CN102315066A - 带电粒子束装置以及试样加工方法 - Google Patents

带电粒子束装置以及试样加工方法 Download PDF

Info

Publication number
CN102315066A
CN102315066A CN2011101873105A CN201110187310A CN102315066A CN 102315066 A CN102315066 A CN 102315066A CN 2011101873105 A CN2011101873105 A CN 2011101873105A CN 201110187310 A CN201110187310 A CN 201110187310A CN 102315066 A CN102315066 A CN 102315066A
Authority
CN
China
Prior art keywords
ion beam
object lens
electrode
sample
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101873105A
Other languages
English (en)
Other versions
CN102315066B (zh
Inventor
小川贵志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO NANOTECHNOLOGY Inc
Hitachi High Tech Science Corp
Original Assignee
SEIKO NANOTECHNOLOGY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO NANOTECHNOLOGY Inc filed Critical SEIKO NANOTECHNOLOGY Inc
Publication of CN102315066A publication Critical patent/CN102315066A/zh
Application granted granted Critical
Publication of CN102315066B publication Critical patent/CN102315066B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • H01J2237/04924Lens systems electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1202Associated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本发明提供带电粒子束装置以及试样加工方法,该带电粒子束装置具有:离子源,其产生离子束;第1物镜电极,其形成使离子束聚焦至试样上的第1物镜;第2物镜电极,其被配置在比第1物镜电极更靠近试样的位置处,形成第2物镜,该第2物镜使以低加速电压加速后的离子束聚焦至试样上。

Description

带电粒子束装置以及试样加工方法
技术领域
本发明涉及使用聚焦离子束对试样进行加工的带电粒子束装置。
背景技术
随着半导体器件的微细化,利用透射式电子显微镜(TEM:Transmission ElectronMicroscope)针对器件的微小区域进行观察和分析的技术的重要性不断提高。为了用TEM来进行观察,需要将微小区域加工成电子束能够透过的厚度的薄片试样。在薄片试样的制作中,广泛使用聚焦离子束装置。但是,在基于聚焦离子束装置的薄片试样的制作中,存在会在薄片试样上形成因照射聚焦离子束而产生的损伤层的问题。
作为解决该问题的一个方法,公知有使用在聚焦离子束装置中具有氩离子束照射部的装置的技术(参照专利文献1)。
由此,在因照射聚焦离子束而形成的损伤层上,能够从恰当的角度照射氩离子束来执行去除加工。
另外,作为其他方法,公知有利用以低加速电压加速后的聚焦离子束来制作薄片试样的技术。由此,能够减小形成在薄片试样上的损伤层的厚度。但是,当加速电压低时,聚焦离子束的离子束光学系统的色差变大。由此,存在无法使聚焦离子束的束直径缩小的问题。
作为解决该问题的方法,公知有使用具有中间加速管的聚焦离子束镜筒的技术(参照专利文献2)。
由此,能够减小光学系统的色差,且能够使能量小的聚焦离子束到达试样。
另外,作为其他方法,公知有在试样上施加电压的减速法。由此,能够在即将到达试样之前减小聚焦离子束的能量,因此能够减小像差。
【专利文献1】日本特开2007-66710号公报
【专利文献2】日本特开2007-103108号公报
但是,在以往的装置中,存在如下所述的问题。
即、具有氩离子束照射部的装置的结构复杂。另外,对于具备拥有中间加速管的聚焦离子束镜筒的装置而言,其镜筒的构造复杂。另外,在使用减速法的情况下,不得不在聚焦离子束镜筒与试样之间形成关于聚焦离子束对称的电场。但是,当在装置中具备试样观察用的电子束镜筒时,试样附近的电场变得不对称。因此,无法起到减速效果。
发明内容
本发明正是鉴于上述问题而完成的,其目的在于,提供一种在不使用复杂装置结构的情况下,即使减小加速电压也能够照射线束直径小的聚焦离子束的带电粒子束装置。
为了实现上述目的,本发明提供以下的手段。
本发明提供一种带电粒子束装置,该带电粒子束装置具有:收纳试样的试样室;以及离子束镜筒,其通过加速电压对离子束进行加速,并使离子束聚焦地照射到该试样上,其中,离子束镜筒具有:离子源,其被收纳在离子束镜筒的基端侧,产生离子束;以及离子光学系统,其向试样照射离子束,离子光学系统具有:第1物镜电极,其使离子束聚焦至试样上;以及第2物镜电极,其使以第2加速电压加速后的离子束聚焦至试样上,其中,第2加速电压比对离子束进行加速的第1加速电压低。因此,与离子束的加速电压相应地形成最佳的物镜,能够使线束直径小的离子束聚焦至试样上。
另外,在上述带电粒子束装置中,优选的是,第2物镜电极被配置为比第1物镜电极更靠离子束镜筒的末端侧。通过使用被配置在比第1物镜更靠近试样的位置处的第2物镜,由此,缩短了透镜与焦点之间的距离。由此,即使是以低加速电压加速后的离子束,也能够减小色差。
另外,在上述带电粒子束装置中,优选的是,第1物镜电极由多个电极构成,多个电极至少具有与第2物镜电极相邻且接地的电极,由接地的电极、第2物镜电极、接地的离子束镜筒的末端部形成了使以第2加速电压加速后的离子束聚焦的透镜电场。即、带电粒子束装置形成有以第2物镜电极为中心的单透镜。由此,能够由一个电极来构成第2物镜电极。由此,透镜电极容易组装,透镜轴的偏差变小,能够组装成精度良好的离子束镜筒。而且,由此能够减小线束的直径。特别是,透镜电极的轴偏及倾斜是导致观察像的视野偏移的因素。因此,精确地组装透镜电极十分重要。将透镜电极的轴偏调整为15μm以下。
另外,在上述带电粒子束装置中,优选的是,离子光学系统在比第1物镜电极更靠离子束镜筒的基端侧的位置处,具有使离子束偏转的偏转电极,偏转电极将以第1加速电压加速后的离子束偏转成使其通过第1物镜电极的透镜中心,并且,将以第2加速电压加速后的离子束偏转成使其通过第2物镜电极的透镜中心。即、即使切换了透镜,也能够使离子束的回正位置成为透镜的中心。由此,能够使离子束入射到各个透镜的中心,因此能够减小像差。另外,即使切换了透镜,也能使照射位置一致。并且,即使使用偏转电极来调整离子束的照射位置,离子束也通过透镜的中心,因此,观察像不会变得模糊。这里,偏转电极由2级的静电电极构成,通过调整上下级的电压比,能够使离子束入射到透镜的中心。
另外,在上述带电粒子束装置中,优选的是,离子光学系统在比第1物镜电极更靠离子束镜筒的基端侧的位置处,具有进行离子束的扫描的扫描电极,扫描电极使以第1加速电压加速后的离子束以通过第1物镜电极的透镜中心的方式进行扫描,并且,使以第2加速电压加速后的离子束以通过第2物镜电极的透镜中心的方式进行扫描。即、使所扫描的离子束入射到透镜的中心,使离子束的回正位置成为透镜的中心。由此,即使切换了透镜,离子束的回正位置也位于透镜的中心,因此,能够减轻观察像的畸变。这里,扫描电极由2级的静电电极构成,通过调整上下级的电压比来调整离子束的照射位置。
本发明的带电粒子束装置的离子光学系统还具有:聚焦透镜电极,其使由离子源产生的离子束聚焦;以及像散校正电极,其对离子束的像散进行校正。
另外,在上述带电粒子束装置中,优选的是,该带电粒子束装置具有:输入部,其输入加速电压;存储部,其存储与加速电压对应的离子光学系统的设定值;以及控制部,其针对离子光学系统设定设定值,存储部存储与第1加速电压对应的第1设定值和与第2加速电压对应的第2设定值,在通过输入部输入了第1加速电压时,控制部针对离子光学系统设定第1设定值,在通过输入部输入了第2加速电压时,控制部针对离子光学系统设定第2设定值。由此,能够根据加速电压的切换,也切换离子光学系统的设定,因此,不需要进行线束的重复调整,能够顺畅地进行作业。另外,即使对所使用的物镜进行切换,也能够将离子光学系统的设定切换为恰当的设定值,因此,观察区域不会发生大幅的变化,能够观察试样上的相同位置。这里,优选的是,存储部除了存储有针对离子光学系统设定的设定值以外,还存储有从输入部输入设定值时的输入灵敏度。所谓输入灵敏度,是指操作员输入针对物镜电极、像散校正电极和偏转电极的施加电压值时的输入部的操作灵敏度。
另外,在上述带电粒子束装置中,优选的是,关于第1设定值,第1物镜电极的设定值为固定的电压值,第2物镜电极的设定值为0,关于第2设定值,第1物镜电极的设定值为0,第2物镜电极的设定值为固定的电压值。通过从对物镜电极供给电压的状态成为接地状态,能够短时间地进行切换。特别是,通过由开关机构实现的切换部来进行切换,由此,能够减轻在所使用的物镜的切换之后产生的离子束的照射位置的漂移。
在本发明的带电粒子束装置中,第2物镜电极具有能够使离子束通过的孔部,且该第2物镜电极由具有相对于离子束大致垂直的平面的平板部、以及能够使离子束通过的筒部构成。通过使用平板部,能够防止离子束照射到被配置为比平板部更靠近试样侧的绝缘部件。另外,在形成第1物镜时,接地的筒部作为防电屏蔽件发挥作用,因此,能够减轻外部电场对离子束的影响。
本发明的带电粒子束装置还具有电子束镜筒,该电子束镜筒能够向试样的离子束的照射区域照射电子束,电子束镜筒具有使电子束聚焦至试样上的电子束用物镜线圈,电子束用物镜线圈的中心与试样之间的距离比离子束镜筒的第2物镜电极的中心与试样之间的距离大。由此,能够向基于离子束的试样加工中的试样加工区域照射电子束,进行SEM观察。另外,通过第2物镜电极,能够防止电子束镜筒的电子束用物镜的电场对离子束的影响。另外,减轻了试样附近的电场的不对称性,因此,还能够防止电子束用物镜的电场对由电子束或试样产生的二次电子的影响。
本发明的试样加工方法包括:第1加工步骤,以第1加速电压对离子束进行加速,通过第1物镜对该离子束进行聚焦,对试样进行加工;以及第2加工步骤,以比第1加速电压低的第2加速电压对离子束进行加速,通过比第1物镜更靠近试样的第2物镜对该离子束进行聚焦,对试样进行加工。由此,在第2加工步骤中,能够通过以第2加速电压加速后的离子束,进行损伤层的厚度小的试样加工。另外,通过与试样接近的第2物镜来进行聚焦,因此,能够利用像差小且线束直径小的离子束来进行加工。
根据本发明的带电粒子束装置,通过使用第2物镜电极,即使减小加速电压,也能够照射线束直径小的带电粒子束,实现损伤层小的试样加工。
附图说明
图1是本发明的实施方式的带电粒子束装置的结构图。
图2是本发明的实施方式的带电粒子束装置的物镜电极的配线图。
图3是本发明的实施方式的带电粒子束装置的物镜电极的结构图。
图4是本发明的实施方式的带电粒子束装置的结构图。
图5是本发明的实施方式的试样加工方法的试样加工的概略图。(a)表示粗加工,(b)表示精加工。
图6是本发明的实施方式的试样加工方法的流程图。
图7是本发明的实施方式的离子光学系统的概略图。
图8是本发明的实施方式的离子光学系统的概略图。
图9是本发明的实施方式的离子光学系统的概略图。
图10是本发明的实施方式的离子光学系统的概略图。
符号说明
1:离子束镜筒外壁        1a:末端部
2:离子源                3:聚焦透镜电极
4:偏转电极              5:像散校正电极
6:第1物镜电极           7:第1物镜电极
8:第1物镜电极           9:第2物镜电极
9a:孔部                 9b:平板部
9c:筒部                 10:离子束镜筒
11:离子束               12:试样台
13:试样                 14:二次电子检测器
15:气枪                 16:气源容器
17:第1切换部            18:第1物镜电源
19:第2切换部            20:第2物镜电源
21:控制部               22:显示部
23:输入部              24:物镜电压控制部
25:试样室              26:扫描电极
27:存储部              34:电子束用二次电子检测器
41:电子束镜筒          42:电子源
43:电子束用物镜线圈    44:电子束
45:电子束用物镜中心位置与电子束照射位置之间的距离
46:电子束用物镜中心位置
47:电子束照射位置
48:第2物镜中心位置与离子束照射位置之间的距离
49:第2物镜中心位置     50:离子束照射位置
51:加工槽              52:加工槽
53:薄片试样部          54:损伤层
55:损伤层              70:中心轴
71:第1物镜电场         71a:透镜中心
71b:离子束             72:第2物镜电场
72a:透镜中心           72b:离子束
80:扫描宽度            81b:离子束
82b:离子束
具体实施方式
以下,对本发明的带电粒子束装置的实施方式进行说明。
如图1所示,本实施方式的带电粒子束装置具有离子束镜筒10,该离子束镜筒10由以下部分构成:产生离子束11的离子源2;形成聚焦透镜的聚焦透镜电极3;偏转电极4;像散校正电极5;扫面电极26;形成第1物镜的第1物镜电极6、7、8;以及形成第2物镜的第2物镜电极9。离子束镜筒10具有被接地的离子束镜筒外壁1,离子束11的光轴成为真空状态。
试样室25具有:载置试样13的试样台12;检测从试样13产生的二次电子的二次电子检测器14;以及向试样供给原料气体或蚀刻气体的气枪15。
控制部21根据从键盘、鼠标等输入部23输入的离子束照射条件,分别向离子源2、聚焦透镜电极3、偏转电极4、像散校正电极5、第1物镜电源18发送设定值,离子源、各个电极和电源根据设定值,分别施加设定值的电压。另外,所输入的离子束照射条件被存储到存储部27中。当通过输入部23输入了照射条件切换时,控制部21从存储部27中读出与切换对应的设定值,将离子束镜筒10的各个电极设定为设定值的电压。另外,控制部21通过控制离子束镜筒10内的可动光圈,来调整照射到试样13上的离子束电流量。另外,控制部21向试样台12发送移动信号,使试样台12移动,使得能够将离子束11照射到试样13的期望位置处。然后,向试样13的期望位置处照射离子束11,通过二次电子检测器14检测从试样13产生的二次电子。检测出的二次电子的信号被发送到控制部21。控制部21根据检测信号和离子束11的扫描信号而形成二次电子像。将二次电子像显示到显示部22上。
另外,在照射离子束11时,从气枪15向试样13供给收纳在气源容器16内的原料气体或蚀刻气体,由此,能够对离子束11的照射区域进行原料气体材料的沉积、或由蚀刻气体实现的增速蚀刻。
图2是本发明的带电粒子束装置的物镜电极的配线图。第1物镜电极7和第2物镜电极9分别与第1切换部17和第2切换部19相连。第1切换部17能够对连接第1物镜电极7和第1物镜电源18的配线与将第1物镜电极7接地的配线进行切换。另外,第2切换部19能够对连接第2物镜电极9和第2物镜电源20的配线与将第2物镜电极9接地的配线进行切换。另外,第1物镜电源18和第2物镜电源20分别与控制部21连接,将从控制部21发送的设定电压值的电压施加给透镜电极。
物镜电压控制部24对第1切换部17和第2切换部19进行控制。在形成第1物镜时,物镜电压控制部24向第1切换部17和第2切换部19发送表示以如下方式进行配线的信号。即、使第1切换部17成为连接第1物镜电极7与第1物镜电源18的配线,且使第2切换部19成为将第2物镜电极9接地的配线。另外,在形成第2物镜时,物镜电压控制部24向第1切换部17和第2切换部19发送表示以如下方式进行配线的信号。即、使第1切换部17成为将第1物镜电极7接地的配线,且使第2切换部19成为连接第2物镜电极9与第2物镜电源20的配线。
在形成第1物镜时,将第1物镜电极6、8接地并向第1物镜电极7施加10kV以下的电压,由此形成第1物镜。此时,第2物镜电极9接地,因此不作为透镜发挥作用。这里,针对第1物镜电极7的施加电压的极性可以是正或负。但是,在向第1物镜电极7施加负电压来使离子束11加速的情况下,色差更小,能够照射线束直径更小的离子束。
在形成第2物镜时,将第1物镜电极6、7、8接地并向第2物镜电极9施加5kV以下的电压,由此形成第2物镜。通过将与第2物镜电极9相邻的第1物镜电极8和离子束镜筒外壁1的末端部1a接地、并向第2物镜电极9施加电压,由此形成单透镜。此时,第1物镜电极7接地,因此不作为透镜发挥作用。这里,针对第2物镜电极9的施加电压的极性可以是正或负。但是,在向第2物镜电极9施加负电压来使离子束11加速的情况下,色差更小,能够照射线束直径更小的离子束。
图3是本发明的带电粒子束装置的物镜电极的结构图。第1物镜电极6、7、8是平板状的电极,它们具有与离子束11大致垂直的平面,并具有使离子束11通过的孔部。另外,第2物镜电极9具有使离子束11通过的孔部9a,并且该第2物镜电极9由具有与离子束11大致垂直的平面的平板部9b和筒部9c构成。即使在相对于平板部9b在试样13侧配置了绝缘性物质作为透镜的耐压材料的情况下,也能够使用平板部9b,来防止离子束11的脱离于光轴的成分照射到绝缘性物质上。由此,能够防止因照射离子束而产生的绝缘性物质的损伤和充电。另外,由于筒部9c被配置成覆盖离子束11,因此,能够减轻外部电场对通过筒部9c内侧的离子束11的影响。
图7至图10是本发明的实施方式的离子光学系统的概略图。如图7所示,通过由上下两级的静电电极构成的偏转电极4,使离子束71b偏转成通过第1物镜电场71的透镜中心71a。由此,使得离子束71b始终通过透镜中心71a而照射到试样13上。
图8是使用第2物镜电极9向试样13照射以比离子束71b低的加速电压加速后的离子束72b时的离子光学系统的概略图。当切换透镜时,在离子束71b的线束轨迹中,照射到偏离于第2物镜电场72的透镜中心72a的位置处。未通过透镜中心的线束会受到像差的影响。因而无法使线束聚焦至试样13上,因此观察像变得模糊。因此,伴随透镜的切换,变更偏转电极4的设定值,使得离子束72b通过第2物镜电场72的透镜中心72a。由此,即使切换了透镜,也能够使离子束72b通过物镜的中心,因此,能够使线束聚焦至试样13上。
在切换离子束的加速电压和所使用的物镜时,试样13上的线束照射位置有可能发生偏移。通过使用偏转电极4变更离子束来对该偏移进行校正。如上所述,偏转电极4将离子束偏转成使得离子束通过物镜的中心,因此,即使对照射位置进行校正,观察像也不会变得模糊。
另外,如图9所示,扫描电极26使离子束81b在试样13上进行扫描。扫描电极26由上下两级的静电电极构成。扫描电极26使离子束81b以通过第1物镜电场71的透镜中心71a的方式进行扫描。由此,使得离子束81b始终通过透镜中心71a而照射到试样13上。并且,离子束81b是以扫描宽度80在试样13上进行扫描。
图10是使用第2物镜电极9向试样13照射以比离子束81b低的加速电压加速后的离子束82b时的离子光学系统的概略图。当切换了透镜时,在离子束81b的线束轨迹中,照射到偏离于第2物镜电场72的透镜中心72a的位置处。使用了未通过透镜中心的线束的试样的观察像成为畸变的像。因此,伴随透镜的切换,变更扫描电极26的设定值,使得离子束82b通过第2物镜电场72的透镜中心72a。由此,即使切换了透镜,也能够使离子束82b通过物镜的中心,因此,能够使线束聚焦至试样13上。
在切换离子束的加速电压和所使用的物镜时,试样13上的线束的扫描宽度有可能产生偏差。使用扫描电极26对该偏差进行校正。如上所述,扫描电极26使离子束以离子束通过物镜中心的方式进行扫描,因此,即使对扫描宽度进行校正,观察像也不会产生畸变。
<实施例1>
对通过本实施方式的带电粒子束装置提高了分辨率的实施例进行说明。关于在用于将试样13加工成精密形状的精加工中所使用的线束电流量,通过第1物镜将以加速电压30kV加速后的离子束11聚焦至试样13上时的线束直径为几十nm左右。此时,离子束11在试样13上形成的损伤层的厚度为20nm左右。另外,通过第1物镜将以加速电压2kV加速后的离子束11聚焦至试样13上时的线束直径为200nm左右。此时,离子束11在试样13上形成的损伤层的厚度为20nm左右。对于加速电压低的一方,离子束11在试样13中的侵入深度较小,因此,对于加速电压低的一方,因照射离子束而在试样上产生的损伤层的厚度较小。但是,在通过第1物镜在试样13上进行聚焦的情况下,线束直径成为200nm左右。因此,观察分辨率变低,很难准确地确定离子束的照射位置。
另一方面,通过第2物镜将以加速电压2kV加速后的离子束11聚焦至试样13上时的线束直径为100nm左右。通过使用第2物镜,由此,即使是以低加速电压加速后的离子束,也能够减小线束直径。由此,能够准确地确定离子束的照射位置。
这里,虽然将加速电压设为2kV,不过,可以在不由第2物镜电极9产生放电的范围内设定加速电压的值。
另外,在从第1物镜向第2物镜的切换中,控制部21将预先存储的针对离子源2、聚焦透镜电极3、偏转电极4、像散校正电极5以及第2物镜电源20的设定值分别发送到离子源、各个电源和电源。由此,不需要针对每次的透镜切换,调整各个结构要素的设定值。
<实施例2>
使用图4,对具备电子束镜筒的带电粒子束装置的实施例进行说明。该带电粒子束装置具有电子束镜筒41,该电子束镜筒41具有电子源42和电子束用物镜43。电子束44能够照射到试样13上的离子束11的照射区域上。通过使电子束44扫描离子束11的照射区域而进行照射,由此,能够通过SEM观察到离子束11对试样13的期望位置进行加工的状态。
这里,离子束镜筒10的第2物镜电极9被配置在比电子束镜筒41的电子束用物镜线圈(coil)43更靠近试样13的位置处。即、电子束用物镜中心位置46与电子束照射位置47之间的距离45比第2物镜中心位置49与离子束照射位置50之间的距离48大。由此,能够减轻外部电场对离子束11的影响。
在电子束镜筒41的物镜为电磁场叠加型的情况下,在形成电子束用物镜时,在试样13附近形成关于离子束11不对称的电场。离子束11受到不对称的电场的影响而可能导致照射到试样13上的线束形状发生变化。
但是,通过将第2物镜电极9配置在试样13的附近,由此,在试样13的附近,第2物镜电极9的筒部9c覆盖住离子束11,因此,能够减轻不对称电场的影响。
另外,在电子束镜筒41的物镜为电磁场叠加型的情况下,在形成电子束用物镜时,在试样13附近形成关于电子束44不对称的电场。受到该电场的影响,照射到试样13上的电子束44的线束形状会发生变形。
但是,通过使用第2物镜电极9,能够减轻试样13附近的关于电子束44不对称的电场。即、第2物镜电极9的筒部9c与试样台12位于相对于电子束44大致彼此相对的位置处,因此,能够缓解电场的不对称性。由此,能够在电子束44的线束形状不产生大幅变形的情况下,以高分辨率来观察试样13。
另外,电子束镜筒41具有电子束用二次电子检测器34。在电子束镜筒41的物镜为电磁场叠加型的情况下,当形成电子束用物镜时,会在试样13附近产生电场。将电子束44照射到试样13上,所产生的二次电子在由电子束用物镜形成的电场的作用下被引入到电子束用二次电子检测器34中,进行检测。但是,在电子束镜筒41相对于试样13倾斜地配置的情况下,在试样13附近形成关于电子束44不对称的电场。因此,二次电子的轨迹受到不对称电场的影响而转向,很难到达电子束用二次电子检测器34。
但是,通过使用第2物镜电极9,能够减轻试样13附近的关于电子束44不对称的电场。由此,减轻了不对称电场对二次电子的影响。因此,电子束用二次电子检测器34的二次电子检测效率提高,能够得到高质量的二次电子像。
<实施例3>
使用图5和图6来说明本实施方式的试样加工方法。图5是本发明的试样加工方法的试样加工的概略图。另外,图6是本发明的试样加工方法的流程图。基于试样13来制作损伤层少的TEM试样。
如图5(a)所示,使用以加速电压30kV进行了加压、且被第1物镜聚焦后的离子束1,执行粗加工(S1):使作为观察对象的薄片试样部53残留而形成相对的加工槽51、52。由于离子束11的照射而在与薄片试样部53相邻的区域中形成损伤层54、55。
接着,将加速电压切换为2kV,也将物镜切换为第2物镜(S2)。
接着,如图5(b)所示,将离子束11照射到损伤层54、55上,进行去除加工(S3)。由此,能够切取出损伤区域少的薄片试样部53。

Claims (13)

1.一种带电粒子束装置,该带电粒子束装置具有:收纳试样的试样室;以及离子束镜筒,其通过加速电压对离子束进行加速,并使离子束聚焦地照射到该试样上,其中,
所述离子束镜筒具有:离子源,其被收纳在所述离子束镜筒的基端侧,产生离子束;以及离子光学系统,其向所述试样照射所述离子束,
所述离子光学系统具有:第1物镜电极,其使所述离子束聚焦至所述试样上;以及第2物镜电极,其使以第2加速电压加速后的离子束聚焦至所述试样上,其中,所述第2加速电压比对所述离子束进行加速的第1加速电压低。
2.根据权利要求1所述的带电粒子束装置,其中,
所述第2物镜电极被配置为比所述第1物镜电极更靠所述离子束镜筒的末端侧。
3.根据权利要求1所述的带电粒子束装置,其中,
所述第1物镜电极由多个电极构成,
所述多个电极至少具有与所述第2物镜电极相邻且接地的电极,
由所述接地的电极、所述第2物镜电极、以及接地的所述离子束镜筒的末端部形成了使以所述第2加速电压加速后的离子束聚焦的透镜电场。
4.根据权利要求1所述的带电粒子束装置,其中,
所述离子光学系统在比所述第1物镜电极更靠所述离子束镜筒的基端侧的位置处,具有使所述离子束偏转的偏转电极,
所述偏转电极将以所述第1加速电压加速后的离子束偏转成使其通过所述第1物镜电极的透镜中心,并且,将以所述第2加速电压加速后的离子束偏转成使其通过所述第2物镜电极的透镜中心。
5.根据权利要求1所述的带电粒子束装置,其中,
所述离子光学系统在比所述第1物镜电极更靠所述离子束镜筒的基端侧的位置处,具有进行所述离子束的扫描的扫描电极,
所述扫描电极使以所述第1加速电压加速后的离子束以通过所述第1物镜电极的透镜中心的方式进行扫描,并且,使以所述第2加速电压加速后的离子束以通过所述第2物镜电极的透镜中心的方式进行扫描。
6.根据权利要求1所述的带电粒子束装置,其中,
所述离子光学系统具有:
聚焦透镜电极,其使由所述离子源产生的所述离子束聚焦;以及
像散校正电极,其对所述离子束的像散进行校正。
7.根据权利要求1所述的带电粒子束装置,其中,
该带电粒子束装置具有:
输入部,其输入所述第1加速电压和所述第2加速电压;
存储部,其存储与所述第1加速电压和所述第2加速电压对应的所述离子光学系统的设定值;以及
控制部,其针对所述离子光学系统设定所述设定值,
所述存储部存储与所述第1加速电压对应的第1设定值和与所述第2加速电压对应的第2设定值,
在通过所述输入部输入了所述第1加速电压时,所述控制部针对所述离子光学系统设定所述第1设定值,在通过所述输入部输入了所述第2加速电压时,所述控制部针对所述离子光学系统设定所述第2设定值。
8.根据权利要求7所述的带电粒子束装置,其中,
关于所述第1设定值,所述第1物镜电极的设定值为固定的电压值,所述第2物镜电极的设定值为0,
关于所述第2设定值,所述第1物镜电极的设定值为0,所述第2物镜电极的设定值为固定的电压值。
9.根据权利要求7所述的带电粒子束装置,其中,
所述第1设定值和第2设定值被设定为,使得以所述第1加速电压加速后的离子束与以所述第2加速电压加速后的离子束照射相同的区域。
10.根据权利要求1所述的带电粒子束装置,其中,
所述第2物镜电极具有能够使所述离子束通过的孔部,且该第2物镜电极由具有与所述离子束大致垂直的平面的平板部、以及能够使所述离子束通过的筒部构成。
11.根据权利要求1所述的带电粒子束装置,其中,
该带电粒子束装置具有电子束镜筒,该电子束镜筒能够向所述试样的所述离子束的照射区域照射电子束,
所述电子束镜筒具有使所述电子束聚焦至所述试样上的电子束用物镜线圈,
所述电子束用物镜线圈的中心与所述试样之间的距离比所述离子束镜筒的所述第2物镜电极的中心与所述试样之间的距离大。
12.一种试样加工方法,该方法包括:
第1加工步骤,以第1加速电压对离子束进行加速,通过第1物镜对该离子束进行聚焦,对试样进行加工;以及
第2加工步骤,以比所述第1加速电压低的第2加速电压对离子束进行加速,通过比所述第1物镜更靠近所述试样的第2物镜对该离子束进行聚焦,对所述试样进行加工。
13.根据权利要求12所述的试样加工方法,其中,
所述第2加工步骤是去除在所述第1加工步骤中形成在所述试样上的损伤层的加工步骤。
CN201110187310.5A 2010-07-05 2011-07-05 带电粒子束装置以及试样加工方法 Active CN102315066B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010153110 2010-07-05
JP2010-153110 2010-07-05
JP2011103712A JP5792509B2 (ja) 2010-07-05 2011-05-06 荷電粒子ビーム装置及び試料加工方法
JP2011-103712 2011-05-06

Publications (2)

Publication Number Publication Date
CN102315066A true CN102315066A (zh) 2012-01-11
CN102315066B CN102315066B (zh) 2015-04-29

Family

ID=45398987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110187310.5A Active CN102315066B (zh) 2010-07-05 2011-07-05 带电粒子束装置以及试样加工方法

Country Status (4)

Country Link
US (1) US8269188B2 (zh)
JP (1) JP5792509B2 (zh)
KR (1) KR101846546B1 (zh)
CN (1) CN102315066B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257067A (zh) * 2012-02-21 2013-08-21 日本株式会社日立高新技术科学 样本制备方法和装置
CN104520963A (zh) * 2012-08-22 2015-04-15 株式会社日立高新技术 复合带电粒子线装置
CN110176379A (zh) * 2018-02-20 2019-08-27 日本株式会社日立高新技术科学 带电粒子束装置和试样加工观察方法
CN110243318A (zh) * 2018-03-07 2019-09-17 日本株式会社日立高新技术科学 截面加工观察装置及其方法、程序以及形状测定方法
CN112189248A (zh) * 2018-05-22 2021-01-05 株式会社日立高新技术 带电粒子束装置及其轴调整方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970213B2 (ja) * 2012-03-19 2016-08-17 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP5952046B2 (ja) * 2012-03-22 2016-07-13 株式会社日立ハイテクサイエンス 複合荷電粒子ビーム装置
US8742361B2 (en) * 2012-06-07 2014-06-03 Fei Company Focused charged particle column for operation at different beam energies at a target
US10062546B2 (en) 2013-05-14 2018-08-28 Hitachi, Ltd. Sample holder and focused-ion-beam machining device provided therewith
JP6261228B2 (ja) * 2013-07-31 2018-01-17 株式会社日立ハイテクノロジーズ 集束イオンビーム装置、集束イオン/電子ビーム加工観察装置、及び試料加工方法
US10872742B2 (en) * 2016-11-24 2020-12-22 Hitachi High-Tech Corporation Charged particle beam device
US20240105421A1 (en) * 2022-09-22 2024-03-28 Applied Materials Israel Ltd. Enhanced deposition rate by applying a negative voltage to a gas injection nozzle in fib systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820346A (zh) * 2003-05-09 2006-08-16 株式会社荏原制作所 基于带电粒子束的检查装置及采用了该检查装置的器件制造方法
WO2010042916A2 (en) * 2008-10-12 2010-04-15 Fei Company High accuracy beam placement for local area navigation
JP2010102938A (ja) * 2008-10-23 2010-05-06 Hitachi High-Technologies Corp 荷電粒子線装置及び集束イオンビーム装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139238A (ja) * 1985-12-13 1987-06-22 Hitachi Ltd 静電レンズ電圧供給装置
JPS63236251A (ja) * 1987-03-23 1988-10-03 Jeol Ltd 電子ビ−ム−イオンビ−ム複合装置
JP4627771B2 (ja) 2002-09-11 2011-02-09 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP3968334B2 (ja) * 2002-09-11 2007-08-29 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び荷電粒子線照射方法
JP2005063678A (ja) * 2003-08-11 2005-03-10 Jeol Ltd 荷電粒子ビーム装置における自動焦点補正方法および自動非点補正方法
JP2005259396A (ja) * 2004-03-10 2005-09-22 Hitachi High-Technologies Corp 欠陥画像収集方法およびその装置
JP4878135B2 (ja) 2005-08-31 2012-02-15 エスアイアイ・ナノテクノロジー株式会社 荷電粒子ビーム装置及び試料加工方法
JP2007103108A (ja) 2005-10-03 2007-04-19 Sii Nanotechnology Inc 集束イオンビームによる加工方法
JP4889105B2 (ja) * 2006-08-23 2012-03-07 エスアイアイ・ナノテクノロジー株式会社 荷電粒子ビーム装置
JP5044813B2 (ja) * 2007-02-19 2012-10-10 エスアイアイ・ナノテクノロジー株式会社 集束イオンビーム装置及び荷電粒子光学系の調整方法
JP5537050B2 (ja) * 2008-04-11 2014-07-02 株式会社日立ハイテクノロジーズ 集束イオンビーム装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820346A (zh) * 2003-05-09 2006-08-16 株式会社荏原制作所 基于带电粒子束的检查装置及采用了该检查装置的器件制造方法
WO2010042916A2 (en) * 2008-10-12 2010-04-15 Fei Company High accuracy beam placement for local area navigation
JP2010102938A (ja) * 2008-10-23 2010-05-06 Hitachi High-Technologies Corp 荷電粒子線装置及び集束イオンビーム装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257067A (zh) * 2012-02-21 2013-08-21 日本株式会社日立高新技术科学 样本制备方法和装置
CN104520963A (zh) * 2012-08-22 2015-04-15 株式会社日立高新技术 复合带电粒子线装置
CN104520963B (zh) * 2012-08-22 2016-08-17 株式会社日立高新技术 扫描式电子显微镜
CN110176379A (zh) * 2018-02-20 2019-08-27 日本株式会社日立高新技术科学 带电粒子束装置和试样加工观察方法
CN110176379B (zh) * 2018-02-20 2024-04-30 日本株式会社日立高新技术科学 带电粒子束装置和试样加工观察方法
CN110243318A (zh) * 2018-03-07 2019-09-17 日本株式会社日立高新技术科学 截面加工观察装置及其方法、程序以及形状测定方法
CN112189248A (zh) * 2018-05-22 2021-01-05 株式会社日立高新技术 带电粒子束装置及其轴调整方法
CN112189248B (zh) * 2018-05-22 2024-04-02 株式会社日立高新技术 带电粒子束装置及其轴调整方法

Also Published As

Publication number Publication date
JP2012033467A (ja) 2012-02-16
CN102315066B (zh) 2015-04-29
US20120001086A1 (en) 2012-01-05
JP5792509B2 (ja) 2015-10-14
US8269188B2 (en) 2012-09-18
KR101846546B1 (ko) 2018-04-06
KR20120003812A (ko) 2012-01-11

Similar Documents

Publication Publication Date Title
CN102315066A (zh) 带电粒子束装置以及试样加工方法
US8785879B1 (en) Electron beam wafer inspection system and method of operation thereof
US9601312B2 (en) Source for selectively providing positively or negatively charged particles for a focusing column
WO2006101116A1 (ja) 電子線装置
JP2014220241A5 (zh)
CN103348437A (zh) 带电粒子束装置
CN108807118B (zh) 一种扫描电子显微镜系统及样品探测方法
US10636615B2 (en) Composite beam apparatus
US9966218B2 (en) Electron beam device
JP2014143096A (ja) 荷電粒子線装置及び荷電粒子線装置における軌道修正方法
US20230377829A1 (en) Charged Particle Beam Device and Axis Adjustment Method Thereof
JP5525128B2 (ja) 荷電粒子線応用装置及び試料観察方法
CN110431649B (zh) 带电粒子束装置
TW200818230A (en) Charged particle beam apparatus
US11335532B2 (en) Charged particle beam device
JP2012230919A (ja) 荷電粒子線の照射方法及び荷電粒子線装置
CN113412531A (zh) 用于操作具有多个细束的带电粒子装置的装置和方法
US20240170248A1 (en) Particle beam system
TWI830168B (zh) 溢流柱及帶電粒子裝置
US20230170182A1 (en) Charged Particle Beam Apparatus
EP3886138A1 (en) Flood column, charged particle tool and method for charged particle flooding of a sample
JP2003007238A (ja) ビームセパレータおよび反射電子顕微鏡
CN115335949A (zh) 泛射柱、带电粒子工具以及用于对样品的带电粒子泛射的方法
JP2004355822A (ja) 荷電粒子ビーム装置における収差補正方法および荷電粒子ビーム装置
JPS62243232A (ja) 集束イオンビ−ム装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Tokyo, Japan, Japan

Applicant after: Hitachi High Tech Science Corp.

Address before: Chiba County, Japan

Applicant before: Seiko Nanotechnology Inc.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: SEIKO NANOTECHNOLOGY INC. TO: HITACHI HIGH TECH SCIENCE CORP.

C14 Grant of patent or utility model
GR01 Patent grant