CN102386267A - 太阳能电池及其制造方法 - Google Patents

太阳能电池及其制造方法 Download PDF

Info

Publication number
CN102386267A
CN102386267A CN2011102893500A CN201110289350A CN102386267A CN 102386267 A CN102386267 A CN 102386267A CN 2011102893500 A CN2011102893500 A CN 2011102893500A CN 201110289350 A CN201110289350 A CN 201110289350A CN 102386267 A CN102386267 A CN 102386267A
Authority
CN
China
Prior art keywords
semiconductor
type
solar cell
heterojunction
cell according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102893500A
Other languages
English (en)
Inventor
富田孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102386267A publication Critical patent/CN102386267A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种太阳能电池及其制造方法,通过增大开放电压,得到转换效率高的太阳能电池。在异质结型太阳能电池中,将半导体A和传导体与该半导体A不同且具有比半导体A的电子亲和力a1大的电子亲和力a2的半导体B结合,同时对所述半导体A和所述半导体B各在1%以内进行晶格匹配。在异质结型太阳能电池的制造方法中,该太阳能电池将半导体A和传导体与该半导体A不同且具有比半导体A的电子亲和力a1大的电子亲和力a2的半导体B结合,同时对所述半导体A和所述半导体B各在1%以内进行晶格匹配;该方法的特征在于,所述半导体A是p型硅,并在其表面上形成p型锗层,通过去除该锗层而去除氧化膜之后,形成n型GaP。得到的太阳能电池的开放电压是2V。

Description

太阳能电池及其制造方法
技术领域
本发明涉及新型太阳能电池及其制造方法。
背景技术
太阳光从近红外线到紫外线具有广阔的光谱分布,其能量的峰值在绿色光带区域附近。此外,为了得到具有高量子效率的太阳能电池,已知优选地,使半导体的带宽落在太阳光光谱的峰值带域中。
在具有绿色光以上的带宽大的半导体中,由于被光激发生成的载流子难以再结合,所以不仅容易提高开放电压,而且会提高得到最大输出的动作电压。为了得到高效率的太阳能电池,已知采用比硅的带宽大的半导体,例如GaAs这样的半导体。
另一方面,广泛地采用硅作为制造太阳能电池的半导体材料,而不大使用作为与硅相同的单一IV族元素半导体的锗。其中的一个理由是因为锗的带宽是0.65eV,而pn结型锗太阳能电池的开放电压低至0.27V,所以难以实现高输出的太阳能电池。
另一方面,硅的带宽是1.1eV,得到的pn结型硅太阳能电池的开放电压为0.6-0.65V。
这样,在如锗这样的带宽小的半导体中,由于被光激发生成的电子和空穴再结合的概率高,所以存在流过用于提供太阳能电池特性的pn结的反方向的饱和电流变大,开放电压变小的问题。但是,当采用带宽小的锗半导体时,可以广泛地使用从不能被硅吸收的长波长光带域到短波长带域的光,并且可以增大短路电流。
为了得到如上所述的高效率的太阳能电池,为了增大短路电流,优选地使用带宽小的半导体,但是为了得到大的开放电压,优选地使用带宽大的半导体。因此,在这些相反的现象中,多结型太阳能电池可有效地解决高效化的技术问题。
作为将太阳光光谱的波长带域分割成多个并将各带域的光有效地转换为电能的方法,采用多结型太阳能电池,即使用几个种类即不同带宽的半导体来实现pn结并且进行层叠的多结型太阳能电池。为了增加多结的数量,优选地使用晶格匹配的半导体组合。
目前,一般将pn结型锗太阳能电池与pn结型InGaAs太阳能电池、pn结型InGaP太阳能电池分别通过隧道结连接使用。这种结构通过MOCVD法在锗基板上依次外延生长。因此,需要重复地进行复杂的半导体生长,价格较高。
发明内容
在采用锗这样的带宽小的半导体制作太阳能电池的情况下,例如采用如图3所示的通常优选使用的扩散法来形成pn结时,由于表面结晶的不连续性而产生的表面顺位(順位)和结晶缺陷,使得由光照射激发的电子(05)和空穴(06)分别扩散到n型半导体(07)和p型半导体(08),但由于促进再结合而增加反方向的插话电流(插話電流),不能提高开放电压。
已知的事实是采用不同半导体层形成窗层,可以降低表面顺位密度。形成不同半导体的情况的问题在于,由于会在其界面产生相当大的应力,在界面容易产生晶格缺陷,所以不同半导体的选择和组合存在限制。还存在由于在形成异质结的情况下产生的带的不连续性而产生势垒,所以光激发的载流子滞留,产生再结合增加的问题。因此,由异质结形成的太阳能电池在制造上存在困难,所以不能被广泛地使用。
本申请发明的异质结型太阳能电池的特征在于,将半导体A和传导体与半导体A不同且具有比半导体A的电子亲和力a1大的电子亲和力a2的半导体B结合,同时各在1%以内对所述半导体A和所述半导体B进行晶格匹配。
本申请发明的异质结型太阳能电池的特征在于,所述半导体A是IV族系半导体,所述半导体B是III-V化合物半导体。
本申请发明的异质结型太阳能电池的特征在于,所述半导体A是p型间接迁移型半导体,所述半导体B是n型直接迁移型半导体。
本申请发明的异质结型太阳能电池的特征在于,所述半导体A是p型锗,所述半导体B是n型InGaP。
本申请发明的异质结型太阳能电池的特征在于,所述In和所述Ga的组成比分别是49%和51%。
本申请发明的异质结型太阳能电池的特征在于,p型锗的空穴载流子浓度控制为1018cm-3
本申请发明的异质结型太阳能电池的特征在于,所述半导体A是p型硅,所述半导体B是以n型GaP为主要成份的混晶。
本申请发明的异质结型太阳能电池的特征在于,在所述GaP中的氮掺杂量是0.2%,晶格匹配在0.1%以内,在GaP和Si之间分别获得晶格匹配。
本申请发明的异质结型太阳能电池的特征在于,所述半导体A是p型,并且是硅和锗的混晶,所述半导体B是以n型化合物半导体的混晶。
本申请发明的异质结型太阳能电池的特征在于,半导体A形成p型碳化硅,并在其表面上设置n型AlN。
本申请发明的异质结型太阳能电池的特征在于,所述半导体A是p型硅,并在其表面上形成p型锗层,通过去除该锗层而去除氧化膜之后,形成n型GaP。
在本申请发明的异质结型太阳能电池的制造方法中,该异质结型太阳能电池的特征在于,将半导体A和传导体与半导体A不同且电子亲和力更大的半导体B结合,同时各在1%以内对所述半导体A和所述半导体B进行晶格匹配;该方法的特征在于,所述半导体A是p型硅,并在其表面上形成p型锗层,通过去除该锗层而去除氧化膜之后,形成n型GaP。
本申请发明的异质结型太阳能电池的制造方法的特征在于,所述半导体A是p型硅,所述半导体B是以n型GaP为主要成份的混晶。
本申请发明的异质结型太阳能电池的制造方法的特征在于,在所述GaP中的氮掺杂量是0.2%,晶格匹配在0.1%以内,在GaP和Si之间分别获得晶格匹配。
本申请发明的异质结型太阳能电池的制造方法的特征在于,半导体A形成p型碳化硅,并在其表面上设置n型AlN。
本申请发明的异质结型太阳能电池的制造方法的特征在于,所述半导体A是p型硅,并在其表面上形成p型锗层,通过去除该锗层而去除氧化膜之后,形成n型GaP。
图1是根据本申请发明的太阳能电池的原理说明图。
由于在异质结中的界面(09)上的缺陷使得由太阳光的照射而产生的少数载流子的再结合极度减少,所以提供了使各载流子移动到构成多数载流子的区域,抑制光激发的载流子的再结合,不能增大反方向的饱和电流的结构。此时,在电子亲和力小的p型半导体基板(01)上,层叠电子亲和力大且禁带宽的n型半导体(02)。在n型半导体基板(02)上配置负极电极(03),在p型半导体基板(01)上配置正极电极(04)。在各n型半导体层(02)和p型半导体层(01)上形成n侧电极(03)和p侧电极(04)。通过采用这样的结构,通过快速地促进空穴的移动,难以引起再结合,从而解决问题。
进一步地,在图2中示出根据本申请的发明的太阳能电池的原理说明图。
在根据本申请的发明的太阳能电池中,获得使光激发的载流子,特别是空穴,快速移动的结构。在一个半导体上配置不同种类的半导体,并且通过带的不连续性,可以快速地移动有效质量大的空穴。
因此,在表面上形成带宽大且电子亲和力大的半导体,并且增大电气位置能量。特别地,在作为单一元素半导体的硅、锗中,将电子亲和力大的半导体配置在窗层,特别是,通过利用电势的不连续性,将移动度小的空穴快速地输送到构成多数载流子的p型半导体层,从而抑制再结合。
通过如上所述的结构,在采用带宽小的半导体的太阳能电池中,可以防止光激发的载流子的再结合,并且实现开放电压的增大。相对于通常的pn结型锗太阳能电池的开放电压0.27V,根据本申请发明的异质结型太阳能电池的开放电压是0.55-0.71V。通过增大开放电压,可以得到转换效率高的太阳能电池。
此外,相对于通常的pn结型硅太阳能电池的开放电压0.6-0.65V,根据本申请发明的硅异质结太阳能电池的开放电压是0.8-0.9V。
附图说明
图1是根据本申请的发明的太阳能电池的基本说明图。
图2是根据本申请的发明的太阳能电池的基本说明图。
图3是现有的np结太阳能电池的原理说明图。
图4是根据本申请的发明的n InGaP·p Ge太阳能电池的截面图。
图5是根据本申请的发明的n InGaP/p Ge//n InGaAs/p InGaAs//p InGaP/nInGaP三结太阳能电池的截面图。
图6是根据本申请的发明的n GaP/p Si太阳能电池的截面图。
图7是根据本申请发明的n AlN/p SiC太阳能电池的截面图。
符号的说明
(01)p型半导体基板
(02)n型半导体生长相
(03)n侧电极
(04)p侧电极
(05)电子
(06)空穴
(07)n型半导体
(08)p型半导体
(09)异质结界面
(20)pn结界面
(10)p型锗基板
(11)n型InGaP
(12)防反射膜
(13)n侧电极
(14)p高浓度层
(15)p侧电极
(16)p侧电极
(21)n型InGaP
(22)p型InGaP
(23)n型InGaAs
(24)p型n InGaAs
(25)n型InGaP
(26)p型Ge
(27)欧姆电极
(30)防反射膜
(31)p型硅
(32)n型GaP
(33)p型碳化硅高浓度层
(41)p型SiC
(42)n型AlxN半导体层
具体实施方式
实施例1
图4示出根据本申请发明的太阳能电池的第一实施例。
锗基板(10)是方位(100)、厚度200μm的p型锗,其中,空穴载流子浓度被控制为1018cm-3。预先将基板(10)由HF等酸充分地清洗之后,通过MOCVD法(有机金属汽相生长法)在550℃形成n型InGaP层(11)以作为n型半导体层。膜厚度为0.1μm。为了实现降低由晶格应变导致的应力的减小,使In和Ga的组成比分别为49%和51%。n侧电极(03)采用Ag,p侧电极(04)采用Al,在n型半导体层(11)上形成防反射膜(12)。(13)是n侧电极,(14)是p高浓度层。
在根据本发明的太阳能电池的电流电压特性中,开放电压是0.705V,饱和电流是26mA/cm-2。此外,曲率因子是0.75。根据本发明的太阳能电池的开放电压通过增大V锗的带宽而得到提高的0.7V的值。
实施例2
图5示出根据本申请的发明的太阳能电池的第二实施例。
在p型锗基板(26)上形成n型InGaP(25)的异质结型太阳能电池上,进一步地形成同质结型的p型InGaAs层(24)和n型InGaAs层(23),在同质结型的p型InGaP(22)上形成n型InGaP(21)的半导体pn结。各同质结太阳能电池由隧道结结合。在其上设置防反射膜(12)、欧姆电极(27)。
与现有的Ge、InGaAs、InGaP三结太阳能电池的开放电压2.9V相比,根据本申请发明的Ge/InGaP、InGaAs、InGaP中的开放电压上升0.4V,为3.3V。
实施例3
图6示出根据本申请的发明的太阳能电池的第三实施例。
如图6所示,在p型硅基板(31)上生长n型GaP(32)(氮掺杂)。在GaP中氮的掺杂量是0.2%,晶格匹配在0.1%以内,在GaP和Si之间分别获得晶格匹配。生长温度为600度,生长方法采用液相生长法。n侧电极(03)采用Ag,p侧电极(04)采用Al,设置AlN膜作为防反射膜(30),在p型硅(31)的背面上设置高浓度SiC层(33)。
这样制作的太阳能电池的开放电压是1.1V。另一方面,扩散磷作为杂质而制作的np型同质结太阳能电池的开放电压是0.62V。
在此,虽然采用液相生长法,但是不限于液体生长方法,也可以采用汽相生长、液相生长、分子线外延法等。
实施例4
图7示出根据本申请发明的太阳能电池的第四实施例。
在图7中,在具有立方结构的p型SiC基板(41)上形成n型AlxN(42)。p型SiC的载流子浓度为1016cm-3,带隙为2.2eV。n型AlN的载流子浓度为1018cm-3,厚度为0.1μm。AlxN通过在生长温度1100℃下由汽相生长法而形成。n侧电极(03)采用Al。p型电极(04)采用Ag。设置AlN膜作为防反射膜(30)。(33)是高浓度SiC层。
在这样的太阳能电池中的开放电压是2V。同样地,作为参考,在1000℃扩散磷而制作的np同质结型SiC的太阳能电池的开放电压是1.5V。
产业上的可利用性
通过如上所述的结构,在采用带宽小的半导体的太阳能电池中,可以防止光激发的载流子再结合,并且实现开放电压的增大。相对于通常的pn结型锗太阳能电池的开放电压0.27V,本申请发明的异质结型太阳能电池的开放电压是0.55-0.71V。通过增大开放电压,可以得到转换效率高的太阳能电池。

Claims (16)

1.一种异质结型太阳能电池,其特征在于,将半导体A和传导体与该半导体A不同且具有比半导体A的电子亲和力a1大的电子亲和力a2的半导体B结合,同时对所述半导体A和所述半导体B各在1%以内进行晶格匹配。
2.根据权利要求1所述的异质结型太阳能电池,其特征在于,所述半导体A是IV族系半导体,所述半导体B是III-V化合物半导体。
3.根据权利要求1所述的异质结型太阳能电池,其特征在于,所述半导体A是p型间接迁移型半导体,所述半导体B是n型直接迁移型半导体。
4.根据权利要求1所述的异质结型太阳能电池,其特征在于,所述半导体A是p型锗,所述半导体B是n型InGaP。
5.根据权利要求4所述的异质结型太阳能电池,其特征在于,所述In和所述Ga的组成比分别是49%和51%。
6.根据权利要求4所述的异质结型太阳能电池,其特征在于,所述p型锗的空穴载流子浓度控制为1018cm-3
7.根据权利要求1所述的异质结型太阳能电池,其特征在于,所述半导体A是p型硅,所述半导体B是以n型GaP为主要成份的混晶。
8.根据权利要求7所述的异质结型太阳能电池,其特征在于,在所述GaP中的氮掺杂量是0.2%,晶格匹配在0.1%以内,在GaP和Si之间分别获得晶格匹配。
9.根据权利要求1所述的异质结型太阳能电池,其特征在于,所述半导体A是p型,并且是硅和锗的混晶,所述半导体B是n型化合物半导体的混晶。
10.根据权利要求1所述的异质结型太阳能电池,其特征在于,所述半导体A形成p型碳化硅,并在其表面上设置n型AlN。
11.根据权利要求1所述的异质结型太阳能电池,其特征在于,所述半导体A是p型硅,并在其表面上形成p型锗层,通过去除该锗层而去除氧化膜之后,形成n型GaP。
12.一种异质结型太阳能电池的制造方法,该异质结型太阳能电池中将半导体A和传导体与该半导体A不同且具有比半导体A的电子亲和力a1大的电子亲和力a2的半导体B结合,同时对所述半导体A和所述半导体B各在1%以内进行晶格匹配;该方法的特征在于,所述半导体A是p型硅,并在其表面上形成p型锗层,通过去除该锗层而去除氧化膜之后,形成n型GaP。
13.根据权利要求12所述的异质结型太阳能电池的制造方法,其特征在于,所述半导体A是p型硅,所述半导体B是以n型GaP为主要成份的混晶。
14.根据权利要求13所述的异质结型太阳能电池的制造方法,其特征在于,在所述GaP中的氮掺杂量是0.2%,晶格匹配在0.1%以内,在GaP和Si之间分别获得晶格匹配。
15.根据权利要求12所述的异质结型太阳能电池的制造方法,其特征在于,所述半导体A形成p型碳化硅,并在其表面上设置n型AlN。
16.根据权利要求12所述的异质结型太阳能电池的制造方法,其特征在于,所述半导体A是p型硅,并在其表面上形成p型锗层,通过去除该锗层而去除氧化膜之后,形成n型GaP。
CN2011102893500A 2010-09-01 2011-08-31 太阳能电池及其制造方法 Pending CN102386267A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010196087A JP2012054424A (ja) 2010-09-01 2010-09-01 太陽電池及びその製造方法
JP2010-196087 2010-09-01

Publications (1)

Publication Number Publication Date
CN102386267A true CN102386267A (zh) 2012-03-21

Family

ID=44882041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102893500A Pending CN102386267A (zh) 2010-09-01 2011-08-31 太阳能电池及其制造方法

Country Status (5)

Country Link
US (1) US20120073658A1 (zh)
JP (1) JP2012054424A (zh)
CN (1) CN102386267A (zh)
DE (1) DE102011081983A1 (zh)
GB (1) GB2483759A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066991A1 (zh) * 2013-11-08 2015-05-14 南开大学 一种基于晶体硅材料的化合物半导体异质结太阳电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140090686A1 (en) * 2011-10-14 2014-04-03 The Massachusetts Institute Of Technology Methods and apparatus for concentrating photovoltaics
US9018517B2 (en) * 2011-11-07 2015-04-28 International Business Machines Corporation Silicon heterojunction photovoltaic device with wide band gap emitter
US9054255B2 (en) 2012-03-23 2015-06-09 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035665A (en) * 1974-01-24 1977-07-12 Commissariat A L'energie Atomique Charge-coupled device comprising semiconductors having different forbidden band widths
US4332974A (en) * 1979-06-28 1982-06-01 Chevron Research Company Multilayer photovoltaic cell
US20040065363A1 (en) * 2002-10-02 2004-04-08 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252979A (ja) * 1985-08-31 1987-03-07 Agency Of Ind Science & Technol 光電変換素子
JP2569058B2 (ja) * 1987-07-10 1997-01-08 株式会社日立製作所 半導体装置
JPH10135494A (ja) * 1996-11-05 1998-05-22 Fujitsu Ltd 太陽電池
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
JP3434259B2 (ja) * 1999-03-05 2003-08-04 松下電器産業株式会社 太陽電池
JP3782328B2 (ja) * 2001-08-31 2006-06-07 独立行政法人科学技術振興機構 半導体装置
JP2007035824A (ja) * 2005-07-26 2007-02-08 Toyohashi Univ Of Technology AlN層の成長方法およびIII族窒化物系化合物半導体素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035665A (en) * 1974-01-24 1977-07-12 Commissariat A L'energie Atomique Charge-coupled device comprising semiconductors having different forbidden band widths
US4332974A (en) * 1979-06-28 1982-06-01 Chevron Research Company Multilayer photovoltaic cell
US20040065363A1 (en) * 2002-10-02 2004-04-08 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066991A1 (zh) * 2013-11-08 2015-05-14 南开大学 一种基于晶体硅材料的化合物半导体异质结太阳电池

Also Published As

Publication number Publication date
JP2012054424A (ja) 2012-03-15
GB2483759A (en) 2012-03-21
DE102011081983A1 (de) 2012-03-08
GB201115089D0 (en) 2011-10-19
US20120073658A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
US9368671B2 (en) Bifacial tandem solar cells
López et al. Engineering the electronic band structure for multiband solar cells
JP5425480B2 (ja) 倒置型メタモルフィック多接合ソーラーセルにおけるヘテロ接合サブセル
US8952354B2 (en) Multi-junction photovoltaic cell with nanowires
CN101971367B (zh) 红外线发光元件
JP2010118666A (ja) 反転変性多接合太陽電池の代替基板
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
JP2010263222A (ja) Iv/iii−v族ハイブリッド合金を有する多接合太陽電池
JP2010118667A (ja) 2つの変性層を備えた4接合型反転変性多接合太陽電池
JP2010263217A (ja) Iv/iii−v族ハイブリッド合金を有する反転多接合太陽電池
EP3533086B1 (en) Photovoltaic device
US20090255577A1 (en) Conversion Solar Cell
US20150034159A1 (en) Hole-blocking TiO2/Silicon Heterojunction for Silicon Photovoltaics
US8431815B2 (en) Photovoltaic device comprising compositionally graded intrinsic photoactive layer
JP5481665B2 (ja) 多接合型太陽電池
US4427841A (en) Back barrier heteroface AlGaAs solar cell
CN102386267A (zh) 太阳能电池及其制造方法
Hudait et al. 0.6-eV bandgap In/sub 0.69/Ga/sub 0.31/As thermophotovoltaic devices grown on InAs/sub y/P/sub 1-y/step-graded buffers by molecular beam epitaxy
JP2012004283A (ja) 半導体装置
JP2014220351A (ja) 多接合太陽電池
KR20120012719A (ko) Ⅲ-ⅴ족 화합물 반도체 양자점을 흡수층으로 이용한 태양전지 및 이의 제조방법
JP5221695B2 (ja) タンデム太陽電池セル
CN103346190B (zh) Si衬底的四结级联太阳能电池及其制备方法
JP5669228B2 (ja) 多接合太陽電池およびその製造方法
CN103311354B (zh) Si衬底三结级联太阳电池及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120321