单而得到广泛应用。但渣油固定床加氢工艺对原料中金属和残炭含量有严格的限制;而沸腾床加氢工艺对原料适应性广,加工方案灵活,可以加工性质较劣的减压渣油,该技术不仅可用于加氢处理,同时可用于重油或渣油加氢裂化,应用前景十分广阔。
根据加工原料油和目的产品的不同,沸腾床反应器部分可以分为单个反应器或几个平行系列,每个系列包括几个串连反应器,不同反应器中可以装入相同的催化剂,也可装填不同的催化剂。一个沸腾床反应器出来的产品质量稍差,需要进一步加氢处理。当三个反应器装填不同的催化剂时,通常一反为较大孔径的加氢脱金属(HDM)催化剂,二反和三反为较高比表面的(加氢脱硫)HDS和加氢转化催化剂。当使用两个反应器时,也可以一反采用高活性催化剂,使原料中沸点高于524℃(975°F)的烃类有50%转化为沸点低于524℃(975°F)的烃类,同时发生部分脱硫反应;二反用活性较低的催化剂,使加氢裂化总转化率达到一定水平,同时进一步脱硫。三个反应器串联一般可以达到所需的反应效果。
HRI和Lummus公司都开发了沸腾床加氢反应器与固定床加氢反应器串联技术,主要目的是使沸腾床加氢裂化生产的轻质油品直接精制以满足质量要求。目前,渣油沸腾床加氢裂化装置多采用两台反应器串联(H-Oil)和三台反应器串联(LC-Fining)的流程,这样做的原因除了装置规模外,还有利于提高杂质脱除率。H-Oil装置的第一台反应器主要用于加氢裂化和脱金属,第二台反应器主要用于加氢裂化、脱硫和脱残炭。LC-Fining装置的第一台反应器主要用于加氢裂化和脱金属,第二台反应器主要用于加氢裂化、脱硫和脱残炭,第三台反应器主要用于深度脱硫。沸腾床渣油加氢工艺的反应器从一个增加至两个或更多,且在不同反应器内装填不同催化剂,这改进了装置的运转状况。
USP6270654公开了一种采用多级沸腾床反应器的催化加氢过程。该工艺过程的优点是充分利用外部气液分离装置来安装在第一级反应器中来更有效的加氢裂化过程,通过增加催化剂装填及减低沸腾床反应器的其含量来优化工艺过程。专利中采用在线置换的沸腾床反应系统,第一级沸腾床反应器的催化剂置换速率为0.05-0.5Lb/Bbl。用于第一级及第二级反应器中的催化剂含有的活性金属含量为5-20wt%,催化剂孔容为0.4-1.2mL/g,表面积为100-400m2/g,平均孔径为8-25nm。活性金属为Mo-Co或Mo-Ni(第二级)。第二级反应器卸出的催化剂添加到第一个反应器中。多级加氢工艺过程能增加催化剂的装填和液体体积,同时减少每个反应器中的气含率,因此能改善工艺的有效性。
USP4576710公开了一种渣油原料的加氢脱硫催化剂的制备。该专利采用两个沸腾床反应器,每个从反应器卸出的废催化剂经过再生后送回原反应器,或者对第二个反应器加入新鲜催化剂,而把第二个反应器的催化剂装入第一个反应器,而原来第一个反应器内的催化剂全部丢弃。活性金属为Co、Mo、Ni、W及其混合物。载体为氧化铝、氧化硅及其混合物。
USP4457831公开了采用渣油循环的烃类原料的二级加氢转化工艺。第一级反应器使用合适直径的催化剂,在中等反应条件下转化产生烃类气体和液体馏分,其中低馏分液体分离后为产品,剩余气体和较重液体馏分混合进入第二级沸腾床反应器。第二级反应器包含较大直径催化剂,在相对苛刻条件下生产低沸点烃类馏分。部分减压塔底物送入第二级沸腾床来反应增加转化率和提高液态烃的产率。活性金属组分为Co、Mo、Ni、W及其混合物。载体为氧化铝、氧化硅及其混合物。
USP3809644公开了一种采用多段沸腾床加氢工艺,该工艺是由高硫和高金属含量的石油渣油生产低硫燃料油,把最后一段反应器用过的催化剂取出来加入到前一段反应器中,可明显延长催化剂的活性及其有效寿命。该工艺包括三个反应器,其中第一个反应器装填脱金属催化剂,第二个反应器装填脱金属和脱硫催化剂,第三个反应器装填脱硫催化剂。催化剂采用Mo-Co/Al2O3和Mo-Ni/Al2O3,孔容为0.4-0.65mL/g,最好为0.5-0.6mL/g。
由于沸腾床在线加排系统投资较高,据计算,催化剂在线加排系统的投资占沸腾床加氢系统总投资的一半左右,且操作时发生故障主要在加排系统,如果不采用加排系统,让催化剂在反应器内处于沸腾状态,多级沸腾床加工后的生成油直接进入催化裂化,为了与催化裂化装置同步,要保证运转三年,要求置换催化剂,该工艺流程主要目的是加氢脱金属和加氢脱硫,为催化裂化提供良好的原料。
发明内容
针对现有技术的不足,本专利提供一种多级沸腾床重油、渣油加氢处理方法,特别适用于重金属含量较高的重油或渣油多级沸腾床加氢处理过程,该处理方法投资较低,保证运转周期与催化裂化同步,为催化裂化提供合格的原料油。
本发明多级沸腾床重油加氢处理方法设置串联的3台沸腾床反应器,即第一台沸腾床反应器(以下简称R101)、第二台沸腾床反应器(以下简称R102)和第三台沸腾床反应器(以下简称R103),R101和R102为切换操作方式,即操作时按以下三种方式循环进行:(1)反应物料依次通过R101-R102-R103;(2)切出R101进行催化剂更新,反应物料依次通过R102-R103,R101更新催化剂后,反应物料依次通过R101-R102-R103;(3)切出R102进行催化剂更换,反应物料依次通过R101-R103,R102更新催化剂后,反应物料依次通过R101-R102-R103。
本发明方法中,R101装填加氢脱金属催化剂,R102装填加氢脱金属催化剂或者装填加氢脱硫催化剂,R103装填加氢脱硫催化剂。
本发明方法中,沸腾床反应器R101、R102、R103不设置催化剂在线加排系统,节省设备投资。R101或R102的切换时间按催化剂失活速度确定,R101一般3~9个月切换更新一次催化剂,R102一般5~18个月可以切换更新一次催化剂,具体可以根据反应的要求具体确定。因为物料已通过R101和R102进行加氢脱杂质反应,R103可以保持较长的运转周期,如一般可以达到3年左右。
本发明方法中,优选设置高压低温反应器R104,R104的压力等级与反应系统相同(忽略物料流动的压力损失),R104的温度为150~300℃,R104在R101或R102需要更新催化剂前,调整至所需的操作条件。当R101或R102切出反应系统时,将R101或R102中的催化剂快速排入R104中,减少反应器更换催化剂所需的时间,减少因为切换对反应系统的影响。采用R104后,可以减少催化剂更新时间50%以上。
本发明方法中,三个沸腾床反应器的容积优选相同,操作条件可以根据原料的性质及要求达到的反应效果确定,反应压力一般为8~25MPa,氢油体积比一般为100∶1~1000∶1,总液体体积空速(LHSV)一般为0.1~5.0h-1,R101反应温度一般为380~430℃,R102反应温度一般为380~430℃,R103反应温度一般为380~440℃。
本发明方法中,R101或R102切出反应系统进行催化剂更新时,为了不影响反应效果,可以降低反应原料的进料量,如可以将原料进料量降低至正常操作时的50%-80%(质量)。也可以通过适当提高反应温度的方式达到正常反应效果。
本发明方法中,R101使用催化剂的性质为:比表面为80~200m2/g,孔直径>20nm的孔至少占总孔容的40%,催化剂的平均孔直径为20nm以上,优选为22~40nm;以重量计,催化剂含VIB族金属氧化物(如MoO3)1.0%~10.0%,最好为1.5%~8.5%,含第VIII族金属氧化物(如NiO或CoO)0.1%~8.0%,最好是0.5%~5.0%。
R102使用的催化剂可以R101相同,也可以不同。R102使用的催化剂性质为:比表面为80~300m2/g,孔直径>20nm的孔至少占总孔容的20%,催化剂的平均孔直径为12nm以上,优选为12~30nm;以重量计,催化剂含VIB族金属氧化物(如MoO3)1.0%~15.0%,最好为1.5%~13%,含第VIII族金属氧化物(如NiO或CoO)0.1%~8.0%,最好是1.0%~5.0%。可以含有助剂,选自如下几种元素:B、Ca、F、Mg、P、Si、Ti等,助剂含量为0%~5.0%,助剂元素重量计。
R103使用的催化剂性质为:催化剂比表面为180~300m2/g,孔直径>20nm的孔至少占总孔容的10%,催化剂的平均孔直径为9nm以上,优选为9~15nm。催化剂含VIB族金属氧化物(如MoO3)3.0%~20.0%,最好为6.0%~18.0%,含VIII族金属氧化物(如NiO或CoO)0.3%~8.0%,最好是0.5%~5.0%。含有至少一种助剂,选自如下几种元素:B、Ca、F、Mg、P、Si、Ti等,助剂含量为0.5%~5.0%,助剂以元素重量计。
三个沸腾床反应器使用的催化剂颗粒均为球形,直径为0.1~0.8mm,优选为0.1~0.6mm;磨损指数≤2.0wt%。
本发明方法可以处理劣质重油原料,如馏程>500℃的重质烃原料,含有硫、氮、沥青质及大量金属(如V、Fe、Ni、Ca、Na等)化合物,金属含量>100μg/g。
本发明采用不带催化剂加排系统的多级沸腾床渣油加氢处理工艺,大大减少了设备投资,减少了出事故的可能性;通过适宜的切换试、或使用备用反应器、调整操作条件等方式,实现不采用催化剂在线加排系统可以实现沸腾床长周期稳定运转的要求。
附图说明
图1是本发明方法工艺流程示意图。
其中:1-阀一,2-阀二,3-阀三,4-阀四,5-阀五,6-阀六,7-阀七,8-阀八,9-阀九,10-阀十,11-阀十一,12-阀十二。
具体实施方式
本发明方法的沸腾床反应单元设置反应器3台,第一和第二反应器可切换操作,第三反应器不切换,达到置换催化剂的目的,实现长周期运行;工艺装置运行周期可以达到3年,与催化裂化装置同步开停工。沸腾床渣油加氢反应器不设催化剂在线加排系统,节省投资。
沸腾床加氢设3台串联的反应器(R-101、R102和R103),设置1台同样体积的高压低温反应器(R104)(用于反应器切换操作)。不设催化剂在线加排系统,节省投资。当R101的催化剂运转到末期时,切出该反应器,反应进料依次通过另外两个反应器;切出的反应器R101卸出催化剂后,重新装填催化剂;R101反应器并入系统后,运行一段时间后切除第二反应器R102,反应进料依次通过R101-R103;切出的反应器R102卸出催化剂后,重新装填新鲜催化剂;然后并入系统,反应进料依次通过R101-R202-R103。
具体如图1所示:
(1)当R101、R102、R103完全使用时,流程中阀五、阀六、阀八、阀九打开,阀十一、阀十二关闭;阀一、阀二、阀三、阀四、阀七、阀十关闭;
(2)当切换R101反应器时,阀十一、阀八、阀九打开,阀五、阀六、阀十二关闭;此时,清洗R101反应器,阀一、阀二、阀四打开进行降温循环、卸剂,阀三、阀十、阀七关闭;
(3)当切换R102反应器时,阀五、阀六、阀十二打开,阀八、阀九、阀十一关闭;此时,清洗R102反应器,阀一、阀十、阀七、阀三打开进行降温循环、卸剂,阀四、阀二关闭。
本发明中使用的催化剂可以根据性能需要采用现有方法制备,如参考US7074740、US5047142、US4549957、US4328127、CN200710010377.5等现有技术制备。
沸腾床加氢处理催化剂的制备过程是首先制备微球形催化剂载体,然后采用浸渍法负载需要的加氢活性金属组分。催化剂载体的制备过程如下:将湿度适宜的催化剂载体原料物料制成适宜大小的颗粒,然后将该颗粒球化处理,将球形物干燥、焙烧制成球形催化剂载体。
催化剂载体的干燥和焙烧可以采用本领域技术人员熟知的条件,如干燥可以采用自然干燥或在80~150℃下干燥,焙烧为在600~1000℃焙烧1~6小时。浸渍法负载活性加氢金属组分可以采用本领域技术人员熟知的方法进行,如将需要的活性金属盐配成溶液,用含有活性金属盐的溶液浸渍催化剂载体,然后干燥、焙烧得到最终催化剂。催化剂的干燥过程采用自然干燥或在60~150℃下干燥,催化剂的焙烧过程在400~600℃焙烧1~6小时。
催化剂在用于重质原料加氢反应之前进行硫化,使活性金属和金属助剂转变为硫化态,硫化可以采用技术人员熟知的硫化方法。
下面通过实施例进一步表述本发明的技术特征,但不局限于实施例,其中的百分含量以重量百分比计。催化剂比表面积、孔容、可几孔直径采用N2吸附法测定,孔直径在20nm以上的孔容采用压汞法测定。
实施例1
催化剂制备
制备一种球形催化剂载体,平均孔径为24nm,球形颗粒直径为0.1-0.3mm。按常规方法制备Mo-Ni溶液,溶液中MoO3含量为6.00%,NiO含量为1.80%。用该溶液按等体积浸渍方法浸渍上述载体得到最终催化剂R101-C,其性质如表1所示。
制备平均孔径为15nm的球形催化剂载体,球形催化剂颗粒为0.1-0.3mm。按常规方法制备Mo-Ni-P溶液,溶液中MoO3含量为8.50%,NiO含量为2.50%,P含量为1.00%。用该溶液按等体积浸渍方法浸渍上述载体得到最终催化剂R102-C,其性质如表1所示。
制备平均孔径为12nm的球形催化剂载体,球形催化剂颗粒为0.1-0.3mm,按常规方法制备Mo-Ni-P溶液,溶液中MoO3含量为13.00%,NiO含量为2.50%,P含量为1.00%。用该溶液按等体积浸渍方法浸渍上述载体得到最终催化剂R103-C,其性质如表1所示。
表1实施例催化剂主要物化性质
Figure BSA00000338188000081
*压汞法测量
实施例2
本发明所述的沸腾床加氢反应器为一种三相沸腾床反应器,可以采用CN02109404.7、CN200610134154.5及CN200710012680.9等所公布的沸腾床反应器,能够满足气、液、固三相在沸腾床反应器内分离。
选择实施例1中催化剂,分别加入到三个串联的1L三相沸腾床反应器中,在氢气的存在下,进行减压渣油加氢处理试验。试验所选用减压渣油性质为:馏程520℃+,硫含量为2.60wt%,金属(Ni+V+Fe)含量为253μg/g,CCR(残炭)含量为12.1%,沥青质含量为5.9%。
试验条件及评价结果见表2。
表2实施例2中的工艺条件和加氢后产品性质
Figure BSA00000338188000091
从表2可以看出:R103得到的产品可以作为催化裂化的原料。
实施例3
沸腾床加氢R101反应器的HDM催化剂运转半年后,生成油性质不能满足要求(见表3),表明催化剂已不能满足要求,必须进行更换。
切除R101反应器,新鲜进料和氢气直接进入R102反应器;此时新鲜进料为原先进料的70%。切出的R101反应器维持反应压力,引入循环氢和急冷油,以维持催化剂床层的流化,防止催化剂死床。当R101反应器内温度降至200℃左右时,在压控下将反应器的催化剂排入高压低温反应器R104;R104内催化剂充分洗涤后,卸出,等待下次操作。R101反应器内的催化剂排入R104后,准备催化剂装填。将新鲜催化剂装入地面设置的新鲜催化剂低压储罐,随后置换至氢气状态;反应器顶部设置新鲜催化剂高压罐,该高压罐首先与反应器隔断,在低压下利用氢气将地面储罐内催化剂输送到该高压罐;高压罐随后升压高反应器压力,打开底部阀门,将催化剂装入反应器,重复操作直至将地面催化剂罐内的催化剂全部装入反应器。
切换时R102和R103的工艺条件和产品性质见表3。
表3实施例3中的切换时工艺条件和产品性质
Figure BSA00000338188000101
从表3可以看出:R101切换操作进行时,通过降低进入R102反应的进料流率及提高R102和R103反应器的反应温度,可以生成出合格的催化裂化原料。
实施例4
R101反应器并入操作:R101反应器并入系统前,压力调整到正常压力,温度200℃左右;逐渐引入20%的新鲜进料,提高反应温度,新鲜进料负荷逐渐增加到100%;随反应温度的升高,逐渐增加渣油进料到100%负荷。此时工艺按多级沸腾床重油、渣油加氢处理工艺的流程进行,R101反应器切换后各个反应器工艺条件和产品性质见表4。
表4实施例4中的切换时工艺条件和产品性质
从表4可以看出:R101置换催化剂并入系统后,R103得到的产品为催化裂化的合格原料。
实施例5
实施例4中的各反应器正常运转1000h后,各反应器的工艺条件及产品性质如表5所示。
表5装置运转1000h的工艺条件及产品质量
Figure BSA00000338188000121
从表5可以看出:各反应器正常运转1000h后,稳定性较好,产品质量并没有太大改变,适合用于催化裂化原料。

Claims (16)

1.一种多级沸腾床重油催化加氢处理方法,设置串联的3台沸腾床反应器,即第一台沸腾床反应器,以下简称R101,第二台沸腾床反应器,以下简称R102,和第三台沸腾床反应器,以下简称R103,R101和R102为切换操作方式,即操作时按以下三种方式循环进行:(1)反应物料依次通过R101-R102-R103;(2)切出R101进行催化剂更新,反应物料依次通过R102-R103,R101更新催化剂后,反应物料依次通过R101-R102-R103;(3)切出R102进行催化剂更换,反应物料依次通过R101-R103,R102更新催化剂后,反应物料依次通过R101-R102-R103;设置高压低温反应器R104,R104的压力等级与反应系统相同,R104的温度为150~300℃,R104在R101或R102需要更新催化剂前,调整至所需的操作条件,当R101或R102切出反应系统时,将R101或R102中的催化剂快速排入R104中。
2.按照权利要求1所述的方法,其特征在于:R101装填加氢脱金属催化剂,R102装填加氢脱金属催化剂或者装填加氢脱硫催化剂,R103装填加氢脱硫催化剂。
3.按照权利要求1所述的方法,其特征在于:沸腾床反应器R101、R102、R103不设置催化剂在线加排系统。
4.按照权利要求1所述的方法,其特征在于:R101按3~9个月切换更新一次催化剂,R102按5~18个月切换更新一次催化剂。
5.按照权利要求1所述的方法,其特征在于:三个沸腾床反应器的容积相同。
6.按照权利要求1所述的方法,其特征在于:反应压力为8~25MPa,氢油体积比为100:1~1000:1,总液体体积空速为0.1~5.0h-1,R101反应温度为380~430℃,R102反应温度为380~430℃,R103反应温度为380~440℃。
7.按照权利要求1所述的方法,其特征在于:R101或R102切出反应系统进行催化剂更新时,降低反应原料的进料量,将原料进料量降低至正常操作时的50%-80%。
8.按照权利要求1所述的方法,其特征在于:R101或R102切出反应系统进行催化剂更新时,通过提高反应温度的方式达到正常反应效果。
9.按照权利要求1所述的方法,其特征在于:R101使用催化剂的性质为:比表面为80~200m2/g,孔直径>20nm的孔至少占总孔容的40%,催化剂的平均孔直径为20nm以上;以重量计,催化剂含VIB族金属氧化物1.0%~10.0%,含第Ⅷ族金属氧化物0.1%~8.0%。
10.按照权利要求9所述的方法,其特征在于:R101使用催化剂的性质为:催化剂的平均孔直径为22~40nm;以重量计,催化剂含VIB族金属氧化物为1.5%~8.5%,含第Ⅷ族金属氧化物为0.5%~5.0%。
11.按照权利要求1所述的方法,其特征在于:R102使用的催化剂性质为:比表面为80~300m2/g,孔直径>20nm的孔至少占总孔容的20%,催化剂的平均孔直径为12nm以上;以重量计,催化剂含VIB族金属氧化物1.0%~15.0%,含第Ⅷ族金属氧化物0.1%~8.0%。
12.按照权利要求11所述的方法,其特征在于:R102使用的催化剂性质为:催化剂的平均孔直径为12~30nm;以重量计,催化剂含VIB族金属氧化物为1.5%~13%,含第Ⅷ族金属氧化物为1.0%~5.0%。
13.按照权利要求1所述的方法,其特征在于:R103使用的催化剂性质为:催化剂比表面为180~300m2/g,孔直径>20nm的孔至少占总孔容的10%,催化剂的平均孔直径为9nm以上,催化剂含VIB族金属氧化物3.0%~20.0%,含Ⅷ族金属氧化物0.3%~8.0%。
14.按照权利要求13所述的方法,其特征在于:R103使用的催化剂性质为:催化剂的平均孔直径为9~15nm;催化剂含VIB族金属氧化物为6.0%~18.0%,含Ⅷ族金属氧化物0.5%~5.0%。
15.按照权利要求1、2、9、10、11、12、13或14所述的方法,其特征在于:三个沸腾床反应器使用的催化剂颗粒均为球形,直径为0.1~0.8mm。
16.按照权利要求15所述的方法,其特征在于:三个沸腾床反应器使用的催化剂颗粒均为球形,直径为0.1~0.6mm。
CN201010536230.1A 2010-10-13 2010-11-04 多级沸腾床重油加氢处理方法 Active CN102465009B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201010536230.1A CN102465009B (zh) 2010-11-04 2010-11-04 多级沸腾床重油加氢处理方法
CA2754870A CA2754870C (en) 2010-10-13 2011-10-12 Ebullated bed hydrotreating process of heavy crude oil
TW100136969A TWI534258B (zh) 2010-10-13 2011-10-12 Method for Hydrogenation of Rinsing Bed with Heavy Material
US13/272,993 US20120091039A1 (en) 2010-10-13 2011-10-13 Ebullated bed hydrotreating systems and processes of heavy crude oil
PL11185042T PL2441817T3 (pl) 2010-10-13 2011-10-13 Sposób hydrorafinacji ciężkiej ropy na złożu fluidalnym
EP11185042.6A EP2441817B1 (en) 2010-10-13 2011-10-13 Ebullated bed hydrotreating process of heavy crude oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010536230.1A CN102465009B (zh) 2010-11-04 2010-11-04 多级沸腾床重油加氢处理方法

Publications (2)

Publication Number Publication Date
CN102465009A CN102465009A (zh) 2012-05-23
CN102465009B true CN102465009B (zh) 2014-04-16

Family

ID=46069138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010536230.1A Active CN102465009B (zh) 2010-10-13 2010-11-04 多级沸腾床重油加氢处理方法

Country Status (1)

Country Link
CN (1) CN102465009B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923692B (zh) * 2013-01-14 2015-10-28 中国石油化工股份有限公司 一种重质原料油的加氢处理方法
US9657236B2 (en) 2012-03-31 2017-05-23 China Petroleum & Chemical Corporation Process for hydrotreating heavy raw oils
US9650312B2 (en) * 2013-03-14 2017-05-16 Lummus Technology Inc. Integration of residue hydrocracking and hydrotreating
CN109694733B (zh) * 2017-10-23 2021-02-09 中国石油化工股份有限公司 沸腾床渣油加氢裂化的方法和系统
CN110129089B (zh) * 2019-04-26 2021-07-02 上海华畅环保设备发展有限公司 沸腾床加氢方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783448B1 (ko) * 2000-12-11 2007-12-07 아이에프피 교체 가능한 반응기와 단락될 수 있는 반응기로 탄화수소중질 분류를 수소화 처리하는 공정
CN1205313C (zh) * 2002-05-15 2005-06-08 中国石油化工股份有限公司 一种渣油加工方法及设备
CN100412168C (zh) * 2002-06-07 2008-08-20 上海博申工程技术有限公司 煤焦油加氢工艺及催化剂
CN101376834B (zh) * 2007-08-27 2012-11-21 中国石油化工股份有限公司 一种沸腾床组合工艺
CN101724453B (zh) * 2008-10-29 2012-11-21 中国石油化工股份有限公司 一种重烃多段沸腾床加氢方法
FR2940313B1 (fr) * 2008-12-18 2011-10-28 Inst Francais Du Petrole Procede d'hydrocraquage incluant des reacteurs permutables avec des charges contenant 200ppm poids-2%poids d'asphaltenes

Also Published As

Publication number Publication date
CN102465009A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
CN103102940B (zh) 一种重质油加氢处理的组合工艺方法
CA2228889C (en) Hydroconversion process employing a catalyst with specified pore size distribution and no added silica
CN101760235B (zh) 一种重质原油加氢裂化的方法
CN102465009B (zh) 多级沸腾床重油加氢处理方法
CN107875979B (zh) 一种固定床加氢催化剂的级配装填方法和应用
CN103045302B (zh) 一种加氢处理催化剂的级配方法
CN103540350A (zh) 一种劣质重油、加氢处理组合工艺
CN102876364B (zh) 一种加氢处理方法
CN102465010A (zh) 一种重质、劣质原料加氢处理方法
CN103059983B (zh) 一种加氢精制催化剂组合装填方法
TWI534258B (zh) Method for Hydrogenation of Rinsing Bed with Heavy Material
CN101280216B (zh) 一种生产超低硫柴油方法
CN101020843A (zh) 一种生产催化裂化原料的加氢方法
CN103102938A (zh) 一种沸腾床加氢处理方法
CN103102941B (zh) 多级沸腾床重油加氢处理方法
CN103289734A (zh) 高金属、高硫和高氮的劣质重油经催化剂组合加氢处理工艺
US5531885A (en) Hydroconversion process for heavy hydrocarbon oil
CN102952581B (zh) 一种劣质重油的加氢处理工艺
CN107875978B (zh) 一种加氢催化剂的级配装填方法和应用
CN102465027A (zh) 一种重馏分油加氢处理方法
CN103773453B (zh) 一种劣质原料加氢处理方法
CN112852479B (zh) 柴油加氢精制催化剂级配方法、柴油加氢处理方法
CN102311764B (zh) 一种加氢处理催化剂的级配方法
CN103059979B (zh) 一种固定床重油加氢方法
CN103289735A (zh) 一种劣质重油经催化剂组合加氢处理工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant