CN102327620A - 纳米硒在抗肿瘤药物载体中的应用 - Google Patents

纳米硒在抗肿瘤药物载体中的应用 Download PDF

Info

Publication number
CN102327620A
CN102327620A CN201110215019A CN201110215019A CN102327620A CN 102327620 A CN102327620 A CN 102327620A CN 201110215019 A CN201110215019 A CN 201110215019A CN 201110215019 A CN201110215019 A CN 201110215019A CN 102327620 A CN102327620 A CN 102327620A
Authority
CN
China
Prior art keywords
selenium
solution
antitumor drug
fluorouracil
nanometer selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110215019A
Other languages
English (en)
Inventor
陈填烽
郑文杰
刘雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
University of Jinan
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201110215019A priority Critical patent/CN102327620A/zh
Publication of CN102327620A publication Critical patent/CN102327620A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了纳米硒在抗肿瘤药物载体中的应用。本发明是将纳米硒作为载体,用于负载抗肿瘤药物,得到抗肿瘤药物复合体系。本发明将纳米硒应用于抗肿瘤药物复合体系中,制得的抗肿瘤药物复合体系可以发挥抗肿瘤药物和纳米硒在抗肿瘤方面的协同作用,在增强抗肿瘤药物渗透性的同时,还降低了抗肿瘤药物本身对人体正常组织的毒副作用。上述抗肿瘤药物复合体系可以在液相中以水溶胶的形式保存,制备工艺简单,条件温和,稳定性好,保存时间长,适合推广应用。

Description

纳米硒在抗肿瘤药物载体中的应用
技术领域
    本发明涉及抗肿瘤药物载体领域,具体涉及纳米硒在抗肿瘤药物载体中的应用。
背景技术
由于癌症是最致命的疾病之一,每年就有1千万人死于癌症。虽然近年来诊断设备和治疗技术有了很大的提高,死亡率有所下降,但是癌症治疗药物普遍具有毒性,对人体良性组织和细胞具有杀伤性,亟待改进 (Dan Peer and Jeffrey M. Karp, Nat. Nanotechnol., 2007, 2: 751-760.)。纳米技术的发展似乎带来了心的曙光,目前被应用到了工程学、物理、化学和生物学等方面 (Mauro Ferrari , Nat. Rev. Cancer, 2005, 5:161–171.),纳米粒子由于其高比表面、尺寸小、高活性,能够克服癌症治疗的困难,也被作为新型抗癌药物研究。近年来,生物降解性的纳米粒子具有延长对特定器官的循环作用周期的能力,因此通常被作为一种潜在药物传送载体,它作为一种药物的携带者在肿瘤学的发展中已经打破了抗肿瘤治疗在生理和药理方面的障碍 ( Kommareddy et al, Technol Cancer Res. Treat., 2005,4: 615-625; Lee and Kim, Pharm. Res., 2005, 22: 1-10; Barbara and Eugene, Urologic Oncology: Seminars and Original Investigations 2008, 26: 57–64;)。纳米粒子作为抗肿瘤药物的携带者为直接进入肿瘤组织提供了一种新的方法。纳米粒子可以运送特定剂量的抗肿瘤药物到肿瘤组织中,既可以增强抗肿瘤药物的渗透性还可以很好的保留抗肿瘤药物原有的治疗效果。这些修饰以后的纳米粒子可以直接与肿瘤细胞膜、细胞质或者细胞核受体相互作用于。这使得我们可以控制和维持药物在运输和特定作用位点的释放。控制药物在特定组织中的分布,让抗癌药物直接作用于肿瘤细胞,然后还可以清除多余的药物,减少了药物对正常细胞的毒副作用的同时,也提高药物的治疗效果。
硒是人体所必须的痕量元素,具有重要的生理功能和药理作用。有研究表明富硒营养物质能够预防癌症并且降低癌症的病症程度 (Natalia. Cancer Lett., 2002, 197:39—42)。 尽管硒在临床上被局限于化学预防试剂,但是硒也可以与其他抗癌试剂联用治疗癌症。 Cao 利用伊立替康(治疗结肠癌药物)和硒结合使用,来降低化学药物的毒性 ,并且成功提高了对伊立替康有耐药性的小鼠癌细胞的治愈率 (Cao et al, Clin. Cancer Res.,2004, 10:2561-2569)。 Greeder 报道了硒化合物能够抑制癌症的发展,并且对动物的其他组织没有明显毒副作用 (Glenn and Greeder. Milner. Science, 1980, 209:825-826)。Hu报道了硒化合物可以增强紫杉醇对前列腺癌的治愈效果,硒可以作为覆载药物而又具有良好应用前景的试剂 (Hu et al, Clin. Cancer Res,2008,14:1150-1158)。纳米硒由于具有更好的生物适应,得到了研究者的重视。Zhang 等发现与硒代甲基硒半胱氨酸相比,纳米尺寸的硒在提高特征酶活性上与其具有相同的功效,但是毒副作用更低。此外,纳米硒在体内还具有自由基清除的功能,是有机硒和无机硒化合物难以达到的 (Zhang et al, Toxicological Sciences, 2008, 101: 22–31)。因此,我们的主要目标是把纳米硒粒子作为一个运输体系,用抗癌药物对纳米粒子的大小进行控制、改变纳米粒子的表面性能的同时,还维持了抗肿瘤药物的药理活性作用,实现纳米硒与抗癌药物的双重抗肿瘤作用。  
纳米控释抗癌药物与普通抗癌药物相比, 具有可靶向输送、 缓释药物、 延长给药时间和减少毒副作用等优点, 因而具有广阔的应用前景。其中,5-氟尿嘧啶作为一种广谱性抗肿瘤药物,其疗效显著,但和大多数抗肿瘤药物一样,5-氟尿嘧啶的安全治疗范围相对较窄,毒性随剂量的增加而增加。大部分的药物在肝脏中分解代谢为没有活性的产物二氢嘧啶脱氢酶(DPD),血浆半衰期极短,体内仅5min,致使药物的生物利用率降低,需频繁给药。同时,5-氟尿嘧啶缺乏肿瘤细胞的选择性, 对非靶细胞和器官造成较大的不良反应,如消化道反应、骨髓抑制、 脱发、 内分泌失调等, 严重者甚至发生血性下泻而死亡,严重限制了5-氟尿嘧啶剂量的提高和疗效。Thant等研究发现亚硒酸钠和5-氟尿嘧啶联用后,改善了 5-氟尿嘧啶对结肠癌的耐药性 (Thant et al,  Anticancer Res.,2008,28:3579-3592)。 Schroeder等研究发现亚硒酸钠与5-氟尿嘧啶联合使用后,使5-氟尿嘧啶对SW620 结肠癌细胞的抗增殖作用提高了1.5 倍 (Schroeder et al, Biol. Trace Elem. Res.,2004,99:17-25. )。Rustum等研究发现硒对5-氟尿等化疗药物引起的细胞毒性有保护作用 (Fakih et al, Clin. Colorectal Cancer,2005,5:132-135.)。故而用5-氟尿嘧啶修饰纳米硒,一方面5-氟尿嘧啶以纳米硒为运输载体,提高生物利用率,降低所需剂量;另一方面高效低毒的纳米硒,可以降低5-氟尿嘧啶耐药、对化疗药不敏感的癌细胞通过硒杀伤,提高化疗的治愈率。同时纳米硒可以减少5-氟尿嘧啶对宿主细胞的毒副作用。这对进一步提高纳米硒和5-氟尿嘧啶的抗癌效果,临床应用的灵活性具有重要的意义。 
同样,阿霉素既含有脂溶性的蒽环配基,又有水溶性的柔红糖胺,有酸性酚羟基和碱性氨基,易于通过细胞膜,可多靶点起作用,疗效广泛,故而具有很强的抗肿瘤作用。阿霉素对肝癌细胞有特殊的疗效,并且它是通过抑制细胞核酸的生成来起到抗癌效果 (Swati et al,Cancer Nano, 2011, 10: 7-12.)。但是,P-糖蛋白的流出、心脏毒性、肾毒性、骨髓抑制和异构酶的限制导致阿霉素分布不均匀,限制阿霉素的疗效。然而,纳米粒子可以通过控制阿霉素的释放来减少对正常组织的毒副作用,并且阿霉素作为抗癌药物容易与纳米粒子形成共轭结合后更容易渗透到细胞里。
发明内容
    本发明的目的在于根据现有的对抗肿瘤药物的研究,提供一种可发挥抗肿瘤药物和纳米硒在抗肿瘤方面协同作用的抗肿瘤药物复合体系。该体系中,抗肿瘤药物在纳米硒中的负载率高,体系稳定性好。
    本发明上述目的通过以下技术方案予以实现:
    纳米硒在抗肿瘤药物载体中的应用,可以是如下两种方法:
    (1)常温常压下,将还原性溶液与抗肿瘤药物溶液混合均匀后,滴加二氧化硒溶液或亚硒酸盐溶液并搅拌,定容,反应1~24h,得到负载抗肿瘤药物的纳米硒溶胶;
    或者是:
    (2)常温常压下,将二氧化硒溶液或亚硒酸盐溶液与抗肿瘤药物溶液混合均匀后,滴加还原性溶液并搅拌,定容,反应1 ~ 24h,得到负载抗肿瘤药物的纳米硒溶胶。
    作为一种优选方案,上述两种方法中,所述还原性溶液为维生素C、谷胱甘肽、硼氢化钠或水合肼溶液;所述抗肿瘤药物为5-氟尿嘧啶、阿霉素、顺铂或紫杉醇;所述亚硒酸盐为亚硒酸钠。
    更进一步地,所述还原性溶液的浓度为0.2~100 mmol·L-1,二氧化硒或亚硒酸钠溶液的浓度为0.05 ~25 mmol·L-1,所述抗肿瘤药物溶液浓度为10~200 mg·L-1
    本发明上述方法制得的负载抗肿瘤药物的纳米硒溶胶的保存方式是在2~10℃下以溶胶或粉末形态保存。
    与现有技术相比,本发明具有如下有益效果:
(1)纳米硒的尺寸一般50~200纳米,在水溶液中具有较好的稳定性,具有较好的生物相容性,以此为载体覆载抗肿瘤药物可以实现高的载药量。
(2)以纳米硒作为载体覆载抗肿瘤药物能够克服多数抗肿瘤药物溶解性和稳定性差、血药浓度半衰期短、毒副作用大等诸多生物屏障。实现两者的协同作用,疗效高于纳米硒及抗肿瘤药物本身。
(3)抗肿瘤药物在结构上具有特殊性,具有羟基、氨基等结构,具有良好的亲水性,同时具有疏水链段,容易与纳米粒子形成共轭结合后更容易渗透到细胞里。 
(4)肿瘤药物修饰纳米硒后,得到了粒径较小、稳定性好、高效低毒的纳米粒子。增强了肿瘤细胞对抗肿瘤药物的吸收率,能显著降低临床上癌症化疗时大剂量使用硒所带来的毒害作用,同时减少抗癌药物在代谢过程中产生的毒副作用,同时还可发挥抗癌活性小分子和纳米硒的协同抗癌作用。为临床上癌症的联合化疗提供一种很好的优选方案。
(5)本文所制备的抗肿瘤药物修饰的纳米硒,操作简单,简便快捷。且本体系中以维生素C等为还原剂,以抗癌小分子对纳米硒进行功能化调控,不添加其他任何模板剂,避免了在实际应用中可能产生的不良效果。
附图说明
图1为5-氟尿嘧啶功能化纳米硒的TEM图 (A:纳米硒,B、C:5-氟尿嘧啶/纳米硒) 和粒径随时间的变化 (D);
图2为A: 5-氟尿嘧啶/纳米硒的EDX分析; B: 纳米硒、5-氟尿嘧啶/纳米硒、5-氟尿嘧啶的红外光谱图;
图3为纳米硒、阿霉素/纳米硒的SEM图;
图4为纳米硒、阿霉素、阿霉素纳米硒体系的红外光谱图;
图5为纳米硒、阿霉素/纳米硒液相中的的平均粒度及其分布图;
图6为(A) 2小时以后,包覆有香豆素6的5-氟尿嘧啶/纳米硒在不同浓度下对人体黑色素瘤细胞的吸收;(B) 40 μg·mL-1香豆素6纳米硒粒子在不同时间下对人体黑色素瘤细胞的吸收;
图7为香豆素6纳米粒子、纳米硒对人体黑色素瘤细胞吸收的定量分析;
图8为(A) MTT法测试得到5-氟尿嘧啶/纳米硒对不同细胞系的 I C50值;(B)
MTT法测试得5-氟尿嘧啶、纳米硒、5-氟尿嘧啶/纳米硒分别对A375人恶性黑色素瘤细胞的存活情况;
图9为5-氟尿嘧啶/纳米硒诱导的A375细胞的凋亡:(A) 用Epics XL-MCL流式细胞仪分析5-氟尿嘧啶/纳米硒诱导的A375细胞周期变化, (B) 用TUNEL和DAPI法(Nikon Eclipse 80i荧光显微镜)检测5FU-NanoSe诱导的A375细胞的凋亡时DNA断裂和染色质固缩图;
图10为5-氟尿嘧啶/纳米硒诱导的caspase独立的A375细胞的凋亡:(A) 5-氟尿嘧啶/纳米硒诱导的caspase 3、8、9的活性,(B) 不同的caspase抑制剂对5-氟尿嘧啶/纳米硒诱导的A375细胞凋亡的影响;
图11为(A) 用Epics XL-MCL流式细胞仪 (Beckman Coulter, Miami, FL) 检测5-氟尿嘧啶/纳米硒诱导的A375细胞内线粒体膜电位的变化;(B) 用DCFH-DA荧光法分析A375细胞在不同浓度的5-氟尿嘧啶/纳米硒作用3小时下,细胞内的活性氧变化情况,(C) 一定浓度的5-氟尿嘧啶/纳米硒诱导的A375细胞凋亡,在不同时间细胞内的活性氧的变化情况,(D) 利用抗氧化剂N-乙酰半胱氨酸(NAC)观察5-氟尿嘧啶/纳米硒诱导的A375细胞凋亡中活性氧的变化情况。
具体实施方式
    以下结合实施例来进一步解释本发明,但实施例并不对本发明做任何形式的限定。
    实施例1  抗肿瘤药物功能化纳米硒粒子的制备
常温常压下(15 ~ 35 oC,1标准大气压),配制5 mmol·L-1的二氧化硒或亚硒酸钠和20 mmol·L-1维生素C等还原性溶液。配制32.5 mg·mL-1的5-氟尿嘧啶溶液。取适量抗肿瘤药物溶液,再加入浓度为25 mmol·L-1的维生素C等还原性溶液1.0 ml,轻轻摇匀使之混合充分后,滴加浓度为5 mmol·L-1的亚硒酸钠溶液1.0 ml,边滴加边轻轻摇匀,滴加完毕,加水定容至5 ml容量瓶中,待红色不再加深,将产物转移至4 ℃下在水溶液中以溶胶或粉末形态保存,反应时间为24小时。即得到纳米硒浓度为1 mmol·L-1,维生素C浓度为4 mmol·L-1。  
实施例2  抗肿瘤药物功能化纳米硒粒子的制备   
常温常压下(15 ~ 35 oC,1标准大气压),配制5 mmol·L-1的二氧化硒或亚硒酸钠和20 mmol·L-1维生素C等还原性溶液。配制32.5 mg·mL-1的5-氟尿嘧啶溶液。取浓度为20 mmol·L-1的维生素C等还原性溶液1.0 ml,滴加浓度为5 mmol·L-1的亚硒酸钠溶液1.0 ml,边滴加边轻轻摇匀,加入适量抗肿瘤药物溶液,再加入轻轻摇匀使之混合充分后,滴加完毕,加水定容至5 ml容量瓶中,待红色不再加深,将产物转移至4 ℃下在水溶液中以溶胶或粉末形态保存,反应时间为24小时。即得到纳米硒浓度为1 mmol·L-1,维生素C浓度为4 mmol·L-1
实施例3  5-氟尿嘧啶功能化纳米硒粒子的制备
常温常压下(15 ~ 35 oC,1标准大气压),配制5 mmol·L-1的亚硒酸钠和20 mmol·L-1 维生素C溶液各10 ml。配制32.5 mg·mL-1 的5-氟尿嘧啶溶液。然后再加入浓度为20 mmol·L-1的维生素C溶液1.0 ml,轻轻摇匀使之混合充分后,滴加浓度为5 mmol·L-1的亚硒酸钠溶液1.0 ml,边滴加边轻轻摇匀,滴加完毕,加水定容至5 ml容量瓶中,待红色不再加深,将产物转移至4 ℃下在水溶液中以溶胶或粉末形态保存,反应时间为24小时。即得到纳米硒浓度为1 mmol·L-1,维生素C浓度为4 mmol·L-1,5-氟尿嘧啶浓度为6.5 mg·mL-1的产物。用TECNAI-10型透射电子显微镜(Philips)表征的纳米硒和5-氟尿嘧啶功能化纳米硒形貌;由结果可知5-氟尿嘧啶对纳米硒功能化后得到了规则球形纳米粒子,并对纳米硒有很好的分散作用 (图1,A-C); Nano-ZS (Malvern Insruments Limited) 测定产物中的纳米粒子粒径分布随时间变化的稳定性;分析得出5-氟尿嘧啶功能化纳米硒后其粒子稳定性可以维持6天 (图1,D)。用能量分散型X射线分析装置 (EX-250, Horiba) 对5-氟尿嘧啶功能化纳米硒进行元素分析,分析得出得纳米硒表面含有C、N、O、F元素,说明纳米硒表面包覆有5-氟尿嘧啶 (图2,A); 用傅立叶变换红外光谱仪表征5-氟尿嘧啶和5-氟尿嘧啶功能化纳米硒谱峰变化;分析得出纳米硒与5-氟尿嘧啶作用后,其红外光谱中出现了5-氟尿嘧啶的特征峰,并且有峰的蓝移现象发生,说明纳米硒与5-氟尿嘧啶发生了相互作用 (图2,B)。 
实施例4  阿霉素功能化纳米硒粒子的制备  
常温常压下(15 ~ 35 oC,1标准大气压),配制5 mmol·L-1的亚硒酸钠和20 mmol·L-1 维生素C溶液各10 ml。取2.7 mg·mL-1的阿霉素溶液150 μl 加入至5 ml容量瓶中,然后再加入浓度为20 mmol·L-1的维生素C溶液1.0 ml,轻轻摇匀使之混合充分后,滴加浓度为5 mmol·L-1的亚硒酸钠溶液1.0 ml,边滴加边轻轻摇匀,滴加完毕,加水定容至5 ml容量瓶中,待红色不再加深,将产物转移至4 ℃下在水溶液中以溶胶或粉末形态保存,反应时间为24小时。即得到纳米硒浓度为1 mmol·L-1,维生素C浓度为4 mmol·L-1,阿霉素浓度为0.54 mg·mL-1的产物。用能量分散型X射线分析装置 (EX-250, Horiba) 表征的阿霉素功能化纳米硒扫描形貌图;分析得出,纳米硒与阿霉素作用后其形貌发生了变化,阿霉素对纳米硒有调控修饰作用(图3)。用傅立叶变换红外光谱仪表征阿霉素和阿霉素功能化纳米硒谱峰变化;分析得出纳米硒与阿霉素作用后,其红外光谱中出现了阿霉素的特征峰,并且有峰的蓝移现象发生,说明纳米硒与阿霉素发生了相互作用(图4)。Nano-ZS (Malvern Insruments Limited) 测定产物中的纳米粒子粒径分布情况;分析得出阿霉素功能化纳米硒后粒径主要集中在100纳米左右(图5)。用酶标仪测试阿霉素功能化纳米硒溶液中的阿霉素含量,用ICP-MS测量阿霉素功能化纳米硒溶液中的硒含量,通过计算得出纳米硒与阿霉素的摩尔比为1 :1,由此说明一个纳米硒粒子表面包覆有一个阿霉素。  
实施例5  含有香豆素6的5-氟尿嘧啶/纳米硒对人体黑色素瘤细胞的吸收
常温常压下(15 ~ 35 oC,1标准大气压),配制5 mmol·L-1的亚硒酸钠和20 mmol·L-1维生素C溶液各10 ml。配制32.5 mg·mL-1的5-氟尿嘧啶溶液。然后再加入浓度为20 mmol·L-1的维生素C溶液1.0 ml,轻轻摇匀使之混合充分后,滴加浓度为5 mmol·L-1的亚硒酸钠溶液1.0 ml,边滴加边轻轻摇匀,随后加入400 μ L 浓度为1 mg·mL-1的香豆素6溶液 ,滴加完毕,加水定容至5 ml容量瓶中,待红色不再加深,将产物转移至4℃下在水溶液中以溶胶或粉末形态保存,反应24小时以后。即得到纳米硒浓度为1 mmol·L-1,维生素C浓度为4 mmol·L-1,5-氟尿嘧啶浓度为6.5 mg·mL-1的产物,香豆素6浓度为0.08 mg·mL-1的产物。产物经过24 h透析(截留分子量6000)后经硝化ICP方法测定5-氟尿嘧啶功能化纳米硒水溶胶中硒含量,定量后的透析产物进行细胞吸收实验。用Nikon Eclipse 80i荧光显微镜测试含有荧光染料(香豆素6)的5-氟尿嘧啶/纳米硒 (5FU-NanoSe) 对人体黑色素瘤细胞的吸收,分析结果表明,人体黑色素瘤细胞对含有荧光染料(香豆素6)的5-氟尿嘧啶/纳米硒的吸收随着时间和剂量的增加而增加(图6和图7)。
实施例6、5-氟尿嘧啶调控纳米硒抗肿瘤活性与凋亡机制测试
常温常压下(15 ~ 35 oC,1标准大气压),配制5 mmol·L-1的亚硒酸钠和20 mmol·L-1维生素C溶液各10 ml。配制32.5 mg·mL-1的5-氟尿嘧啶溶液。然后再加入浓度为20 mmol·L-1的维生素C溶液1.0 ml,轻轻摇匀使之混合充分后,滴加浓度为5 mmol·L-1的亚硒酸钠溶液1.0 ml,边滴加边轻轻摇匀,滴加完毕,加水定容至5 ml容量瓶中,待红色不再加深,将产物转移至4 ℃下在水溶液中以溶胶或粉末形态保存,反应24小时以后。即得到纳米硒浓度为1 mmol·L-1,维生素C浓度为20 mmol·L-1,5-氟尿嘧啶浓度为6.5 mg·mL-1的产物。产物经过24 h透析(截留分子量6000)后经硝化ICP方法测定5-氟尿嘧啶功能化纳米硒水溶胶中硒含量,定量后的透析产物进行抗肿瘤细胞活性实验。用MTT比色法(SpectroAmaxTM250)检测5-氟尿嘧啶功能化纳米硒抑制A375人恶性黑色素瘤细胞、MCF-7乳腺癌细胞、HepG2人肝癌细胞、PC-3人胰腺癌细胞和Hs68人正常龟头细胞的IC50值;有结果得出5-氟尿嘧啶功能化纳米硒对癌细胞有很好的活性,而对正常细胞的毒性却很小,说明5-氟尿嘧啶/纳米硒在癌细胞和正常细胞之间有很好的选择性(图8,A);用MTT比色法(SpectroAmaxTM250)对比5-氟尿嘧啶、纳米硒、5-氟尿嘧啶/纳米硒分别抑制A375人恶性黑色素瘤细胞的情况,分析结果得出,5-氟尿嘧啶/纳米硒对癌细胞有很好的协同抑制作用,实验结果也再一次的证明以纳米硒作为载体覆载抗肿瘤药物对癌症有很好的抑制作用。用Epics XL-MCL流式细胞仪分析5-氟尿嘧啶/纳米硒诱导的A375细胞周期变化,结果表明5-氟尿嘧啶/纳米硒对癌细胞的杀伤作用是通过凋亡机制引起(图8, B);用TUNEL和DAPI法(Nikon Eclipse 80i荧光显微镜)检测5-氟尿嘧啶/纳米硒诱导A375人恶性黑色素瘤细胞株系凋亡时DNA断裂和染色质固缩,分析结果表明5-氟尿嘧啶/纳米硒诱导了癌细胞的DNA断裂和染色质固缩,说明5-氟尿嘧啶/纳米硒引起了细胞的凋亡 (图9)。用EpicsXL-MCL流式细胞仪 (Beckman Coulter, Miami, FL) 检测5-氟尿嘧啶/纳米硒诱导的caspase独立的A375细胞的凋亡通路,结果表明5-氟尿嘧啶/纳米硒通过线粒体通路来诱导细胞的凋亡(图10)。用Epics XL-MCL流式细胞仪 (Beckman Coulter, Miami, FL) 检测5-氟尿嘧啶/纳米硒诱导的A375人体黑色素瘤细胞内线粒体膜电位的变化,(图11, A);用DCFH-DA荧光法分析A375人体黑色素瘤细胞在不同浓度的5-氟尿嘧啶/纳米硒作用3小时下,细胞内的活性氧变化情况,(图11, B);用DCFH-DA荧光法分析A375人体黑色素瘤细胞在不同时间下的5-氟尿嘧啶/纳米硒作用3小时下,细胞内的活性氧变化情况,(图11, C);利用抗氧化剂N-乙酰半胱氨酸(NAC)观察5-氟尿嘧啶/纳米硒诱导的A375细胞凋亡中活性氧的变化情况,(图11,D); 结果表明,5-氟尿嘧啶/纳米硒通过活性氧来损伤线粒体引起细胞凋亡。

Claims (7)

1.纳米硒在抗肿瘤药物载体中的应用,其特征在于包括如下步骤:常温常压下,将还原性溶液与抗肿瘤药物溶液混合均匀后,滴加二氧化硒溶液或亚硒酸盐溶液并搅拌,定容,反应1 ~ 24 h,得到负载抗肿瘤药物的纳米硒溶胶。
2.纳米硒在抗肿瘤药物载体中的应用,其特征在于包括如下步骤:常温常压下,将二氧化硒溶液或亚硒酸盐溶液与抗肿瘤药物溶液混合均匀后,滴加还原性溶液并搅拌,定容,反应1 ~ 24 h,得到负载抗肿瘤药物的纳米硒溶胶。
3.权利要求1或2所述纳米硒在抗肿瘤药物载体中的应用,其特征在于所述还原性溶液为维生素C、谷胱甘肽、硼氢化钠或水合肼溶液。
4.权利要求1或2所述纳米硒在抗肿瘤药物载体中的应用,其特征在于所述抗肿瘤药物为5-氟尿嘧啶、阿霉素、顺铂或紫杉醇。
5.权利要求1或2所述纳米硒在抗肿瘤药物载体中的应用,其特征在于所述亚硒酸盐为亚硒酸钠。
6.权利要求1或2所述纳米硒在抗肿瘤药物载体中的应用,其特征在于所述还原性溶液的浓度为0.2 ~ 100 mmol·L-1,二氧化硒或亚硒酸钠溶液的浓度为0.05 ~ 25 mmol·L-1,所述抗肿瘤药物溶液浓度为10 ~ 200 mg·mL-1
7.权利要求1或2所述纳米硒在抗肿瘤药物载体中的应用,其特征在于所述方法制得的负载抗肿瘤药物的纳米硒溶胶的保存方式是在2 ~ 10℃下以溶胶或粉末形态保存。
CN201110215019A 2011-07-29 2011-07-29 纳米硒在抗肿瘤药物载体中的应用 Pending CN102327620A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110215019A CN102327620A (zh) 2011-07-29 2011-07-29 纳米硒在抗肿瘤药物载体中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110215019A CN102327620A (zh) 2011-07-29 2011-07-29 纳米硒在抗肿瘤药物载体中的应用

Publications (1)

Publication Number Publication Date
CN102327620A true CN102327620A (zh) 2012-01-25

Family

ID=45479746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110215019A Pending CN102327620A (zh) 2011-07-29 2011-07-29 纳米硒在抗肿瘤药物载体中的应用

Country Status (1)

Country Link
CN (1) CN102327620A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113277A (zh) * 2013-03-05 2013-05-22 清华大学 含硒化合物及其制备方法、药物组合物
CN103976956A (zh) * 2014-05-16 2014-08-13 暨南大学 一种靶向抗肝癌纳米粒子及其制备方法和应用
CN104138602A (zh) * 2014-07-29 2014-11-12 暨南大学 抗ⅱ型糖尿病长效纳米复合肽及其制备方法与应用
CN104383543A (zh) * 2014-11-24 2015-03-04 暨南大学 手性纳米硒材料负载siRNA在制备抗肿瘤药物的应用
CN104997804A (zh) * 2015-05-25 2015-10-28 暨南大学 一种层状双金属氢氧化物/硒纳米复合物及其应用
CN105906540A (zh) * 2016-05-06 2016-08-31 清华大学 化合物及其制备方法和应用
CN106692181A (zh) * 2017-01-23 2017-05-24 暨南大学 纳米硒作为cik细胞增敏剂的应用
CN108272818A (zh) * 2018-04-27 2018-07-13 南充市中心医院 一种抗肿瘤无机含硒纳米颗粒及其制备方法和应用
CN108514564A (zh) * 2018-04-13 2018-09-11 广州市妇女儿童医疗中心 具有抗h1n1流感病毒活性的阿比朵尔功能化纳米硒及其制备与应用
CN108653742A (zh) * 2018-03-26 2018-10-16 广州市妇女儿童医疗中心 一种纳米硒-金刚烷胺复合纳米药物载体的制备方法和应用
CN108743949A (zh) * 2018-05-04 2018-11-06 广州市妇女儿童医疗中心 纳米硒负载利巴韦林及其制备方法与应用
CN108841822A (zh) * 2018-05-04 2018-11-20 广州市妇女儿童医疗中心 纳米硒负载VP1基因siRNA及其制备方法与应用
CN108936149A (zh) * 2018-05-21 2018-12-07 胡宪蕴 一种含纳米硒的多元素复合补充剂及应用
CN108969532A (zh) * 2018-10-22 2018-12-11 安徽农业大学 硒元素在制备减轻因化疗药所致毒副作用的药物中的应用
CN109010843A (zh) * 2018-09-05 2018-12-18 广东医科大学 木犀草素-纳米硒复合物及其应用
CN109317083A (zh) * 2018-11-05 2019-02-12 暨南大学 纳米硒在制备dna免疫吸附剂中的应用
CN109521193A (zh) * 2018-11-05 2019-03-26 暨南大学 DNA免疫吸附剂在制备抗dsDNA抗体检测试剂中的应用
CN109536553A (zh) * 2018-11-30 2019-03-29 集美大学 一种糖肽纳米硒溶胶的制备方法
CN109965282A (zh) * 2019-01-31 2019-07-05 华南农业大学 利用黑茶纳米聚集体联用纳米硒构建功能强化型Pickering乳液及制备方法和应用
CN113663122A (zh) * 2021-08-24 2021-11-19 陕西科技大学 一种抗炎、抗菌、抗肿瘤的多功能水凝胶材料及其制备方法和应用
CN114045260A (zh) * 2021-11-16 2022-02-15 暨南大学 一种纳米硒微粒体系及其制备方法与应用、调节性免疫细胞及其预处理方法
CN114053291A (zh) * 2021-11-13 2022-02-18 暨南大学 双靶向纳米硒-阿霉素复合物在铂耐药恶性肿瘤治疗的应用
CN114099714A (zh) * 2021-11-13 2022-03-01 暨南大学 双重靶向纳米硒复合材料在恶性肿瘤术中显影的应用
CN114763533A (zh) * 2022-05-17 2022-07-19 深圳市第二人民医院(深圳市转化医学研究院) 外泌体表面原位生长纳米硒的方法及得到的硒化外泌体
WO2023082220A1 (zh) * 2021-11-13 2023-05-19 广东暨创硒源纳米研究院有限公司 功能化纳米硒联合二甲双胍制备的nk细胞增敏剂及应用
CN116199190A (zh) * 2023-02-28 2023-06-02 广州今盛美精细化工有限公司 一种具有抗氧化作用的纳米硒及其制备方法和应用
WO2023236700A1 (zh) * 2022-06-07 2023-12-14 香港理工大学 一种功能化纳米硒水溶胶于抗肿瘤方面的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1720053A (zh) * 2002-12-10 2006-01-11 健康研究股份有限公司 降低抗癌药物毒性的方法
CN1787814A (zh) * 2003-05-13 2006-06-14 健康研究股份有限公司 增加抗癌药剂抗肿瘤活性的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1720053A (zh) * 2002-12-10 2006-01-11 健康研究股份有限公司 降低抗癌药物毒性的方法
CN1787814A (zh) * 2003-05-13 2006-06-14 健康研究股份有限公司 增加抗癌药剂抗肿瘤活性的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《中国优秀硕士学位论文全文数据库》 20090530 徐航 "抗癌药物纳米硒偶合物的制备与表征" 18-19 1-7 , *
徐航: ""抗癌药物纳米硒偶合物的制备与表征"", 《中国优秀硕士学位论文全文数据库》, 30 May 2009 (2009-05-30), pages 18 - 19 *
李泽甫等: "纳米硒的制备与应用研究进展", 《当代化工》, vol. 40, no. 4, 28 April 2011 (2011-04-28), pages 396 - 399 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113277B (zh) * 2013-03-05 2014-07-16 清华大学 含硒化合物及其制备方法、药物组合物
CN103113277A (zh) * 2013-03-05 2013-05-22 清华大学 含硒化合物及其制备方法、药物组合物
CN103976956A (zh) * 2014-05-16 2014-08-13 暨南大学 一种靶向抗肝癌纳米粒子及其制备方法和应用
CN103976956B (zh) * 2014-05-16 2016-08-24 暨南大学 一种靶向抗肝癌纳米粒子及其制备方法和应用
CN104138602B (zh) * 2014-07-29 2016-09-14 暨南大学 抗ⅱ型糖尿病长效纳米复合肽及其制备方法与应用
CN104138602A (zh) * 2014-07-29 2014-11-12 暨南大学 抗ⅱ型糖尿病长效纳米复合肽及其制备方法与应用
CN104383543A (zh) * 2014-11-24 2015-03-04 暨南大学 手性纳米硒材料负载siRNA在制备抗肿瘤药物的应用
CN104383543B (zh) * 2014-11-24 2017-11-21 暨南大学 手性纳米硒材料负载siRNA在制备抗肿瘤药物的应用
CN104997804A (zh) * 2015-05-25 2015-10-28 暨南大学 一种层状双金属氢氧化物/硒纳米复合物及其应用
CN104997804B (zh) * 2015-05-25 2018-06-29 暨南大学 一种层状双金属氢氧化物/硒纳米复合物及其应用
CN105906540A (zh) * 2016-05-06 2016-08-31 清华大学 化合物及其制备方法和应用
CN105906540B (zh) * 2016-05-06 2018-04-20 清华大学 化合物及其制备方法和应用
CN106692181A (zh) * 2017-01-23 2017-05-24 暨南大学 纳米硒作为cik细胞增敏剂的应用
CN108653742A (zh) * 2018-03-26 2018-10-16 广州市妇女儿童医疗中心 一种纳米硒-金刚烷胺复合纳米药物载体的制备方法和应用
CN108514564A (zh) * 2018-04-13 2018-09-11 广州市妇女儿童医疗中心 具有抗h1n1流感病毒活性的阿比朵尔功能化纳米硒及其制备与应用
CN108272818A (zh) * 2018-04-27 2018-07-13 南充市中心医院 一种抗肿瘤无机含硒纳米颗粒及其制备方法和应用
CN108272818B (zh) * 2018-04-27 2020-08-07 南充市中心医院 一种抗肿瘤无机含硒纳米颗粒及其制备方法和应用
CN108743949A (zh) * 2018-05-04 2018-11-06 广州市妇女儿童医疗中心 纳米硒负载利巴韦林及其制备方法与应用
CN108841822A (zh) * 2018-05-04 2018-11-20 广州市妇女儿童医疗中心 纳米硒负载VP1基因siRNA及其制备方法与应用
CN108936149A (zh) * 2018-05-21 2018-12-07 胡宪蕴 一种含纳米硒的多元素复合补充剂及应用
CN109010843A (zh) * 2018-09-05 2018-12-18 广东医科大学 木犀草素-纳米硒复合物及其应用
CN109010843B (zh) * 2018-09-05 2021-07-13 广东医科大学 木犀草素-纳米硒复合物及其应用
CN108969532A (zh) * 2018-10-22 2018-12-11 安徽农业大学 硒元素在制备减轻因化疗药所致毒副作用的药物中的应用
CN109317083A (zh) * 2018-11-05 2019-02-12 暨南大学 纳米硒在制备dna免疫吸附剂中的应用
CN109521193A (zh) * 2018-11-05 2019-03-26 暨南大学 DNA免疫吸附剂在制备抗dsDNA抗体检测试剂中的应用
CN109317083B (zh) * 2018-11-05 2021-03-19 暨南大学 纳米硒在制备dna免疫吸附剂中的应用
CN109521193B (zh) * 2018-11-05 2021-03-19 暨南大学 DNA免疫吸附剂在制备抗dsDNA抗体检测试剂中的应用
CN109536553A (zh) * 2018-11-30 2019-03-29 集美大学 一种糖肽纳米硒溶胶的制备方法
CN109965282A (zh) * 2019-01-31 2019-07-05 华南农业大学 利用黑茶纳米聚集体联用纳米硒构建功能强化型Pickering乳液及制备方法和应用
CN109965282B (zh) * 2019-01-31 2023-05-05 华南农业大学 利用黑茶纳米聚集体联用纳米硒构建功能强化型Pickering乳液及制备方法和应用
CN113663122A (zh) * 2021-08-24 2021-11-19 陕西科技大学 一种抗炎、抗菌、抗肿瘤的多功能水凝胶材料及其制备方法和应用
CN114053291A (zh) * 2021-11-13 2022-02-18 暨南大学 双靶向纳米硒-阿霉素复合物在铂耐药恶性肿瘤治疗的应用
CN114099714A (zh) * 2021-11-13 2022-03-01 暨南大学 双重靶向纳米硒复合材料在恶性肿瘤术中显影的应用
WO2023082220A1 (zh) * 2021-11-13 2023-05-19 广东暨创硒源纳米研究院有限公司 功能化纳米硒联合二甲双胍制备的nk细胞增敏剂及应用
CN114053291B (zh) * 2021-11-13 2023-09-05 暨南大学 双靶向纳米硒-阿霉素复合物在铂耐药恶性肿瘤治疗的应用
CN114099714B (zh) * 2021-11-13 2023-10-20 暨南大学 双重靶向纳米硒复合材料在恶性肿瘤术中显影的应用
CN114045260A (zh) * 2021-11-16 2022-02-15 暨南大学 一种纳米硒微粒体系及其制备方法与应用、调节性免疫细胞及其预处理方法
CN114045260B (zh) * 2021-11-16 2024-01-19 暨南大学 一种纳米硒微粒体系及其制备方法与应用、调节性免疫细胞及其预处理方法
CN114763533A (zh) * 2022-05-17 2022-07-19 深圳市第二人民医院(深圳市转化医学研究院) 外泌体表面原位生长纳米硒的方法及得到的硒化外泌体
CN114763533B (zh) * 2022-05-17 2024-02-23 深圳市第二人民医院(深圳市转化医学研究院) 外泌体表面原位生长纳米硒的方法及得到的硒化外泌体
WO2023236700A1 (zh) * 2022-06-07 2023-12-14 香港理工大学 一种功能化纳米硒水溶胶于抗肿瘤方面的应用
CN116199190A (zh) * 2023-02-28 2023-06-02 广州今盛美精细化工有限公司 一种具有抗氧化作用的纳米硒及其制备方法和应用
CN116199190B (zh) * 2023-02-28 2023-11-21 广州今盛美精细化工有限公司 一种具有抗氧化作用的纳米硒及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN102327620A (zh) 纳米硒在抗肿瘤药物载体中的应用
Anu et al. Biogenesis of selenium nanoparticles and their anti-leukemia activity
Du et al. Fabrication of cisplatin-loaded polydopamine nanoparticles via supramolecular self-assembly for photoacoustic imaging guided chemo-photothermal cancer therapy
Purushothaman et al. Magnetic casein-CaFe2O4 nanohybrid carrier conjugated with progesterone for enhanced cytotoxicity of citrus peel derived hesperidin drug towards breast and ovarian cancer
Di Martino et al. Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part I: curcumin
Makvandi et al. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy
Raju et al. Fabrication of pH responsive FU@ Eu-MOF nanoscale metal organic frameworks for lung cancer therapy
Menon et al. Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles
Yang et al. Near‐infrared‐controlled, targeted hydrophobic drug‐delivery system for synergistic cancer therapy
Al-Zoubi et al. Nanomedicine tactics in cancer treatment: Challenge and hope
Yew et al. Potential anticancer activity of protocatechuic acid loaded in montmorillonite/Fe3O4 nanocomposites stabilized by seaweed Kappaphycus alvarezii
Cheng et al. Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy
Wojnicki et al. Tissue distribution of gold nanoparticles after single intravenous administration in mice
CN108295257A (zh) 一种石墨炔纳米片基多功能载药体系及其制备方法和应用
Izadiyan et al. Anticancer activity of 5-fluorouracil-loaded nanoemulsions containing Fe3O4/Au core-shell nanoparticles
CN106421784A (zh) 一种具有光热效应的纳米药物载体及其制备方法及应用
Wang et al. Pectin mediated green synthesis of Fe3O4/Pectin nanoparticles under ultrasound condition as an anti-human colorectal carcinoma bionanocomposite
Ma et al. Green decorated gold nanoparticles on magnetic nanoparticles mediated by Calendula extract for the study of preventive effects in streptozotocin-induced gestational diabetes mellitus rats
Liu et al. Theranostic applications of selenium nanomedicines against lung cancer
CN109846857A (zh) 一种活性天然超分子光敏剂的制备方法及其应用
Lu et al. Hypoxia-overcoming breast-conserving treatment by magnetothermodynamic implant for a localized free-radical burst combined with hyperthermia
Tian et al. Engineering of an endogenous hydrogen sulfide responsive smart agent for photoacoustic imaging-guided combination of photothermal therapy and chemotherapy for colon cancer
Alavijeh et al. Cancer therapy by nano MIL-n series of metal-organic frameworks
Huang et al. Tumor microenvironment–responsive versatile “Trojan horse” theranostic nanoplatform for magnetic resonance imaging–guided multimodal synergistic antitumor treatment
Gandomi et al. ROS, pH, and magnetically responsive ZnFe2O4@ l-Cysteine@ NGQDs nanocarriers as charge-reversal drug delivery system for controlled and targeted cancer chemo-sonodynamic therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120125