CN102282679A - 纳米结构器件 - Google Patents

纳米结构器件 Download PDF

Info

Publication number
CN102282679A
CN102282679A CN200980154592XA CN200980154592A CN102282679A CN 102282679 A CN102282679 A CN 102282679A CN 200980154592X A CN200980154592X A CN 200980154592XA CN 200980154592 A CN200980154592 A CN 200980154592A CN 102282679 A CN102282679 A CN 102282679A
Authority
CN
China
Prior art keywords
nano wire
nano
dopant
film
tagma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980154592XA
Other languages
English (en)
Other versions
CN102282679B (zh
Inventor
B.A.布蔡恩
F.莫达瓦
M.R.布莱克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bandgap Engineering Inc
Original Assignee
Bandgap Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42170599&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102282679(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bandgap Engineering Inc filed Critical Bandgap Engineering Inc
Publication of CN102282679A publication Critical patent/CN102282679A/zh
Application granted granted Critical
Publication of CN102282679B publication Critical patent/CN102282679B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035254Superlattices; Multiple quantum well structures including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System, e.g. Si-SiGe superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

提供了一种光伏器件。其包括至少两个电接触部、p型掺杂剂和n型掺杂剂。其还包括体区和与体区接触的对准阵列中的纳米线。阵列中的所有纳米线具有一个支配类型的掺杂剂,即n或p,并且至少一部分体区也包括该支配类型的掺杂剂。体区的包括支配类型的掺杂剂的部分典型地接触纳米线阵列。于是将在体区中找到光伏器件的p-n结。光伏器件通常将包括硅。

Description

纳米结构器件
相关申请的交叉引用
本申请要求在2008年11月14日提交的美国临时专利申请第61/114,896号、在2009年3月4日提交的美国临时专利申请第61/157,386号和在2009年10月9日提交的美国临时专利申请第61/250,418号的优先权。这些申请的整体内容通过引用合并于此。
技术领域
本发明涉及纳米结构器件。
背景技术
光伏电池是一种主要的用于生成电力的技术,其正在越来越广泛地部署。这种电池的效率和成本的改进是重要的。
在光伏电池中,在创建(create)电子-空穴对的半导体中吸收光。电子随后行进到一个接触部(contact),而空穴行进到相反的接触部,因此产生电流。经由光子感生电子带间跃迁(transition)的电子和空穴的创建是实用电力产生的必要条件但非充分条件。实际上也必要的是,由电子激发导致的光学吸收是主要的吸收机制,否者效率将在可接受的水平以下。自由载流子吸收是如下情况,其中入射光的能量由材料内部的自由载流子吸收并且导致自由载流子获得动量。自由载流子吸收与光学吸收竞争,导致了电子跃迁。因此对于使用高掺杂硅的太阳能电池设计,自由载流子吸收是对太阳能电池效率的限制因素,特别是在红外光区中。(参见下面的文献(1))
太阳能电池需要内部偏置(bias)。通常该内部偏置由通过对材料进行掺杂而获得的p-n结创建。然而,对材料进行掺杂增加了自由载流子的浓度并且因此增加了自由载流子吸收并且使这种吸收移位到较高的能量。此外,增加掺杂增加了体复合速率(bulk recombination rate),因此降低了转换效率。需要相当高的掺杂水平以保持低方块电阻(sheet resistance)。因此,太阳能电池常常被设计为具有非常浅的和高度掺杂的发射极区,从而方块电阻是低的并且自由载流子吸收和平均体复合速率是小的,但是该方法限制了耗尽区的厚度并且因此限制了光在器件中能够创建的电流。
具有小于自由载流子扩散长度的尺寸的材料(纳米材料)具有被抑制的自由载流子吸收。(参见下面的文献(2))在这一点上,纳米材料对于太阳能电池会是理想的。此外,纳米材料具有增加的吸收和低的反射,这对于太阳能电池也是理想的。然而,太阳能电池需要用于自由载流子行进到结的传导路径。在纳米颗粒中,具有在所有三个方向上减小的尺寸的类型的纳米材料,载流子需要从一个颗粒跳跃到或隧穿到下一个颗粒。由于跳跃和隧穿是低效率的、高电阻的过程,因此纳米颗粒对于太阳能应用是不理想的。另一方面,仅在两个方向上减小尺寸的纳米线(nanowire)对于垂直于线轴的电场保持了关于光的被抑制的自由载流子吸收的优点,同时允许与线轴平行的低电阻输送。
如图1中示意性示出的,近来一个团体将纳米线设置在硅太阳能电池上面。在该设计中,纳米线不与体硅电接触,未被掺杂并且未对准。这些结构中的观察到的效率增益可能归因于纳米线的作用如同体电池的抗反射涂层。由于纳米线不垂直于衬底并且不与衬底电接触,因此未实现来自纳米线的最大益处。
已经提出了使用具有共心的n和p区的纳米线。(参见下面的文献(3)、(4)和(5))该器件设计被称为具有独特的优点,包括光学吸收长度与自由载流子扩散长度无关。然而该设计的一个不足在于结区域是非常大的并且因此将需要控制漏电流。
其他人已提出了使用其中一部分线是n型的而其他部分线是p型的硅纳米线。(参见下面的文献(6))。该设计也具有优点,但是对于径向设计,一个可能的限制是由穿过耗尽区和结的表面状态引起的漏电流。
Kayes、Atwater和Lewis(参见下面的文献(7))执行计算以更好地理解用于光伏应用的径向(图2)n-p结和平面n-p结(图3)。计算发现,远离耗尽区的准中性区可以承受更多的陷阱(trap)和更大的复合速率,这可能是对复合有贡献的、这些区中的较少的少数载流子的结果。然而,计算表明,在耗尽区中期望低陷阱密度以实现高效率。而且,由于纳米线具有大的表面积,因此可以预期耗尽区中的增加的陷阱和复合。
如图4中示意性示出的,其他团体已提出了如下光伏器件,其中一个材料类型(或掺杂)由纳米线构成,而另一材料类型(或掺杂)由体材料构成。因此在纳米线和体材料之间的界面处形成结。如同其他设计,纳米线处于耗尽区中并且位于结处,再次产生受表面复合和载流子输送限制的器件。(参见下面的文献(8)、(9)和(10))
以上描述的设计获得了纳米线太阳能电池的一些益处,但是并未全面利用这些益处或者以增加来自耗尽区中的纳米线的漏电流为代价获得这些益处。
因此继续需要能够实现较高效率和较低成本的纳米线太阳能电池的设计。
发明内容
在本发明的一个方面,提供了一种光伏器件。其包括至少两个电接触部、p型掺杂剂和n型掺杂剂。其还包括体区和与体区接触的对准阵列中的纳米线。阵列中的所有纳米线具有一个支配类型的掺杂剂,即n或p,并且至少一部分体区也包括该支配类型的掺杂剂。体区的包括支配类型的掺杂剂的部分典型地接触纳米线阵列。于是将在体区中找到光伏器件的p-n结。光伏器件通常将包括硅。
在本发明一个方面,提供了一种器件,其包括两个或更多个接触部、部分地覆盖衬底的纳米结构、以及覆盖衬底的未被纳米结构覆盖但是处于纳米结构内的部分的薄膜,其中该薄膜用作器件的接触部。
附图说明
图1(现有技术)示意性地示出了具有电池顶上(在接收太阳辐射的面上)的纳米线的太阳能电池。
图2(现有技术)示意性地示出了包括具有共心的p和n区的纳米线的太阳能电池。
图3(现有技术)示意性地示出了具有包括p和n区二者的纳米线的太阳能电池。
图4(现有技术)示意性地示出了具有其中p-n结位于纳米线和体区的接触部的纳米线的太阳能电池。
图5示意性地示出了具有其中p-n结位于体区内的纳米线的太阳能电池。
图6示意性地示出了具有其中在纳米线与体区相接处找到金属颗粒的纳米线的太阳能电池。
图7以可能的尺度示意性地示出了具有埋入(submerged)接触部的硅纳米线光伏电池。
图8示出了预期由下文记载的扩散导入(drive-in)工艺得到的掺杂剂分布(dopant profile)。
具体实施方式
在详细描述本发明之前,将理解,本发明不限于特定试剂、材料或器件结构,因而可以变化。还将理解,这里使用的术语仅出于描述特定实施例的目的,并且不应成为限制。
在提供值的范围的情况中,该范围的上限和下限之间的每个居间值以及该阐述范围中的任何其他阐述值或居间值应涵盖于本公开内。例如,如果阐述1 μm至8 μm的范围,则旨在还公开了2 μm、3 μm、4 μm、5 μm、6 μm和7 μm,以及大于或等于1 μm的值范围且小于或等于8 μm的值范围。
A. 一般描述
在本发明的一个方面,提供了一种光伏器件。其包括至少两个电接触部、p型掺杂剂和n型掺杂剂。其还包括体区和与体区接触的对准阵列中的纳米线。阵列中的所有纳米线具有一个支配类型的掺杂剂,即n或p,并且至少一部分体区也包括该支配类型的掺杂剂。体区的包括支配类型的掺杂剂的部分典型地接触纳米线阵列。于是将在体区中找到光伏器件的p-n结。光伏器件通常将包括硅。
在本发明的一个方面,提供了一种基于纳米线的太阳能电池,其中纳米线并非一直延伸到结。相反地,如图5中示意性示出的,结处于体区中并且纳米线是结的顶部分的一部分。
在本发明的另一方面,提供了一种用于制造太阳能电池的工艺,该太阳能电池包括纳米线阵列,其中在太阳能电池的体中存在p-n结并且纳米线是发射极的一部分。
本发明的太阳能电池可以被设计为相对于其中纳米线与耗尽区重叠的纳米线太阳能电池,利用光载流子复合的抑制。纳米线还具有被抑制的自由载流子光学吸收,其减少了体材料上的纳米线中的反射。相对于其中纳米线包含耗尽区或与耗尽区重叠的太阳能电池设计,我们的太阳能电池设计中的载流子的复合可以减少到例如约1/102、约1/103或约1/104
为了受益于纳米线内部的光吸收,纳米线理想地足够短,足以允许光创建的电子和空穴扩散通过准中性区并且进入耗尽区。为了避免纳米线中的明显的复合,纳米线可以被设置在耗尽区外部。因此,为了实现针对结的有效的自由载流子输送而不会引起增加的复合,纳米线阵列基部应刚好在耗尽区外部。
此外,如图6中示意性图示的,在本发明工艺中,可以在纳米线阵列的底部产生自对准金属纳米颗粒或者膜。因此,如果纳米线阵列被设置得刚好在结外部,则金属将处于等离子(plasmonic)光伏增强的良好位置。
等离子光伏增强是预期增加太阳能电池的光吸收的提议。如下面的文献(5)中讨论的,设置在太阳能电池结附近的金属颗粒或薄膜的表面等离子增强了每个颗粒或薄膜附近的光吸收并且因此增加了太阳能电池的效率。详细地,入射光被金属纳米颗粒或薄膜吸收,其通过表面等离子激元(plasmon polariton)将能量转移到半导体中。随后经由表面等离子激元在半导体内部创建电子和空穴。表面等离子激元可以通过约100 nm的范围将能量转移到硅。该方法已成为与晶体硅太阳能电池相关的计算的主题并且通过染料敏化薄膜进行测试。(参见下面的文献(13)和(14))
此外,纳米线阵列的底部的金属(图6-7)可以用作器件的接触部。这将提供“埋入”接触部,其直接接触整个器件而不会明显地阻挡光转换为电力。如图7中的那样,假设纳米线是p型的。光入射到电池并且在纳米线中被部分地吸收,导致了电子-空穴对。纳米线中的少数载流子电子随后扩散到耗尽区并且找到去往背面接触部的其通路。一些光仍可以在体(非纳米结构)p型区以及n型区中被吸收,也对电流有贡献。在n型区中吸收的光子也创建电子-空穴对。对于这些对,少数载流子空穴扩散到耗尽区并且漂移通过该区,通过转到p型硅而离开该区。载流子随后扩散到埋入接触部以产生电流。该设计允许在整个顶表面上发生光吸收,允许载流子移动到接触部,并且提供非常低的接触电阻。
传统上,光伏器件中的非埋入接触部具有如下缺点,它们阻挡来自上方的一些光。在光撞击接触部之前,埋入接触部允许该光首先通过纳米线阵列,纳米线阵列的线直径可以例如,在直径上不大于约50 nm,在直径上不大于约75 nm,在直径上不大于约100 nm,或者在直径上不大于约200 nm。此外,在大致向上的方向上从埋入接触部反射的光很可能撞击纳米线,潜在地向其提供创建电子-空穴对的另外的机会。
在本发明的器件中,纳米线阵列可以具有如从衬底量起的例如,约0.05 μm和约6 μm之间,或者约0.1 μm和约2.5 μm之间,或者约0.5 μm和约2 μm之间,或者约1 μm和约1.5 μm之间的高度。在从衬底刻蚀出纳米线阵列的情况中,衬底可以具有高度可变的刻蚀之前的厚度,这是因为其可以是例如商用硅晶片或者其可以是在不同的衬底上生长或沉积的衬底。因此从其刻蚀出纳米线的衬底可以厚达约1 mm、或者800 μm、或者500 μm,下至约10 μm、约6 μm、或者约3 μm。
尽管本发明的器件的纳米线可以具有沿它们的长度的恒定的直径,但是可替选地它们也可以具有适度的锥度。所期望的锥角可以是例如,不超过约0.5度、约1度、约2度、或约4度,或者在约0.5度和约1度、约2度、或约4度之间的范围中。
纳米线可以精确地或近似地垂直于它们的衬底。纳米线相对于垂直的偏差可以例如,不大于约0.5度、约1度、约2度、或约4度,或者在约0.5度和约1度、约2度、或约4度之间的范围中。然而,相对垂直的更大的偏差也是可能的。
本发明的器件的结深度可以具有相当广泛的变化。在制造纳米线之后从这些纳米线的底部测量,其范围可以是从约30 nm至约3 μm,从约300 nm至约2 μm,或者从约1 μm至约1.5 μm。本领域的技术人员将理解,结深度可以通过选择关于扩散或离子注入的加工条件来控制,例如如Franssila的文献(20),第14和15章中讨论的那样。用于结深度控制的典型的加工条件将是例如,注入离子的能量以及关于掺杂剂的导入时段的时长和温度。
在本领域中已知广泛的多种掺杂剂,例如P、As、B、Sb、Al、Ga、Cu、In、Au、Fe或Zn。在本发明的器件中,掺杂剂是以如背景技术中描述的那样选择的水平而存在的,以实现足够的传导性且不会过度地增加复合和自由载流子吸收,从而光激发载流子离开纳米线阵列并且在复合之前进入耗尽区。掺杂剂最大浓度可以例如在约1015 cm-3和1018 cm-3之间,或者在约3×1016 cm-3和约3×1017 cm-3之间。
受掺杂剂浓度影响的品质因数是多数和少数载流子的扩散长度。如所提到的,该扩散长度受掺杂剂浓度的强烈影响。在本发明的纳米线太阳能电池中,少数载流子扩散长度理想地大于纳米线长度。其可以是例如至少约0.5 μm、至少约1 μm、至少约2 μm、至少约4 μm、至少约6 μm、至少约10 μm、或者至少约25 μm。
本发明的器件中的金属层可以具有多种厚度。其可以介于例如约10和约80 nm之间,或者约20和约60 nm之间,或者约30和约50 nm之间。
具有埋入接触部的纳米线阵列具有超出光伏电池的潜在用途。例如,可以设想具有相同的一般结构的光发射二极管。背接触部和埋入接触部将用于驱动会生成光子的电流。
此外,将可以用类似于这里描述的工艺创建具有除纳米线以外的形式的纳米结构。这可以通过如下方式完成,例如不使用银或其他金属下面的纳米颗粒,而是通过某种已知手段(例如,光刻)对银构图以便于形成其他形式的纳米结构(例如,其在平行于体区的表面的平面中具有伸长的横截面)。由其他纳米结构替代纳米线阵列,埋入接触部的思想也可以以相似的方式实现。
B. 示例性工艺
用于制造本发明的太阳能电池的示例性工艺如下:
1)开始于未掺杂或轻掺杂p型<100>硅。
2)清洗晶片。所期望的是,衬底表面是清洁的并且没有湿气以便于实现金属膜和硅之间的良好粘合。一种可接受的清洗是三步清洗。首先在超声清洗器内部使用丙酮、甲醇、IPA(异丙醇)和DI(去离子)水的浴液(bath),在溶剂中清洗衬底。随后使衬底干燥。最后,使用等离子体刻蚀扫除残留的有机材料,其中等离子体是氧、氩或其他适当类型的等离子体。随后使用BOS(buffered oxide etch(缓释氧化物刻蚀))移除在表面上形成的任何本征氧化物。
3)将纳米颗粒(例如,氧化铁、二氧化硅)设置在晶片表面上。(在下文的替选工艺中提供了该操作的一种方式的进一步的细节)。使用衬底上的、诸如溅射的物理气相沉积来沉积连续的银层(例如,40 nm)以覆盖裸露硅区和纳米颗粒二者。也有用的是,在金属沉积之前在原位对表面进行Ar清洗以便于移除在BOE和抽空(pumping down)腔室之间可能重新形成的任何氧化物。
4)将涂覆银的硅晶片放置在刻蚀溶液内。衬底随后被浸入到由4-49重量百分比的HF和0.5-30重量百分比的H2O2构成的水溶液中。尽管用于增强硅刻蚀的机制是未知的,但是所了解的是,H2O2将降解(degrade)Ag,在银中形成空穴。此外,在Ag与硅接触的情况中,H2O2氧化硅,并且HF刻蚀该氧化物。因此在Ag接触硅的情况中,提高了刻蚀速率。因此,硅将在除了银具有空穴的位置以外的所有位置被刻蚀,并且在此位置,在围绕其刻蚀硅时,将形成纳米线。刻蚀被定时,从而纳米线被向下刻蚀到结,但是未穿通结。
5)移除,使用DI冲洗,并且干燥。
6)注入掺杂剂。N型剂量4.6×1014,34 keV,7º倾斜。
7)例如通过30分钟的1000℃的退火,导入掺杂剂以激活它们。
8)将30 nm的金蒸发到玻璃片上。
9)将涂覆金的玻璃按压到硅的纳米线侧。
用于实现与电池的纳米线侧的接触的可替选的方法将使用其他已知的接触太阳能电池的方法。例如,替代以上步骤8)和9),可以使用步骤8b),在晶片上丝网印刷金属电极。
在以上工艺中,如例如文献(18)中描述的,将还可以使用H2O2的替选方案。该文献还提供了关于如何执行上述工艺的另外的信息。一种可替选的氧化剂是氧,可以鼓入氧通过HF来引入该氧化剂。其他氧化剂包括:臭氧,氯,碘,高氯酸铵,高锰酸铵,过氧化钡,溴,氯酸钙,次氯酸钙,三氟化氯,铬酸,三氧化铬(铬酐),诸如过氧化氢、过氧化镁、过氧化二苯甲酰和过氧化钠的过氧化物,三氧化二氮,氟,高氯酸,溴酸钾,氯酸钾,过氧化钾,硝酸丙酯,氯酸钠,亚氯酸钠和高氯酸钠。
C. 可替选的工艺
一种用于制造具有埋入接触部的光伏电池的工艺可以包括如下步骤。
1)选择具有4微米、低掺杂、p型器件层和埋入氧化物层的绝缘体上硅晶片。埋入氧化物层的厚度不太重要;然而,对于该工艺,大于500nm是优选的。通过RCA清洗移除所有有机和金属污染。
2)在加热到80℃的1份NH4OH:1份H2O2:5份H2O(DI)中刻蚀晶片5-10分钟。将晶片泡在5wt%的HF溶液中2分钟以移除作为先前的步骤的结果而可能潜在地形成的任何氧化物层。
3)在加热到80℃的1份HCl:1份H2O2:5份H2O(DI)中刻蚀晶片5-10分钟。将晶片泡在5wt%的HF溶液中2分钟以移除可能潜在地形成的任何氧化物层。使用DI冲洗晶片3分钟以移除接受箱(dump tank)中的任何残留的酸。
4)为了将顶层掺杂为n型,通过首先以200RPM旋涂2秒来沉积旋涂掺杂剂(spin-on-dopant)(产品:Honeywell P854 2:1 磷),随后上升到以3000RPM旋涂20秒。一旦SOD已被沉积,则不需要如同通常对于光刻胶会进行的在烤盘上烘烤样品,这是因为在随后的导入步骤期间将进行足够的烘烤。
5)导入。使用额定1100℃的Lindberg Blue 3区石英管炉来导入和激活掺杂剂。使炉上升到850℃并且保持,同时使N2气体以4L/min流动并且使O2气体以500SCCM流动。一旦温度和气流稳定,则将(一个或多个)晶片推入炉中并且开始上升到期望的导入温度,其范围典型地可以是900℃至1100℃。上升速度应控制在6℃/min。保持高温30分钟并且以3℃/min的受控速率下降回至850℃。一旦已达到850℃,则可以从炉中移除晶片并且允许自然冷却晶片。通过在10wt%的HF中刻蚀5分钟来移除SOD留下的玻璃层。
根据导入温度,该扩散掺杂工艺将导致如图8中所示的掺杂分布。当掺杂到1016 cm-3的低掺杂p型层时,得到的结深度将介于320nm和2 μm之间。
6)接下来,经由溅射在器件层上沉积铝。使用聚酰亚胺胶带保护样品的边缘以防止Al沉积在器件的侧面上并且形成短路。以25mTorr和12W进行表面的氩原位预清洗以移除在HF刻蚀之后和在将衬底插入到溅射工具之前可能形成的任何本征氧化物。以250W和4mTorr沉积2000Å的铝。
8)移除样品,并且使用银漆(silver paint)将铜引线接合到Al的表面。以7:1的比使用Allied High Tech Products的产品编号71-10000两组分环氧粘结剂110(组分A:组分B)将整个结构面向下接合到干净的蓝宝石(sapphire)晶片。蓝宝石在薄的硅继续通过剩余的工艺时用作其化学惰性支撑。在箱式炉中在150℃下使环氧树脂固化一小时直至颜色是深红色的。
9)将样品翻过来,从而SOI晶片的加工(handle)部分现在是顶部。使用STS MPX/LPX RIE,使用SF6/C4F8 Bosch化学制剂刻蚀掉整个加工层。首先,使用聚酰亚胺胶带保护晶片的边缘以确保不会发生器件层的下切(undercutting)。配方开始于SF6刻蚀步骤(136sccm,Pcoil=600W,Pplaten=12W,14.8秒)并且循环到C4F8钝化步骤(90sccm,Pcoil=600W,Pplaten=2W,7秒)直至晶片几乎通到埋入氧化物层。
10)一旦到达埋入氧化物层,关闭钝化步骤并且仅允许刻蚀步骤继续直至移除所有加工硅,但是无论如何理想地继续至少5分钟。这样做是为了移除可能在刻蚀之后涂覆表面的任何C4F8钝化。
11)一旦加工层消失,则从RIE腔室中移除样品并且以7:1 BOE刻蚀样品以除去埋入氧化物层。典型的刻蚀速率约为2微米每小时,然而该时间可能根据氧化物质量而波动。可以结合椭圆光度法使用视觉检查来确保没有剩余的氧化物。
12)将芯片放置到由3份96%的H2SO4和1份30wt%的H2O2构成的Piranha溶液中2分钟以便于创建亲水表面。确保下面的环氧树脂不会被piranha溶液过度刻蚀或者可以从蓝宝石衬底完整地下切薄的硅层。从浴液中移除衬底并且将其放置到流动的DI水的接受箱中以移除任何残留的酸。使用氮气将其吹干。
13)通过将来自OceanNanotech的产品编号SOR-10-0050稀释到1mg/mL的浓度,制成氯仿中的10nm油酸官能化(functionalized)氧化铁纳米颗粒的胶状悬浮液。通过将硅浸入该胶状悬浮液使用氧化铁来涂覆硅晶片并且随后移除衬底,从而表面法线与允许氯仿使表面转向(sheet off)的竖直运动方向垂直。一部分表面可以保持未涂覆,以易于随后形成接触部。亲水表面和油酸官能化氧化铁纳米颗粒的本质的组合导致了自然地自组装,其限制聚结(agglomeration)并且为颗粒提供了某种合理的间隔。随后在80℃下在烤盘上烘烤样品2分钟并且在金属沉积之前使用原位O2等离子体清洗样品。
除了氧化铁纳米颗粒之外,在该工艺中还已成功地使用100nm的聚苯乙烯球。在该情形中,如上文所述在硅衬底上创建亲水表面。聚苯乙烯球(购自Duke Scientific Corporation)被稀释到1%的浓度,并且以500RPM旋涂5秒并且随后上升到2000RPM旋涂40秒,旋涂到衬底上。聚苯乙烯球创建了表面上的单个单层。
14)将银(Ag)或银合金溅射到晶片上。可以使用其他物理汽相沉积技术,包括热蒸发器或者电子束蒸发器。期望无断裂的连续的膜,这些断裂将使一部分膜变得与剩余的膜隔开。
Ag合金可以是多组分合金,不限于二元系统,其由多种成分构成(例如,Pt、Si)。一部分成分可以具有已知的硅掺杂剂和类型(例如,B、P、As、Sb、Al)。掺杂剂可以例如小于合金总重量的1%,或者小于合金总重量的0.1%。
埋入的Ag或Ag合金接触部可以加热到在25C-900C之间的温度达从0到4小时的适当的时间长度以便于将合金成分或掺杂剂导入到硅中以形成选择性发射极。选择性发射极将趋向局限于其中存在埋入接触部的纳米线之间的区域。在加热之前,使用ALD(原子层沉积)沉积的Al2O3,或者来自其他工艺的其他材料,可以被沉积以涂覆埋入接触部以便于降低埋入接触部的润湿角度以使金属膜保持完整并且防止其起泡(beading up)。
15)使用HF水溶液刻蚀得到的涂覆银的衬底以形成纳米线。更详细地,一旦芯片被涂覆适当的Ag膜,则在开始刻蚀反应之前,通过使O2气体流到浴液中以创建10分钟时段的剧烈的鼓泡来调配HF水溶液。一旦调配了浴液,则埋入样品例如30分钟。这可以预期实现1微米的平均线长度。在刻蚀完成时,移除样品并且将它们放在流动的DI水的接受箱中并且随后使用N2吹干它们。此时,沉积的Ag已刻蚀到硅中并且现在位于纳米结构的基部。该银形成了上述埋入接触部。
HF的浓度可以从全剂量(约49wt%)一直下降到非常微不足道的浓度。最初的观察表明,得到的纳米结构的长度随着HF浓度的减少而增加。可以使用低至2 wt%及其以下的浓度。例如,可以使用8 wt%的HF溶液。在HF浓度改变时,膜厚度可能需要变化以获得最佳的结果。
所期望的是确保使刻蚀时长和活跃性(vigorousness)平衡,因此接触部在纳米结构的基部保持连续。然而,相当大的程度的不连续是可容忍的。埋入接触部可以具有例如,每cm2不超过约103、约104或约105个断裂。其可以包括每cm2不超过约103、约104或约105个分立的连接部件。此外,在工艺中可以控制金属厚度、纳米颗粒密度和刻蚀浓度以实现具有期望的性质(包括连续性)的埋入接触部。
16)例如在其中在步骤13)中未放置纳米颗粒的区域中电接触银膜。
已根据上述工艺执行建立原型光伏电池的实验。检测来自纳米线阵列内部的光吸收的可测光电流。
如下文献有兴趣与本申请相关:(1)M.A. Green, Silicon Solar Cells: Advanced Principles and Practice (1995);(2)"Optical Properties of Bismuth Nanowires", M. Black, J. Reppert, M. S. Dresselhaus, A. M. Rao, in Encyclopedia of Nanoscience and Nanotechnology, H.S. Nalwa ed. (2004);(3)Erik C. Garnett, Peidong Yang J. Am. Chem. Soc. 130 (29)(2008)9224-9225;(4)Brendan M. Kayes, Harry A. Atwater, Nathan S. Lewis, J. of App. Phy. 97(11)2005, 114302;(5)美国专利申请20070107103, "Apparatus and methods for manipulating light using nanoscale cometal structures", Krzysztof J. Kempa, Michael J. Naughton, Zhifeng Ren, Jakub A. Rybczynski;(6) G. Goncher, R. Solanki, J.R. Carruthers, J. Conley Jr., Y. Ono, J. Electr. Mat. 35 (7) (2006) 1509-1512;(7) B. Kayes, H. Atwater, N. Lewis, Journal of Applied Physics 97 (2005) 114302;(8)美国专利申请11/081,967;(9)美国专利申请20070278476;(10)美国专利申请20080169017;(11)美国专利申请20070289623, Harry A. Atwater, "Plasmonic Photo voltaics";(12)T. Heidel, J. Mapel, M. Singh, K. Celebi, M. Baldo APL 91 093506 (2007) 093506;(13)M. Kirkengen, J. Bergli, Y. Galperin, J. Appl. Phys. 102 (9) (2007) 093713;(14)C. Hagglund, M. Zach, B. Kasemo, APL 92 (1) 013113 (2008);(15)在2008年10月9日提交的题为"Process for Structuring Silicon"的美国临时专利申请第 61/195,872号,发明人为Brent Buchine等人;(16)Handbook of Photovoltaic Science and Engineering (A. Luque & S. Hegedus eds., 2003), (17) 在2008年11月14日提交的题为"Solar cells where a nanowire array makes up part of the n or p type region"的美国临时专利申请第61/114,896 号;(18)在2008年12月29日提交的题为"Process for Fabricating Nanowire Arrays"的美国临时专利申请第61/141,082号;(19)在2009年1月5日提交的题为"Process for Structuring Silicon"的美国临时专利申请第61/142,608号;(20)Sami Franssila, Introduction to Microfabrication (John Wiley & Sons, 2004);(21) Handbook of Photovoltaic Science and Engineering (A. Luque & S. Hegedus eds. 2003),特别是第3章。
这里提及的所有专利、专利申请和公布的整体内容通过引用合并于此。然而,在通过引用并入包含明确定义的专利、专利申请或公布的情况中,这些明确定义应被理解为适用于在其中找到它们的所并入的专利、专利申请或公布,而并非适用于本申请的文本的剩余部分,特别是本申请的权利要求。

Claims (31)

1.一种光伏器件,包括至少两个电接触部、p型掺杂剂和n型掺杂剂,进一步还包括体区和与所述体区接触的对准阵列中的纳米线,其中所述阵列中的所有纳米线具有一个支配类型的掺杂剂,即n或p,并且至少一部分的所述体区也包括该支配类型的掺杂剂,其中体器件的表面基本上沿平面伸展并且所述纳米线对准得垂直于该平面。
2.根据权利要求1所述的器件,其中所述阵列的纳米线具有足够小到抑制自由载流子吸收的平均直径。
3.根据权利要求1所述的器件,其中所述纳米线的直径不超过约200 nm。
4.根据权利要求1所述的器件,其中所述纳米线和所述体区包括硅。
5.根据权利要求4所述的器件,其中所述体区包括晶体硅。
6.根据权利要求5所述的器件,其中所述晶体硅表面沿<100>以外的取向上的晶面伸展。
7.根据权利要求1所述的器件,其中所述n和p区之间的跃迁出现在纳米线基部下方至少约1 μm处。
8.根据权利要求1所述的器件,其中所述n和p区之间的跃迁出现在纳米线基部下方至少约0.75 μm处。
9.根据权利要求1所述的器件,进一步包括其中所述纳米线接触所述体区的区域附近的金属颗粒。
10.根据权利要求1所述的器件,其中所述器件通过如下工艺制造,该工艺包括:在包括HF和氧化剂的溶液中进行金属增强刻蚀。
11.根据权利要求1所述的器件,其中所述电接触部之一延伸到其中所述纳米线接触所述体区的区域。
12.一种制造太阳能电池的方法,包括步骤:(a)清洗硅衬底的表面,(b)引入一种或多种掺杂剂,(C)在被清洗的表面上沉积纳米颗粒并且随后在纳米颗粒上沉积金属,以及(d)将衬底安置在包括HF和氧化剂的刻蚀溶液中,其中刻蚀和引入掺杂剂产生了纳米线,其具有一个支配类型的掺杂剂,即n或p,并且至少一部分的所述衬底也包括该支配类型的掺杂剂。
13.根据权利要求12所述的方法,其中在步骤(c)中沉积的所述纳米颗粒被设置在胶状悬浮液中。
14.根据权利要求12所述的方法,其中在步骤(c)中使一些被清洗的表面未被沉积纳米颗粒。
15.根据权利要求11所述的方法,其中引入步骤(b)包括使用旋涂掺杂剂。
16.根据权利要求11所述的方法,其中引入步骤(b)包括离子注入,其可选地跟随有退火。
17.根据权利要求11所述的方法,进一步包括将所述硅衬底接合到用作支撑的绝缘体。
18.根据权利要求11所述的方法,其中所述沉积金属形成薄膜,其至少部分地覆盖与所述纳米线相邻的衬底区域。
19.根据权利要求11所述的方法,其中所述纳米颗粒是官能化的。
20.根据权利要求19所述的方法,其中所述纳米颗粒通过C10-C20的烃基酸或者这些酸的混合物进行官能化。
21.根据权利要求11所述的方法,其中所述沉积金属的厚度介于约10 nm和约150 nm之间。
22.根据权利要求11所述的方法,其中所述沉积金属的厚度介于约20 nm和约60 nm之间。
23.一种器件,包括两个或更多个接触部、部分地覆盖衬底的纳米结构、以及覆盖所述衬底的未被所述纳米结构覆盖但是处于所述纳米结构内的部分的薄膜,其中所述薄膜用作所述器件的接触部。
24.根据权利要求23所述的器件,其中所述纳米结构包括纳米线阵列并且所述薄膜至少部分地覆盖与所述阵列的纳米线相邻的衬底区域。
25.根据权利要求23所述的器件,其中所述器件作为光伏电池或光发射二极管操作。
26.根据权利要求23所述的器件,其中所述薄膜是连续的。
27.根据权利要求23所述的器件,其中所述薄膜位于所述纳米结构的顶部下方至少约50 nm处。
28.根据权利要求27所述的器件,其中所述薄膜位于所述纳米结构的顶部下方至少约100 nm处。
29.根据权利要求28所述的器件,其中所述薄膜位于所述纳米结构的顶部下方至少约200 nm处。
30.根据权利要求23所述的器件,其中所述薄膜包括金属。
31.根据权利要求30所述的器件,其中所述薄膜包括多孔银。
CN200980154592.XA 2008-11-14 2009-11-16 纳米结构器件 Active CN102282679B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US11489608P 2008-11-14 2008-11-14
US61/114896 2008-11-14
US15738609P 2009-03-04 2009-03-04
US61/157386 2009-03-04
US25041809P 2009-10-09 2009-10-09
US61/250418 2009-10-09
PCT/US2009/006119 WO2010056352A2 (en) 2008-11-14 2009-11-16 Nanostructured devices

Publications (2)

Publication Number Publication Date
CN102282679A true CN102282679A (zh) 2011-12-14
CN102282679B CN102282679B (zh) 2015-05-20

Family

ID=42170599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980154592.XA Active CN102282679B (zh) 2008-11-14 2009-11-16 纳米结构器件

Country Status (12)

Country Link
US (4) US8450599B2 (zh)
EP (2) EP2351100B1 (zh)
JP (1) JP5612591B2 (zh)
KR (1) KR20110098910A (zh)
CN (1) CN102282679B (zh)
AU (1) AU2009314576B2 (zh)
CA (1) CA2743743A1 (zh)
DE (1) DE20150280T1 (zh)
ES (2) ES2810301T1 (zh)
IL (1) IL212825A0 (zh)
PT (1) PT2351100T (zh)
WO (1) WO2010056352A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694038A (zh) * 2012-01-16 2012-09-26 上海理工大学 基于双面金属包覆波导结构非晶硅太阳能电池及制造工艺
CN104716209A (zh) * 2015-03-20 2015-06-17 黄河水电光伏产业技术有限公司 基于硅基纳米线的太阳能电池及其制备方法
US11342185B2 (en) * 2017-08-10 2022-05-24 Yangtze Memory Technologies Co., Ltd. Wafer bonding method and structure thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523902A (ja) 2008-04-14 2011-08-25 バンドギャップ エンジニアリング, インコーポレイテッド ナノワイヤアレイを製造するためのプロセス
US20120305076A1 (en) * 2008-05-19 2012-12-06 Tyler Sims Lens systems for solar energy solutions
US9299866B2 (en) * 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
ES2810301T1 (es) * 2008-11-14 2021-03-08 Advanced Silicon Group Tech Llc Dispositivos nanoestructurados
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US20100285358A1 (en) * 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
WO2011017173A2 (en) * 2009-07-28 2011-02-10 Bandgap Engineering Inc. Silicon nanowire arrays on an organic conductor
US8299655B2 (en) * 2010-01-04 2012-10-30 Scitech Associates Holdings, Inc. Method and apparatus for an optical frequency rectifier
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
WO2011109477A2 (en) 2010-03-03 2011-09-09 Amprius, Inc. Template electrode structures for depositing active materials
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
TW201200465A (en) * 2010-06-29 2012-01-01 Univ Nat Central Nano/micro-structure and fabrication method thereof
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
US20130327384A1 (en) * 2011-03-16 2013-12-12 Honda Motor Co., Ltd. Multi-junction solar cell and manufacturing method therefor
WO2013006583A2 (en) 2011-07-01 2013-01-10 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
TW201302600A (zh) * 2011-07-04 2013-01-16 Univ Nat Taiwan Science Tech 矽奈米線陣列之製作方法
KR101438130B1 (ko) * 2013-03-08 2014-09-16 (주)애니캐스팅 집광형 태양전지모듈
KR101374272B1 (ko) * 2013-03-22 2014-03-13 연세대학교 산학협력단 미세 표면 구조를 갖는 고효율 광-열에너지 변환소자 및 그 제조방법
CN103681965A (zh) * 2013-12-03 2014-03-26 常州大学 柔性基底硅纳米线异质结太阳电池的制备方法
JP7182758B2 (ja) 2014-05-12 2022-12-05 アンプリウス テクノロジーズ インコーポレイテッド リチウムバッテリのためのアノードおよびその製造方法
KR102345543B1 (ko) * 2015-08-03 2021-12-30 삼성전자주식회사 펠리클 및 이를 포함하는 포토마스크 조립체
CN106918578B (zh) * 2015-12-24 2020-06-09 财团法人工业技术研究院 感测芯片
AT519922B1 (de) * 2017-05-11 2020-01-15 Univ Wien Tech SERS-Substrat
US11585807B2 (en) 2019-02-20 2023-02-21 Advanced Silicon Group, Inc. Nanotextured silicon biosensors

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178685A (en) * 1991-06-11 1993-01-12 Mobil Solar Energy Corporation Method for forming solar cell contacts and interconnecting solar cells
US6649824B1 (en) * 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
JP2005059125A (ja) * 2003-08-08 2005-03-10 Canon Inc ナノ構造体及びその製造方法
CN1693191A (zh) * 2005-05-20 2005-11-09 清华大学 单一轴向排布的单晶硅纳米线阵列制备方法
US20060207647A1 (en) * 2005-03-16 2006-09-21 General Electric Company High efficiency inorganic nanorod-enhanced photovoltaic devices
CN1958436A (zh) * 2006-10-17 2007-05-09 浙江大学 一种硅纳米线的制作方法
US20080006319A1 (en) * 2006-06-05 2008-01-10 Martin Bettge Photovoltaic and photosensing devices based on arrays of aligned nanostructures
KR100809248B1 (ko) * 2007-03-14 2008-02-29 삼성전기주식회사 반도체 이종구조 나노선을 이용한 광기전력 소자 및 그제조방법
JP2008053730A (ja) * 2006-08-25 2008-03-06 General Electric Co <Ge> 単一コンフォーマル接合のナノワイヤ光起電力装置
US20080169017A1 (en) * 2007-01-11 2008-07-17 General Electric Company Multilayered Film-Nanowire Composite, Bifacial, and Tandem Solar Cells

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3308269A1 (de) * 1983-03-09 1984-09-13 Licentia Patent-Verwaltungs-Gmbh Solarzelle
US4589191A (en) * 1983-10-20 1986-05-20 Unisearch Limited Manufacture of high efficiency solar cells
US5221854A (en) * 1991-11-18 1993-06-22 United Solar Systems Corporation Protective layer for the back reflector of a photovoltaic device
DE19811878C2 (de) * 1998-03-18 2002-09-19 Siemens Solar Gmbh Verfahren und Ätzlösung zum naßchemischen pyramidalen Texturätzen von Siliziumoberflächen
JP3619053B2 (ja) * 1999-05-21 2005-02-09 キヤノン株式会社 光電変換装置の製造方法
GB0114896D0 (en) * 2001-06-19 2001-08-08 Bp Solar Ltd Process for manufacturing a solar cell
US20060284218A1 (en) * 2003-09-03 2006-12-21 The Regents Of The University Of California Nanoelectonic devices based on nanowire networks
US7589880B2 (en) 2005-08-24 2009-09-15 The Trustees Of Boston College Apparatus and methods for manipulating light using nanoscale cometal structures
KR101327723B1 (ko) 2006-02-27 2013-11-11 로스 알라모스 내셔널 씨큐어리티 엘엘씨 향상된 전자 전이를 갖는 물질을 포함한 광전 장치
US8866007B2 (en) 2006-06-07 2014-10-21 California Institute Of Technology Plasmonic photovoltaics
GB2442768A (en) * 2006-10-11 2008-04-16 Sharp Kk A method of encapsulating low dimensional structures
ES2810301T1 (es) * 2008-11-14 2021-03-08 Advanced Silicon Group Tech Llc Dispositivos nanoestructurados
TW201024526A (en) 2008-12-23 2010-07-01 Cheng-Chin Kung Cooling and circulating system for engine oil
CN115277337A (zh) 2017-03-03 2022-11-01 苹果公司 用于同步信号的传输的方法、基站及介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178685A (en) * 1991-06-11 1993-01-12 Mobil Solar Energy Corporation Method for forming solar cell contacts and interconnecting solar cells
US6649824B1 (en) * 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
JP2005059125A (ja) * 2003-08-08 2005-03-10 Canon Inc ナノ構造体及びその製造方法
US20060207647A1 (en) * 2005-03-16 2006-09-21 General Electric Company High efficiency inorganic nanorod-enhanced photovoltaic devices
CN1693191A (zh) * 2005-05-20 2005-11-09 清华大学 单一轴向排布的单晶硅纳米线阵列制备方法
US20080006319A1 (en) * 2006-06-05 2008-01-10 Martin Bettge Photovoltaic and photosensing devices based on arrays of aligned nanostructures
JP2008053730A (ja) * 2006-08-25 2008-03-06 General Electric Co <Ge> 単一コンフォーマル接合のナノワイヤ光起電力装置
CN1958436A (zh) * 2006-10-17 2007-05-09 浙江大学 一种硅纳米线的制作方法
US20080169017A1 (en) * 2007-01-11 2008-07-17 General Electric Company Multilayered Film-Nanowire Composite, Bifacial, and Tandem Solar Cells
KR100809248B1 (ko) * 2007-03-14 2008-02-29 삼성전기주식회사 반도체 이종구조 나노선을 이용한 광기전력 소자 및 그제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUIQING P.EL AL.: "Fabrication of Single-Crystalline Silicon Nanowries by Scratching a Silicon Surface with Catalytic Metal Particles", 《ADVANCED FUNCTIONAL MATERIAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694038A (zh) * 2012-01-16 2012-09-26 上海理工大学 基于双面金属包覆波导结构非晶硅太阳能电池及制造工艺
CN102694038B (zh) * 2012-01-16 2014-12-24 上海理工大学 基于双面金属包覆波导结构非晶硅太阳能电池及制造工艺
CN104716209A (zh) * 2015-03-20 2015-06-17 黄河水电光伏产业技术有限公司 基于硅基纳米线的太阳能电池及其制备方法
US11342185B2 (en) * 2017-08-10 2022-05-24 Yangtze Memory Technologies Co., Ltd. Wafer bonding method and structure thereof

Also Published As

Publication number Publication date
US20180323321A1 (en) 2018-11-08
CN102282679B (zh) 2015-05-20
AU2009314576B2 (en) 2015-05-14
WO2010056352A3 (en) 2010-08-05
JP2012508979A (ja) 2012-04-12
JP5612591B2 (ja) 2014-10-22
AU2009314576A1 (en) 2010-05-20
ES2774714T3 (es) 2020-07-22
WO2010056352A2 (en) 2010-05-20
EP3664158A1 (en) 2020-06-10
US20130247966A1 (en) 2013-09-26
DE20150280T1 (de) 2021-04-15
ES2810301T1 (es) 2021-03-08
PT2351100T (pt) 2020-04-21
EP2351100B1 (en) 2020-01-08
CA2743743A1 (en) 2010-05-20
EP2351100A4 (en) 2016-05-11
US8450599B2 (en) 2013-05-28
KR20110098910A (ko) 2011-09-02
US20100122725A1 (en) 2010-05-20
US20220223750A1 (en) 2022-07-14
IL212825A0 (en) 2011-07-31
EP2351100A2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
CN102282679B (zh) 纳米结构器件
CN102414788B (zh) 用纳米/微球光刻制造纳米/微线太阳能电池
US9099583B2 (en) Nanowire device with alumina passivation layer and methods of making same
Qu et al. Porous silicon nanowires
KR102102873B1 (ko) 실리콘 태양 전지의 개선된 수소화 공정
TW201228010A (en) Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells
CN102986042A (zh) 制造光伏太阳能电池的方法
US9911878B2 (en) Metal-assisted etch combined with regularizing etch
Salhi et al. Wet-chemically etched silicon nanowire: Effect of etching parameters on the morphology and optical characterizations
US8945794B2 (en) Process for forming silver films on silicon
Park et al. Surface plasmon effect of Ag nanodots embedded in amorphous Si window layers deposited on Si solar cells
Zhai et al. Enhanced electroluminescence from Si quantum dots-based light-emitting devices with Si nanowire structures and hydrogen passivation
Imamura et al. Effective passivation for nanocrystalline Si layer/crystalline Si solar cells by use of phosphosilicate glass
Thiyagu et al. Silicon nanowire-based solar cells
KR101565212B1 (ko) 전지 및 그 제조방법
US11961925B2 (en) Engineered nanostructured passivated contacts and method of making the same
TW201251057A (en) Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells
JPH0613653A (ja) Si発光装置とその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1164547

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1164547

Country of ref document: HK