CN102420164A - 形成浅沟槽隔离结构的方法 - Google Patents

形成浅沟槽隔离结构的方法 Download PDF

Info

Publication number
CN102420164A
CN102420164A CN2011100477888A CN201110047788A CN102420164A CN 102420164 A CN102420164 A CN 102420164A CN 2011100477888 A CN2011100477888 A CN 2011100477888A CN 201110047788 A CN201110047788 A CN 201110047788A CN 102420164 A CN102420164 A CN 102420164A
Authority
CN
China
Prior art keywords
groove
silicon
perhaps
substrate
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100477888A
Other languages
English (en)
Other versions
CN102420164B (zh
Inventor
薛森鸿
谢博全
王祥保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN102420164A publication Critical patent/CN102420164A/zh
Application granted granted Critical
Publication of CN102420164B publication Critical patent/CN102420164B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Element Separation (AREA)

Abstract

本发明的一个实施例包括一种形成浅沟槽隔离结构的方法,该方法包括:提供包括顶表面的基板;形成从顶表面延伸到基板中的沟槽,其中,沟槽具有侧壁和底表面;在侧壁和底表面上形成硅衬层;将可流动介电材料填充到沟槽中;以及实施退火工艺,从而增加可流动介电材料的密度,同时将硅衬层转化为而氧化硅层。

Description

形成浅沟槽隔离结构的方法
技术领域
本发明总体上涉及半导体器件的制造方法,更具体的来说,涉及浅沟槽隔离结构的制造方法。
背景技术
通常,浅沟槽隔离件(STI)用于将半导体晶圆上的有源区域相互隔开或者隔离。以前,这些STI通过以下步骤形成:蚀刻沟槽,用电介质(比如氧化物)填满沟槽直到溢出,接着,为了将沟槽外部的电介质移除,利用诸如化学机械抛光(CMP)或者蚀刻的工艺将多余的电介质移除。该电介质有助于使有源区域相互之间电隔离。
然而,随着电路密度的不断提高,这些间隙的宽度减小,从而间隙的长宽比(通常被限定为间隙的高度除以间隙的宽度)增大。因此,很难将预定要填入间隙的介电材料填充到这些又窄又深的间隙中,而填充会导致在填入间隙的介电材料中形成不期望的空隙和间断。通过传统方法制成的STI可能提供不了充分的隔离。具有不充分隔离的器件的电性能会受到影响,还会降低器件产量。
发明内容
为了解决上述问题,本发明提供了一种形成浅沟槽隔离结构的方法,包括:提供包括顶表面的基板;形成从顶表面延伸到基板中的沟槽,其中,沟槽具有侧壁和底表面;在侧壁和底表面上形成硅衬层;将可流动介电材料填充到沟槽中;以及实施退火工艺,从而增加可流动介电材料的密度,同时将硅衬层转化为二氧化硅层。
可选地,在形成浅沟槽隔离结构的方法中,硅衬层是非晶硅层;或者沟槽的长宽比处于大约5到大约10的范围内,并且沟槽的宽度不大于42nm。
可选地,在形成浅沟槽隔离结构的方法中,硅层的厚度处于大约
Figure BSA00000441091700021
到大约
Figure BSA00000441091700022
的范围内;或者硅衬层在包含Si2H6、Si3H8、SiH4、SiCl2H2或者SiCl3H的气体环境中形成;或者硅衬层在处于大约200℃到大约600℃的温度范围中形成。
可选地,在形成浅沟槽隔离结构的方法中,可流动介电材料在包含Si3H9N和NH3的气体环境中形成;或者在大约1000℃到1200℃的温度范围内实施退火工艺。
可选地,在形成浅沟槽隔离结构的方法中,进一步包括:在退火工艺之前,在大约10℃到500℃的温度范围内固化可流动介电材料。
根据本发明的另一方面,本发明还提供了一种形成浅沟槽隔离结构的方法,包括:提供包括顶表面的基板;形成从顶表面延伸到基板中的沟槽,其中,沟槽具有侧壁和底表面;在侧壁和底表面上形成非晶硅衬层;在沟槽中填充可流动氧化物材料;在包含O3的气体环境下固化可流动氧化物材料;以及实施退火工艺,从而增加可流动氧化物材料的密度,同时将非晶硅衬层转化为二氧化硅层。
可选地,在形成浅沟槽隔离结构的方法中,沟槽的长宽比处于大约5到大约10的范围内;并且沟槽的宽度不大于42nm。
可选地,在形成浅沟槽隔离结构的方法中,非晶硅层的厚度处于大约
Figure BSA00000441091700023
到大约的范围内;或者非晶硅衬层在包含Si2H6、Si3H8、SiH4、SiCl2H2或者SiCl3H的气体环境中形成;或者硅衬层在处于大约200℃到大约600℃的温度范围中形成;或者可流动氧化物材料在包含Si3H9N和NH3的气体环境中形成。
可选地,在形成浅沟槽隔离结构的方法中,可流动氧化物材料通过包括旋转涂覆电介质法或者低温沉积法的方法形成,其中,在低于大约100℃的温度下实施低温沉积法;或者在大约1000℃到1200℃的温度范围内实施退火工艺,其中,在包含水蒸气的环境下实施退火工艺。
可选地,在形成浅沟槽隔离结构的方法中,进一步包括:在退火工艺之前,在大约10℃到500℃的温度范围内固化可流动介电材料。
附图说明
本发明将参考附图中所示的实施例而进行描述。应该理解,附图是说明目的,因此没有按比例绘制。
图1-图6示出了根据本发明的各个制造阶段中的浅沟槽隔离结构的横截面图。
图7示出了制造浅沟槽隔离结构的方法的流程图。
具体实施方式
下面,详细讨论本发明优选实施例的制造和使用。然而,应该理解,本发明提供了许多可以在各种具体环境中实现的可应用的概念。所讨论的具体实施例仅仅示出制造和使用本发明的具体方式,而不用于限制本发明的范围。
图1-图6是各个制造阶段中的浅沟槽隔离结构的立体图和横截面图。图7示出了根据本发明的一个实施例的制造STI结构的方法200的流程图。
参考图1和图7,在工艺步骤200中,提供了具有顶表面104的基板101。基板101可以包括体硅(bulk silicon)(掺杂或者未掺杂),或者包括绝缘体上硅(SOI)基板的有源层。通常,SOI基板包括半导体材料(比如,硅、锗、硅锗、绝缘体上硅锗(SGOI)、或者其组合)的有源层。还可以使用其它基板,比如多层基板、梯度基板、或者混合取向基板。
接着,在基板101的顶表面104上形成掩模层102,掩模层102显露出开口103,从而在顶表面104上限定出有源区域105。优选地,有源区域105是基板101邻近基板101的顶表面104的导电区域。优选地,有源区域105可以用作以下步骤中所形成的有源器件(比如,晶体管、电阻器等等)的组成部分。优选地,有源区域105通过将合适的材料注入晶体硅基板中而形成。基于所选择的材料,有源区域105可以包括根据设计需求的优选确定的n阱或者p阱。
掩模层102可以是硬掩模,该硬掩模包括氮化硅,该氮化硅通过比如化学汽相沉积(CVD)的工艺形成,但是该硬掩模可选地利用其他材料,比如氧化物、氮氧化物、碳化硅、以及它们的组合物。可选地,可以利用其它沉积工艺,比如等离子体增强型化学汽相沉积法(PECVD)、低压化学汽相沉积法(LPCVD)、或者在形成氧化硅之后进行氮化的方法。一旦形成,掩模层102可以通过适当的光刻工艺和蚀刻工艺被图案化,从而形成开口103,并且暴露基板101的部分。
参考图2和图7,在工艺步骤210中,形成沟槽103’,使沟槽103,从顶表面104延伸到基板101中。为了在基板101中形成沟槽103’,通过适当工艺(比如,反应离子蚀刻(RIE)),将穿过开口103的基板101的暴露部分移除。沟槽103’将基板101的顶表面104上的有源区域105隔开。沟槽103’包括侧壁107和底表面109。在一个实施例中,沟槽103’的宽度W1不大于42nm。沟槽103’的长宽比(沟槽深度除以沟槽宽度W1)在大约5到大约10的范围内。
参考图3和图7,在工艺步骤220中,在沟槽103’的侧壁107和底表面109上随后形成硅衬层111。在一个实施例中,硅衬层111包括非晶硅或者多晶硅。硅衬层111的厚度在大约
Figure BSA00000441091700041
和大约
Figure BSA00000441091700042
之间。硅衬层111可以通过在包含Si2H6、SiH4、Si3H8、SiCl2H2或者SiCl3H的气体环境中利用熔炉系统形成。在一个实施例中,Si2H6的流量应该在大约10标准毫升/分(sccm)到大约1000sccm的范围内。用于形成硅衬层111的温度处于大约200℃到大约600℃的范围内。用于形成硅衬层111的压力处于大约10mTorr到大约10Torr的范围内。可选地,硅衬层111可以通过能够形成共形硅层的沉积技术形成,比如在包含Si3H8、SiH4、SiCl2H2或者SiCl3H的气体环境中的低温化学沉积工艺。气体环境还包含运载气体,比如H2。运载气体有助于更好地控制反应的均匀性。在一个实施例中,Si3H8的流量应该处于大约10标准毫升/分(sccm)到大约1000sccm的范围内,H2的流量应该处于大约5标准升/分(slm)到大约50slm的范围内。在化学沉积工艺中,用于形成硅衬层111的温度处于大约250℃到550℃的范围内。
参考图4和图7,在工艺步骤230中,用可流动介电材料115填满沟槽103’和掩模层102直至溢出,从而形成浅沟槽隔离(STI)结构。可流动介电材料115可以包括可流动二氧化硅或者氮氧化硅介电材料。可流动介电材料115可以通过旋转涂覆电介质(SOD)形成,比如硅酸盐、硅氧烷、甲基倍半硅氧烷(methyl SilsesQuioxane,MSQ)、氢倍半硅氧烷(hydrogenSilsesQuioxane,HSQ)、MSQ/HSQ、全氢硅氮烷(perhydrosilazane,TCPS)或者全氢聚硅氮烷(perhydro-polysilazane,PSZ)。可选地,可流动介电材料115可以在低于大约100℃的温度下和大约100mTorr到大约10Torr的范围的压力下,通过低温等离子化学汽相沉积形成。反应源使用含有Si3H9N和NH3的气体环境。在一个实施例中,Si3H9N的流量应该处于大约100标准毫升/分(sccm)到大约1000sccm的范围内,NH3的流量应该处于大约100sccm到大约2000sccm的范围内。这种特定的介电膜可以通过Alectrona
Figure BSA00000441091700051
系统形成,该Alectrona
Figure BSA00000441091700052
系统由Applied Materials of SantaClara,California出售。可流动介电材料115能够填充又窄又深的间隙,并且能够防止STI结构中出现空隙和间断。
参考图7,在工艺步骤240中,对沟槽103’中的可流动介电材料115实施固化工艺(curing process)。在一个实施例中,在O3的流量处于大约100标准毫升/分(sccm)到大约5000sccm的范围内的条件下实施固化工艺。实施固化工艺的温度处于大约10℃到大约500℃的范围内。实施固化工艺的压力处于大约1Torr到大约760Torr的范围内。可以相信,固化可流动介电材料115使得Si-O键网络(Si-O bond network)能够进行转化,从而增加介电材料的密度。
参考图5和图7,在工艺步骤250中,实施退火工艺117。退火工艺能够进一步增加可流动介电材料115的密度,改进可流动介电材料115的质量,同时将硅衬层111转化为氧化硅层111’。在一个实施例中,实施退火工艺的环境中包含的水蒸气的流量处于大约5sccm到大约20sccm的范围内。实施退火工艺的温度处于大约1000℃到大约1200℃的范围内。实施退火工艺的温度开始处于大约200℃,然后逐渐升温到处于1000℃到2000℃的预定温度。完成的STI 116比没有使用硅层111所形成的STI能够更好地运行。在退火期间,可流动介电材料115能够随着其密度的增加而收缩(shrink)。如果不使用硅衬111,经过致密化会在STI 116中形成低密度袋状物(low density pockets),这会降低STI 116的耐蚀刻性。在具有硅衬111的情况下,在退火期间,随着可流动介电材料115在STI 116中的密度增加,所转化的二氧化硅层111’会延展到沟槽中。相比于没有利用硅衬111的工艺,这种方法会降低STI 116的收缩,防止低密度袋状物的形成,并且改进氧化硅111’和STI 116之间的粘附力(adhesion)。总的来说,这样改进了STI 116的耐蚀刻性。不管是否使用该方法,在上述环境中对硅衬层111实施退火会增大STI 116的击穿电压,使得STI 116的绝缘性得到改进。
参考图6和图7,在工艺步骤260中,通过比如化学机械抛光(CMP)、蚀刻、或者其组合的工艺,移除沟槽103’和掩模层102外部的多余的可流动介电材料115。优选地,移除工艺还移除了位于掩模层102上方所有的可流动介电材料115,从而对于其它工艺步骤,掩模层102的移除将暴露出有源区域105。图6示出了在多余的可流动介电材料115和掩模层102被移除之后所得到的完成的STI 116。
尽管已经详细地描述了本发明及其优势,但应该理解,可以在不背离所附权利要求限定的本发明主旨和范围的情况下,做各种不同的改变,替换和更改。而且,本申请的范围并不仅限于本说明书中描述的工艺、机器、制造、材料组分、装置、方法和步骤的特定实施例。作为本领域普通技术人员应理解,通过本发明,现有的或今后开发的用于执行与根据本发明所采用的所述相应实施例基本相同的功能或获得基本相同结果的工艺、机器、制造,材料组分、装置、方法或步骤根据本发明可以被使用。因此,所附权利要求应该包括在这样的工艺、机器、制造、材料组分、装置、方法或步骤的范围内。

Claims (10)

1.一种形成浅沟槽隔离结构的方法,包括:
提供包括顶表面的基板;
形成从所述顶表面延伸到所述基板中的沟槽,其中,所述沟槽具有侧壁和底表面;
在所述侧壁和所述底表面上形成硅衬层;
将可流动介电材料填充到所述沟槽中;以及
实施退火工艺,从而增加所述可流动介电材料的密度,同时将所述硅衬层转化为二氧化硅层。
2.根据权利要求1所述的方法,其中,所述硅衬层是非晶硅层。
3.根据权利要求1所述的方法,其中,所述沟槽的长宽比处于大约5到大约10的范围内;并且所述沟槽的宽度不大于42nm;或者
所述硅层的厚度处于大约
Figure FSA00000441091600011
到大约
Figure FSA00000441091600012
的范围内。
4.根据权利要求1所述的方法,其中,所述硅衬层在包含Si2H6、Si3H8、SiH4、SiCl2H2或者SiCl3H的气体环境中形成;或者
所述硅衬层在处于大约200℃到大约600℃的温度范围中形成。
5.根据权利要求1所述的方法,其中,所述可流动介电材料在包含Si3H9N和NH3的气体环境中形成。
6.根据权利要求1所述的方法,其中,在大约1000℃到1200℃的温度范围内实施所述退火工艺。
7.一种形成浅沟槽隔离结构的方法,包括:
提供包括顶表面的基板;
形成从所述顶表面延伸到所述基板中的沟槽,其中,所述沟槽具有侧壁和底表面;
在所述侧壁和所述底表面上形成非晶硅衬层;
在所述沟槽中填充可流动氧化物材料;
在包含O3的气体环境下固化所述可流动氧化物材料;以及
实施退火工艺,从而增加所述可流动氧化物材料的密度,同时将所述非晶硅衬层转化为二氧化硅层。
8.根据权利要求7所述的方法,其中,所述沟槽的长宽比处于大约5到大约10的范围内;并且所述沟槽的宽度不大于42nm;或者
所述非晶硅层的厚度处于大约
Figure FSA00000441091600021
到大约
Figure FSA00000441091600022
的范围内。
9.根据权利要求7所述的方法,其中,所述非晶硅衬层在包含Si2H6、Si3H8、SiH4、SiCl2H2或者SiCl3H的气体环境中形成;或者
所述硅衬层在处于大约200℃到大约600℃的温度范围中形成。
10.根据权利要求7所述的方法,其中,在大约1000℃到1200℃的温度范围内实施所述退火工艺。
CN201110047788.8A 2010-09-28 2011-02-25 形成浅沟槽隔离结构的方法 Expired - Fee Related CN102420164B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/892,331 US7947551B1 (en) 2010-09-28 2010-09-28 Method of forming a shallow trench isolation structure
US12/892,331 2010-09-28

Publications (2)

Publication Number Publication Date
CN102420164A true CN102420164A (zh) 2012-04-18
CN102420164B CN102420164B (zh) 2016-04-06

Family

ID=44022202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110047788.8A Expired - Fee Related CN102420164B (zh) 2010-09-28 2011-02-25 形成浅沟槽隔离结构的方法

Country Status (2)

Country Link
US (1) US7947551B1 (zh)
CN (1) CN102420164B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510153A (zh) * 2012-06-15 2014-01-15 台湾积体电路制造股份有限公司 半导体结构和方法
CN105097500A (zh) * 2014-05-23 2015-11-25 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法、电子装置
CN105244269A (zh) * 2014-07-09 2016-01-13 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN110047732A (zh) * 2018-01-15 2019-07-23 三星电子株式会社 用于形成薄层的方法和设备
US10388546B2 (en) 2015-11-16 2019-08-20 Lam Research Corporation Apparatus for UV flowable dielectric

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490753B2 (ja) * 2010-07-29 2014-05-14 東京エレクトロン株式会社 トレンチの埋め込み方法および成膜システム
US9719169B2 (en) 2010-12-20 2017-08-01 Novellus Systems, Inc. System and apparatus for flowable deposition in semiconductor fabrication
US8772904B2 (en) 2012-06-13 2014-07-08 United Microelectronics Corp. Semiconductor structure and process thereof
US8940615B2 (en) 2012-09-09 2015-01-27 United Microelectronics Corp. Method of forming isolation structure
US8927388B2 (en) 2012-11-15 2015-01-06 United Microelectronics Corp. Method of fabricating dielectric layer and shallow trench isolation
US9117878B2 (en) 2012-12-11 2015-08-25 United Microelectronics Corp. Method for manufacturing shallow trench isolation
US20150064929A1 (en) * 2013-09-05 2015-03-05 United Microelectronics Corp. Method of gap filling
US9099324B2 (en) 2013-10-24 2015-08-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with trench isolation
US9847222B2 (en) 2013-10-25 2017-12-19 Lam Research Corporation Treatment for flowable dielectric deposition on substrate surfaces
US20150118863A1 (en) * 2013-10-25 2015-04-30 Lam Research Corporation Methods and apparatus for forming flowable dielectric films having low porosity
US9130014B2 (en) 2013-11-21 2015-09-08 United Microelectronics Corp. Method for fabricating shallow trench isolation structure
US9786542B2 (en) 2014-01-13 2017-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for forming semiconductor device having isolation structure
US9379196B2 (en) * 2014-02-06 2016-06-28 Infineon Technologies Austria Ag Method of forming a trench using epitaxial lateral overgrowth and deep vertical trench structure
US10049921B2 (en) 2014-08-20 2018-08-14 Lam Research Corporation Method for selectively sealing ultra low-k porous dielectric layer using flowable dielectric film formed from vapor phase dielectric precursor
US9871100B2 (en) * 2015-07-29 2018-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. Trench structure of semiconductor device having uneven nitrogen distribution liner
US9916977B2 (en) 2015-11-16 2018-03-13 Lam Research Corporation Low k dielectric deposition via UV driven photopolymerization
JP7171604B2 (ja) * 2017-03-31 2022-11-15 アプライド マテリアルズ インコーポレイテッド 高アスペクト比トレンチをアモルファスシリコン膜で間隙充填するための2段階プロセス
KR102616070B1 (ko) * 2017-04-07 2023-12-19 어플라이드 머티어리얼스, 인코포레이티드 비정질 실리콘 갭충전을 개선하기 위한 표면 개질
CN109273440B (zh) 2017-07-18 2021-06-22 联华电子股份有限公司 具伸张应力鳍状结构的制作方法与互补式鳍状晶体管结构
CN109830462B (zh) 2017-11-23 2021-06-22 联华电子股份有限公司 制作半导体元件的方法
US20210335607A1 (en) * 2020-04-22 2021-10-28 X-FAB Texas, Inc. Method for manufacturing a silicon carbide device
KR20220124794A (ko) * 2020-09-18 2022-09-14 창신 메모리 테크놀로지즈 아이엔씨 반도체 구조의 제조 방법 및 반도체 구조
US11881428B2 (en) 2021-01-05 2024-01-23 Changxin Memory Technologies, Inc. Semiconductor structure and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186755A1 (en) * 2004-02-19 2005-08-25 Smythe John A.Iii Sub-micron space liner and densification process
CN101419914A (zh) * 2007-10-22 2009-04-29 应用材料股份有限公司 用于在沟槽内形成电介质层的方法
US20090298257A1 (en) * 2008-05-30 2009-12-03 Asm Japan K.K. Device isolation technology on semiconductor substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751559B1 (en) * 1995-06-30 2002-11-27 STMicroelectronics S.r.l. Process for forming an integrated circuit comprising non-volatile memory cells and side transistors and corresponding IC
US5869384A (en) * 1997-03-17 1999-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Trench filling method employing silicon liner layer and gap filling silicon oxide trench fill layer
US6008108A (en) * 1998-12-07 1999-12-28 United Microelectronics Corp. Method of fabricating a shallow-trench isolation structure in an integrated circuit
KR100513812B1 (ko) 2003-07-24 2005-09-13 주식회사 하이닉스반도체 갭필을 위한 유동성 절연막을 구비하는 반도체 소자의제조 방법
US7176105B2 (en) 2004-06-01 2007-02-13 Applied Materials, Inc. Dielectric gap fill with oxide selectively deposited over silicon liner
US7442621B2 (en) * 2004-11-22 2008-10-28 Freescale Semiconductor, Inc. Semiconductor process for forming stress absorbent shallow trench isolation structures
US20070031598A1 (en) * 2005-07-08 2007-02-08 Yoshikazu Okuyama Method for depositing silicon-containing films
US7541297B2 (en) * 2007-10-22 2009-06-02 Applied Materials, Inc. Method and system for improving dielectric film quality for void free gap fill
KR100980058B1 (ko) * 2008-03-27 2010-09-03 주식회사 하이닉스반도체 메모리 소자의 소자분리 구조 및 형성 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186755A1 (en) * 2004-02-19 2005-08-25 Smythe John A.Iii Sub-micron space liner and densification process
CN101419914A (zh) * 2007-10-22 2009-04-29 应用材料股份有限公司 用于在沟槽内形成电介质层的方法
US20090298257A1 (en) * 2008-05-30 2009-12-03 Asm Japan K.K. Device isolation technology on semiconductor substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510153A (zh) * 2012-06-15 2014-01-15 台湾积体电路制造股份有限公司 半导体结构和方法
US9945048B2 (en) 2012-06-15 2018-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and method
CN108930060A (zh) * 2012-06-15 2018-12-04 台湾积体电路制造股份有限公司 半导体结构和方法
CN105097500A (zh) * 2014-05-23 2015-11-25 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法、电子装置
CN105097500B (zh) * 2014-05-23 2020-02-11 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法、电子装置
CN105244269A (zh) * 2014-07-09 2016-01-13 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN105244269B (zh) * 2014-07-09 2018-10-23 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
US10388546B2 (en) 2015-11-16 2019-08-20 Lam Research Corporation Apparatus for UV flowable dielectric
US11270896B2 (en) 2015-11-16 2022-03-08 Lam Research Corporation Apparatus for UV flowable dielectric
CN110047732A (zh) * 2018-01-15 2019-07-23 三星电子株式会社 用于形成薄层的方法和设备
CN110047732B (zh) * 2018-01-15 2024-04-02 三星电子株式会社 用于形成薄层的方法和设备

Also Published As

Publication number Publication date
US7947551B1 (en) 2011-05-24
CN102420164B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN102420164B (zh) 形成浅沟槽隔离结构的方法
CN104282616B (zh) 形成浅沟槽隔离结构的方法
US9536773B2 (en) Mechanism of forming a trench structure
CN104517891B (zh) 形成沟槽结构的方法
US8471307B2 (en) In-situ carbon doped e-SiGeCB stack for MOS transistor
US9786542B2 (en) Mechanisms for forming semiconductor device having isolation structure
US6495430B1 (en) Process for fabricating sharp corner-free shallow trench isolation structure
US8273664B2 (en) Method for etching and filling deep trenches
US7037803B2 (en) Manufacture of semiconductor device having STI and semiconductor device manufactured
JP2014527315A (ja) 半導体集積のための反応しないドライ除去プロセス
KR20210113127A (ko) 내산화성을 위한 실리콘 산화물 층 및 그 형성 방법
US20210083048A1 (en) Semiconductor device
KR100557943B1 (ko) 플라즈마공정에 의한 에스티아이 공정의 특성개선방법
CN103794543A (zh) 隔离结构及其形成方法
CN103943621A (zh) 浅沟槽隔离结构及其形成方法
JP2007518273A (ja) シャロウトレンチ分離プロセスおよび構造
US9349814B2 (en) Gate height uniformity in semiconductor devices
US8193056B2 (en) Method of manufacturing semiconductor device
KR100691016B1 (ko) 반도체 소자의 소자분리막 형성방법
KR20060076587A (ko) 반도체 소자의 소자분리막 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406