CN102437060A - 一种u型沟道的隧穿场效应晶体管的制造方法 - Google Patents

一种u型沟道的隧穿场效应晶体管的制造方法 Download PDF

Info

Publication number
CN102437060A
CN102437060A CN2011104108651A CN201110410865A CN102437060A CN 102437060 A CN102437060 A CN 102437060A CN 2011104108651 A CN2011104108651 A CN 2011104108651A CN 201110410865 A CN201110410865 A CN 201110410865A CN 102437060 A CN102437060 A CN 102437060A
Authority
CN
China
Prior art keywords
type
insulation film
raceway groove
manufacturing approach
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104108651A
Other languages
English (en)
Other versions
CN102437060B (zh
Inventor
王鹏飞
林曦
刘伟
孙清清
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201110410865.1A priority Critical patent/CN102437060B/zh
Publication of CN102437060A publication Critical patent/CN102437060A/zh
Priority to US13/537,956 priority patent/US8748267B2/en
Application granted granted Critical
Publication of CN102437060B publication Critical patent/CN102437060B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0895Tunnel injectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66356Gated diodes, e.g. field controlled diodes [FCD], static induction thyristors [SITh], field controlled thyristors [FCTh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于半导体器件制造技术领域,具体为一种U型沟道的隧穿场效应晶体管的制造方法。U型沟道结构能够有效地延长晶体管的沟道长度,抑制晶体管中漏电流的产生,降低芯片功耗。本发明所提出的U型沟道的隧穿场效应晶体管的制造方法能够实现极窄的U型沟道,并克服由光刻引入的对准偏差,提高芯片的集成度。

Description

一种U型沟道的隧穿场效应晶体管的制造方法
技术领域
本发明属于半导体器件制造技术领域,具体涉及一种隧穿场效应晶体管的制造方法,特别涉及一种U型沟道结构的隧穿场效应晶体管的制造方法。
背景技术
近年来,以硅集成电路为核心的微电子技术得到了迅速的发展,集成电路芯片的发展基本上遵循摩尔定律,即半导体芯片的集成度以每18个月翻一番的速度增长。可是随着半导体芯片集成度的不断增加,MOS晶体管的沟道长度也在不断的缩短,当MOS晶体管的沟道长度变得非常短时,短沟道效应会使半导体芯片性能劣化,甚至无法正常工作。
隧穿场效应晶体管是一种漏电流非常小的晶体管,可以进一步缩小电路的尺寸、降低电压,大大降低芯片的功耗。而采用U型沟道结构的隧穿场效应晶体管可以有效地延长晶体管的沟道长度,从而可以进一步抑制晶体管中漏电流的产生,因此,U型沟道结构的隧穿场效应晶体管得到了广泛的应用。传统的U型沟道隧穿场效应晶体管如图1所示,该隧穿晶体管10包括一个源区12、一个漏区13、一个衬底区11和一个由栅介质层14和栅极导电层15组成的栅叠层区。栅叠层区的边墙16是绝缘体如Si3N4材料,它将栅区导体层与所述器件的其它导体层绝缘。衬底11的杂质浓度为轻掺杂,源区12与漏区13为重掺杂且源区12的掺杂类型与漏区13的掺杂类型相反。绝缘层17是该器件的钝化层,它们将所述器件与其它器件隔开,并对所述器件保护不受外界环境的影响。导体层18是金属材料,作为该器件的电极。
目前,隧穿场效应晶体管的U型沟道结构通常是在提供的衬底上先形成一层氧化硅薄膜,然后在氧化硅薄膜上形成一层带有图形的光刻胶,然后再刻蚀氧化硅薄膜和半导体衬底形成器件的U型沟道。如上所述,在制造器件的U型沟道时,会形成一层带有图形的光刻胶,这样就会引入图形的对准失配(misalignment),从而使产品的制造良率降低,同时,目前窄U型沟道的制造也是一个难点。
发明内容
本发明的目的在于提出一种U型沟道的隧穿场效应晶体管的制造方法,在提高产品制造良率的同时还能够实现窄U型沟道的制造。
本发明提出了U型沟道隧穿晶体管的制造方法,具体包括如下步骤:
提供一个半导体衬底;
在所述半导体衬底内形成第一个具有第一种掺杂类型的掺杂区;
在所述半导体衬底上形成第一种绝缘薄膜;
刻蚀所述第一种绝缘薄膜与所述半导体衬底形成图形;
淀积形成第二种绝缘薄膜并刻蚀所述第二种绝缘薄膜形成侧墙;
在露出的衬底表面氧化形成第三种绝缘薄膜;
剥除所述的第二种绝缘薄膜;
沿着所述的第一种、第二种绝缘薄膜的边墙刻蚀衬底形成凹槽;
覆盖所述凹槽,形成第四种绝缘薄膜;
覆盖所述第四种绝缘薄膜,形成第一种导电薄膜;
刻蚀所述第一种导电薄膜形成器件的栅极导电层;
覆盖所述栅极导电层,形成栅极保护层;
刻蚀所述第四种、第三种绝缘薄膜露出衬底;
刻蚀露出的衬底形成用于后续生长材料的区域;
在所述半导体衬底内形成第二个具有第一种掺杂类型的掺杂区;
覆盖所述第二个具有第一种掺杂类型的掺杂区形成第五种绝缘薄膜;
覆盖所述第五种绝缘薄膜形成具有第二种掺杂类型的源区;
刻蚀所述栅极保护层形成栅极侧墙;
淀积第六种绝缘薄膜形成器件的钝化层并刻蚀所述钝化层形成接触孔;
淀积第二种导电薄膜并刻蚀所述第二种导电薄膜形成电极。
进一步地,所述的半导体衬底为硅或者为绝缘体上的硅(SOI)。所述的第一种、第三种、第六种绝缘薄膜为氧化硅。所述的第四种、第五种绝缘薄膜为氧化硅或者为HfO2等高介电常数材料。所述的第二种绝缘薄膜与栅极保护层由氮化硅材料形成。
所述的第一种导电薄膜为掺杂的多晶硅,其掺杂类型为n型掺杂或者为p型掺杂。所述的第二种导电薄膜为金属铝、金属钨或者为其它金属导电材料。
更进一步地,所述的第一种掺杂类型为n型,所述的第二种掺杂类型为p型;或者所述的第一种掺杂类型为p型,所述的第二种掺杂类型为n型。
U型沟道结构能够有效地延长晶体管的沟道长度,抑制晶体管中漏电流的产生,降低芯片功耗。本发明所提出的U型沟道的隧穿场效应晶体管的制造方法能够实现极窄的U型沟道,并克服由光刻引入的的对准偏差,提高芯片的集成度。
附图说明
图1为传统的的U型沟道结构的隧穿场效应晶体管的剖面图。
图2至图12为本发明所提出的U型沟道结构的隧穿场效应晶体管的制造方法的一个实施例的工艺流程图。
具体实施方式
下面将参照附图对本发明的示例性实施方式作详细说明。在图中,为了方便说明,放大了层和区域的厚度,所示大小并不代表实际尺寸。尽管这些图并不能完全准确地反映出实际的尺寸,它们还是完整的反映了区域和组成元件之间的相互位置,特别是组成元件之间的上下和相邻关系。
参考图是本发明的理想化实施例的示意图,本发明所示的实施例不应该被认为仅限于图中所示区域的特定形状,而是包括所得到的形状,比如制造引起的偏差。例如刻蚀得到的曲线通常具有弯曲或圆润的特点,但在本发明实施例中,均以矩形表示,图中的表示是示意性的,但这不应该被认为是限制本发明的范围。
首先,在提供的硅衬底201上淀积一层光刻胶301,然后掩膜、曝光、显影形成图形,再通过离子注入的方法在硅衬底201内形成n型掺杂区202,如图2所示,其中所示501表示粒子束。
剥除光刻胶301后,采用旋涂或者氧化的方法在硅衬底201上形成一层氧化硅薄膜203,接着在氧化硅薄膜203上形成一层带有图形的光刻胶302,然后刻蚀氧化硅薄膜203与硅衬底201形成图形,如图3所示。
剥除光刻胶302后,淀积一层氮化硅薄膜,并刻蚀氮化硅薄膜形成侧墙204,如图4所示。然后采用湿氧氧化的方法在露出的衬底表面氧化生长一层氧化硅薄膜205,如图5所示。
接下来,剥除氮化硅侧墙204,然后沿着氧化硅薄膜203、205的边墙刻蚀硅衬底201形成凹槽401,如图6所示。
凹槽401形成后,淀积一层高介电常数材料206,比如为HfO2,然后淀积一层掺杂的多晶硅薄膜207,其掺杂类型可以为n型也可以为p型,然后刻蚀多晶硅薄膜207形成器件的栅极导电层,如图7所示。
接下来,淀积一层氮化硅薄膜,并刻蚀氮化硅薄膜形成栅极保护层208,然后沿着氮化硅保护层的边墙刻蚀HfO2材料层206与氧化硅薄膜205露出衬底,并继续刻蚀衬底201形成图形,如图8所示。
接下来,采用倾斜的离子注入的方法在衬底201内形成n型掺杂区209,如图9所示,其中所示502为粒子束。
接下来,在n型掺杂区209之上形成一层绝缘薄膜210,绝缘薄膜210可以为氧化铝、氧化硅、或者为HfO2等高介电常数介质。然后在绝缘薄膜210上形成一层掺杂类型为p型的半导体层211,半导体层211比如为多晶硅,如图10所示。
接下来,刻蚀氮化硅保护层208形成栅极侧墙,并沿着栅极侧墙的边墙刻蚀掉露出的HfO2薄膜,如图11所示。
最后,淀积一层氧化硅薄膜212,并通过光刻、刻蚀的方法形成接触孔。接着再淀积一层金属,可以为铝,或为钨,然后刻蚀形成金属电极213。当器件处于开启状态时,器件中的电流将如线条600所示由源区211经绝缘层210、n型掺杂区209、衬底区201流向漏区202,如图12所示。
如上所述,在不偏离本发明精神和范围的情况下,还可以构成许多有很大差别的实施例。应当理解,除了如所附的权利要求所限定的,本发明不限于在说明书中所述的具体实例。

Claims (8)

1.一种U型沟道隧穿晶体管的制造方法,其特征在于具体步骤为:
提供一个半导体衬底;
在所述半导体衬底内形成第一个具有第一种掺杂类型的掺杂区;
在所述半导体衬底上形成第一种绝缘薄膜;
刻蚀所述第一种绝缘薄膜与所述半导体衬底形成图形;
淀积第二种绝缘薄膜并刻蚀所述第二种绝缘薄膜形成侧墙;
在露出的衬底表面氧化形成第三种绝缘薄膜;
剥除所述的第二种绝缘薄膜;
沿着所述的第一种、第二种绝缘薄膜的边墙刻蚀衬底形成凹槽;
覆盖所述凹槽形成第四种绝缘薄膜;
覆盖所述第四种绝缘薄膜形成第一种导电薄膜;
刻蚀所述第一种导电薄膜形成器件的栅极导电层;
覆盖所述栅极导电层形成栅极保护层;
刻蚀所述第四种、第三种绝缘薄膜露出衬底;
刻蚀露出的衬底形成用于后续生长材料的区域;
在所述半导体衬底内形成第二个具有第一种掺杂类型的掺杂区;
覆盖所述第二个具有第一种掺杂类型的掺杂区形成第五种绝缘薄膜;
覆盖所述第五种绝缘薄膜形成具有第二种掺杂类型的源区;
刻蚀所述栅极保护层形成栅极侧墙;
淀积第六种绝缘薄膜形成器件的钝化层;
刻蚀所述第六种绝缘薄膜形成接触孔;
淀积第二种导电薄膜并刻蚀所述第二种导电薄膜形成电极。
2.根据权利要求1所述的U型沟道隧穿晶体管的制造方法,其特征在于,所述的半导体衬底为硅或者为绝缘体上的硅。
3.根据权利要求1所述的U型沟道隧穿晶体管的制造方法,其特征在于,所述的第一种、第三种、第六种绝缘薄膜为氧化硅。
4.根据权利要求1所述的U型沟道隧穿晶体管的制造方法,其特征在于,所述的第四种、第五种绝缘薄膜为氧化硅或者为HfO2高介电常数材料。
5.根据权利要求1所述的U型沟道隧穿晶体管的制造方法,其特征在于,所述的第二种绝缘薄膜与栅极保护层由氮化硅材料形成。
6.根据权利要求1所述的U型沟道隧穿晶体管的制造方法,其特征在于,所述的第一种掺杂类型为n型,所述的第二种掺杂类型为p型;或者所述的第一种掺杂类型为p型,所述的第二种掺杂类型为n型。
7.根据权利要求1所述的U型沟道隧穿晶体管的制造方法,其特征在于,所述的第一种导电薄膜为掺杂的多晶硅,其掺杂类型为n型掺杂或者为p型掺杂。
8.根据权利要求1所述的U型沟道隧穿晶体管的制造方法,其特征在于,所述的第二种导电薄膜为金属铝或金属钨。
CN201110410865.1A 2011-12-12 2011-12-12 一种u型沟道的隧穿场效应晶体管的制造方法 Expired - Fee Related CN102437060B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110410865.1A CN102437060B (zh) 2011-12-12 2011-12-12 一种u型沟道的隧穿场效应晶体管的制造方法
US13/537,956 US8748267B2 (en) 2011-12-12 2012-06-29 Method for manufacturing a tunneling field effect transistor with a U-shaped channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110410865.1A CN102437060B (zh) 2011-12-12 2011-12-12 一种u型沟道的隧穿场效应晶体管的制造方法

Publications (2)

Publication Number Publication Date
CN102437060A true CN102437060A (zh) 2012-05-02
CN102437060B CN102437060B (zh) 2014-06-11

Family

ID=45985054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110410865.1A Expired - Fee Related CN102437060B (zh) 2011-12-12 2011-12-12 一种u型沟道的隧穿场效应晶体管的制造方法

Country Status (2)

Country Link
US (1) US8748267B2 (zh)
CN (1) CN102437060B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409486A (zh) * 2014-12-08 2015-03-11 沈阳工业大学 低亚阈值摆幅高耐压绝缘栅隧穿晶体管及其制造方法
CN104465737A (zh) * 2014-12-08 2015-03-25 沈阳工业大学 体硅双栅绝缘隧穿基极双极晶体管及其制造方法
CN105118779A (zh) * 2015-07-22 2015-12-02 上海华力微电子有限公司 一种y型结构的半浮栅器件的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425388B (zh) * 2013-09-06 2017-04-05 苏州东微半导体有限公司 一种半浮栅器件的制造方法及器件
CN104465736B (zh) * 2014-12-08 2017-07-21 沈阳工业大学 内嵌折叠栅马鞍形绝缘隧穿增强晶体管及其制造方法
US9627378B2 (en) 2015-06-30 2017-04-18 International Business Machines Corporation Methods of forming FINFETs with locally thinned channels from fins having in-situ doped epitaxial cladding
US11573957B2 (en) 2019-12-09 2023-02-07 Salesforce.Com, Inc. Natural language processing engine for translating questions into executable database queries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386131A (en) * 1991-09-13 1995-01-31 Nec Corporation Semiconductor memory device
CN101118868A (zh) * 2006-08-02 2008-02-06 力晶半导体股份有限公司 隔离结构的制造方法
WO2008022487A1 (fr) * 2006-08-18 2008-02-28 He Jian Technology(Suzhou)Co.Ltd. Procédé permettant de fabriquer une isolation par tranchée peu profonde au moyen d'un masque à si3n4 autoaligné

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932088B2 (ja) * 2001-02-19 2012-05-16 ルネサスエレクトロニクス株式会社 絶縁ゲート型半導体装置の製造方法
JP2008166528A (ja) * 2006-12-28 2008-07-17 Spansion Llc 半導体装置およびその製造方法
KR100843711B1 (ko) * 2007-02-23 2008-07-04 삼성전자주식회사 리세스 채널 영역을 갖는 트랜지스터를 채택하는반도체소자 및 그 제조방법
TWI340458B (en) * 2007-05-10 2011-04-11 Nanya Technology Corp Dram structure
US8247296B2 (en) * 2009-12-09 2012-08-21 Semiconductor Components Industries, Llc Method of forming an insulated gate field effect transistor device having a shield electrode structure
US20120261744A1 (en) * 2009-12-24 2012-10-18 Fudan University Microelectronic device structure and manufacturing method thereof
US20130224919A1 (en) * 2012-02-28 2013-08-29 Yongping Ding Method for making gate-oxide with step-graded thickness in trenched dmos device for reduced gate-to-drain capacitance
US8778764B2 (en) * 2012-07-16 2014-07-15 Semiconductor Components Industries, Llc Method of making an insulated gate semiconductor device having a shield electrode structure and structure therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386131A (en) * 1991-09-13 1995-01-31 Nec Corporation Semiconductor memory device
CN101118868A (zh) * 2006-08-02 2008-02-06 力晶半导体股份有限公司 隔离结构的制造方法
WO2008022487A1 (fr) * 2006-08-18 2008-02-28 He Jian Technology(Suzhou)Co.Ltd. Procédé permettant de fabriquer une isolation par tranchée peu profonde au moyen d'un masque à si3n4 autoaligné

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409486A (zh) * 2014-12-08 2015-03-11 沈阳工业大学 低亚阈值摆幅高耐压绝缘栅隧穿晶体管及其制造方法
CN104465737A (zh) * 2014-12-08 2015-03-25 沈阳工业大学 体硅双栅绝缘隧穿基极双极晶体管及其制造方法
CN104409486B (zh) * 2014-12-08 2017-05-24 沈阳工业大学 低亚阈值摆幅高耐压绝缘栅隧穿晶体管及其制造方法
CN104465737B (zh) * 2014-12-08 2017-07-21 沈阳工业大学 体硅双栅绝缘隧穿基极双极晶体管及其制造方法
CN105118779A (zh) * 2015-07-22 2015-12-02 上海华力微电子有限公司 一种y型结构的半浮栅器件的制造方法
CN105118779B (zh) * 2015-07-22 2018-05-11 上海华力集成电路制造有限公司 一种y型结构的半浮栅器件的制造方法

Also Published As

Publication number Publication date
US8748267B2 (en) 2014-06-10
US20130149824A1 (en) 2013-06-13
CN102437060B (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
CN101819975B (zh) 垂直沟道双栅隧穿晶体管及其制备方法
CN102437060B (zh) 一种u型沟道的隧穿场效应晶体管的制造方法
US7265425B2 (en) Semiconductor device employing an extension spacer and a method of forming the same
US20080200001A1 (en) Method of producing a transistor
CN101969061A (zh) 一种鳍型隧穿晶体管集成电路及其制造方法
CN105097649A (zh) 半导体结构的形成方法
CN101719517B (zh) 一种肖特基隧穿晶体管的制备方法
CN103956338A (zh) 一种集成u形沟道器件和鳍形沟道器件的集成电路及其制备方法
CN101771050A (zh) 一种互补隧穿晶体管结构及其制备方法
TW201909426A (zh) 利用埋置絕緣層作為閘極介電質的高壓電晶體
CN101834210A (zh) 一种凹陷沟道的pnpn场效应晶体管及其制备方法
CN102364663A (zh) 栅极侧墙刻蚀方法、mos器件制造方法以及mos器件
CN102403233B (zh) 垂直沟道的隧穿晶体管的制造方法
US20090096023A1 (en) Method for manufacturing semiconductor device
CN101393893B (zh) 具有不同侧壁层宽度的cmos器件及其制造方法
US8802528B2 (en) Vertical PMOS field effect transistor and manufacturing method thereof
US5523605A (en) Semiconductor device and method for forming the same
CN101807601A (zh) 一种使用SiGe源极的栅控PNPN场效应晶体管及其制备方法
CN101866858B (zh) 凹陷沟道型pnpn场效应晶体管的制造方法
CN102468239A (zh) 半导体器件的制作方法
US9922969B1 (en) Integrated circuits having transistors with high holding voltage and methods of producing the same
CN103413829A (zh) 一种u型围栅隧穿晶体管器件及其制造方法
JPS6211273A (ja) Mos集積回路装置の製造方法
CN101894840A (zh) 凹陷沟道型pnpn场效应晶体管的集成电路及其制造方法
CN101814503A (zh) 一种互补栅控pnpn场效应晶体管及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140611

Termination date: 20181212