CN102379762A - 一种带凹槽的生物可降解支架及其制备方法 - Google Patents

一种带凹槽的生物可降解支架及其制备方法 Download PDF

Info

Publication number
CN102379762A
CN102379762A CN2011102279947A CN201110227994A CN102379762A CN 102379762 A CN102379762 A CN 102379762A CN 2011102279947 A CN2011102279947 A CN 2011102279947A CN 201110227994 A CN201110227994 A CN 201110227994A CN 102379762 A CN102379762 A CN 102379762A
Authority
CN
China
Prior art keywords
support
particle
groove
magnetic nano
biodegradable polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102279947A
Other languages
English (en)
Other versions
CN102379762B (zh
Inventor
黄楚波
石秀凤
罗七一
�田�浩
王一涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microport Medical Shanghai Co Ltd
Original Assignee
Microport Medical Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microport Medical Shanghai Co Ltd filed Critical Microport Medical Shanghai Co Ltd
Priority to CN201110227994.7A priority Critical patent/CN102379762B/zh
Publication of CN102379762A publication Critical patent/CN102379762A/zh
Priority to PCT/CN2012/079408 priority patent/WO2013017069A1/zh
Priority to EP12819307.5A priority patent/EP2740445B1/en
Application granted granted Critical
Publication of CN102379762B publication Critical patent/CN102379762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/009Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Abstract

本发明涉及医疗器械领域,具体涉及一种带凹槽的生物可降解聚合物支架及其制备方法。所述生物可降解聚合物支架包括支架主体、磁性纳米粒子和涂层,其中在所述支架主体承受支架形变的部位或所有部位上挖有凹槽,磁性纳米粒子置于凹槽中。通过外部交变磁场使得磁性纳米粒子升温,从而加热该支架。该支架加热扩张后在体内冷却固定成型,其回缩率可减低到10%以下,避免产生塌陷、移位等后果。同时,通过磁性纳米粒子加热支架,能最低限度减少对血管壁热损伤。

Description

一种带凹槽的生物可降解支架及其制备方法
技术领域
本发明涉及医疗器械领域。更具体而言,本发明涉及一种带凹槽的生物可降解支架及其制备方法。
背景技术
随着对生物可降解材料研究的逐步深入,其各方面的性能比较适合于制备新型生物可降解支架,而目前也有相当多的研究机构在进行着生物可降解支架的研制和实验。一些临床数据显示:生物可降解支架具有良好的临床效果,在物理性能和输送性能上逐渐接近金属支架。相对于金属支架,生物可降解支架拥有更好的生物相容性、载药性能,并且在完成治疗后逐渐降解,因而拥有巨大的潜力和发展前景(参考文献1,6-7和9)。
受冠状动脉的形状和直径的限制,治疗冠状动脉狭窄的支架一般都是球囊扩张式,即将支架预压到输送系统的球囊上,通过输送系统将支架送到冠状动脉狭窄处,并通过扩张球囊来实现支架的释放,随后输送系统撤出患者体外,支架保留在冠状动脉中支撑血管,防止血管的塌陷。为避免球囊过度扩张造成血管内皮的撕裂,医生在选择支架的规格时往往遵循支架标称内径/血管内径=1.0~1.1的比例,这就要求在球囊内的压力泄除后支架的扩张回缩率越小越好,否则就会造成支架的塌陷、移位,引起新的危害。支架的扩张回缩率不仅与支架的结构有关,而且与支架的材质也有很大的关系。制备生物可降解支架的材料之一是生物可降解聚合物,与金属材料相比,聚合物的力学性能,如屈服强度、弹性模量都很低。在应力-应变曲线上,聚合物发生弹性形变的应变范围远大于金属,反映在支架上,就是在相同的球囊扩张条件下,金属支架以塑性形变为主,而聚合物支架以弹性形变为主,球囊泄压后聚合物支架的扩张回缩率远远大于金属支架。聚合物支架的高回弹率势必会引起支架塌陷、移位等严重后果,因此如何降低聚合物支架扩张后的回缩率,是首要解决的问题。
利用聚合物的热塑性特点,日本的Igaki-Tamai球囊扩张式聚乳酸支架通过向球囊内充盈80℃造影液在扩张支架的同时加热支架,传导到支架上的温度约为50℃,保持该温度13秒左右,然后回抽高温造影液,撤出球囊,留下支架在37℃的血管内,支架在20~30min内缓慢自扩张至名义直径,从而获得较低的扩张回缩率和较高的径向支撑力(参考文献2)。这种方法的缺点是裸露在支架两端的球囊在高温(65℃~70℃停留数秒)下直接与血管壁接触,导致动脉壁坏死,随之而来的并发症是平滑肌细胞增殖,因而导致支架内再狭窄。
磁性纳米粒子具有一些独特的性质,例如在交变磁场下磁性纳米粒子可将磁能转化为热能。热疗便是利用这一特性而发展起来的一种新型的热疗手段。研究人员Jordan研究表明,在外加交变磁场加热30分钟后,吸收有磁性纳米粒子的肿瘤部位的温度可达47℃,在杀死癌细胞的同时,临近的健康组织未受到明显影响(参考文献3)。Hilger等在癌内注射磁粒,磁场在短时间(2~5min)使其达到58℃的高温,取得了磁靶向热消融的目的(参考文献4)。德国的MagForceNanotechnologies成功研制出治疗人体胶质母细胞瘤的相关设备和磁流体并进行了临床试验,临床试验表明:该方法有效、安全,该设备已经取得了欧盟注册许可(参考文献5和8)。在完成治疗后,磁性纳米粒子虽在人体脏器中仍有残留,但随访无全身毒性,最后经肠道和肾脏排出体外。
由此可见,本领域存在对新型生物可降解支架的需求,该支架的扩张回缩率低,不会带来塌陷、移位等后果。另外,本发明旨在寻找一种支架加热方法,既能对生物可降解聚合物支架局部快速加热,使支架在扩张过程中发生热塑性形变,又能最低限度减少对血管壁热损伤。因磁性纳米粒子在体外交变磁性作用下发热,故可利用该特性来实现对支架进行局部加热。
发明内容
为了解决上述技术问题,本发明提供一种带凹槽的生物可降解聚合物支架,包括支架主体、磁性纳米粒子和涂层,其特征是在支架主体上挖有凹槽,磁性纳米粒子置于凹槽中,通过外部交变磁场使得磁性纳米粒子升温,从而加热支架。
本发明通过在生物可降解聚合物材料制备的支架上挖槽,在凹槽处放置磁性纳米粒子,并在支架主体外涂层,通过外部的交变磁场,使得磁性纳米粒子升温发热,来实现对支架的局部或整体加热,使支架在球囊扩张下发生热塑性形变,冷却后固定成形,从而降低扩张回缩率。植入后的支架逐步降解,磁性纳米粒子随之得到逐步释放,被人体吸收并排出体外。该加热方式具有集中、温度可控、对周围环境损伤小的特点。
支架主体和涂层可以由同种生物可降解材料组成,也可由不同的生物可降解材料组成,生物可降解材料包括但不限于如聚乳酸、聚乙醇酸、聚乳酸和聚乙醇酸的共聚物、聚己内酯、聚二氧六环酮、聚酸酐、酪氨酸聚碳酸酯等等。根据材料的不同,支架在体内的降解周期从几个月到三年可以任意选择。
支架主体上的凹槽可分布于承受支架形变的部位上,也可分布于支架所有部位上。支架主体宽度:80~200μm,厚度80~200μm,凹槽宽度30~150μm,凹槽深度30~150μm。
磁性纳米粒子为能在外部交变磁场作用下产生较大热量并具有较好生物相容性类铁磁性或超顺磁性纳米粒子。磁性纳米粒子种类包括γ-Fe2O3、Fe3O4、Ni、Co、Fe、FeCo、NiFe、CoFeO、NiFeO、MnFeO等等以及经有机小分子、有机高分子、无机纳米材料修饰的这些粒子。修饰材料包括:硅烷偶联剂、聚乙二醇、聚乙烯吡咯烷酮、聚苯乙烯、聚丙烯酸、聚甲基丙烯酸甲酯、聚丙烯酰胺以及它们的共聚物、多肽和嵌段共聚多肽、明胶、支链淀粉、葡聚糖、脱乙酰壳多糖和磷酸胆碱、多巴胺、SiO2等。磁性纳米粒子的尺寸为10~100nm。
磁性纳米粒子的放置方式:将磁性纳米粒子与溶剂配制成一定浓度的磁流体,并采用微型针头将溶液滴于凹槽中,溶剂挥发后磁性纳米粒子沉积于凹槽中,通过多次沉积,凹槽中填满磁性纳米粒子,最后在主体外喷涂涂层,覆盖凹槽及其他支架部位;或将磁性纳米粒子与支架主体聚合物材料或涂层中的聚合物材料、溶剂配制成一定浓度的磁流体,并采用微型针头将溶液滴入凹槽中并将凹槽填满,待溶剂挥发后在支架主体外喷涂涂层,覆盖凹槽及其他支架部位。
由于磁性纳米粒子的热辐射范围受外加磁场功率、粒子材料居里温度、分布密度和被加热材料散热能力等因素的影响。为控制对支架的加热温度和加热时间,磁性纳米粒子一般选择居里温度比支架主体材料玻璃化温度高的材料,磁性纳米粒子与支架主体的质量比例为1∶10~1∶100。
外部交变磁场的磁性强度频率为0~500kHz,磁场强度为0~30kA/m。
本发明的实现过程如下:
1.将生物可降解聚合物材料作为支架的主体材料,通过挤出得到管材,采用激光雕刻技术将管材雕刻成支架;在支架承受形变的位置上采用激光器挖出凹槽。在凹槽处放置磁性纳米粒子,并在支架主体外涂层。
2.将上述支架压握于球囊上,并输送到人体冠状动脉病变处,开启外部的交流磁场,使得磁性粒子由于磁滞作用产生热量,对含有磁性纳米粒子的支架进行加热,使支架主体的温度升至其玻璃化转变温度附近,撤去体外交电磁场设备,此时采用球囊扩张支架至目标直径,随后支架在人体内冷却至体温,固定成型后泄压撤去球囊。
本发明将磁性纳米粒子置于生物可降解聚合物支架扩张时承受形变部位处的凹槽中,并在支架体外涂层。支架到达病变部位后,通过外部交电磁场的作用,使支架中的磁性纳米粒子升温至支架主体材料的玻璃化转变温度附近,从而加热支架主体材料。停止对磁性纳米粒子的升温后扩张球囊,支架在热量和球囊扩张力的作用下发生塑性形变,球囊泄压后,支架的这种塑性形变不可逆转,从而扩张回缩率大大降低。本发明主要通过磁性纳米粒子加热支架,而不直接对血管壁产生影响。
将磁性纳米粒子放置于支架扩张时承受形变的部位,选择性地对该部进行加热,既可减少磁性纳米粒子的当量,又能起到集中加热的作用,具有效率高,加热时间短等特点。同时,因外部有涂层覆盖在支架主体上,发热的磁性纳米粒子不与血液或组织接触,因此安全性更高。
通过本发明,支架在加热扩张后并在体内冷却固定成型,支架扩张后的回缩率可减低到10%以下,甚至达到1~2%。
附图说明
为了更清楚地描述本发明的技术方案,下面将结合附图作简要介绍。显而易见,这些附图仅是本申请记载的生物可降解支架的一些具体实施方式。本发明生物可降解支架的结构包括但不限于以下这些附图。
图1是本发明的支架加热系统总图。
图2是支架杆上挖槽详图,图2-a)为挖槽分布于承受支架形变的部位,如加强环处的示意图,图2-b)为挖槽分布于涵括承受形变部位的支架所有部位的示意图。
图3是支架杆横截面图。
具体实施方式
为了进一步理解本发明,下面将结合实施例对本发明的优选方案进行描述。这些描述只是举例说明本发明的特征和优点,而非限制本发明的保护范围。
实施例一
参见附图2-a),将左旋乳酸-己内酯共聚物(PLCA)材料挤出得到外径为2.5mm的管材,再由激光雕刻技术加工成支架,得到支架主体;在支架主体加强环处挖深150μm、宽150μm的凹槽;将粒径为80nm的γ-Fe2O3磁性纳米粒子用无水乙醇溶剂配成磁流体,滴加到前述凹槽中,纳米粒子质量占支架重量的1/20;待溶剂挥发完全后在支架主体的外表面上喷涂含有雷帕霉素(Rapamycin)及其衍生物等药物的聚内消旋乳酸(PDLLA)材料形成支架的外涂层。支架横截面如图3所示,反映支架的结构。支架包括主体结构、富集磁性纳米粒子的凹槽和外涂层;凹槽分布于承受形变的部位。
将支架压握到输送系统上,包装灭菌。如图1所示,手术时通过输送系统将支架输送至病变位置,调节体外交变磁场的位置,磁性强度频率为100kHz,磁场强度18kA/m,加热3min后,支架温度升至50℃附近。此时撤掉交变磁场,通过扩张球囊将支架扩至外径3.0mm,待支架冷却到玻璃化转变温度以下后将球囊泄压并撤去输送系统,支架最终外径为2.76mm,支架径向回缩率8%。植入机体3个月后,随着表面涂层材料PDLLA的降解,磁性纳米粒子被逐步释放出来,由于其尺寸很小,可以直接通过血流,进入机体的细胞和组织间隙,存留于人体脏器中,随后经人体代谢排出体外。
实施例二
参见附图2-b),在外径为3.0mm的聚左旋乳酸(PLLA)管材上采用激光切割机加工出支架主体;并在支架所有支杆表面挖深30μm、宽30μm的凹槽;将粒径为10nm大小的MnFeO磁性纳米粒子与PLLA一起溶解于溶剂四氢呋喃中,溶液喷涂到支架凹槽中,溶剂挥发完全后支架中纳米粒子重量占支架重量的1/10;在支架主体的外表面上喷涂含有雷帕霉素(Rapamycin)的左旋乳酸与乙交酯共聚物(PLGA)材料形成支架的外涂层。支架横截面如图3所示,反映支架的结构。支架包括主体结构、富集磁性纳米粒子的凹槽和外涂层;凹槽分布于涵括形变部位的支架所有部位。
支架压握到输送系统上,包装灭菌。如图1所示,手术时通过输送系统将支架输送至病变位置,调节体外交变磁场的位置,磁性强度频率100kHz,磁场强度15kA/m,加热5min,支架温度升至PLLA的玻璃化转变温度60℃附近。撤掉体外交变磁场,扩张球囊将支架扩至外径3.5mm,待支架材料冷却到玻璃化转变温度以下后将球囊泄压并撤去输送系统,支架最终外径接近3.43mm,支架径向回缩率为2%。植入机体3个月后,随着表面涂层材料PLGA的降解,磁性纳米粒子被逐步释放出来,由于其尺寸很小,可以直接通过血流,进入机体的细胞和组织间隙,存留于人体脏器中,随后经人体代谢排出体外。
以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本领域的普通技术人员而言,在不脱离本发明原理的前提下,还可以对本发明的可降解支架进行若干改进和修饰,但这些改进和修饰也落入本发明权利要求请求保护的范围内。
参考文献
1)Antonio Colombo and Evangelia Karvouni,Biodegradable Stents:″Fulfilling the Mission and Stepping Away″,Circulation,2000;102:371-373.
2)Hideo Tamai,Keiji Igaki,Eisho Kyo,Kunihiko Kosuga,AkiyoshiKawashima,Initial 1 and 6-Month Results of Biodegradable Poly-L-LacticAcid Coronary Stents in Humans,Circulation,2000;102:399-404.
3)A.Jordan,R.Wust,H.Fdhling,W.John,A.Hinz and R.Felix.Inductive heating of ferrimagnetic particles and magnetic fluids:physicalevaluation of their potential of hyperthermia.Int.J.Hyperthermia.1993(9):51~68.
4)Hilger,et al.Ramans spectroscopy of magnetoliposomes.Investigative Radiology.2000;35(3):170~179.
5)Maier-Hauff K,Rothe R,Scholz R et al Intracranial thermotherapyusing magnetic nanoparticles combined with external beam radiotherapy:results of a feasibility study on patients with glioblastoma multiforme.JNeurooncol.2007;81:53~60.
6)Johannsen M,Gneveckow U,Taymoorian K et al.Morbidity andquality of life during thermotherapy using magnetic nanoparticles inlocally recurrent prostate cancer:Results of a prospective phase I trial.IntJ Hyperthermia,2007;23:315~323.
7)Johannsen M,Gneveckow U,Thiesen B et al.Thermotherapy ofprostate cancer using magnetic nanoparticles:feasibility,imaging,andthree-dimensional temperature distribution.EurUrol.2007;52:1653~1662.
8)Klaus Maier-Hauff,Frank Ulrich,Dirk Nestler,Hendrik Niehoff,Peter Wust,Burghard Thiesen,Helmut Orawa,Volker Budach,AndreasJordan.Efficacy and safety of intratumoral thermotherapy using magneticiron-oxide nanoparticles combined with external beam radiotherapy onpatients with recurrent glioblastoma multiforme.Journal of Neurooncology,Published online September 16,2010.
9)刘岚等,Fe2O3-Glu纳米颗粒在小鼠体内的代谢动力学研究,环境与职业医学,2006;23(1):1~3.

Claims (13)

1.一种带凹槽的生物可降解聚合物支架,包括支架主体、磁性纳米粒子和涂层,其中在所述支架主体上挖有凹槽,磁性纳米粒子置于凹槽中。
2.权利要求1的生物可降解聚合物支架,其中所述支架主体和涂层由相同或不同的生物可降解材料组成,所述生物可降解材料选自聚乳酸、聚乙醇酸、聚乳酸和聚乙醇酸的共聚物、聚己内酯、聚二氧六环酮、聚酸酐、酪氨酸聚碳酸酯。
3.权利要求1或2的生物可降解聚合物支架,其中所述支架主体上的凹槽分布于承受支架形变的部位上,或分布于支架所有部位上。
4.前述权利要求任一项的生物可降解聚合物支架,其中所述支架主体的宽度为80~200μm,厚度为80~200μm,凹槽的宽度为30~150μm,凹槽的深度为30~150μm。
5.前述权利要求任一项的生物可降解聚合物支架,其中所述磁性纳米粒子选自γ-Fe2O3、Fe3O4、Ni、Co、Fe、FeCo、NiFe、CoFeO、NiFeO、MnFeO,以及经有机小分子、有机高分子、无机纳米材料修饰的这些粒子。
6.权利要求5的生物可降解聚合物支架,其中所述修饰的材料选自硅烷偶联剂、聚乙二醇、聚乙烯吡咯烷酮、聚苯乙烯、聚丙烯酸、聚甲基丙烯酸甲酯、聚丙烯酰胺以及它们的共聚物、多肽和嵌段共聚多肽、明胶、支链淀粉、葡聚糖、脱乙酰壳多糖和磷酸胆碱、多巴胺、SiO2
7.前述权利要求任一项的生物可降解聚合物支架,其中所述磁性纳米粒子的尺寸为10~100nm。
8.前述权利要求任一项的生物可降解聚合物支架,其中所述磁性纳米粒子与所述支架主体的质量比例为1∶10~1∶100。
9.前述权利要求任一项的生物可降解聚合物支架,其中所述磁性纳米粒子选择居里温度比支架主体材料玻璃化温度高的材料。
10.前述权利要求任一项的生物可降解聚合物支架,其中通过外部交变磁场使得磁性纳米粒子升温,从而加热该支架,该支架在加热扩张后并在体内冷却固定成型,支架扩张后的回缩率减低到10%以下。
11.权利要求10的生物可降解聚合物支架,其中所述外部交变磁场的磁性强度频率为0~500kHz,磁场强度为0~30kA/m。
12.前述权利要求任一项的生物可降解聚合物支架的制备方法,其包括将生物可降解聚合物作为支架的主体材料,通过挤出得到管材,采用激光雕刻技术将管材雕刻成支架;在支架承受形变的部位上或在支架所有部位上采用激光器挖出凹槽;在凹槽处放置磁性纳米粒子,并在支架主体外涂层。
13.权利要求12的制备方法,其中磁性纳米粒子的放置方式是将磁性纳米粒子与溶剂配制成一定浓度的磁流体,并采用微型针头将溶液滴于凹槽中,溶剂挥发后磁性纳米粒子沉积于凹槽中,通过多次沉积,凹槽中填满磁性纳米粒子,最后在主体外喷涂涂层,覆盖凹槽及其他支架部位;或者是将磁性纳米粒子与支架主体聚合物材料或涂层中的聚合物材料、溶剂配制成一定浓度的磁流体,并采用微型针头将溶液滴入凹槽中并将凹槽填满,待溶剂挥发后在支架主体外喷涂涂层,覆盖凹槽及其他支架部位。
CN201110227994.7A 2011-08-02 2011-08-02 一种带凹槽的生物可降解支架及其制备方法 Active CN102379762B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201110227994.7A CN102379762B (zh) 2011-08-02 2011-08-02 一种带凹槽的生物可降解支架及其制备方法
PCT/CN2012/079408 WO2013017069A1 (zh) 2011-08-02 2012-07-31 一种带凹槽的生物可降解支架及其制备方法
EP12819307.5A EP2740445B1 (en) 2011-08-02 2012-07-31 Biodegradable stent with grooves and the preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110227994.7A CN102379762B (zh) 2011-08-02 2011-08-02 一种带凹槽的生物可降解支架及其制备方法

Publications (2)

Publication Number Publication Date
CN102379762A true CN102379762A (zh) 2012-03-21
CN102379762B CN102379762B (zh) 2015-03-25

Family

ID=45819879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110227994.7A Active CN102379762B (zh) 2011-08-02 2011-08-02 一种带凹槽的生物可降解支架及其制备方法

Country Status (3)

Country Link
EP (1) EP2740445B1 (zh)
CN (1) CN102379762B (zh)
WO (1) WO2013017069A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017069A1 (zh) * 2011-08-02 2013-02-07 微创医疗器械(上海)有限公司 一种带凹槽的生物可降解支架及其制备方法
CN103480045A (zh) * 2013-09-10 2014-01-01 黄晚兰 全降解高分子材料心血管支架
CN105213075A (zh) * 2015-11-04 2016-01-06 新疆医科大学附属肿瘤医院 一种带热疗功能的结直肠支架及其使用方法
CN106413631A (zh) * 2014-05-28 2017-02-15 波士顿科学国际有限公司 具有射频切割尖端和经加热球囊的导管
CN106901880A (zh) * 2017-02-04 2017-06-30 同济大学 两端膨大式自扩张显影型可降解聚氨酯尿道支架的制备及应用方法
CN107715182A (zh) * 2017-09-18 2018-02-23 中国医学科学院北京协和医院 一种3d打印复合磁性金属支架的制备方法及其应用
CN108926747A (zh) * 2017-05-24 2018-12-04 上海微创医疗器械(集团)有限公司 一种抗黏附多肽的应用、一种植入医疗器械及其制备方法
CN111067678A (zh) * 2020-03-02 2020-04-28 南京浩衍鼎业科技技术有限公司 一种具有光栅结构的可降解颅内球支架及其制备方法
CN111110413A (zh) * 2020-03-02 2020-05-08 南京浩衍鼎业科技技术有限公司 一种具有微孔阵列的颅内可降解生物支架及其制备方法
CN111904676A (zh) * 2019-05-10 2020-11-10 上海微创医疗器械(集团)有限公司 可降解载药支架及其制作方法
CN111938886A (zh) * 2020-08-21 2020-11-17 王新英 一种球囊扩张式支架及其取出装置
CN112402771A (zh) * 2020-11-20 2021-02-26 东莞天天向上医疗科技有限公司 一种凸凹状扩张球囊及其生产及使用方法
CN113081125A (zh) * 2019-12-23 2021-07-09 微创神通医疗科技(上海)有限公司 一种动脉瘤封堵装置
CN113476184A (zh) * 2021-06-02 2021-10-08 北京科技大学 一种制备磁性生物植入件的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201612064D0 (en) * 2016-07-07 2016-08-24 Mastantuono Fabio And Mastantuono Marco And Bandinelli Mauro Prosthetic devices and related medical system capable of deep prosthetic disinfection and pain control
CN107670121A (zh) * 2017-11-09 2018-02-09 北京赛铂医药科技有限公司 一种可吸收血管支架及其制备方法
CN114504681A (zh) * 2020-10-23 2022-05-17 中国医学科学院北京协和医院 一种磁性复合材料填充的金属支架及其制备方法
DE102020134541A1 (de) * 2020-12-22 2022-06-23 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts Implantat und Anordnung aufweisend eine Strahlungsquelle und ein Implantat
DE102022115394A1 (de) * 2022-06-21 2023-12-21 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Implantat und Anordnung aufweisend eine Strahlungsquelle und ein Implantat

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2860402Y (zh) * 2005-08-31 2007-01-24 哈尔滨工程大学 导磁涂层支架及为其加热的电磁装置
US20080071353A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Endoprosthesis containing magnetic induction particles
US20090081272A1 (en) * 2007-09-24 2009-03-26 John Clarke Medical devices having a metal particulate composition for controlled diffusion
CN101879102A (zh) * 2009-05-07 2010-11-10 微创医疗器械(上海)有限公司 一种凹槽携载式涂层可降解型药物洗脱支架
CN101938993A (zh) * 2008-02-11 2011-01-05 麦格霍斯奈米生技股份有限公司 包括纳米粒子的植入式产品
CN102048602A (zh) * 2011-01-11 2011-05-11 同济大学 一种网状可降解血管支架及其制备方法
CN102371006A (zh) * 2010-08-17 2012-03-14 微创医疗器械(上海)有限公司 一种生物可降解支架

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913765B2 (en) * 2001-03-21 2005-07-05 Scimed Life Systems, Inc. Controlling resorption of bioresorbable medical implant material
WO2004093643A2 (en) * 2003-04-16 2004-11-04 The Children's Hospital Of Philadelphia Magnetically controllable drug and gene delivery stents
KR101098267B1 (ko) * 2004-04-02 2011-12-26 아티어리얼 리모델링 테크놀로지스 인코포레이티드 폴리머 계열 스텐트 어셈블리
US8383156B2 (en) * 2007-04-30 2013-02-26 Cordis Corporation Coating for a medical device having an anti-thrombotic conjugate
CN102379762B (zh) * 2011-08-02 2015-03-25 上海微创医疗器械(集团)有限公司 一种带凹槽的生物可降解支架及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2860402Y (zh) * 2005-08-31 2007-01-24 哈尔滨工程大学 导磁涂层支架及为其加热的电磁装置
US20080071353A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Endoprosthesis containing magnetic induction particles
US20090081272A1 (en) * 2007-09-24 2009-03-26 John Clarke Medical devices having a metal particulate composition for controlled diffusion
CN101938993A (zh) * 2008-02-11 2011-01-05 麦格霍斯奈米生技股份有限公司 包括纳米粒子的植入式产品
CN101879102A (zh) * 2009-05-07 2010-11-10 微创医疗器械(上海)有限公司 一种凹槽携载式涂层可降解型药物洗脱支架
CN102371006A (zh) * 2010-08-17 2012-03-14 微创医疗器械(上海)有限公司 一种生物可降解支架
CN102048602A (zh) * 2011-01-11 2011-05-11 同济大学 一种网状可降解血管支架及其制备方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017069A1 (zh) * 2011-08-02 2013-02-07 微创医疗器械(上海)有限公司 一种带凹槽的生物可降解支架及其制备方法
CN103480045A (zh) * 2013-09-10 2014-01-01 黄晚兰 全降解高分子材料心血管支架
CN103480045B (zh) * 2013-09-10 2015-09-16 黄晚兰 全降解高分子材料心血管支架
CN106413631B (zh) * 2014-05-28 2018-08-17 波士顿科学国际有限公司 具有射频切割尖端和经加热球囊的导管
CN106413631A (zh) * 2014-05-28 2017-02-15 波士顿科学国际有限公司 具有射频切割尖端和经加热球囊的导管
US9913649B2 (en) 2014-05-28 2018-03-13 Boston Scientific Scimed, Inc. Catheter with radiofrequency cutting tip and heated balloon
CN105213075A (zh) * 2015-11-04 2016-01-06 新疆医科大学附属肿瘤医院 一种带热疗功能的结直肠支架及其使用方法
CN106901880A (zh) * 2017-02-04 2017-06-30 同济大学 两端膨大式自扩张显影型可降解聚氨酯尿道支架的制备及应用方法
CN108926747A (zh) * 2017-05-24 2018-12-04 上海微创医疗器械(集团)有限公司 一种抗黏附多肽的应用、一种植入医疗器械及其制备方法
CN107715182A (zh) * 2017-09-18 2018-02-23 中国医学科学院北京协和医院 一种3d打印复合磁性金属支架的制备方法及其应用
WO2020228629A1 (zh) * 2019-05-10 2020-11-19 上海微创医疗器械(集团)有限公司 可降解载药支架及其制作方法
CN111904676A (zh) * 2019-05-10 2020-11-10 上海微创医疗器械(集团)有限公司 可降解载药支架及其制作方法
CN113081125B (zh) * 2019-12-23 2022-07-26 微创神通医疗科技(上海)有限公司 一种动脉瘤封堵装置
CN113081125A (zh) * 2019-12-23 2021-07-09 微创神通医疗科技(上海)有限公司 一种动脉瘤封堵装置
CN111067678A (zh) * 2020-03-02 2020-04-28 南京浩衍鼎业科技技术有限公司 一种具有光栅结构的可降解颅内球支架及其制备方法
CN111110413A (zh) * 2020-03-02 2020-05-08 南京浩衍鼎业科技技术有限公司 一种具有微孔阵列的颅内可降解生物支架及其制备方法
CN111938886A (zh) * 2020-08-21 2020-11-17 王新英 一种球囊扩张式支架及其取出装置
CN112402771A (zh) * 2020-11-20 2021-02-26 东莞天天向上医疗科技有限公司 一种凸凹状扩张球囊及其生产及使用方法
CN112402771B (zh) * 2020-11-20 2021-10-08 东莞天天向上医疗科技有限公司 一种凸凹状扩张球囊及其生产及使用方法
WO2022105065A1 (zh) * 2020-11-20 2022-05-27 东莞天天向上医疗科技有限公司 一种凸凹状扩张球囊及其生产及使用方法
CN113476184A (zh) * 2021-06-02 2021-10-08 北京科技大学 一种制备磁性生物植入件的方法

Also Published As

Publication number Publication date
WO2013017069A1 (zh) 2013-02-07
EP2740445A1 (en) 2014-06-11
EP2740445B1 (en) 2015-12-09
CN102379762B (zh) 2015-03-25
EP2740445A4 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
CN102379762B (zh) 一种带凹槽的生物可降解支架及其制备方法
US9457133B2 (en) Thermo-mechanically controlled implants and methods of use
US6786904B2 (en) Method and device to treat vulnerable plaque
JP6291522B2 (ja) 相変化材料および形状変化材料
EP3454737B1 (en) Tumor bed implant for multimodality treatment of at risk tissue surrounding a resection cavity
CN107427612A (zh) 按需可降解的医疗装置
Sun et al. Advances in physiologically relevant actuation of shape memory polymers for biomedical applications
CN104644295B (zh) 一种可吸收管腔支架及其制备方法
WO2016196719A2 (en) Hyperthermia targeting compositions, devices, and methods for cancer therapy
Manuchehrabadi et al. Treatment efficacy of laser photothermal therapy using gold nanorods
CN102371006B (zh) 一种生物可降解支架
Floren et al. Noninvasive inductive stent heating: alternative approach to prevent instent restenosis?
KR101493327B1 (ko) 마이크로 니들이 형성된 풍선도관 및 그 제작방법
KR101686628B1 (ko) 약물 및 광열요법이 가능한 하이브리드 스텐트 및 그 제조방법
JPH0663155A (ja) ステント
US10661092B2 (en) Mixture of lafesih magnetic nanoparticles with different curie temperatures for improved inductive heating efficiency for hyperthermia therapy
KR101537582B1 (ko) 마이크로 니들이 형성된 풍선도관 제작방법
Usatoff et al. Update of Laser Induced Thermotherapy for Liver Tumours
Stauffer et al. Dual modality implant for simultaneous magnetic nanoparticle heating and brachytherapy treatment of tumor resection cavities in brain
JP5140741B2 (ja) 能動薬物放出型サーモロッドの製造方法およびそのサーモロッド
CN105708588A (zh) 一种可降解的前列腺支架
Wang et al. Overview of degradable polymer materials suitable for 3d printing bio-stent
JP4090795B2 (ja) 熱型ステントおよびそれを用いた管腔内表面の固定・安定化装置
RO133840B1 (ro) Procedeu de depunere a unui compozit magnetic pe un stent metalic

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 201203 Shanghai City Newton Road, Pudong New Area Zhangjiang hi tech Park No. 501

Applicant after: Shanghai MicroPort Medical Equipment (Group) Co., Ltd.

Address before: 201203 Shanghai City Newton Road, Pudong New Area Zhangjiang hi tech Park No. 501

Applicant before: Weichuang Medical Equipment (Shanghai) Co., Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: WEICHUANG MEDICAL EQUIPMENT (SHANGHAI) CO., LTD. TO: SHANGHAI MICROPORT MEDICAL EQUIPMENT (GROUP) CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant