CN102326338B - 用于功能受限装置的波束成形训练方法及装置 - Google Patents

用于功能受限装置的波束成形训练方法及装置 Download PDF

Info

Publication number
CN102326338B
CN102326338B CN201080008781.9A CN201080008781A CN102326338B CN 102326338 B CN102326338 B CN 102326338B CN 201080008781 A CN201080008781 A CN 201080008781A CN 102326338 B CN102326338 B CN 102326338B
Authority
CN
China
Prior art keywords
beamforming training
frame
training
sector
wave beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080008781.9A
Other languages
English (en)
Other versions
CN102326338A (zh
Inventor
P·凯夫勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Publication of CN102326338A publication Critical patent/CN102326338A/zh
Application granted granted Critical
Publication of CN102326338B publication Critical patent/CN102326338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种用来配置用于选择与其它装置相对应的定向通信信号的天线系统的系统。作为在发起装置和响应方装置之间协调的波束成形训练操作的结果,可以选择定向通信信号。可通过例如可以是功能受限的发起装置来请求特定模式和/或特征。当形成用于发射到发起方的波束成形训练集合时,响应方可以考虑这些被请求的模式和/或特征。

Description

用于功能受限装置的波束成形训练方法及装置
技术领域
本发明的各种示例实施例涉及无线通信的配置,并且特别地,涉及使用波束成形训练处理(其确定和选择了发射和接收方向)的定向通信的配置。 
背景技术
新兴的宽带应用(诸如无线高清晰多媒体接口(wHDMI)、无线游戏接口、无线高速回程和内容分发服务等)已经驱使了在用于短距离无线通信的超高速无线网络中的技术进步。鉴于在60GHz毫米频带(毫米波)中充裕的未经许可频谱的全球可用性,设计者已经以该频带为目标来实现高速和/或高容量无线网络。在至少一种情形下,当前发展中的超高吞吐量(VHT)无线局域网(WLAN)的标准正在瞄准在1Gbps数据速率上的超高吞吐量目标。 
然而,在毫米波(mmWave)频带中实现无线通信架构呈现了很多挑战。例如,潜在的新无线电设计将基本上受到链路预算约束的影响。特别地,当与较低频带系统相比较时,会对在该频谱(毫米波频带)内操作的通信载波产生影响的非常高的自由空间传播损耗、较高的透射、反射和散射损耗以及大气氧吸收(atmospheric oxygen absorption)严重限制了在毫米波频带中的覆盖范围。 
在毫米波频带中已经变得明显的对环境影响的增加的敏感性可能影响通信的整个操作效率。由于例如不稳定的连接而造成无线信号质量可能受损,并且对丢失分组的重传可能显著地影响通信性能,以及依赖于这些资源的其它系统。结果,可通过在60GHz频带中操作而实现的任何容量益处可能因此在某种程度上由于差的通信性能而失效。 
发明内容
按照各种实施例,本发明的示例实现可以至少针对一种处理、计算机程序、装置和系统,用于促进对于与期望与之进行无线通信的装置相对应的定向通信信号的选择。按照本发明的至少一个示例实施例,训练处理可以包括:在前向和/或反向方向上的发射扇区扫掠(transmit sector sweeps)(TxSS),之后接着是波束精化处理(beam-refinement process)。该TxSS步骤可涉及:从发射机发射在一系列发射扇区(它们之间具有已知的时间间隔)上进行操纵(steer)的波束成形训练帧(BFT)。 
在从发射机发射TxSS帧期间,接收机可以处于准全向接收模式(quasi-omni receive mode),在此期间,来自发射侧的波束成形增益得到利用,而在接收侧没有增益。然而,可能存在以下情形:装置仅支持固定波束增益,或者具有有限的定向发射和/或接收能力。此外,应当可基于进行请求的站台的偏好来配置或定制波束成形训练,这可以根据活动应用的要求、功率消耗和信道互惠条件或者天线配置限制而变化。 
前述总结包括了并不旨在是限制性的本发明的示例实施例。以上实施例仅用于解释在本发明的实现中可以利用的所选方面或步骤。然而,容易显而易见的是,可以将涉及一示例实施例的一个或多个方面或步骤与其它实施例的一个或多个方面或步骤进行组合,以便产生仍然在本发明的范围之内的新实施例。因此,本领域普通技术人员将理解,本发明的各种实施例可以合并来自其它实施例的方面,或者可以结合其它实施例来实现。 
附图说明
根据结合附图进行的下面的详细描述和示例实现,可以理解本发明的各种示例实施例,在附图中: 
图1A公开了根据本发明至少一个实施例的经由无线通信进行交互的装置的例子。 
图1B公开了与先前图1A中所描述的装置相对应的功能布局的例子。 
图2公开了根据本发明至少一个实施例的通过调整天线系统的相位的波束成形的例子。 
图3公开了根据本发明至少一个实施例的包括可调整的天线系统的装置的示例交互。 
图4公开了根据本发明至少一个实施例的私有基本服务集合(a private basic service set)(PBSS)和PBSS中的信标间隔结构的例子。 
图5公开了根据本发明至少一个实施例的扇区级训练的双向缺省模式的例子。 
图6公开了根据本发明的至少一个实施例的可使用的BFT通信帧和字段参数的例子。 
图7公开了根据本发明至少一个实施例的可使用的BFT反馈通信帧和字段参数的例子。 
图8公开了根据本发明至少一个实施例的非对称扇区训练的例子。 
图9公开了根据本发明至少一个实施例的当要针对基于竞争的时段(CBP)请求BFT训练时波束成形训练设定处理的例子。 
图10公开了根据本发明至少一个实施例的双向扇区训练的例子。 
图11公开了根据本发明至少一个实施例的可使用的扩展型BFT帧的例子。 
图12公开了根据本发明至少一个实施例的可使用的请求帧结构和字段参数的例子。 
图13公开了根据本发明至少一个实施例的朝向(在固定方向接收情况下的)固定波束装置的定向的私有基本服务集合控制点(PCP)发射的例子。 
图14A公开了根据本发明至少一个实施例的示例处理的流程图。 
图14B公开了根据本发明至少一个实施例的另一示例处理的流程图。 
具体实施方式
尽管下面已经针对一个或多个实现例子描述了本申请,但是在不背离如在所附权利要求中描述的本发明的精神和范围的情况下,可以在其中进行各种更改。 
为了克服当实现例如60GHz无线电架构时可能经历的潜在巨大的路径损耗,用于调整在发射和接收两侧的多单元天线系统的波束成形技术可能变得很重要。在很多信号环境中,在多径操作中缺乏显著的散射或丰富性可能减少了致力于增加频谱效率的常规多输入多输出(MIMO)空间复用方案的适用性。结果,需要以朝着最佳波束方向的发射和接收为目的以便使单个空间数据流的信噪比(SNR)最大化的简单波束成形技术。在该频带中给定小得多的波长(例如,对于60GHz是5mm),可以在相对小的区域中构造大量的天线单元,它们可以进一步与RF前端中的其它RF组件集成。为了扩展覆盖的范围,这些天线系统可以配备有波束操纵能力,以便集中于发射和接收的最佳方向。天线系统可以进一步包括在期望的扇区方向上具有扇区切换能力的多个扇区化天线。 
图1A公开了包括在此将利用的两个装置的例子,以便解释本发明的各种示例实现。尽管图1A中示出了包括第一站台(STA-A)和第二站台(STA-B)100的两个设备,但是本发明的不同实施例并不具体地限于该配置,而可以应用于多个设备交互的情形。例如,装置之一可以担当私有基本服务集合中的控制点(PBSS中的PCP)。此外,还可能存在装置之一仅临时担当PCP的情况,例如,在参与装置的角色不断发生改变的ad-hoc(特定)联网环境中。另外,STA-A 110和STA-B 100被示为分别耦合到外部天线系统112和102。尽管这些天线系统已经被示作与每个装置分离的实体,但是这种表示仅用于促进对本发明的各种实施例的公开。如以上所阐述的,用于在例如60GHz频带中使用的天线系统还可以在可合并于每个装置内的更紧凑的配置中实现(例如,作为集成电路或芯片集的一部分)。 
每个天线系统可以包括多个天线(例如,在114和104处所示)。天线系统中天线的数目可以取决于装置的特性。例如,在装置大小、功率、处理等上的限制可以指示在装置中可以支持的天线的数目。天线系统112和 102中的一些或所有天线114和104在任何给定时间可以是活动的,这可能导致例如在图1A的116处表示的通信信号。在图1A中公开的示例配置中,信号116以多方向模式操作。还可能存在以下情形:天线系统可以包括例如定向固定波束天线的切换集合。 
现在参照图1B,公开了根据本发明的至少一个实施例的示例设备配置。例如,在图1B中公开的基本布局可以应用于图1A中公开的示例装置中的一个或两个。处理部件120可以包括一个或多个数据处理组件,诸如微处理器、微控制器、分立逻辑电路、现场可编程门阵列(FPGA)等。处理部件120可以被配置以便在装置中实现各种活动,包括以下操作:利用输入数据、产生输出数据、在装置中触发动作,等等。这些操作可以包括但不限于:算术操纵、转换、编译、解译等。在这些活动中使用的信息和由这些活动创建的信息可以被存储在存储器130中,其可以经由有线或无线通信总线与处理部件120进行通信。 
存储部件130可以合并不同类型的静态或动态存储器。例如,只读存储器(ROM)和随机访问存储器(RAM)可以由来自一系列可用技术的组件构成,诸如磁、光和电存储介质。存储组件可以进一步被固定在装置中,或者可以从设备中移除,以便支持数据存储、加载、转移、备份等。可在存储器130中存储的信息的类型至少可以包括数据132和可执行体134。在数据132中的信息的类型可以包括数据库、文本、音频和/或视频(例如,多媒体)等。处理部件120可以利用用于实现装置中的各种活动的可执行信息134,包括使用数据132的操作。例如,操作系统136可以包括被配置以便为装置提供基线操作的至少一个可执行程序。 
在至少一个示例实现中,当与通信部件140交互时,处理部件120可以访问在存储器130中存储的信息,通信部件140可以至少包括无线支持144和设备内支持150。无线支持140可以包括与可访问物理层(PHY)144中的资源的一个或多个无线传输142相对应的资源,诸如天线或天线系统以及相应的支持硬件,以便与其它装置无线地进行通信。设备内支持150可以包括用于在装置的不同部件之间传递数据的有线和/或无线资源。通信140可 以视情况包括与其它形式的通信相对应的资源,诸如有线通信支持148。有线支持148可以包括例如耦合到有线通信介质所需要的任何硬件和/或软件。 
根据特定装置的配置,对装置预计的用途,等等,可与本发明的各种实施例一起使用的装置可以进一步包括用户接口功能性160,以及其它支持资源和配件170。例如,STA-A 110不一定会需要广泛的用户接口功能性,而可能包括诸如电池备份、安全性特征等的特征。另一方面,便携式无线设备可能需要更广泛的用户接口(例如,包括显示器、键板、扬声器、指点设备、扩音器等)以及与所期望的用户功能性相关的其它资源。 
在诸如毫米波通信的示例实现中,多个站台可以利用波束成形来扩展其范围。相对于本发明的各个实施例所描述的方法可以提供针对各种装置的训练需要(例如基于对其天线配置的限制或对其应用的链路要求)的有效解决方案。这样的波束成形训练机制要求灵活性和模块化,从而使得具有功能限制的装置可以选择性地仅实现它们期望的训练过程。 
根据本发明的至少一个示例实施例,来自控制点(诸如PCP)的波束成形训练帧的发射可以促进在具有波束成形能力的站台中的定向波束操纵和选择。为了增加覆盖的范围,60GHz WLAN AP 110和STA将都可能配备有具有波束操纵控制机制的多单元天线系统,图2中示出了其例子。在两端的高定向天线增益可以用于克服常在毫米波频带中实质存在的路径损耗。由于波长较小(60GHz中为5mm),可以在集成到RF前端的较小区域中,以线性或平面阵列配置来集成大量天线单元。如图2所示,天线系统中的一个或多个天线可以被调整以便在从这些天线射出的信号之间造成相长干涉(constructive interference)。相长干涉可能导致在特定方向上具有原始波的组合幅度的新波形(例如,如图2的116处所示),其在该方向上形成通信“波束”。在利用多个扇区天线配置的装置中,可以简单地通过以下方式来实现波束成形:切换到处于在波束成形训练操作期间被确定为最佳的方向上的天线扇区。 
图3中公开了用于配置通信波束的系统的例子。在STA-A 110中的数 字信息可以在数模转换器(D/A)300中被转换成模拟信号信息。来自D/A300的模拟信号信息可以在求和元件302中被组合成信号模拟信号用于传输。在阵列波束成形中,在发射机处使用预定义的权重向量w(如在304所示)以及在接收机处使用v(如在352所示)来控制对于多个天线单元的馈送输入信号的相位。相位控制306和360可以调整增益向量304和206,以便使朝着发射和接收的期望方向的天线增益最大化。 
然后,可以将模拟信号从天线单元319发送到天线单元350。如图3所示,本发明的各种实施例可以使用波束训练或波束成形训练来在特定方向上引导信号116和318,以便使信号的质量最大化。然后,可以由STA 100中的元件354和356来求和并组合信号信息,所得到的模拟信息被模数转换器(A/D)352转换回用于由STA 100使用的数字信息。发射能量可以集中于视线或较强的反射路径,而其它多径得到衰减。所使用的波束成形向量集合取决于阵列几何(诸如线性、圆形或平面阵列)以及所期望的波束方向。对于实际实现,在毫米波频带中可以使用通过集成射频(RF)移相器进行的波束切换。例如,相控阵列(phased array)可以被设计成包括波束成形控制资源,该波束成形控制资源被配置以便操纵来自一组多个固定波束的波束。这样的开环方案由于其简单性和低成本而对于60GHzWLAN系统中的实现来说是有吸引力的。由于不会需要来自接收机的信道信息的反馈,因此可以实现这些益处。 
在诸如STA-A 110和STA-B 100的两个装置可以开始根据定向通信波束来发射数据之前,必须在初始训练相位期间估计最高质量发射和接收波束或扇区方向。下面描述了按照本发明的至少一个实施例的示例配置。其它例子可以包括例如:可在两个站台之间、在站台与充当PCP的另一站台之间等发生的通信。 
私有基本服务集合(PBSS)网络结构(诸如在图4中公开的例子400中)是当前正在实现的架构。在该示例结构中,一个站台(STA)可以假设成PBSS控制点(PCP)的角色。PCP可以经由信标和公告帧来提供用于PBSS网络的基本定时。另外,PCP可以管理PBSS网络的服务质量 (QoS)、波束成形、空间重用、功率管理以及接入控制特征。通过类似TDMA超帧结构(具有对信标时间、波束成形训练时间、管理帧公告时间、数据服务时段以及基于竞争的信道接入时段的分配),可以促进信道接入。图4中公开了可以以这种方式使用的示例超帧402。 
波束成形协议以及促进对这些协议的使用的相应帧格式可能不支持所有的设备能力。本发明的各种示例实施例可以在诸如对于在毫米波WLAN系统中建立的PBSS网络的那些区域中提供波束成形训练支持。尽管已经并且将在此排他性地讨论WLAN,但是当描述本发明的各种示例实施例时,该焦点仅出于解释的目的。因而,在这些例子中使用WLAN、VHTWLAN或PBSS并不意在限制这些实施例的范围。 
现有方法基于单个协议流,其包括执行仅来自发射(TX)侧的粗略扇区训练,这后面是接收(RX)侧和发射侧天线权重向量(AWV)的持续精化(refinement)。在完成了用于波束精化的迭代时,从检测到精化的结束的站台发射最后的波束成形完成帧。然后假设接收站已经将其天线配置设置成在粗略扇区训练期间进行全向接收。然而,电池供电的设备可能具有射频(RF)硬件限制。例如,电池供电的装置通常仅在有限的定向(例如,扇区)覆盖上具有固定波束接收能力。在扇区化天线设备中出现的另一限制是可能并不应用全向接收假设。 
此外,常规的波束成形系统利用了将TX扇区级训练耦合到波束精化处理的单个协议流。因此,即使在训练开始之前,站台也必须估计将如何完成特定方面波束精化处理。后者的处理通常取决于在粗略训练结束处所获得的链路信噪比(SNR)的质量,以及站台的数据速率要求。可以通过将扇区级粗略训练与精细的波束精化处理相分离来模块化地设计波束成形协议,这可能允许更简单的实现以及在不同装置之间更好的互操作性测试。基于所假设的接收机配置而仅指定一个协议可能是有问题的,因为然后可能从波束成形的益处中排除具有有限资源、能力、功能性等的设备。在波束成形处理的两侧上的预期动作顺序在现有系统中可能非常严格,这妨碍了在功能受限的装置中可能常见的对功率消耗效率、处理需要和天线配置 的有益采用。 
根据本发明的至少一个实施例,粗略扇区级训练可以按照从已知的第一站台开始且其它站台跟随的固定顺序而是双向的。在完成了从反向方向的扇区级训练之后,在前向方向上提供反馈响应,且具有对确认帧的请求。结果,粗略扇区级训练现在可以从波束精化处理中脱离。此外,来自第一站台的一个或多个反馈响应可以允许基于其选择而灵活地控制来自其它站台的发射扇区扫掠帧。训练帧和消息的交换可以允许对信道互惠的有益采用,并且可以进一步导致粗略训练更快地完成,然后,粗略训练可以移动到精化级训练,或者替代地,在没有任何精化处理的情况下发起数据传输。 
还可以提供对于可能不能进行全向RX模式训练的接收机天线配置的新模式扇区级训练,以及在两个对等站台之间必要的初始训练设定交换。还可以提供用于设定相位的方法,在此期间,牵涉到PCP用于促进训练设定。如果基于竞争的信道接入时段被用于训练,则PCP可以提供介质预留(medium reservation)。当使用其它信道时间分配策略来实现时,PCP可以转发设定请求、响应帧,并且可以进一步分配用于训练的服务时段。基于从发起方站台接收到的请求以及从响应方接收到的基于其选择和/或能力的响应,可以允许不同的模式用于训练。扩展的波束成形训练帧设计可以用于实现接收侧扇区扫掠或AWV选择。诸如以上所描述的过程可以支持对于具有不同天线配置和偏好的站台的训练。 
本发明的各种示例实现还可以提供这样的机制,即,对于具有固定波束接收配置或仅Rx方向操纵的设备的站台,所述机制对相对于PCP的前向扇区方向的离线跟踪进行辅助。该功能性可能在PHY头部中需要用于特定管理和/或训练帧的字段,可以使用控制PHY来从PCP发射所述特定管理和/或训练帧,其中,附加字段可以含有针对用来发射该帧的当前PCP扇区的前向扇区标识(ID)信息。然后,可以通过经由被动扫描提供扇区标识(SECID)信息来缩短训练帧交换。例如,站台中的算法可能能够通过利用被动扫描先发性地(preemptively)获得信息来加快波束成形处理。可以在毫米波WLAN系统中实现低数据速率控制PHY物理层协议数据单 元(PPDU)格式。在没有任何波束成形增益的情况下,在站台可以使用波束成形化链路开始之前,需要某个通信链路来建立关联和/或波束成形训练。控制PHY可以提供稳健的低速率承载,用于交换管理和控制帧(包括例如:信标、关联请求/响应、公告帧)和用于在站台之间的波束成形训练之前以及在此其间交换信息。为初始粗略训练所交换的帧可以利用这样的控制PHY承载。 
波束成形可涉及在扇区级处的初始粗略训练以及精细的精化训练(以便微调AWV)。在此公开的本发明的各种示例实施例集中于粗略训练步骤。与致力于解决所有波束成形训练需要的单个协议流不同,初始粗略训练步骤可以脱离于后续的精化训练步骤。 
根据本发明的各种示例实施例,双向发射扇区扫掠步骤可以被认为是当尚未利用在先请求来设定训练机制时会使用的缺省或常用训练模式。如上所述,该方法脱离于后面的波束精化,并且还可以被修改成允许对于站台的附加控制和灵活性。该操作模式可能不需要对站台能力的任何先验知识,并且可以用于提供在PCP与PBSS中的其它站台之间的波束成形训练,从而使得所有站台可以与PCP同步。打算将扇区训练的缺省模式用于在402处和在图5的例子中所示出的信标间隔(BI)的波束训练(BT)和关联波束成形训练(A-BFT)时隙。 
初始粗略训练的至少一个目的是在站台之间发起或重新建立控制PHY链路。利用可允许模块化设计的所添加的灵活性,在该阶段考虑经修改的双向扇区扫掠,其中,站台可能能够控制训练并且促进协议互操作性。扇区级训练的示例缺省模式包括诸如图9中900处所示出的流程。已知的发起扇区训练的站台(例如,图9中的STA-A)可以使用发射扇区扫掠(TxSS)来开始传输波束成形训练(BFT)帧。在无需计算和交换涉及波束精化步骤的参数的情况下,可以修改BFT帧而具有仅对执行扇区级训练是必要的字段(例如,如图10中所公开的示例字段参数1002中所示)。发起方可以发射覆盖不同扇区方向的一个或多个帧,在此期间,进行接收的STA可以保持在全向RX模式中,这在图9、图11和图13中通过在示 例活动流程中图示的较小尺寸的圆来表示。在BFT帧中可以通过倒计数值来标识要发射的帧(例如,扇区扫掠帧)的数目。 
在结束了所有预期或指示的TXSS BFT帧之后,响应方站台(例如,图5中的STA-B)可以开始发送至少一个BFT帧。所述至少一个帧可以含有反馈字段,诸如在扇区扫掠(SS)控制字段中的BS-FBCK子字段(例如,参见图10中的帧1000),其通知了响应方站台已经从发起方(STA-A)接收到的最佳扇区(例如,BSA→B)帧的标识符。在结束了来自STA-B的预期(或指示)的BFT帧之后,发起方站台发送“BT反馈帧”,其包括与发起方站台在来自STA-B的反馈中已接收到的最佳训练信号相对应的扇区方向(例如,通过BSA→B发射)。在BT反馈帧之后,STA-A可以请求来自STA-B的即时确认。在这样的实例中,可以从STA-B根据其最佳扇区(BSA→B)来发射确认帧,其然后可以允许STA-A测试接收质量,这可以在稍后(例如,在决定精化训练是否是必要的时)使用。 
响应方站台可以利用来自发起方站台(例如,PCP)的预期的“BT反馈帧”,以便其在信道互惠下加以灵活采用。可能有两种选择,包括:在反向模式下实现规则的TxSS发射,直到已经发射了所有帧(也就是,例如,如果STA-B表达对缩短TX训练没有偏好的话)。STA-B可以在反向模式下发射一个或多个TxSS BFT帧,在此期间,用于所述帧的计数器被设置在SS控制字段的子字段内(例如,在1002处示出的SEC-CDOWN)。STA-B可以等待,直到其从STA-A接收到反馈。如果在时间限制(例如,预定的门限条件)内没有接收到反馈,则其可以继续伴随TxSS训练在附加的扇区方向上发射反馈。STA-B还可以利用其接收到的有关STA-A的任何被动扫描知识,以便减少TxSS训练的持续时间。在STA-B中的互惠配置可以允许其快速地进行向STA-A发送RX波束精化训练请求,从而使得其可以完成更精确的对最佳RX方向(这也将是最佳TX方向)的确定。 
对于发起方(STA-A)来说,可以请求来自STA-B的即时确认(例如,基于在发起方中设置的偏好)。BT反馈帧(诸如图7中在700处示出)可以用于此目的。请求确认可以用于完成/测试链路,或者如果发起方具有互 惠配置,则其可以用于测试作为在先波束训练处理的结果而确定的最佳RX方向。 
如图6的例子中所示,在扇区级训练的缺省模式期间使用正常的BFT帧。在600处示出了帧的一般结构的例子。由于在波束训练(BT)时间期间还由信标帧提供了TX扇区扫掠,因此基于在BT期间或BT之外是否可使用该帧,按照需要,媒体接入控制(MAC)帧有效载荷含有调度和其它信息元素。在规则的A-BFT或BFTT时间期间发射的BFT帧将具有更短的MAC有效载荷。SS控制扩展字段构成了用于SS控制的附加参数,其可以用于提供更多的信息,诸如针对备用(第二最佳扇区)链路。 
在图6中600处示出的SECID字段的使用可以用于帧的扇区标识。在图6中602处示出了可在PHY头部中实现的SS控制字段参数的例子。在SS控制字段中可以包括下面的示例参数子字段: 
B0可以定义前向(FWD)或反向(REV)方向。 
B1-B2可以定义BFT帧的类型,诸如TxSS、扩展型BFT或BT反馈。 
B3-B8可以为将要尾随的那些扇区扫掠帧定义倒计数值。其对于每个扇区帧可以是倒计数的。 
B9-B14可以定义由SECID所标识的所选最佳扇区。 
B15可以定义对确认的请求。 
在初始扇区级训练期间,还可以使用控制PHY来发射BT反馈帧,具有在图7中700处示出的结构。PHY头部可以如在其它BFT帧中那样含有用于最佳扇区的反馈(BS-FBCK)。如在图7中700处所示,通过在BT反馈帧的MAC帧有效载荷内携带的BT反馈信息元素(IE),可以提供用于提供详细反馈信息(诸如最佳扇区的SNR级别、次佳扇区id及其SNR级别)所需要的附加字段。基于站台的偏好或要求,对BT反馈IE的使用可以是可选的。 
上述缺省模式操作可以提供一种机制,用于当接收机天线配置在两侧都支持全向接收模式时建立粗略波束成形化链路。然而,其可能不支持具有无法进行全向接收模式的天线配置(包括固定波束/扇区设备)的站台。 根据本发明的至少一个示例实施例,基于请求的方法(其中不同的训练模式)可以允许对相互偏好和能力知识的有益采用。当使用缺省模式的训练没有完成时,还可以实现从站台到PCP的基于请求的方法。 
当与PCP进行交互以便完成波束成形训练时,基于请求的训练机制可以允许站台使用替代的训练方法。训练方法可以进一步基于所参与的站台的相互能力或偏好(例如,该设定可能要求PCP的特定角色是作为促成方)。根据本发明的至少一个示例实施例,基于请求的方法可以包括不同的训练模式,可以基于各种设备限制或站台的各种训练要求来建立不同的训练模式。当配置波束成形训练时可以考虑的示例设备限制可以包括在以下情况中的固定波束或扇区设备:发射和接收模式无法出现在不同的扇区中(例如,这些装置可以配备有请求重新定位的警报通知和/或人工辅助),这可能要求来自PCP的训练支持,并且用于BFT训练的帧应当允许被动扫描。 
在仅定向接收的设备的情况下(例如,能够进行扇区切换或能够进行波束操纵,但是没有配备有全向天线),由于硬件天线配置(扇区化天线或由于不灵活的波束控制电路)而可能不可以进行信号的全向接收。结果,训练方法可能需要支持接收方向跟踪和/或接收扇区扫掠。装置的功率消耗效率也可以是训练期间的关注点。如果站台处于互惠配置中,则接收侧训练可以提供用于发射方向的足够的分辨率,对此可以选择适当的反向方向训练模式。另一方面,如果站台处于准互惠配置,则可以不消除但是可以减少前向方向训练。 
在开始波束成形训练之前,在所参与的站台之间需要训练设定处理。该处理可涉及基本设定消息的交换,其包括如在图9中900处示出的对至少一个训练模式的选择。训练过程可以涉及一系列步骤。在示例情况下,站台可以在信标间隔期间的某个点处发起与对等站台的波束成形训练协商,例如,在基于竞争的时段(CBP)期间、在未使用的时间从PCP接收到的轮询帧期间,或者由PCP所分派的服务时段(SP)。当站台不是PCP时,设定可以包括交换粗略级训练请求消息,所述消息请求该站台充当训 练信号源或目的地。 
PCP的角色/责任取决于信道接入时间。在CBP接入期间,可以通过发送“清除发送(CTS)”帧来管理对于从STA-A接收到的“请求发送(RTS)”帧的处理以及在所请求的时段中被发射到其它站台(包括STA-B)的NAV预留(例如,STA-A可以按照BFT训练的需要来请求TXOP)。在接收到具有STA-B的目的地地址的CTS之后,STA-B将进入接收模式。在图10中的1000处公开了可能对网络PCP来说所要求的最小角色。当发起方站台将BT设定请求直接发射到另一站台时,BT设定请求帧可能需要在不同扇区方向上重复,直到接收到响应帧。除了在CBP期间用于训练的介质预留之外,可能的是:在CBP接入期间用于训练的设定交换还可能涉及来自PCP的附加辅助。例如,STA-A可以首先利用PCP获得TXOP以便交换对目的地STA-B的BT设定请求。PCP然后可以接入信道并且将BT设定请求帧转发到STA-B,并且可以进一步接收BT设定响应帧。还可能存在以下情况:在BT设定阶段中根本不涉及PCP。 
对于其它信道接入(用于动态SP或规则SP)时间,PCP可以将BT设定请求帧转发到其它站台。PCP可以进一步从STA-B接收BT设定响应帧,并且可以进一步通过插入用于BFT训练(动态或规则SP)的所分配的SP调度来将BT设定响应帧发送回给发起方(例如,STA-A)。 
来自发起方站台的BT设定请求可以含有所请求的BT模式和用于训练的所期望的参数。可以在BT设定响应帧中携带涉及对等站台的能力的所接受的参数。PCP可以对于训练提供必要的服务时段(SP)或发射机会(TXOP)限制信息。根据所图示的例子,当STA-A和STA-B已经建立了与PCP的波束成形化链路时,可以使用规则的高吞吐量(HT)数据PHY通过PCP来完成BT设定请求/响应帧。如果任何站台仅具有朝向PCP工作的控制PHY链路,则所述站台可以使用控制PHY数据速率来发射/接收这些帧。进行请求的站台可以基于不同训练目的或上述设备限制来使用BT模式控制参数。 
可以在两个对等站台之间实现训练帧发射的不同顺序或序列。例如, 在图8中公开的非对称训练模式800可涉及发射侧和接收侧操作。在训练的已知开始时间处,响应方站台(例如,STA-B)可以使用覆盖不同扇区方向的发射侧扇区扫掠来开始发射BFT帧。可以在每个扇区方向上发射“扩展型BFT帧”(在图11的1100处公开的例子),其后面可以是在已知的BIFS(波束成形帧间空间)间隔之后的下一方向。每个扩展型BFT帧可以包括在同一发射方向上发射的前导和PHY头部重复,以便允许在STA-A中按其接收模式进行在N_RxDIR方向上的扇区扫掠或波束操纵。在图11中的1102处公开了PHY头部重复的例子。对于BFT帧的每个分段的时段来说,当接收到的信号在特定门限之上时,进行接收的站台可以确定在相应波束或扇区方向上的其接收信号质量。进行接收的站台可以仅接收从仅一个或几个发射扇区方向发射的帧。 
接收机站台可以跟踪帧的信号质量以及何时其可以成功地接收至少一个或多个BFT帧(具有相应的SEC-CDOWN和SECID)。在反馈和测试阶段期间,在预期的结束时间之后或者在接收到最后一个BFT(例如,具有SEC-CDOWN=0的帧)之后,接收机站台可以用指示了最佳扇区(BSB→A)的BT反馈帧来做出响应。在BT反馈帧之后,STA-A可以进一步要求来自STA-B的即时确认,在该情况下,STA-A可以根据所接收到的确认(ACK)帧来测试反向(REV)链路信号质量。 
在图10的1000处示出了基于请求的扇区训练的另一例子。在扇区级训练结束之后示出了接收侧波束精化步骤的例子以便图示可能的选择。首先从对等站台请求TxSS BFT帧的目的可以是:在REV TX侧扇区选择的情况下建立REV链路,之后在前向(FWD)方向上发送几个帧,直到接收到反馈,从而使得更快地完成粗略训练。然后,如图所示,STA-A可以具有以下选项:仅单独请求来自STA-B的RX波束精化训练。 
对于用于基于请求的训练的帧格式和关联字段来说,可能的结构可以包括-正常的BFT帧:具有用于在一个方向上的粗略TxSS的仅一个前导的控制PHY帧格式;扩展型BFT帧:具有用于允许接收机的粗略RxSS/AWV选择的不止一个前导和头部的控制PHY帧格式;BT反馈帧: 仅含有最佳扇区反馈,可选的SNR反馈,可选的扇区反馈以及备用链路(次佳扇区)的SNR反馈;BT设定请求帧:关于所期望的模式和参数的信息;以及BT设定响应帧:所支持的参数和模式。 
为了支持粗略的接收方向扇区扫掠或AWV选择,可以采用扩展型BFT帧。考虑了扩展型BFT帧的两种变体,对此的选择可以取决于在接收机处所支持的实现复杂度。第一变体(其示例结构如图11中的1100处所示)对Ext-BFT帧的所有分段使用相同的前导。由于在所分派的时隙中扩展型BFT的流程发生在两个已知站台之间,因此可以移除用于地址的MAC有效载荷。MIFS代表了要用来允许RxSS时间的最小帧间空间。持续时间取决于实现,在最佳情形下其可以被设置成“0”。 
扩展型BFT帧格式的另一变体对短训练字段使用了逐渐减少的长度,如在1102处所示。给定了控制PHY短训练字段(STF),其含有长度128的互补Golay序列Ga128的Nc个重复。然后,下一个前导可以被缩短I2,并且下一个被缩短I3,等等。STF的数目不一定小于用于正常的HT PHY帧的Ga128的Nc个重复。在每个前导中逐渐缩短的STF可以利用来自在先前导的部分检测和CFO估计知识来允许接收机在每个后续的RX方向上同步。为了缓和在接收机处的同步,可以在一个或多个初始分段处使用更长的前导。 
在图12的1200处示出了BT设定请求帧的一般帧结构。BFT请求信息元素(IE)字段1202可以包括BT模式控制,其包括训练的顺序,哪些方向用于训练,每个BFT帧的所请求的或所支持的发射扇区方向或接收方向的数目(在1204处提供了其配置的例子)。例如,当进行请求的STA是具有全向RX能力并且会愿意使用全向RX模式时,其可以将其“REVN_RxDIR”值设置成0(以便指示一个RxDIR)。FWD RxDIR_Limit(限制)子字段可以指示进行请求的STA是支持对扩展型BFT帧的发射(在FWD RxDIR_Limit所设置的最大限度的情况下)还是不支持对扩展型BFT帧的发射(FWD RxDIR_Limit=0)。还可以包括可选的扇区训练映射(扇区id的列表,例如,最大值可被设置成8)。当由PCP来分派SP 并且用于BT模式控制字段的所支持的参数将被使用时,BT设定响应帧结构类似于具有用于调度信息的附加IE的BT设定请求帧的结构。 
可以基于来自发起方站台的BT设定请求(其被用于不同模式的训练和顺序)来确定站台在不同BT模式的请求上的内部偏好。该请求还可以用于缺省的双向模式,以便通过具有完全的全向RX能力的站台在FWD和REV两种链路中进行训练,或者仅对一个方向进行训练(例如,仅前向或仅反向)。还可以涉及首先发射TxSS帧,且具有对所支持扇区的最大数目的指示。然后,STA-B将发送TxSS帧。STA-A发送具有可能的ACK请求的反馈。对其它训练模式的请求可以包括训练的目的,以便建立/改进仅REV链路,或者支持仅DIR-RX的配置,或者用于在FWD方向上采用信道互惠。 
在BT设定请求帧中的BT模式控制字段可以用于请求STA-B在所有的或所选择的扇区上发送扩展型BFT帧,以便允许RxSS(例如,如在800处所示)。如果发起方仅具有一个天线(例如,全向TX和RX),则其可能仅需要用于TxSS的来自REV方向的训练,如果需要的话,接下来可以是从STA-A发送用于STA-B的RX细调的训练序列。便携式或手持设备可以例如更偏好从对等站台接收训练帧从而节省电力,而不是从自己这侧发射BFT帧。 
互惠指的是以下情况:相同的RF链被用于发射和接收操作。在有利的信道条件下(例如,接近视线传播),这样的配置可导致最优的接收方向也是最优的发射方向,并且反之亦然。当存在互惠条件时,可以减少波束成形训练。其还可以允许使用根据从另一侧接收到的训练的RxSS/AWV选择,而不是从自己一侧提供完全的TxSS。在接收模式期间处理的训练可以节省便携式或手持设备中的资源。如果装置仅部分互惠并且首先完成了TxSS,则在处理扩展型BFT帧时,站台可以通过仅使用朝向最佳TX扇区方向而成簇(clustered)的RX方向的更小子集,从而最小化用于RxSS/AWV选择的训练。相反,如果RxSS首先得到完成,则可以利用在最佳RX扇区周围成簇的TX方向,通过发送减少了数目的BFT帧,从而 最小化TxSS/AWV选择。通过允许进一步利用信道互惠,上述不同的扇区训练模式可以提供进一步的灵活性。 
根据本发明的至少一个示例实施例,在各种训练帧和特定管理帧中可以使用SECID字段,其可以是PHY头部的一部分。如图6中的帧600中、图7中的700中以及图11中的1100所示,SECID字段指明了使用控制PHY从PCP发射的帧的扇区方向。通过委任(mandating)PCP在内部维持其粗略发射扇区ID的固定分派并且公告被定向发射的帧的SECID,可以允许特定设备类别受益于对用于波束成形训练的这样的帧的被动扫描。将“SECID”字段包括在由PCP所使用的帧的PHY头部从而发射波束成形训练帧以及特定管理和控制帧的原因可以包括:在PBSS中为站台提供关于朝向PCP的方向的定向认知。特别地,固定波束设备或仅DIR-RX的设备(当其当前的RX-DIR指向(pointing)可以检测到这样的帧时)可以被动地扫描这些帧,以便标识来自PCP的帧的FWD链路扇区ID。这样的站台可以被动地跟踪它们朝向PCP的接收方向采集(directional acquisition)。该原理还可以被扩展用于其它非PCP站台以便相互认知(mutual awareness),其可以有助于空间重用、干扰避免等。 
在BFT帧中PHY头部的SS控制字段中的SEC-CDOWN字段(如在图6中的600、602,图7中的700,图11中的1100以及图12中的1204处所公开的)可以提供被发射用于扇区扫掠训练的帧的数目的倒计数。然而,SEC-CDOWN字段可以仅由在训练中涉及的站台来正确地解译。PCP可以在一个信标间隔期间利用TxSS帧的子集,并且在另一信标间隔中使用扇区的另一子集。因此,对帧的SEC-CDOWN计数器的指示是不够的。对于在AT(公告请求和响应帧)中使用的其它管理帧,在CBP期间用于介质预留的由PCP使用的CTS帧,并不使用SEC-CDOWN字段,对此,SECID字段将提供这样的优点。在PHY头部中的“SECID”字段将提供针对由仅DIR-RX的设备进行的被动定向认知和跟踪所需要的辅助。在图13中的1300处示出了例子,其中,固定波束设备可以检测FWD SEC-P1中的帧,以便用于其与PCP的波束训练。 
被动扫描算法可以用于仅DIR-RX或固定波束设备从而进行BFT训练支持。例如,为了BFT训练和关联而正在尝试搜索PCP的那些设备可以通过解码在BFT的PHY头部中的“SECID”字段来扫描来自PCP的帧,以及在信标、A-BFT、AT、CBP和BFTT时段期间的其它管理或扩展帧。基于接收质量,这些设备可以在其Rx-DIR上进行扫掠并且为来自PCP的不同FWD扇区id计算信号质量。被动扫描还可以提供来自PCP的FWDSECID的列表(具有可接收到的相对信号质量)。 
对于仅DIR-RX的STA,通过被动扫描获得的信息可以提供关于其可从PCP最佳地接收到帧的RX方向的通知。基于被动扫描结果,其可以更有效地发起BF训练和关联。特别地,在A-BFT时隙期间,装置可以向PCP发送反馈和所要求的BF训练模式,以及关于在若干扇区上的训练的指示(通过使用例如在1406处示出的“扇区训练映射”,以及在BT设定请求帧中的FWD扇区方向的列表)。装置可以进一步向PCP发射“BT设定请求”帧,用于在以下情况下发起BFT:伴随关于在若干扇区上的训练的可能指示而在竞争时段,当站台具有互惠配置或部分互惠条件时,在训练时间期间从自己一侧(例如,对于TxSS,装置可以发起在减少的扇区方向集合上成簇的TxSS BFT帧的发射,在所述减少的扇区方向集合上,其能够在自己的被动扫描或跟踪期间接收到来自PCP的帧);或者如果其基于现有扫描知识仅可以在有限的Rx方向上进行RxSS或AWV选择的话,则用于接收来自PCP的扩展型BFT帧。 
根据本发明的至少一个示例实施例,图14A中公开了从响应方装置的视角来看的处理的流程图。在步骤1400中,响应方装置可以从另一装置接收对波束成形的请求。不一定要定义响应方装置是站台还是PCP,因为两者都可以相对于所公开的处理而类似地起作用。然后,可以在步骤1402中启动波束成形处理。然后在步骤1404中确定关于所接收到的请求是否指定了经更改的训练序列。例如,当处于被动模式中时,进行请求的站台可能已经接收到控制和/或管理帧,这允许其缩窄可能对于与响应方进行通信来说是最佳的可能方向的扇区。然后,该信息可以用于在请求消息中提供 经调整的参数,所述经调整的参数减少了必须在其上发送训练帧的定向分区的数目,从而减少了训练帧的总数,等等。进一步地,该请求消息可以指定由发起方所请求的特定操作模式。举例来说,由于装置的条件(例如,功率级别)而可以请求特定模式。如果在所接收到的请求消息中的信息指示应当更改训练集合,那么在步骤1406中,根据在请求消息中阐明的参数,可以选择波束方向集合。替代地,在步骤1408中,可以选择标准波束方向集合。 
不管是实现更改的还是标准的波束方向集合,该处理都可以进行到步骤1410,在该步骤中,发射波束训练帧集合。例如,可以在所选择的波束训练方向中的每一个上发射至少一个波束训练帧。另外,每个波束训练帧可以含有至少一个独特的标识符。然后,在步骤1412中,响应方装置(例如,站台或PCP)可以等待响应(例如,接收到反向波束训练帧)。如上所述,可能存在以下情形:通过由发起方所提供的参数,可以更改该处理。例如,发起方可以指示:由于例如关于耗费发射功率的问题而不会发送反向波束训练帧。 
假定对反向帧有所期望,并且随后接收到反向帧,则该处理可以进行到步骤1414,其中,可以从响应方向发起方发射响应消息。响应消息可以至少标识最佳信号方向(例如,可以包括由与最高质量接收信号相对应的一个或多个反向帧所提供的标识信息)。该响应消息可以进一步请求发起方将确认发送回给响应方。在需要确认的情况下,可以实现可选步骤1416。在步骤1416中,该处理可以继续,以便发射响应并等待确认,直到接收到确认。然后,该处理可以返回步骤1400,以便等待进一步的波束训练请求。 
进一步针对以上内容,现在在图14B中公开了根据本发明的各种实施例可使用的另一处理的流程图。然而,图14B中的处理取自示例发起方装置的视角。在步骤1420中,可以在发起方装置中激活波束训练处理。波束训练处理可以触发对于发射到响应方装置的波束训练请求的形成。波束训练请求可以包括例如在定制波束训练处理中响应方装置可使用的信息。在波束训练中可包括的信息可以包括但不限于:特定波束训练模式、波束训 练帧的数目、减少的波束训练方向集合,等等。波束训练模式的例子包括:前向波束训练模式、反向波束训练模式或双向波束训练模式。根据关于其它装置操作在互惠模式下的知识、根据与发起方相对应的诸如当前装置条件等的其它准则,可以通过当装置在被动模式下操作时所接收到的控制或管理帧来提供或提示该信息。在步骤1422中发射波束训练请求可以取决于无线网络的拓扑。例如,ad-hoc(诸如PBSS)网络可以包括PCP,并且因此,可以通过PCP来路由所有请求,而与请求来自哪个特定站台的波束训练无关。在含有其它中央控制器(像接入点)的无线网络中可以存在相同的协议。 
在步骤1424中,发起方可以等待对训练集合的接收。该步骤可以包括等待特定的持续时间以及重传请求消息这二者。对波束训练集合的接收(例如,从一个或多个波束方向接收到的一个或多个波束训练帧)可以允许发起方在步骤1426中实施波束训练。如果在步骤1428中波束训练成功,则可以在步骤1430中发射响应。成功的波束训练可以包括例如成功接收到一个或多个波束训练帧,其中,与所接收到的波束训练帧相对应的质量级别低于预定门限级别(例如,最小可接受级别)。然后,该处理可以返回步骤1400,以便等待针对波束训练的下一个要求。替代地,如果在步骤1428中波束训练处理不成功,那么该处理可以返回步骤1422,以便发射新的波束训练请求。 
因此,对相关领域技术人员将显而易见的是,在不背离本发明的精神和范围的情况下,可以在其中进行各种形式上和细节上的改变。本发明的宽度和范围不应当由上述示例实施例中的任何一个来限制,而是应当仅根据下面的权利要求及其等同物来限定。 

Claims (25)

1.一种用于波束成形训练的方法,其包括:
激活波束成形训练支持操作;
选择用于发射一个或多个前向方向波束成形训练帧的预定方向,其中,每个前向方向波束成形训练帧包括前向波束/扇区方向标识符,其指明了所发射的帧的多个前向扇区方向中的一个扇区方向;
在每个所选择的预定方向上发射所述一个或多个前向方向波束成形训练帧中的至少一个前向方向波束成形训练帧;
从所述预定方向之一接收至少一个反向方向波束成形训练帧,其包括所述前向波束/扇区方向标识符之一;以及
发射包括反向波束/扇区方向标识符的至少一个响应帧,所述反向波束/扇区方向标识符是在所述至少一个反向方向波束成形训练帧中接收到的。
2.根据权利要求1所述的方法,其中,一个或多个反向方向波束成形训练帧以及所述一个或多个前向方向波束成形训练帧中的每一个进一步包括:关于要被发射的扇区扫掠帧的剩余数量的指示。
3.根据权利要求1所述的方法,其中,在所述至少一个响应帧中发射的反向波束/扇区方向标识符对应于被确定具有最佳信号质量的所述至少一个反向方向波束成形训练帧。
4.根据权利要求1所述的方法,其中,所述响应帧进一步包括对确认的请求。
5.根据权利要求1所述的方法,其进一步包括:从与在所述响应帧中发射的反向波束/扇区方向标识符相对应的方向接收确认帧。
6.一种用于波束成形训练的方法,其包括:
激活波束成形训练支持操作;
发射至少包括用于配置波束成形训练操作的信息的波束成形训练请求,所述信息标识了至少一个训练模式,所述至少一个训练模式下的训练帧包括前向扇区标识符,其指明了发射的一个或多个前向方向波束成形训练帧的多个前向扇区方向中的一个扇区方向,其中,所述信息标识了以下中的至少一个:前向方向波束成形训练模式、反向方向波束成形训练模式或双向波束成形训练模式;
接收响应于所述波束成形训练请求的至少一个波束成形训练响应帧;以及
基于所述至少一个训练模式以及在所述响应帧中对所述至少一个训练模式的支持的指示,激活波束成形训练操作。
7.根据权利要求6所述的方法,其中,所述波束成形训练请求进一步包括关于在前向或反向方向波束成形训练期间要利用的扇区的经减少的数目的指示,所述扇区的经减少的数目是从在被动扫描模式期间所接收到的波束成形训练帧或管理帧导出的。
8.根据权利要求6所述的方法,其中,所述波束成形训练请求进一步指示了关于首先执行所述前向波束成形训练模式或所述反向波束成形训练模式的顺序。
9.根据权利要求6所述的方法,其中,所述波束成形训练请求经由私有基本服务集合控制点而被发射到其它装置。
10.根据权利要求6所述的方法,其中,所述波束成形训练请求被直接发射到对等装置,其中正在请求来自所述对等装置的波束成形训练。
11.根据权利要求6所述的方法,其中,激活所述波束成形训练操作进一步包括:
接收至少一个反向方向波束成形训练帧,其中,每个反向方向波束成形训练帧包括可选的所请求数目的训练分段;
确定在所述波束成形训练帧期间从预定接收方向接收到的每个训练分段的信号质量;以及
发射包括反向波束/扇区方向标识符的至少一个响应帧,所述反向波束/扇区方向标识符被确定成在对所述至少一个反向方向波束成形训练帧的接收期间具有最佳信号质量。
12.根据权利要求11所述的方法,其中,所述响应帧进一步包括对确认的请求。
13.一种用于波束成形训练的装置,其包括:
处理器,所述处理器被配置以便:
激活波束成形训练支持操作;
选择用于发射一个或多个前向方向波束成形训练帧的预定方向,其中,每个前向方向波束成形训练帧包括前向波束/扇区方向标识符,其指明了所发射的帧的多个前向扇区方向中的一个扇区方向;
在每个所选择的预定方向上发射所述一个或多个前向方向波束成形训练帧中的至少一个前向方向波束成形训练帧;
从所述预定方向之一接收至少一个反向方向波束成形训练帧,其包括所述前向波束/扇区方向标识符之一;以及
发射包括反向波束/扇区方向标识符的至少一个响应帧,所述反向波束/扇区方向标识符是在所述至少一个反向方向波束成形训练帧中接收到的。
14.根据权利要求13所述的装置,其中,一个或多个反向方向波束成形训练帧以及所述一个或多个前向方向波束成形训练帧中的每一个进一步包括:关于要被发射的扇区扫掠帧的剩余数量的指示。
15.根据权利要求13所述的装置,其中,在所述至少一个响应帧中发射的所述至少一个反向波束/扇区方向标识符对应于被确定具有最佳信号质量的所述至少一个反向方向波束成形训练帧。
16.根据权利要求13所述的装置,其中,所述响应帧进一步包括对确认的请求。
17.根据权利要求13所述的装置,其进一步包括:从与在所述响应帧中发射的反向波束/扇区方向标识符相对应的方向接收确认帧。
18.一种用于波束成形训练的装置,其包括:
处理器,所述处理器被配置以便:
激活波束成形训练支持操作;
发射至少包括用于配置波束成形训练操作的信息的波束成形训练请求,所述信息标识了至少一个训练模式,所述至少一个训练模式下的训练帧包括前向扇区标识符,其指明了发射的一个或多个前向方向波束成形训练帧的多个前向扇区方向中的一个扇区方向,其中,所述信息标识了以下中的至少一个:前向方向波束成形训练模式、反向方向波束成形训练模式或双向波束成形训练模式;
接收响应于所述波束成形训练请求的至少一个波束成形训练响应帧;以及
基于所述至少一个训练模式以及在所述响应帧中对所述至少一个训练模式的支持的指示来激活波束成形训练操作。
19.根据权利要求18所述的装置,其中,所述波束成形训练请求进一步包括关于在前向或反向方向波束成形训练期间要利用的扇区的经减少的数目的指示,所述扇区的经减少的数目是从在被动扫描模式期间所接收到的波束成形训练帧或管理帧导出的。
20.根据权利要求18所述的装置,其中,所述波束成形训练请求进一步指示了关于首先执行所述前向波束成形训练模式或所述反向波束成形训练模式的顺序。
21.根据权利要求18所述的装置,其中,所述波束成形训练请求经由私有基本服务集合控制点而发射到其它装置。
22.根据权利要求18所述的装置,其中,所述波束成形训练请求被直接发射到对等装置,其中正在请求来自所述对等装置的波束成形训练。
23.根据权利要求18所述的装置,其中,激活所述波束成形训练操作进一步包括:
接收至少一个反向方向波束成形训练帧,其中,每个反向方向波束成形训练帧包括可选的所请求数目的训练分段;
确定在所述波束成形训练帧期间从预定接收方向接收到的每个训练分段的信号质量;以及
发射包括反向波束/扇区方向标识符的至少一个响应帧,所述反向波束/扇区方向标识符被确定成在对所述至少一个反向方向波束成形训练帧的接收期间具有最佳信号质量。
24.根据权利要求23所述的装置,其中,所述响应帧进一步包括对确认的请求。
25.一种用于波束成形训练的装置,其包括:
用于激活波束成形训练支持操作的装置;
用于选择用于发射一个或多个前向方向波束成形训练帧的预定方向的装置,其中,每个前向方向波束成形训练帧包括前向波束/扇区方向标识符,其指明了所发射的帧的多个前向扇区方向中的一个扇区方向;
用于在每个所选择的预定方向上发射所述一个或多个前向方向波束成形训练帧中的至少一个前向方向波束成形训练帧的装置;
用于从所述预定方向之一接收至少一个反向方向波束成形训练帧的装置,所述至少一个反向方向波束成形训练帧包括所述前向波束/扇区方向标识符之一;以及
用于发射包括反向波束/扇区方向标识符的至少一个响应帧的装置,所述反向波束/扇区方向标识符是在所述至少一个反向方向波束成形训练帧中接收到的。
CN201080008781.9A 2009-02-23 2010-01-08 用于功能受限装置的波束成形训练方法及装置 Active CN102326338B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/390,880 US8422961B2 (en) 2009-02-23 2009-02-23 Beamforming training for functionally-limited apparatuses
US12/390,880 2009-02-23
PCT/IB2010/050065 WO2010095061A1 (en) 2009-02-23 2010-01-08 Beamforming training for functionally-limited apparatuses

Publications (2)

Publication Number Publication Date
CN102326338A CN102326338A (zh) 2012-01-18
CN102326338B true CN102326338B (zh) 2014-11-05

Family

ID=42630509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080008781.9A Active CN102326338B (zh) 2009-02-23 2010-01-08 用于功能受限装置的波束成形训练方法及装置

Country Status (7)

Country Link
US (1) US8422961B2 (zh)
EP (1) EP2399347B1 (zh)
CN (1) CN102326338B (zh)
CA (1) CA2753199C (zh)
ES (1) ES2729477T3 (zh)
PL (1) PL2399347T3 (zh)
WO (1) WO2010095061A1 (zh)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2584750B1 (en) * 2008-08-26 2018-08-08 Marvell World Trade Ltd. Physical layer data unit format
US8867495B2 (en) * 2009-03-20 2014-10-21 Qualcomm Incorporated Feedback mechanisms for beamforming operation
US8369351B2 (en) * 2009-04-06 2013-02-05 Intel Corporation Method and apparatus for collision avoidance
WO2010121155A1 (en) * 2009-04-17 2010-10-21 Marvell World Trade Ltd. Segmented beamforming
US8331265B2 (en) * 2009-04-20 2012-12-11 Samsung Electronics Co., Ltd. System and method for adaptive beamforming training using fixed time window for heterogeneous antenna systems
US8406247B2 (en) * 2009-07-10 2013-03-26 Qualcomm Incorporated Multiple peer-to-peer signaling
US8208427B2 (en) * 2009-07-10 2012-06-26 Qualcomm Incorporated Multiple peer-to-peer signaling
US8743838B2 (en) * 2009-09-15 2014-06-03 Intel Corporation Millimeter-wave communication station and method for scheduling association beamforming training with collision avoidance
WO2011034753A2 (en) * 2009-09-18 2011-03-24 Marvell World Trade Ltd. Short packet for use in beamforming
US8625565B2 (en) * 2009-10-06 2014-01-07 Intel Corporation Millimeter-wave communication station and method for multiple-access beamforming in a millimeter-wave communication network
US9173191B2 (en) * 2009-12-20 2015-10-27 Intel Corporation Device, system and method of simultaneously communicating with a group of wireless communication devices
US8315154B2 (en) * 2009-12-23 2012-11-20 Intel Corporation Time reduction for multiple link recovery
US9401753B2 (en) * 2009-12-23 2016-07-26 Intel Corporation Native medium access control support for beamforming
US8374154B2 (en) * 2009-12-23 2013-02-12 Intel Corporation Device, system and method of simultaneously communicating with a group of wireless communication devices
US9681455B2 (en) * 2010-01-28 2017-06-13 Alcatel Lucent Methods for reducing interference in a communication system
CA2789791A1 (en) * 2010-02-24 2011-09-01 Interdigital Patent Holdings, Inc. Communication using directional antennas
US8437333B2 (en) * 2010-07-06 2013-05-07 Stmicroelectronics, Inc. Contention based period beamforming
US9088393B2 (en) 2010-07-30 2015-07-21 Lg Electronics Inc. Method and apparatus for reporting channel state information of multi-channel in wireless local area network system
US8514130B1 (en) * 2011-03-30 2013-08-20 Rockwell Collins, Inc. Directional spectral awareness with single antenna radio
CN104393904B (zh) 2011-06-01 2017-09-29 华为技术有限公司 传输信道信息的方法、设备和系统
CN102882660B (zh) * 2011-07-12 2017-05-03 中兴通讯股份有限公司 一种信道反馈信息的传输方法和系统
US9225401B2 (en) 2012-05-22 2015-12-29 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation and multiple antenna beamforming operation
US9048894B2 (en) * 2012-05-22 2015-06-02 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation
US9941940B2 (en) * 2012-07-10 2018-04-10 Mediatek Singapore Pte. Ltd. Sectorized beam operation for wireless networks
KR102109476B1 (ko) * 2012-09-04 2020-05-12 한국전자통신연구원 채널 액세스 장치 및 그 방법
KR102068283B1 (ko) * 2012-09-28 2020-01-20 한국전자통신연구원 무선랜 시스템에서 섹터 디스커버리 방법 및 장치
CN104871438A (zh) * 2012-10-26 2015-08-26 交互数字专利控股公司 一致wlan多ap物理层方法
WO2014074894A1 (en) * 2012-11-09 2014-05-15 Interdigital Patent Holdings, Inc. Beamforming methods and methods for using beams
CN103812547A (zh) * 2012-11-14 2014-05-21 中兴通讯股份有限公司 通信设备、波束形成的方法及装置
US9204395B2 (en) * 2013-01-15 2015-12-01 Samsung Electronics Co., Ltd. Apparatus and method for discontinuous receive in communication systems with large number of antennas
US20140210666A1 (en) * 2013-01-25 2014-07-31 Alexander Maltsev Apparatus, system and method of wireless communication via an antenna array
CN104937894B (zh) * 2013-01-25 2018-07-27 联发科技(新加坡)私人有限公司 多分区传输的方法、发起方站台和响应方站台
US9413079B2 (en) * 2013-03-13 2016-08-09 Intel Corporation Single-package phased array module with interleaved sub-arrays
CN105052235A (zh) * 2013-03-15 2015-11-11 交互数字专利控股公司 用于无线lan系统的多频带操作
KR102043021B1 (ko) * 2013-04-15 2019-11-12 삼성전자주식회사 이동 통신 시스템에서 빔포밍을 위한 스케쥴링 방법 및 장치
US9854453B2 (en) * 2013-05-03 2017-12-26 Interdigital Patent Holdings, Inc. Methods for WiFi sectorization MAC enhancement
WO2014208844A1 (ko) 2013-06-28 2014-12-31 중앙대학교 산학협력단 빔 트레이닝 장치 및 방법
KR101474732B1 (ko) * 2013-10-10 2014-12-22 중앙대학교 산학협력단 빔 id 전송 장치 및 방법
WO2015032101A1 (zh) * 2013-09-09 2015-03-12 华为技术有限公司 一种波束追踪的方法、装置和系统
KR102088529B1 (ko) * 2013-11-06 2020-03-12 삼성전자주식회사 통신 시스템에서 빔 훈련 방법 및 장치
CN103607231B (zh) * 2013-11-27 2017-03-01 上海电机学院 高速移动环境下利用多天线的快速波束切换方法
CN103607362B (zh) * 2013-11-27 2017-01-18 上海电机学院 利用多天线消除高速移动环境下多频偏的方法
JP6342496B2 (ja) * 2013-12-10 2018-06-13 インテル アイピー コーポレイション マクロ基地局のための装置、モバイルデバイスのための装置及びコンピュータプログラム
US9474013B2 (en) * 2014-06-16 2016-10-18 Qualcomm Incorporated Method and apparatus for connection point discovery and association in a directional wireless network
KR101573342B1 (ko) 2014-06-24 2015-12-03 중앙대학교 산학협력단 빔 트레이닝 장치 및 방법
US9414285B2 (en) 2014-06-30 2016-08-09 Qualcomm Incorporated Handover with integrated antenna beam training in wireless networks
JP6499665B2 (ja) * 2014-08-18 2019-04-10 パナソニック株式会社 Mimoトレーニング方法及び無線装置
US9712221B2 (en) * 2014-10-10 2017-07-18 Intel Corporation Apparatus, system and method of beamforming
US9859966B2 (en) * 2014-10-24 2018-01-02 Intel Corporation Apparatus, system and method of beamforming
US10056958B2 (en) 2014-10-27 2018-08-21 Samsung Electronics Co., Ltd. Method and apparatus for multiuser beamforming in mmWave wireless LAN systems
WO2016068521A1 (en) * 2014-10-27 2016-05-06 Samsung Electronics Co., Ltd. Method and apparatus for multiuser beamforming in wireless communication systems
KR20160049759A (ko) * 2014-10-28 2016-05-10 삼성전자주식회사 주변 기기 탐색 방법 및 그 전자 장치
US10411780B2 (en) * 2014-12-31 2019-09-10 Samsung Electronics Co., Ltd. Fast association in millimeter wave wireless local area network systems
US9722726B2 (en) * 2015-03-28 2017-08-01 Intel IP Corporation Reciprocity detection and utilization techniques for beamforming training
KR102321994B1 (ko) * 2015-04-01 2021-11-04 삼성전자주식회사 무선 통신 시스템에서 무선 링크를 관리하기 위한 장치 및 방법
WO2016164060A1 (en) 2015-04-09 2016-10-13 Intel Corporation Apparatus, system and method of beamforming
KR102379525B1 (ko) * 2015-09-24 2022-03-29 삼성전자주식회사 빔 포밍 방식을 지원하는 통신 시스템에서 빔 패턴 선택 프로세스 수행 장치 및 방법
CN107852202B (zh) * 2015-10-20 2021-03-30 松下电器(美国)知识产权公司 通信装置及通信方法
CN108141270B (zh) * 2015-11-05 2021-09-28 英特尔公司 波束形成的装置、系统和方法
EP3373472A4 (en) * 2015-11-05 2018-11-21 Panasonic Intellectual Property Management Co., Ltd. Base station device, wireless terminal device, and wireless communication method
US11101851B2 (en) 2015-11-23 2021-08-24 Nokia Solutions And Networks Oy User device beamforming training in wireless networks
US9923619B2 (en) * 2015-12-21 2018-03-20 Intel Corporation Techniques for passive beamforming training
US10148557B2 (en) 2015-12-30 2018-12-04 Facebook, Inc. Link maintenance in point-to-point wireless communication networks
EP3852312B1 (en) * 2015-12-30 2023-07-19 Meta Platforms, Inc. Link acquisition in wireless communication systems
US10135640B2 (en) * 2015-12-30 2018-11-20 Qualcomm Incorporated System and method for reducing interference from neighboring wireless devices
US10313953B2 (en) 2015-12-30 2019-06-04 Facebook, Inc. Micro-route characterization and selection
US10587499B2 (en) 2015-12-30 2020-03-10 Facebook, Inc. Wireless node memory utilization for storing beamforming settings
CN107040998B (zh) * 2016-02-03 2021-08-20 华为技术有限公司 一种通信方法及装置
CN107155193B (zh) * 2016-03-02 2020-05-08 华为技术有限公司 一种定向链路的维护方法及站点sta
US11165486B2 (en) * 2016-03-11 2021-11-02 Sony Corporation Beamforming device for antenna arrays
WO2017164846A1 (en) * 2016-03-22 2017-09-28 Intel Corporation Sector sweeps for establishing two-way data communications with directional antennas
US20170303328A1 (en) * 2016-04-15 2017-10-19 Intel IP Corporation Antenna weight vector group identification for wireless communication
EP3240201A1 (en) * 2016-04-27 2017-11-01 MediaTek Inc. Multi-user multiple-input multiple-output (mu-mimo) operation and user selection
US10490895B2 (en) 2016-06-07 2019-11-26 Sony Corporation Training method and system for directional transmission in wireless communication
US9877350B2 (en) 2016-06-07 2018-01-23 Sony Corporation Method and system for P2P communications and decentralized spatial sharing in wireless networks with directional transmissions
US9787373B1 (en) * 2016-06-29 2017-10-10 Facebook, Inc. Hybrid node
US10034218B2 (en) * 2016-06-30 2018-07-24 Intel IP Corporation Apparatus, system and method of communicating a short sector sweep (SSW) packet
US10194369B2 (en) 2016-07-16 2019-01-29 Sony Corporation Routing data packets in wireless networks with directional transmissions
EP3487253B1 (en) * 2016-07-18 2022-05-25 LG Electronics Inc. Signal transmission/reception method in wireless lan system, and device therefor
EP3273614A1 (en) * 2016-07-22 2018-01-24 Peraso Technologies Inc. A method and apparatus for beamforming training in basic service set discovery
EP3273613B1 (en) * 2016-07-22 2019-05-15 Peraso Technologies Inc. A method and apparatus for beamforming training using frames
CN107733504B (zh) * 2016-08-12 2021-11-23 大唐移动通信设备有限公司 一种下行波束训练信号的处理方法及终端
CN107733513B (zh) * 2016-08-12 2022-12-20 大唐移动通信设备有限公司 一种下行接收波束训练信号的传输方法及装置
CN109792278B (zh) * 2016-09-09 2022-05-31 索尼公司 用于基于rf的通信和位置确定的通信设备及方法
CN107888239B (zh) 2016-09-30 2020-05-15 电信科学技术研究院 一种波束扫描方法及相关设备
US10075149B2 (en) * 2016-10-25 2018-09-11 Qualcomm Incorporated Methods and apparatus supporting controlled transmission and reception of messages
US10405348B2 (en) 2016-10-25 2019-09-03 Qualcomm Incorporated Slotted transmission and directional reception of RTS
RU2769950C2 (ru) * 2016-11-02 2022-04-11 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Устройство связи и способ связи
CN113691293B (zh) 2016-11-03 2023-08-22 华为技术有限公司 波束赋形训练方法及装置
US10461819B2 (en) * 2016-11-04 2019-10-29 Intel IP Corporation Media access control range extension
KR101869224B1 (ko) * 2016-11-21 2018-06-20 성균관대학교산학협력단 마이크로파 전력 전송을 위한 빔포밍 방법 및 빔 포밍으로 전력 전송을 위한 마이크로파를 송신하는 송신장치
US10498418B2 (en) * 2017-01-11 2019-12-03 Qualcomm Incorporated Fragmented beamforming for wireless devices
US10568132B2 (en) * 2017-01-13 2020-02-18 Sony Corporation Contention-based random access with receive beamforming in wireless networks
CN108418618A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 波束处理方法、发起节点及响应节点
US11240682B2 (en) * 2017-02-14 2022-02-01 Qualcomm Incorporated Split sector level sweep using beamforming refinement frames
WO2018165648A1 (en) * 2017-03-10 2018-09-13 Interdigital Patent Holdings, Inc. Collision mitigation for directional response in millimeter wave wireless local area network systems
CN108631842B (zh) * 2017-03-17 2021-06-04 电信科学技术研究院 一种确定设备波束互易性的方法、装置和电子设备
US9991972B1 (en) * 2017-04-26 2018-06-05 Cisco Technology, Inc. Remote radio head calibration
WO2018208328A1 (en) * 2017-05-08 2018-11-15 Intel Corporation Enhanced beamforming training for wireless communications
US10045197B1 (en) 2017-06-29 2018-08-07 Sony Corporation Discovery of neighbor nodes in wireless mesh networks with directional transmissions
CN110800219B (zh) * 2017-07-06 2021-11-30 华为技术有限公司 波束赋形训练的方法、接收设备和发送设备
US10701727B2 (en) * 2017-07-13 2020-06-30 Qualcomm Incorporated Techniques and apparatuses for resource management for a wireless network
US11140368B2 (en) * 2017-08-25 2021-10-05 Advanced Micro Devices, Inc. Custom beamforming during a vertical blanking interval
US10680927B2 (en) 2017-08-25 2020-06-09 Advanced Micro Devices, Inc. Adaptive beam assessment to predict available link bandwidth
US10575240B2 (en) 2017-09-12 2020-02-25 Sony Corporation Multi-band millimeter wave network discovery
US10871559B2 (en) 2017-09-29 2020-12-22 Advanced Micro Devices, Inc. Dual purpose millimeter wave frequency band transmitter
US11539908B2 (en) 2017-09-29 2022-12-27 Advanced Micro Devices, Inc. Adjustable modulation coding scheme to increase video stream robustness
US10716053B2 (en) 2017-10-02 2020-07-14 Sony Corporation Adaptive network discovery signaling
US11398856B2 (en) 2017-12-05 2022-07-26 Advanced Micro Devices, Inc. Beamforming techniques to choose transceivers in a wireless mesh network
US10938503B2 (en) 2017-12-22 2021-03-02 Advanced Micro Devices, Inc. Video codec data recovery techniques for lossy wireless links
US10728733B2 (en) 2018-01-12 2020-07-28 Sony Corporation Multi-band millimeter wave discovery in WLAN distribution networks
US10856326B2 (en) * 2018-02-12 2020-12-01 Huawei Technologies Co., Ltd. Channel access in BSS PCP/AP cluster service set
CN108777371B (zh) * 2018-04-10 2020-11-17 海能达通信股份有限公司 天线装置
WO2019196017A1 (zh) * 2018-04-10 2019-10-17 海能达通信股份有限公司 天线装置
US10742299B2 (en) 2018-08-20 2020-08-11 Sony Corporation Allocation and directional information distribution in millimeter wave WLAN networks
US20220103267A1 (en) * 2019-01-15 2022-03-31 Lg Electronics Inc. Learning device
US10959111B2 (en) 2019-02-28 2021-03-23 Advanced Micro Devices, Inc. Virtual reality beamforming
US11558880B2 (en) 2019-10-24 2023-01-17 Qualcomm Incorporated Sidelink groupcast scheduling
US11985647B2 (en) * 2019-10-24 2024-05-14 Qualcomm Incorporated Sidelink groupcast beam training
US11653349B2 (en) 2019-10-24 2023-05-16 Qualcomm Incorporated Sidelink groupcast reachability based scheduling
US11699408B2 (en) 2020-12-22 2023-07-11 Ati Technologies Ulc Performing asynchronous memory clock changes on multi-display systems
CN117177361A (zh) * 2022-05-23 2023-12-05 华为技术有限公司 一种通信的方法和装置
WO2024005809A1 (en) * 2022-06-30 2024-01-04 Intel Corporation Apparatus, system, and method of communicating a packet with a training (trn) field

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281004C (zh) * 2001-04-07 2006-10-18 摩托罗拉公司 控制多输入、多输出通信信道的收发器中的方法和系统
CN101218758A (zh) * 2005-06-09 2008-07-09 英特尔公司 在无线多输入多输出系统中用于对训练码元进行波束形成的方法和装置
CN101258730A (zh) * 2005-09-30 2008-09-03 三菱电机研究实验室 用于在mimo无线lan中选择天线和波束的训练信号
WO2008126378A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 無線通信システム、無線通信装置及び無線通信方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630403B2 (en) * 2002-03-08 2009-12-08 Texas Instruments Incorporated MAC aggregation frame with MSDU and fragment of MSDU
WO2005071865A1 (ja) 2004-01-21 2005-08-04 Nec Corporation 送信指向性アンテナ制御システム、基地局及びそれらに用いる送信指向性アンテナ制御方法
CA2583194C (en) * 2004-10-18 2014-05-27 Lg Electronics Inc. A method of transmitting feedback information in an orthogononal frequency division multiplexing (ofdm)/ofdm access (ofdma) mobile communication system
CA2547650A1 (en) * 2006-04-04 2007-10-04 Tenxc Wireless Inc. Method and apparatus for adaptive beamforming in an antenna array system for wireless communications
US8787841B2 (en) 2006-06-27 2014-07-22 Qualcomm Incorporated Method and system for providing beamforming feedback in wireless communication systems
US20080130764A1 (en) * 2006-12-04 2008-06-05 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed high definition video data using beamforming vector feedback based on hybrid quantization
CN101548488B (zh) 2006-12-07 2012-10-24 三菱电机株式会社 无线通信系统、无线终端站、无线基站以及无线通信方法
CN101589576B (zh) * 2007-01-19 2015-05-06 皇家飞利浦电子股份有限公司 允许发现无线设备的装置和方法
US8089908B2 (en) * 2007-03-13 2012-01-03 Conexant Systems, Inc. Systems and methods for indicating buffered data at an access point using a traffic indication map broadcast
US8249513B2 (en) 2007-08-13 2012-08-21 Samsung Electronics Co., Ltd. System and method for training different types of directional antennas that adapts the training sequence length to the number of antennas
US8280445B2 (en) 2008-02-13 2012-10-02 Samsung Electronics Co., Ltd. System and method for antenna training of beamforming vectors by selective use of beam level training
US8095069B2 (en) * 2008-03-11 2012-01-10 Intel Corporation Techniques for MMWAVE WPAN communications with high-directional steerable antennas combining omni-directional transmissions with beamforming training
CN102177742B (zh) 2008-10-29 2015-04-22 马维尔国际贸易有限公司 在多天线通信设备中高效和灵活的传输波束成形扇区扫描
US8879516B2 (en) * 2008-12-10 2014-11-04 Marvell World Trade Ltd Efficient formats of beacon, announcement, and beamforming training frames
US9356673B2 (en) * 2008-12-17 2016-05-31 Broadcom Corporation Communication device incorporating beamforming handshaking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281004C (zh) * 2001-04-07 2006-10-18 摩托罗拉公司 控制多输入、多输出通信信道的收发器中的方法和系统
CN101218758A (zh) * 2005-06-09 2008-07-09 英特尔公司 在无线多输入多输出系统中用于对训练码元进行波束形成的方法和装置
CN101258730A (zh) * 2005-09-30 2008-09-03 三菱电机研究实验室 用于在mimo无线lan中选择天线和波束的训练信号
WO2008126378A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 無線通信システム、無線通信装置及び無線通信方法

Also Published As

Publication number Publication date
WO2010095061A1 (en) 2010-08-26
EP2399347B1 (en) 2019-04-10
EP2399347A1 (en) 2011-12-28
CA2753199C (en) 2017-09-19
PL2399347T3 (pl) 2019-09-30
US20100214169A1 (en) 2010-08-26
ES2729477T3 (es) 2019-11-04
CN102326338A (zh) 2012-01-18
EP2399347A4 (en) 2017-04-26
CA2753199A1 (en) 2010-08-26
US8422961B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
CN102326338B (zh) 用于功能受限装置的波束成形训练方法及装置
US11671302B2 (en) Base station, terminal apparatus, communication method and recording medium
CN107078771B (zh) 无线通信系统中多用户波束成形的方法和装置
JP6381233B2 (ja) 無線通信方法及び無線通信システム
JP6204359B2 (ja) 無線通信システムにおける仮想セル形成方法及び装置
JP6806165B2 (ja) 無線通信における予防的mimo中継
JP6881614B2 (ja) 無線通信システムに用いられる電子機器、及び方法
CN110168958A (zh) 波束扫描配置
CN109565324A (zh) 用户设备操作管理的系统和方法
JP5281692B2 (ja) 無線アクセスネットワークにおける方法及び装置
CN102938893B (zh) 用于多链路恢复的时间缩减
TW200803235A (en) Orthogonal resource reuse with SDMA beams
CN103828257A (zh) 在使用波束成形的无线通信系统中用于短移交时延的方法和设备
JP7104135B2 (ja) ビームフォーミングトレーニング方法および装置
JP5804407B2 (ja) 無線装置
CN112243261B (zh) 信息反馈、接收方法、装置、设备和存储介质
CN107836087A (zh) 一种多用户场景下波束训练方法及装置
JP2010171648A (ja) ビームフォーミング技術を利用した無線通信方法及び無線通信システム
JP5294170B2 (ja) 無線通信可能なデバイス,無線通信方法,プログラム,及び情報記録媒体
JP5403588B2 (ja) 無線通信時のトラッキング方法,無線通信方法,無線通信プログラム,及び情報記憶媒体
JP5470634B2 (ja) 指向性ビームを用いた無線通信を行う無線通信システム及び無線通信方法
JP5263741B2 (ja) ビームフォーミング技術を利用した無線通信方法及び無線通信システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160118

Address after: Espoo, Finland

Patentee after: Technology Co., Ltd. of Nokia

Address before: Espoo, Finland

Patentee before: Nokia Oyj