CN102403233B - 垂直沟道的隧穿晶体管的制造方法 - Google Patents

垂直沟道的隧穿晶体管的制造方法 Download PDF

Info

Publication number
CN102403233B
CN102403233B CN201110410898.6A CN201110410898A CN102403233B CN 102403233 B CN102403233 B CN 102403233B CN 201110410898 A CN201110410898 A CN 201110410898A CN 102403233 B CN102403233 B CN 102403233B
Authority
CN
China
Prior art keywords
insulation film
etching
manufacture method
tunneling transistor
transistor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110410898.6A
Other languages
English (en)
Other versions
CN102403233A (zh
Inventor
王鹏飞
林曦
刘伟
孙清清
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201110410898.6A priority Critical patent/CN102403233B/zh
Publication of CN102403233A publication Critical patent/CN102403233A/zh
Priority to US13/537,854 priority patent/US8586432B2/en
Application granted granted Critical
Publication of CN102403233B publication Critical patent/CN102403233B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66356Gated diodes, e.g. field controlled diodes [FCD], static induction thyristors [SITh], field controlled thyristors [FCTh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Abstract

本发明属于半导体器件技术领域,具体涉及一种垂直沟道的隧穿晶体管的制造方法。围栅型的栅极结构增强了栅极的控制能力,窄禁带宽度材料的源极使得器件的驱动电流得到提升。采用本发明所提出的垂直沟道的型隧穿晶体管的制造方法,可以精确地控制沟道的长度,工艺过程简单,易于控制,降低了生产成本。

Description

垂直沟道的隧穿晶体管的制造方法
技术领域
本发明属于半导体器件技术领域,具体涉及一种隧穿场效应晶体管的制造方法,特别涉及一种源极采用窄禁带宽度材料的垂直沟道的隧穿晶体管的制造方法。
背景技术
近年来,以硅集成电路为核心的微电子技术得到了迅速的发展,集成电路芯片的发展基本上遵循摩尔定律,即半导体芯片的集成度以每18个月翻一番的速度增长。可是随着半导体芯片集成度的不断增加,MOS晶体管的沟道长度也在不断的缩短,当MOS晶体管的沟道长度变得非常短时,短沟道效应会使半导体芯片性能劣化,甚至无法正常工作。
垂直沟道的隧穿晶体管是一种漏电流非常小的晶体管,可以进一步缩小电路的尺寸、降低电压,大大降低芯片的功耗。垂直沟道的隧穿晶体管的沟道长度通常由硅台刻蚀、离子注入或者外延工艺来决定,而不像传统的平面沟道的MOS晶体管那样是通过光刻来定义,因而无需借助复杂的光刻手段就可以很容易的实现短沟道器件的制作,其工艺和平面沟道的MOS晶体管技术也完全兼容。常见的硅台工艺中,通常是先采用刻蚀技术形成硅台,然后采用注入的方式形成沟道,由于注入的结深不容易控制,因而会使得沟道的长度也难以控制。
发明内容
本发明的目的在于提出一种垂直沟道的隧穿晶体管的制造方法,以便能够更好地控制器件的沟道长度。
本发明提出的垂直沟道的隧穿晶体管的制造方法,包括如下步骤:
提供一个半导体衬底;
在所述半导体衬底上形成第一种绝缘薄膜;
刻蚀所述第一种绝缘薄膜形成图形;
在所述半导体衬底内形成具有第一种掺杂类型的掺杂区;
刻蚀所述半导体衬底形成凹槽;
覆盖所述凹槽与第一种绝缘薄膜,形成第二种绝缘薄膜;
覆盖所述第二种绝缘薄膜,形成第一种导电薄膜;
刻蚀所述第一种导电薄膜、第二种绝缘薄膜形成器件的栅极结构;
在上述结构上淀积氮化硅薄膜,并刻蚀所述氮化硅薄膜形成栅极保护层;
沿着氮化硅薄膜的边墙刻蚀所述第一种绝缘薄膜露出衬底;
刻蚀露出的衬底形成用于后续生长材料的区域;
在上述结构上选择性生长窄禁带宽度材料; 
通过离子注入对所述窄禁带宽度材料进行第二种掺杂类型的掺杂;
刻蚀所述氮化硅薄膜形成栅极侧墙;
淀积第三种绝缘薄膜形成器件的钝化层;
刻蚀所述第三种绝缘薄膜形成接触孔;
淀积第二种导电薄膜并刻蚀所述第二种导电薄膜形成电极。
进一步地,所述的半导体衬底为硅或者为绝缘体上的硅(SOI)。所述的第一种、第三种绝缘薄膜为氧化硅或者氮化硅。所述的第二种绝缘薄膜为氧化硅或者为HfO2等高介电常数材。
所述的第一种导电薄膜为掺杂的多晶硅,其掺杂类型为n型掺杂或者为p型掺杂。所述的第二种导电薄膜为金属铝、金属钨或者为其它金属导电材料。
所述的第一种掺杂类型为n型,所述的第二种掺杂类型为p型。
所述的窄禁带宽度材料为SiGe。
采用本发明所提出的垂直沟道的型隧穿晶体管的制造方法,可以精确地控制沟道的长度,工艺过程简单,易于控制,降低了生产成本。
附图说明
图1-11为本发明所提出的垂直沟道的隧穿晶体管的制造方法的一个实施例的工艺流程图。其中,图3、图5、图11分别为图2、图4、图10所示结构的A向视图。
具体实施方式
下面将参照附图对本发明的示例性实施方式作详细说明。在图中,为了方便说明,放大了层和区域的厚度,所示大小并不代表实际尺寸。尽管这些图并不能完全准确地反映出实际的尺寸,它们还是完整的反映了区域和组成元件之间的相互位置,特别是组成元件之间的上下和相邻关系。
参考图是本发明的理想化实施例的示意图,本发明所示的实施例不应该被认为仅限于图中所示区域的特定形状,而是包括所得到的形状,比如制造引起的偏差。例如刻蚀得到的曲线通常具有弯曲或圆润的特点,但在本发明实施例中,均以矩形表示,图中的表示是示意性的,但这不应该被认为是限制本发明的范围。同时在下面的描述中,所使用的术语晶片和衬底可以理解为包括正在工艺加工中的半导体晶片,可能包括在其上所制备的其它薄膜层。
首先,在提供的硅衬底201上采用旋涂或者氧化的方法生长一层二氧化硅薄膜202,接着在二氧化硅薄膜202上淀积一层光刻胶302,并掩膜、曝光、显影形成图形,然后刻蚀氧化硅薄膜202形成图形,并进行高能量的离子注入在衬底201内形成n型掺杂区203,如图1所示。
接下来,沿着二氧化硅薄膜202的边墙刻蚀硅衬底201形成凹槽,如图2所示。其中图3为图2所示结构剥除光刻胶后的A向视图。
剥除光刻胶301后,淀积一层高介电常数材料层204,比如为HfO2,然后继续淀积一层掺杂的多晶硅205,接着通过光刻、刻蚀工艺形成器件栅极结构,如图4所示,图5为图4所示结构的A向视图。
接下来,淀积一层氮化硅薄膜,并刻蚀氮化硅薄膜形成栅极保护层206,如图6所示。接着,沿着氮化硅保护层206的边墙刻蚀二氧化硅薄膜202露出衬底201,并继续刻蚀衬底201形成后续需要生长材料的区域。如7所示。
接下来,选择性地生长SiGe材料,并进行p型离子注入形成器件的源区207,如图8所示。然后刻蚀氮化硅保护层206形成栅极侧墙结构,如图9所示。
最后,淀积一层绝缘材料208,绝缘材料可以为氧化硅或者氮化硅。再淀积一层光刻胶,然后通过掩膜、曝光、刻蚀的方法形成通孔。接着再淀积一层金属,可以为铝,或为钨,然后刻蚀所淀积的金属形成器件的源极电极210、漏极电极211和栅极电极212,如图10所示,图11为图10所示结构的A向视图。
如上所述,在不偏离本发明精神和范围的情况下,还可以构成许多有很大差别的实施例。应当理解,除了如所附的权利要求所限定的,本发明不限于在说明书中所述的具体实例。

Claims (9)

1.一种垂直沟道的隧穿晶体管的制造方法,其特征在于具体步骤为:
提供一个半导体衬底;
在所述半导体衬底上形成第一种绝缘薄膜;
刻蚀所述第一种绝缘薄膜形成图形;
在所述半导体衬底内形成具有第一种掺杂类型的掺杂区;
刻蚀所述半导体衬底形成了从衬底表面到掺杂区的高度的凹槽;
覆盖所述凹槽与第一种绝缘薄膜,形成第二种绝缘薄膜;
覆盖所述第二种绝缘薄膜,形成第一种导电薄膜;
刻蚀所述第一种导电薄膜、第二种绝缘薄膜形成器件的栅极结构;
覆盖所述栅极结构形成栅极保护层;
刻蚀所述第一种绝缘薄膜露出衬底;
刻蚀露出的衬底形成用于后续生长材料的区域;
选择性生长窄禁带宽度材料;
通过离子注入对所述窄禁带宽度材料进行第二种掺杂类型的掺杂;
刻蚀所述栅极保护层形成栅极侧墙;
淀积第三种绝缘薄膜形成器件的钝化层;
刻蚀所述第三种绝缘薄膜形成接触孔;
淀积第二种导电薄膜;
刻蚀所述第二种导电薄膜形成电极。
2.根据权利要求1所述的隧穿晶体管的制造方法,其特征在于,所述的半导体衬底为硅或者为绝缘体上的硅。
3.根据权利要求1所述的隧穿晶体管的制造方法,其特征在于,所述的第一种、第三种绝缘薄膜为氧化硅或者氮化硅。
4.根据权利要求1所述的隧穿晶体管的制造方法,其特征在于,所述的第二种绝缘薄膜为氧化硅或者为HfO2高介电常数材料。
5.根据权利要求1所述的隧穿晶体管的制造方法,其特征在于,所述的栅极保护层由氮化硅材料形成。
6.根据权利要求1所述的隧穿晶体管的制造方法,其特征在于,所述的第一种掺杂类型为n型,所述的第二种掺杂类型为p型。
7.根据权利要求1所述的隧穿晶体管的制造方法,其特征在于,所述的第一种导电薄膜为掺杂的多晶硅,其掺杂类型为n型掺杂或者为p型掺杂。
8.根据权利要求1所述的隧穿晶体管的制造方法,其特征在于,所述的第二种导电薄膜为金属铝或金属钨。
9.根据权利要求1所述的隧穿晶体管的制造方法,其特征在于,所述的窄禁带宽度材料为SiGe。
CN201110410898.6A 2011-12-12 2011-12-12 垂直沟道的隧穿晶体管的制造方法 Expired - Fee Related CN102403233B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110410898.6A CN102403233B (zh) 2011-12-12 2011-12-12 垂直沟道的隧穿晶体管的制造方法
US13/537,854 US8586432B2 (en) 2011-12-12 2012-06-29 Method for manufacturing vertical-channel tunneling transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110410898.6A CN102403233B (zh) 2011-12-12 2011-12-12 垂直沟道的隧穿晶体管的制造方法

Publications (2)

Publication Number Publication Date
CN102403233A CN102403233A (zh) 2012-04-04
CN102403233B true CN102403233B (zh) 2014-06-11

Family

ID=45885310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110410898.6A Expired - Fee Related CN102403233B (zh) 2011-12-12 2011-12-12 垂直沟道的隧穿晶体管的制造方法

Country Status (2)

Country Link
US (1) US8586432B2 (zh)
CN (1) CN102403233B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783967A (zh) * 2016-11-29 2017-05-31 东莞市广信知识产权服务有限公司 一种硅基遂穿场效应晶体管结构
CN108493240B (zh) * 2018-04-28 2020-09-04 西安电子科技大学 具有轻掺杂漏结构的z型异质结隧穿场效应晶体管及其制备方法
US11573957B2 (en) 2019-12-09 2023-02-07 Salesforce.Com, Inc. Natural language processing engine for translating questions into executable database queries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357926A (zh) * 2000-12-12 2002-07-10 国际商业机器公司 横向多晶硅pin二极管及其制造方法
US7465978B2 (en) * 2003-09-23 2008-12-16 Samsung Electronics Co., Ltd. Field effect transistor with a high breakdown voltage and method of manufacturing the same
US7812370B2 (en) * 2007-07-25 2010-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistor with narrow band-gap channel and strong gate coupling

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242050B2 (en) * 2003-11-13 2007-07-10 Silicon Storage Technology, Inc. Stacked gate memory cell with erase to gate, array, and method of manufacturing
KR100607785B1 (ko) * 2004-12-31 2006-08-02 동부일렉트로닉스 주식회사 스플릿 게이트 플래시 이이피롬의 제조방법
KR100699860B1 (ko) * 2005-08-12 2007-03-27 삼성전자주식회사 웰 구조 형성 과정에서 정렬 키를 형성하는 방법 및 이를이용한 소자 분리 형성 방법
US7465642B2 (en) * 2005-10-28 2008-12-16 International Business Machines Corporation Methods for forming semiconductor structures with buried isolation collars
US8441000B2 (en) * 2006-02-01 2013-05-14 International Business Machines Corporation Heterojunction tunneling field effect transistors, and methods for fabricating the same
JP2008103378A (ja) * 2006-10-17 2008-05-01 Nec Electronics Corp 半導体装置とその製造方法
KR100774904B1 (ko) * 2006-10-23 2007-11-08 삼성전자주식회사 불 휘발성 메모리 소자 및 이를 형성하기 위한 방법
US7651916B2 (en) * 2007-01-24 2010-01-26 Freescale Semiconductor, Inc Electronic device including trenches and discontinuous storage elements and processes of forming and using the same
JP2008252086A (ja) * 2007-03-12 2008-10-16 Interuniv Micro Electronica Centrum Vzw ゲートトンネル障壁を持つトンネル電界効果トランジスタ
US8026509B2 (en) * 2008-12-30 2011-09-27 Intel Corporation Tunnel field effect transistor and method of manufacturing same
US8614468B2 (en) * 2011-06-16 2013-12-24 Taiwan Semiconductor Manufacturing Company, Ltd. Mask-less and implant free formation of complementary tunnel field effect transistors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357926A (zh) * 2000-12-12 2002-07-10 国际商业机器公司 横向多晶硅pin二极管及其制造方法
US7465978B2 (en) * 2003-09-23 2008-12-16 Samsung Electronics Co., Ltd. Field effect transistor with a high breakdown voltage and method of manufacturing the same
US7812370B2 (en) * 2007-07-25 2010-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistor with narrow band-gap channel and strong gate coupling

Also Published As

Publication number Publication date
CN102403233A (zh) 2012-04-04
US20130149848A1 (en) 2013-06-13
US8586432B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
US10741698B2 (en) Semi-floating gate FET
CN105990239B (zh) 半导体元件及其制作方法
KR100896631B1 (ko) 수직 실린더형 트랜지스터의 제조방법 및 이에 의해 제조된수직 실린더형 트랜지스터
CN102437060B (zh) 一种u型沟道的隧穿场效应晶体管的制造方法
CN103956338B (zh) 一种集成u形沟道器件和鳍形沟道器件的集成电路及其制备方法
CN103579275A (zh) 一种半浮栅感光器件的制造方法
CN105097649A (zh) 半导体结构的形成方法
TWI684281B (zh) 利用埋置絕緣層作為閘極介電質的高壓電晶體
EP3255654A1 (en) Semiconductor device and fabrication method thereof
CN101771050A (zh) 一种互补隧穿晶体管结构及其制备方法
US20110147843A1 (en) Semiconductor Component and Method for Producing a Semiconductor Component
CN102403233B (zh) 垂直沟道的隧穿晶体管的制造方法
CN102569066B (zh) 栅控二极管半导体器件的制备方法
CN104465381A (zh) 一种平面沟道的半浮栅器件的制造方法
US9935176B1 (en) Method for fabricating LDMOS using CMP technology
CN203910798U (zh) 一种u形沟道的半浮栅存储器
CN102104027B (zh) 一种在单块芯片上集成高性能器件与低功耗器件的制造方法
KR101682420B1 (ko) 선택적 게르마늄 응축과 측벽공정을 이용한 자기정렬된 이종접합 터널링 전계효과 트랜지스터의 제조방법
TWI416727B (zh) P型金屬氧化層半導體場效電晶體及其製造方法
CN104701263B (zh) 一种半浮栅器件的制造方法
CN101807601A (zh) 一种使用SiGe源极的栅控PNPN场效应晶体管及其制备方法
CN101866858B (zh) 凹陷沟道型pnpn场效应晶体管的制造方法
CN103413829A (zh) 一种u型围栅隧穿晶体管器件及其制造方法
TW201027674A (en) Integrating diverse transistors on the same wafer
CN101814503B (zh) 一种互补栅控pnpn场效应晶体管及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140611

Termination date: 20181212

CF01 Termination of patent right due to non-payment of annual fee