TW201251057A - Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells - Google Patents

Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells Download PDF

Info

Publication number
TW201251057A
TW201251057A TW101100742A TW101100742A TW201251057A TW 201251057 A TW201251057 A TW 201251057A TW 101100742 A TW101100742 A TW 101100742A TW 101100742 A TW101100742 A TW 101100742A TW 201251057 A TW201251057 A TW 201251057A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
emitter
siox
rtwcg
Prior art date
Application number
TW101100742A
Other languages
Chinese (zh)
Inventor
Horia M Faur
Maria Faur
Mircea Faur
Original Assignee
Special Materials Res And Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2011/028190 external-priority patent/WO2012036760A1/en
Application filed by Special Materials Res And Technology Inc filed Critical Special Materials Res And Technology Inc
Publication of TW201251057A publication Critical patent/TW201251057A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a method, process, solar cell design, and fabrication technology for high-efficiency, low-cost, crystalline silicon (Si) solar cells including but not restricted to solar grade single crystal Si (c-Si), multi-crystalline Si (mc-Si), poly-Si, and micro-Si solar cells and solar modules. The RTWCG solar cell fabrication technology creates a RTWCG SiOx thin film antireflection coating (ARC) with a graded index of refraction and a selective emitter (SE). The resulting top surface of the SiOx oxide can be textured (TO) concomitant with the growth process or through an additional mild wet chemical step.

Description

201251057 41245pif 六、發明說明: 【相關申請案】 本申請案根據USC§119 (e)主張2010年9月16曰申 請之題為「高效率低成本結晶矽太陽電池的方法、製程與 製造技術(Method,Process And Fabrication Technology For High-Efficiency Low-Cost Crystalline Silicon Solar Cells)」 之美國第61/383,435號的優先權,所述案之全文以引用的 方式併入本文中。 【以引用的方式併入】 本文所引用之所有專利、專利申請案及公開案以全文 引用的方式併入本文中以更全面描述至本文所述發明之日 為止於本領域中具有通常知識者已知之目前先進技術。 【發明所屬之技術領域】 本發明是關於可在各種基板上生長之si〇x薄膜塗層 的至/皿濕化學生長(R〇〇m 丁⑽卩⑽扣比Wet Chemical Growth ’ RTWCG)方法及製程。本發明進—步是關於適 合於在Si基板(用於製造基於矽之電子及光子(光電子) 疋件,用)上生長薄膜的RTWCG方法及製程。本發明進 步疋關於祕產生㈣低反射率單層抗反射塗層(si峨 layer antireflection coatings > SLARC) SiOx 薄膜氧化層及選擇性發射極(selective emit如s,犯)的製 【先前技術】 -氧化碎(Si02)形成平面技術之基礎。在工業實踐 4 201251057 41245pif 中,電子及光子元狀介電_最常藉由 900^ 1200t|6^^T^/(s;;; 氧化而形成。SiQ2亦可藉純學氣相沈積(二 deposition ’ CVD)技術在較低溫度(2〇(rc_9〇〇 積於各種基板上。 熱生長及CVD生長之基於抓之層可料使元件接 面鈍化之擴散鮮,用作Si技術中之魏緣材料、介電材 料’且用作用於III-V族化合物半導體技術中之植入-活化 退火的覆蓋層。對於高效率結晶碎太陽電池應用,薄膜 Si〇2層可祕前表面及縣面缝,且料乡層抗反射塗 層(antireflection coating ’ ARC)結構中之第一層 ARC。 在低溫下生長介電膜由於降低之資金成本、高生產以 及與使用習知高溫生長/沈積技術生長介電薄膜相關之技 術約束而對於大多數元件應用極具吸引力。薄介電膜近室 /M·生長/沈積技術為本領域中已知,且主要用於微電子/光 子(光電子)元件應用。這些低溫方法之一實例為物理氣 相沈積製程,其包含:非反應性(習知)或反應性電阻製 程、感應或電子束蒸鍍製程、反應性或非反應性北或RF 磁控管製程及離子束濺鍍製程。 已熟知使用陽極氧化在半導體表面上室溫生長介電 層。其可在Si基板上生長達200奈米厚之Si〇2層,在所 述製程中耗用下層矽層之一部分。令人遺憾地,陽極氧化 與金屬化方案不相容,從而限制其用作熱生長或Cvd沈 積之Si02之替代方法。 201251057 41245pif 本領域中已知使用有機金屬溶液沈積&^介電層。介 電層藉由將基板浸入有機金屬溶液中,藉由在基板上胃嗔灑 有機金屬溶液,或藉由在將少量有機金屬溶液塗覆於基板 後旋轉基板而塗覆。塗覆有機金屬溶液後,必須藉由加熱 基板至約400°C去除溶液之溶劑部分。 大量專利、專利申請案及已公開論文描述在各種基板 (包含矽表面)上沈積Si〇2及Si02-xFx層的近室溫相關製 程。所s胃液相沈積(liquid-phase deposited,LPD)之 Si〇2 技術最初在1950年開發出用於在鹼石灰矽酸鹽玻璃之表 面上沈積Si〇2°LPD基於H2SiF6與水形成氫氟酸及固體 Si〇2之化學反應。首先用Si〇2粉末使H2SiF6溶液飽和(通 常呈溶液-凝膠形式)。在將玻璃浸於溶液中前,可添加與 氟石夕酸(hydrofluorosilicilic acid )反應之試劑(諸如删酸) 至溶液中,以用二氧化矽過度飽和。LPD製程為Si02沈積 與钱刻之間的競爭。不考慮配方中的小變化,總可逆化學 反應為: H2SiF6 + 2 Η20 η 6 HF + Si02。 上述Si02 LPD方法之主要缺陷之一為極低沈積速 率。已報導在使用氟矽酸Si02-xFx (X為約2%)時,沈積 速率為110奈米/小時。這些沈積速率對於實際ARC應用 仍過低;對於太陽電池應用,將需要超過1小時來沈積幾 乎最佳之ARC厚度130奈米。 6 201251057 41245pif 高生長速率RTWCGSiOX薄膜介電層 題為「矽上基於SiO之氧化物的室溫濕化學生長製程 (Room Temperature Wet Chemical Growth Process of SiO Based Oxides on Silicon)」之美國專利第6,080,683號及題 為「使用在基板上室溫濕化學生長基於SiO之氧化物的製 程製備薄膜介電層的方法(Method of Making Thin Films Dielectrics Using a Process for Room Temperature Wet Chemical Growth of SiO Based Oxides on a Substrate)」之美 國專利第6,593,077號描述在半導體基板上進行之RTWCG SiOx方法及製程,包括·· 1.提供包括矽源、吡啶化合物及還原氧化水溶液之反 應混合物, ii. 提供促進反應之催化劑; iii. 使混合物與基板反應形成所述氧化碎層。 美國專利第6,080,683號及美國專利第6,593,077號中 揭露之高生長速率RTWCG Si〇x薄膜使用RTWCG製程使 用商品級34% HAiF6在矽及其他半導體基板上生長。可藉 由使用如下物質達成Si0x氧化物在發基板上之高生長速 率生長·商品級有機及無機矽源、吡啶化合物(亦即氯化 N-(正丁基)吼咬鏽)、基於以2+脱3之氧還水溶液、有機或 無機均Θ共催彳b#丨及非侵人性添加劑(包含NaF、K〇H、 NH4F及HF (水溶液〕)。在美國專利第6,613,697號中,生長溶 液之有機組分觸換為㈣組分。RTWCGsi〇x薄膜層在 各種半導縣板上啸高生長速率生長,且具有較低金屬 201251057 41245pif 及非金屬雜質濃度。此外,當與在含有有機組分之溶液中 生長之RTWCG SiOx薄膜比較時,所得薄膜之介電特性得 到改良。 藉由使用上述生長溶液調配物,視生長溶液之組成而 ^,Si表面上之RTWCG Si0x生長速率在i奈米/分鐘至 高於100奈米/分鐘範圍内。 抗反射塗層先前技術 抗反射塗層(ARC)包含於太陽電池設計中,以實質 上減少反射光之量。裸Si失去42% 1.1微米長波長之光, 37% 1微米波長之光及約54% 〇 4微米短波長之光。紋理 化前表面(諸如規則間隔之角錐或多孔矽(ps))可使〇4 微米-1.2微米波長範圍内之AM 15平均加權反低至 12%-18%。 抗反射塗層之最佳厚度由下式計算: 〇 對於由折射率為ηι之透明材料製成的四分之—波長 ARC及入射於塗層上的自由空間如等e)波長為人。 的光’產生最λ!、反射之厚料目為折料具有波長依 賴性’故近零反雜可騎於單_波紐生。就之折射 率及厚度必須使得波長為〇.6微米之光的反射最小,因為 此波長接近太陽光譜之峰功率(peakp賴〇。儘管多個抗 反射塗層之方㈣單—層之方程複雜,但藉由適當地調節 8 201251057 41245pif 兩個層之折射率及厚度,理論上可產生兩個最小值及低至 3%之總反射率。 平滑表面(例如 MgF2、Si〇2、SiO、SiNx、Ti〇2 及 Ta205) 上之適當SLAR可使0.4微米-1·1微米波長範圍内之AMI.5 平均加權反射(average weighted reflection,AWR)降至 12%-16%。對於經最佳化之CVD沈積之SiNx ARC (其成 為矽太陽電池ARC應用之標準)’AMI.5 AWR為約12%, 其中如由賴特(Wright)等人對於假定膜折射率„為丨.95 且厚度d為81奈米之平坦c-Si計算,模擬之最小AWR為 10.4%。 在生產環境中能否獲得模擬之最小SiNx SLAR AWR 尚需觀察。但即使獲得模擬之反射率,10.4%反射率下之 反射損失仍過高。工業上仍需要經由雙層ARC、紋理化石夕 太陽電池表面或兩者進一步降低反射率的實用低成本方 法。然而,此方法對於大多數商業太陽電池應用因成本過 高而受限。 對於具有設計良好之單層或雙層arc (諸如 IT0/Si02、ZnS/MgF2、Ti02/MgF2 及 Ti02/Al203)的紋理化 表面,AM1.5 AWR已降至3%與8%之間。已報導大量關 於雙層ARC之研究。已發現膜厚度變化最穩定之組態為 在基板上具有高折射率U)且對環境具有低折射率之設計。 在紋理化表面上難以沈積均一 ARC。多晶矽結構之奈 米尺寸化特徵使得難以經由習知技術沈積或生長均一 ARC。某些電池製造商由於此問題而不使用ARC ;其所付 201251057 41245pif 出的代價為效率相對損失多達10%,且存在表面穩定性問 題。 選擇性發射極先前技術 當前,網版印刷石夕太陽電池使用n+/p發射極,所述發 射極經擴散以使得薄層電阻在40歐/平方單位_6〇歐/平方 單位範圍内,且表面摻雜濃度大於2xl〇20/立方公分。需要 高表面摻雜及低薄層電阻,以獲得約1微歐_平方公分之可 接受之接觸電阻以及空間電荷區中之低接面分流 (shunting)及複合(recombination)。然而,此種發射極由 於不良藍光響應(尚發射極複合及自由載流子吸收)而具 有低開路電壓(高發射極表面複合以及高表面摻雜及奥^ 複合(Augerrecombination))以及不良短路電流。接觸電 阻為約l.〇xl〇-4歐-平方公分的良好網版印刷接觸、薄層電 阻大於100歐/平方單位且表面摻雜為約1〇19/立方公分之 發射極為開發高效率工業太陽電池之主要任務。 為降低製造成本,用於前接觸製造之工業技術需要深 且向度摻雜之接面,以獲得可接受之低接觸電阻,且避免 金屬雜質向接面、空間電荷及主體發射極區滲透。習知 =印刷金屬化製程中所用之典型發射極薄層電阻為5〇呶 平方單位,歐/平方單位。小規難造使用觸3或固體 /〇5摻雜劑源及敞口管式爐來執行擴散4規模製造使用 塗或旋塗各種含磷膏及液體摻雜劑源,繼而 用傳送帶式爐擴散。 _ 不具有優良品質選擇性發射極之電池的發射極薄層 201251057 41245pif 電阻為50歐/平方單位_8〇歐/平方單位,且其填充因子(训 factor ’ FF)通常小於76%。發射極薄層電阻愈高之電池 的FF愈低疋歸因於南接觸電阻、高側向發射極電阻及網 版印刷接觸之相關低金屬電導率。為自改良之發射極表面 鈍化獲得全部效能效益,必須設計發射極之摻雜分佈以使 其在柵線之間輕摻雜,而在其下方錄雜。此尤其適用於 具有網版印刷柵線之習知卫業太陽電池,在所述柵線下方 舄要重摻雜基板以獲得可接受之低接觸電阻。 具有選擇性發射極之電池因為自主動發射極表面移 除無感層而具有較大短路電流(sh〇rt circuit current,洳)。 發射極表面之鈍化亦有益,使得域暗電流(驗触 current ’ Job)為開路電壓(〇pencircuitv〇Itage,之控 ,性限制因素。柵線下改良之導電率降低串聯電二而: 南分流電阻’歸因於栅區中之較深接面提供的抵抗拇金屬 之部分「擊穿(punch-thru)」額外保護範圍。因為柵線下 ^之石夕導電雜高,故可使職¥之線,所述線可分隔較 遠展佈,從而使栅陰影區較小。 在網版印刷之情況下,選擇性發射極難以尤其經由一 步製程獲得。極其重要之SE效率增強特徵被延遲使用是 因為此選擇性圖案化發射極摻雜分佈以往是使用昂貴的光 微影技術或先進的網版印刷解技術以及多個高溫擴散步 驟獲得。 習知SE技術可分成三大類: a·經由遮蔽及蚀刻而不進行對準製造的選擇性發 201251057 41245pif 射極電池; b. 藉由自對準(self-alignment)而無需遮蔽或蝕刻 製造的選擇性發射極電池; c. 藉由自對準自摻雜Ag膏製造的選擇性發射極電 池。 技術(a)及技術(b) —般費時且略昂貴。技術(c) 很重要,因為Ag在Si中之擴散率高於p,從而可產生高 接面Ά漏電流及南接面理想因子。 高效率結晶矽太陽電池 低成本南效率太陽電池為光伏(photovoltaic,PV)系 統之大規模接受性的關鍵。用新穎材料及製程步驟技術再 設計之小面積太陽電池已產生多個實驗室電池方案,得到 超過20%之電池效率。兩種小面積實驗室規模方法(最初 由利基市場(mche market)(諸如太陽能車)使用)為發 射極純化後側局部擴散(passivated emitter with比舡l〇cally d’ used PERL)電池及父錯式後接觸(jnter(jigitated back c^m^act,IBC)電池。儘管這些及其他實驗室電池設計已 提咼c-Si太陽電池之效率,但迄今為止,這些電池均未使 用低成本太陽_基板,且其t僅有極少數使肖低成本製 造技術製程步驟(諸如網版印刷金屬化)。 開發高效切太陽電池的目標不料提高效率而且 鱼即f成本。節約成本之重點為製造具有所設置之峰值功 的製程步驟之數目及複雜性、材料消耗及能 毛選擇致勝技術之其他重要因素包含環境態樣以及 12 201251057 41245pif 標準及製造工程化(諸如製程自動化及控制)。 【發明内容】 描述一種室溫濕化學生長(RTWCG) SiOx方法及製 程,以用於使用低成本RTWCG製備具有抗反射塗層 (「ART」)、it擇性#射極(「SE」)及視情況乡文理化氧化物 (「TO」)表面之SiOx層來製造高效率、低成本結晶石夕太陽 電池及太陽電池模組,下文稱作基於RTCWG SiOx/ARC/SE/ (TO)之製程、設計及技術。 如本文所用之術語SiOx或SiOx介電層之RTWCG製 程意謂3、05^2層之室溫(例如l〇°C-40〇C )濕化學生長製 程’其中X為0.9至1.1,y為〇.9至1.1,且z為〇.〇1至 〇_2°Si表示矽’〇表示氧,且X為氟(F)、碳(c)、氮 (N)或這些物質與其他金屬(例如鐵(Fe)、鈀(pd)、鈦 (Τι))或其他微量金屬及非金屬污染物之組合,視所用氧 還系統、催化劑及非侵入性添加劑而定。 本文所述之新穎RTWCGSi〇x生長調配物將:(i)當 場化學清洗電池表面(包含金屬化表面),使其為互連 (interconnect)作準備,(ϋ)產生梯度折射率Si〇x ARC, 其使發射極表面鈍化且具有任何已知單層ARC (SLARC) 之取低AM1_5平均加權反射帛,㈤)同時藉由選擇性回 勉發射極表面之未金屬化部分產生極有效的選擇性發射極 (> RTWCG Si〇x ARC/SE/TO製程及太陽電池製造技術 與諸如太陽電池效率增強擴散及改良之金屬化技術的現有 太陽電池及太陽電频_財_容。 13 201251057 41245pif RTWCG方法及製程提供簡單的n+/p或p+/n RTwcg SiOx ARC/SE 太陽電池設計、或 n+/p 或 p+/n RTwcg SiOx ARC/SE/TO太陽電池結構設計、或n+/p/p+或p+/n/n+ RTWCG SiOx ARC/SE/TO效率增強之太陽電池結構設計。 一或多個實施例之一目的為提供一種在矽基板上快 速生長具有低金屬及非金屬雜質濃度的Si0x薄膜介電層 以用於高效率低成本結晶矽太陽電池應用的RTWCG方 法。 一或多個實施例之另一目的為提供一種使用包括所 有無機組分之SiOx生長溶液且使用或不使用矽源的 RTWCG SiOx 製程。 一或多個實施例之另一目的為提供一種使用基於豐 富、低咸本且與環境法規相容之組分的SiOx生長溶液的 RTWCG SiOx 製程。 一或多個實施例之另一目的為提供一種使用具有長 儲存期限之SiOx生長溶液的RTWCG SiOx製程。 一或多個實施例之另一目的為提供一種高生長速率 RTWCG SiOx製程,其具有良好SiOx薄膜均一性、低應 力、與矽表面之良好黏著性及良好一致性。 一或多個實施例之另一目的為提供一種製造Si〇x薄 膜的RTWCG SiOx製程,所述SiOx薄膜在長期曝露於濕 度、溫度變化、UV光、可見光及高強度電漿後穩定。 一或多個實施例之另一目的為提供一種RTWCG製 程,其中在RTWCG SiOx薄膜在未金屬化表面上生長前, 201251057 41245pif 生長'合液對裸(無ARC)太陽電池表面(包含金屬 化表面)進行當場(in-situ)清洗。201251057 41245pif VI. Description of the invention: [Related application] This application claims the method, process and manufacturing technology of the high-efficiency and low-cost crystallization solar cell according to USC §119 (e). Priority is claimed in US Patent No. 61/383,435, the entire disclosure of which is incorporated herein by reference. [Incorporated by Reference] All patents, patent applications, and publications cited herein are hereby incorporated by reference in their entirety in their entirety in their entirety in their entireties Known as current advanced technology. TECHNICAL FIELD OF THE INVENTION The present invention relates to a wet chemical growth (R〇〇m (10) 卩 (10) 比 (10) W (Wet Chemical Growth 'RTWCG) method of a Si〇x film coating that can be grown on various substrates and Process. The present invention is further directed to an RTWCG method and process suitable for growing thin films on Si substrates (for use in the fabrication of germanium-based electrons and photonic (photoelectron) devices. The invention advances the production of (4) low reflectivity single-layer antireflective coatings (SLARC) SiOx thin film oxide layer and selective emitter (selective emit s, sin) [previous technique] - Oxidation crush (SiO 2 ) forms the basis of planar technology. In Industrial Practice 4 201251057 41245pif, electrons and photon-like dielectrics are most often formed by oxidation of 900^1200t|6^^T^/(s;;; SiQ2 can also be deposited by pure vapor deposition (II) Deposition ' CVD ) technology is used at lower temperatures (2 〇 (rc_9 〇〇 on various substrates. Thermal growth and CVD growth based on the layer can be used to make the junction junction passivation diffusion, used as Wei in Si technology Edge material, dielectric material' and used as an overlay for implant-activated annealing in III-V compound semiconductor technology. For high-efficiency crystallized solar cell applications, the thin film Si〇2 layer can be used for the front surface and the county surface. The first layer of ARC in the antireflection coating 'ARC' structure. The dielectric film is grown at low temperatures due to reduced capital costs, high production, and growth using conventional high temperature growth/deposition techniques. The technical constraints associated with dielectric films are attractive for most component applications. Thin dielectric film near chamber/M·growth/deposition techniques are known in the art and are primarily used for microelectronic/photonic (optoelectronic) components. Application. These low temperature sides An example of a method is a physical vapor deposition process comprising: a non-reactive (conventional) or reactive resistance process, an inductive or electron beam evaporation process, a reactive or non-reactive north or RF magnetron process, and an ion Beam sputtering process. It is well known to use anodization to grow a dielectric layer on a semiconductor surface at room temperature. It can grow up to 200 nm thick Si〇2 layer on a Si substrate, in which the underlying layer is used. In some cases, anodization is incompatible with the metallization scheme, thereby limiting its use as an alternative to SiO2 for thermal growth or Cvd deposition. 201251057 41245pif It is known in the art to use organic metal solution deposition & The dielectric layer is coated by dipping the substrate into the organometallic solution, by spraying the organometallic solution on the substrate, or by rotating the substrate after applying a small amount of the organometallic solution to the substrate. After the metal solution, the solvent portion of the solution must be removed by heating the substrate to about 400 ° C. A large number of patents, patent applications, and published papers describe the deposition of Si on various substrates (including the surface of the crucible). 2 and near-room temperature-related processes of the SiO 2 -xFx layer. The liquid-phase deposited (LPD) Si〇2 technique was originally developed in 1950 for the surface of soda lime silicate glass. The deposition of Si〇2°LPD is based on the chemical reaction of H2SiF6 with water to form hydrofluoric acid and solid Si〇2. First, the H2SiF6 solution is saturated with Si〇2 powder (usually in solution-gel form). The glass is immersed in the solution. Previously, a reagent (such as acid scavenging) which reacts with hydrofluorosilicilic acid may be added to the solution to be oversaturated with cerium oxide. The LPD process is a competition between SiO2 deposition and money engraving. Regardless of small changes in the formulation, the total reversible chemical reaction is: H2SiF6 + 2 Η20 η 6 HF + Si02. One of the major drawbacks of the above SiO 2 LPD method is the extremely low deposition rate. It has been reported that when fluorophthalic acid SiO 2 -xFx (X is about 2%) is used, the deposition rate is 110 nm/hr. These deposition rates are still too low for practical ARC applications; for solar cell applications, it will take more than an hour to deposit an almost optimal ARC thickness of 130 nm. 6 201251057 41245pif high growth rate RTWCGSiOX thin film dielectric layer entitled "Room Temperature Wet Chemical Growth Process of SiO Based Oxides on Silicon" US Patent No. 6,080,683 and The method of making Thin Films Dielectrics Distills Using a Process for Room Temperature Wet Chemical Growth of SiO Based Oxides on a Substrate U.S. Patent No. 6,593,077 describes an RTWCG SiOx process and process on a semiconductor substrate, including: 1. providing a reaction mixture comprising a ruthenium source, a pyridine compound, and a reduced oxidizing aqueous solution, ii. providing a catalyst for promoting the reaction; The mixture is reacted with a substrate to form the oxidized layer. The high growth rate RTWCG Si(R) film disclosed in U.S. Patent No. 6,080,683 and U.S. Patent No. 6,593,077, is incorporated herein by reference to the utility of the <RTIgt; High growth rate growth of SiOx oxide on the substrate can be achieved by using the following materials: commercial grade organic and inorganic cerium source, pyridine compound (ie, N-(n-butyl) chlorate), based on 2 + Deoxygenated aqueous solution, organic or inorganic, 彳 彳 b#丨 and non-invasive additives (including NaF, K〇H, NH4F and HF (aqueous solution). In US Patent No. 6,613,697, growth solution The organic component is changed to (4). The RTWCGsi〇x film layer grows at various growth rates on various semi-conducting counties, and has a lower metal 201251057 41245pif and non-metallic impurity concentration. In addition, when combined with organic groups When the RTWCG SiOx film grown in the solution is compared, the dielectric properties of the obtained film are improved. By using the above-mentioned growth solution formulation, depending on the composition of the growth solution, the growth rate of the RTWCG Si0x on the Si surface is i nm. /min to over 100 nm/min. Anti-Reflective Coatings Prior art anti-reflective coatings (ARC) are included in solar cell designs to substantially reduce the amount of reflected light. Bare Si loses 42% 1.1 microns long Long light, 37% light with 1 micron wavelength and about 54% light with 4 micron short wavelength. Textured front surface (such as regular interval pyramid or porous tantalum (ps)) can make 〇4 micron to 1.2 micron wavelength range The average weighting of AM 15 is as low as 12%-18%. The optimum thickness of the anti-reflective coating is calculated by: 〇 for quarter-wavelength ARC made of transparent material with refractive index ηι and incident on The free space on the coating, such as e), is wavelength. The light 'produces the most λ!, and the thick material of the reflection is that the folding material has a wavelength dependence', so that the near zero is anti-hetero can be riding on the single-wave. The refractive index and thickness must be such that the reflection of light with a wavelength of 〇.6 μm is minimized because this wavelength is close to the peak power of the solar spectrum (peakp depends on the square of the multiple anti-reflective coatings. However, by appropriately adjusting the refractive index and thickness of the two layers of 201251057 41245pif, it is theoretically possible to produce two minimum values and a total reflectance as low as 3%. Smooth surface (eg MgF2, Si〇2, SiO, SiNx) The appropriate SLAR on Ti〇2 and Ta205) can reduce the AMI.5 average weighted reflection (AWR) in the wavelength range of 0.4 micron to 1·1 micron to 12%-16%. CVD deposited SiNx ARC (which is the standard for AR solar cell ARC applications) 'AMI.5 AWR is about 12%, where Wright et al. for the assumed film refractive index „ is 丨.95 and thickness d For a flat c-Si of 81 nm, the minimum AWR of the simulation is 10.4%. It is still necessary to observe the minimum SiNx SLAR AWR that can be simulated in a production environment, but even if the simulated reflectance is obtained, the 10.4% reflectance The reflection loss is still too high. The industry still needs to pass the double A low-cost method for ARC, textured fossil solar cell surfaces or both to further reduce reflectivity. However, this method is limited by the high cost of most commercial solar cell applications. For well-designed single or double layers The textured surface of arc (such as IT0/SiO2, ZnS/MgF2, Ti02/MgF2, and Ti02/Al203) has dropped to between 3% and 8% for AM1.5 AWR. A large number of studies on double layer ARC have been reported. The most stable configuration of the film thickness was found to be a design with a high refractive index U) on the substrate and a low refractive index for the environment. It is difficult to deposit a uniform ARC on the textured surface. The nano-sized features of the polycrystalline structure make it difficult to Conventional techniques deposit or grow uniform ARC. Some battery manufacturers do not use ARC due to this problem; the cost of 201251057 41245pif is a relative loss of efficiency of up to 10%, and there is a problem of surface stability. Prior Art Currently, screen printing Shi Xi solar cells use n + / p emitters, the emitter is diffused to make the sheet resistance at 40 ohm / square unit _ 6 〇 / / square unit Within the circumference, and the surface doping concentration is greater than 2xl 〇 20 / cubic centimeter. High surface doping and low sheet resistance are required to obtain an acceptable contact resistance of about 1 micro ohm square centimeter and a low junction in the space charge region. Surface shunting and recombination. However, such emitters have low open circuit voltage due to poor blue response (still emitter recombination and free carrier absorption) (high emitter surface recombination and high surface doping) And Auerrecombination) and poor short-circuit current. High-efficiency industrial development with a contact resistance of about 1. 〇xl 〇 -4 ohm-cm 2 of good screen printing contact, a sheet resistance of more than 100 ohms per square unit and a surface doping of about 1 〇 19 / cubic centimeter The main task of solar cells. To reduce manufacturing costs, industrial techniques for front contact fabrication require deep and highly doped junctions to achieve acceptable low contact resistance and to avoid penetration of metal impurities into junctions, space charges, and bulk emitter regions. Conventional = Typical emitter sheet resistance used in the printing metallization process is 5 平方 square units, ohms per square unit. Small gauges are difficult to make using diffusion 3 or solid/〇5 dopant sources and open tube furnaces to perform diffusion 4 scale manufacturing using coating or spin coating of various phosphorus-containing pastes and liquid dopant sources, followed by conveyor belt furnace diffusion . _ Emitter thin layer of battery without good quality selective emitter 201251057 41245pif The resistance is 50 ohms/square unit _8 〇 ohm/square unit, and its fill factor (train factor 'FF) is usually less than 76%. The lower the FF of the cell with the higher emitter layer resistance, the lower the metal conductivity due to the south contact resistance, the high lateral emitter resistance, and the screen printing contact. To achieve full efficiency gains from improved emitter surface passivation, the doping profile of the emitter must be designed such that it is lightly doped between the gate lines and recorded underneath. This applies in particular to conventional solar cells having screen printing grid lines, under which the substrate is heavily doped to achieve an acceptable low contact resistance. A battery having a selective emitter has a large short circuit current (洳) due to the removal of the non-inductive layer from the active emitter surface. The passivation of the emitter surface is also beneficial, so that the field dark current (current 'job) is the open circuit voltage (〇pencircuitv〇Itage, the control, the limiting factor. The improved conductivity under the gate line is reduced by the series two: south diversion The resistance' is attributed to the additional "punch-thru" of the part of the thumb metal provided by the deeper junction in the gate area. Because of the high conductivity of the stone under the grid line, it can be used. The line can separate the spreader to make the shaded area smaller. In the case of screen printing, the selective emitter is difficult to obtain especially through one-step process. The extremely important SE efficiency enhancement feature is delayed. This is because the selectively patterned emitter doping profile has previously been obtained using expensive photolithography or advanced screen printing solutions and multiple high temperature diffusion steps. Conventional SE techniques can be divided into three broad categories: a. And selectively etched without the alignment manufacturing 201251057 41245pif emitter cell; b. a selective emitter cell fabricated by self-alignment without masking or etching; c. Selective emitter cells fabricated by self-aligned self-doped Ag paste. Techniques (a) and (b) are generally time consuming and slightly more expensive. Technique (c) is important because of the diffusion of Ag in Si The rate is higher than p, which can produce high junction leakage current and south junction ideal factor. High efficiency crystallization 矽 solar cell low cost south efficiency solar cell is the key to the large-scale acceptance of photovoltaic (PV) system. New Materials and Process Steps Technology Redesigned small-area solar cells have produced multiple laboratory battery solutions that yield more than 20% battery efficiency. Two small-area laboratory-scale methods (originally from the mche market (such as solar energy) Car) use) for the emitter-purified emitter with diffused emitter with 舡l〇cally d' used PERL and jnter (jigitated back c^m^act (IBC) batteries. And other laboratory battery designs have improved the efficiency of c-Si solar cells, but so far, these batteries have not used low-cost solar _ substrate, and only a few of them make Xiao low-cost manufacturing technology Process steps (such as screen printing metallization). The goal of developing high-efficiency solar cells is to increase efficiency and fish is cost. The cost-saving focus is on the number and complexity of manufacturing process steps with set peak work and material consumption. Other important factors in the selection of winning technology include the environmental aspects and 12 201251057 41245pif standard and manufacturing engineering (such as process automation and control). SUMMARY OF THE INVENTION A room temperature wet chemical growth (RTWCG) SiOx method and process are described. Manufactured using a low-cost RTWCG to produce a SiOx layer with an anti-reflective coating ("ART"), an optional # emitter ("SE"), and optionally a surface physicochemical oxide ("TO") surface. Efficient, low-cost crystalline lithography solar cells and solar cell modules, hereinafter referred to as RTCWG SiOx/ARC/SE/ (TO) based process, design and technology. The RTWCG process of the term SiOx or SiOx dielectric layer as used herein means a room temperature (eg, l〇°C-40〇C) wet chemical growth process of 3,05^2 layers where X is 0.9 to 1.1, y is 〇.9 to 1.1, and z is 〇.〇1 to 〇_2°Si means 矽'〇 represents oxygen, and X is fluorine (F), carbon (c), nitrogen (N) or these and other metals ( For example, iron (Fe), palladium (pd), titanium (Τι) or other combinations of trace metals and non-metallic contaminants depend on the oxygen system used, the catalyst, and the non-invasive additive. The novel RTWCGSi〇x growth formulation described herein will: (i) chemically clean the surface of the cell (including the metallized surface) on the spot to prepare for the interconnection, (ϋ) to produce a gradient index Si〇x ARC , which deactivates the emitter surface and has any known single-layer ARC (SLARC) low AM1_5 average-weighted reflection 帛, (v)) while selectively reversing the unmetallized portion of the emitter surface to produce extremely efficient selectivity Emitter (> RTWCG Si〇x ARC/SE/TO process and solar cell manufacturing technology and existing solar cells such as solar cell efficiency enhancement diffusion and improved metallization technology and solar power. 13 201251057 41245pif RTWCG The method and process provide a simple n+/p or p+/n RTwcg SiOx ARC/SE solar cell design, or n+/p or p+/n RTwcg SiOx ARC/SE/TO solar cell structure design, or n+/p/p+ or p+ /n/n+ RTWCG SiOx ARC/SE/TO efficiency enhanced solar cell structure design. One of the embodiments is to provide a Si0x thin film dielectric with rapid growth of low metal and non-metallic impurity concentrations on a germanium substrate. Layer for efficient An RTWCG process for low-cost crystallization solar cell applications. Another object of one or more embodiments is to provide an RTWCG SiOx process using SiOx growth solutions including all inorganic components with or without ruthenium source. Another object of an embodiment is to provide an RTWCG SiOx process using a SiOx growth solution based on a rich, low-salt, and environmentally compatible component. Another object of one or more embodiments is to provide a use having RTWCG SiOx process for long shelf life SiOx growth solution. Another object of one or more embodiments is to provide a high growth rate RTWCG SiOx process with good SiOx film uniformity, low stress, good adhesion to the ruthenium surface. And a good consistency. Another object of one or more embodiments is to provide an RTWCG SiOx process for fabricating a Si〇x film that is exposed to humidity, temperature changes, UV light, visible light, and high-strength plasma for a long period of time. Post-stabilization. Another object of one or more embodiments is to provide an RTWCG process in which an RTWCG SiOx film is grown on an unmetallized surface. , 201251057 41245pif growth 'was bonded bare (no ARC) surface of the solar cell (comprising a metallized surface) of the spot (in-situ) cleaning.

.一或多個實施例之另一目的為提供一種RTWCG 二私,其中sl0x生長溶液與裸矽太陽電池之網版印 刷刖金屬化及後金屬化相容。 ,或夕個實施例之另一目的為提供一種rtWcg 製程’其使得Sl0x薄膜介電層嚴格地在未金屬化太 作準備表面上而非金屬化表面上生長,從而使電池為互連 或夕個實把例之另一目的為提供一 财錄程,其在Sl電池發射極表面上產生梯度 折射率’關作具有低空氣f量丨5(也_丨5,am⑸ 權反射率(AWR)域可見光吸收的抗反射塗層 -或多個實施例之另一目的為提 其中Sl0x薄膜使未藉由金屬化覆蓋之&太陽 電池表面純化。 :或多個實施例之另一目的為提供一種rtwcg =〇χ衣程,其中Sl0x薄膜使網版印刷之前側基於銀之栅 線及紹後接觸(contact)鈍化。 :或多個實施例之另一目的為提供一種rtwcg 』X衣程’其中缚膜Sl0x在藉由回餘發射極未金屬化表 夠深度以完全移除重摻雜域層而形成所謂的選擇 性發射極(SE)效率增強特徵的同時生長。 15 201251057 41245pif 一或多個實施例之另一目的為提供一種RTWCG SiOx製程,其中在平滑矽表面上生長之si〇x薄膜的表面 丄紋理化,形成所明的紋理化氧化物(texture(j oxide,TO) 效率增強特徵。 一或多個實施例之另一目的為在單一短RTWCG SiOx製程步驟内提供所有上述需要及效率增強電池設計 特徵,及形成簡單但高效的n+/p或p+/n RTWCG si〇x ARC/SE/ (TO)太陽電池結構及 n+/p/p^ p+/n/n+ si〇x ARC/SE/TO效率增強電池結構,以用於使用太陽級c_si、 mc-Si及多晶石夕基板的高效率低成本結晶石夕太陽電池。 一或多個實施例之另一目的為提供在n+/p或p+/n RTWCG SiOx ARC/SE/ (TO)及 n+/p/p+及 p+/n/n+ SiOx ARC/SE/TO太陽電池結構設計中包含在發射極中具有所 謂彎折與尾型(kink-and-tail)淨多數載流子濃度擴散分佈 曲線且其中彎折淺且尾部陡山肖的效率增強特徵的可能性。 一或多個實施例之另一目的為提供一種用於高效率 n+/p/p+及p+/n/n+結晶矽太陽電池結構的RTWcg SiOx/ARC/SE/TO製程、電池設計及技術,其中n+及口+擴 散在單一高擴散製程步驟中使用網版印刷或旋塗於基板上 之經稀釋液體或固體擴散源進行。 一或多個實施例之另一目的為提供一種用於高效率 n+/p/p+及p+/n/n+結晶矽太陽電池結構之RTWCG Si0x製 程’其中n+及p+擴散在單一高溫擴散製程步驟中進行而 無需各別邊緣分離(edge isolation)製程步驟。 16 201251057 41245pif 一或多個實施例之另一目的為提供一種用於任何平 坦表面結晶矽發射極上的n+/p_si RTWCG SiOx ARC/SE/T0太陽電池結構設計、方法、製程及技術,以及 用於任何平滑或紋理化發射極表面上的n+/p_Si RTWCG SiOX ARC/SE太陽電池結構設計、方法、製程及製造技 術,且其與包含(但不限於)如下所有結晶以材料相容: 半導體級及太陽級柴氏(Czochralski,Cz)或浮區(float zone,FZ)單晶Si (c-Si)、多結晶Si (mc_Si)、多晶矽及 線帶(string ribbon) Si。 一或多個實施例之另一目的為提供一種與p+/n_Si RTWCG SiOX ARC/SE/ΤΟ太陽電池結構同等良好地發揮 作用的n+/p-Si RTWCG SiOX ARC/SE/ΤΟ太陽電池結構及 技術。 一或多個實施例之另一目的為提供一種藉由使用能 夠移除擴散層同時產生後側純化及邊緣分離之RTWCG調 配物產生增強效率n+/p或p+/n RTWCG SiOx ARC/SE/ (TO)電池結構的方法。 一或多個實施例之另一目的為提供一種簡單且低成 本之基於RTWCG SiOx之結晶矽太陽電池技術,其藉由使 用RTWCG製程自太陽電池後表面移除擴散層且使太陽電 池後表面鈍化同時產生良好邊緣分離而產生増強效率 n+/p-Si 或 p+/n RTWCG SiOx ARC/SE/ (TO)電池結構。 一或多個實施例之另一目的為提供一種RTWCG SiOX 方法、n+/p-Si RTWCG SiOx ARC/SE/ΤΟ 及 p+/n-Si 17 201251057 41245pif RTWCG SiOx ARC/SE/TO製程及技術,其可與介於習知單 面平面結晶矽設計至其他不太習知之Si太陽電池電池結 構(包含(但不限於)垂直多接面(Vertical Multi-Junction, VM J )、球狀電池及雙面n+pp+或p+nn+結晶石夕太陽電池結 構)範圍内的其他結晶矽太陽電池設計結合使用。 一或多個實施例之另一目的為包含用於具有平坦或 紋理化發射極表面之電池的n+/p- Si或p+/n- si RTWCG SiOx ARC/SE及用於具有平坦表面之電池的n+/p_Si或 p+/n-Si 及 Π+ΡΡ+或 p+nn+ RTWCG SiOX ARC/SE/TO、目 前技術之材料及效率增強太陽電池製程步驟,包含(但不 限於)提供低前表面及後表面複合且確保強前表面及後表 面場之先進擴散技術的新穎技術方案、較佳網版印刷膏及 達成相較於目前技術之金屬化較窄、縱橫比較高、較具導 電性、接觸電阻較低且退火溫度較低的金屬化程序。 一或多個實施例之另一目的為提供一種在各種基板 亡生長RTWCG SiOM (其中M為相容金屬)以形成用於 薄膜太陽電池及各種其他潛在應用的優n所謂透明導 電塗層(transparent conductive coating,TCO)的方法及製 程。 一或多個實施例之另—目的為提供-種製造併有 RTWCG Si〇M TCQ特徵之高效率低成本非㈣太陽電池 的製程、設計及技術。 -或多個實施例之另-目的為提供基於平面石夕 子及光子(光電子)元件應用,其可受益於n+/p Si4p+/n_si 18 201251057 41245pif RTWCGSiOxARC/SE (/TO)方法、製程及技術,或受益 於低至中等-高介電常數RTWCG Si〇x薄膜介電層或高透 明度、合適電阻率及相對較低反射率2RTWCg SiOM TCO 的併入。 本發明之上述及其他目的、特徵及優點將由以下如隨 附圖式中所說明之本發明較佳實施例的更特定描述而顯而 易見。 【實施方式】 本發明揭露一種用於高效率低成本結晶矽(si)太陽 電池的RTWCG SiOx方法及製程、RTWCG SiOx ARC/SE/TO結晶矽太陽電池設計及製造技術,所述結晶矽 太陽電池包含(但不限於)單晶Si (c_Si)、多結晶Si (mc-Si)、微晶Si ( pc-Si)及多晶矽太陽電池及太陽電池 模組。RTWCG SiOx方法及製程使用先前揭露之室溫濕化 學生長(RTWCG)方法及製程(參見美國專利:6,080,683 及6,593,077及6,613,697 ’其以引用的方式併入本文中) 的改良形式。所述技術提供一種在室溫(例如1〇。〇4〇。〇) 下均一生長超過10,000埃厚之氧化層的催化製程。所述組 成物可用於在迄今為止受限於成本及溫度要求之製程及應 用中來製備SiOx層。 RTWCG SiOx ARC/SE/TO太陽電池設計及技術藉由 使用低成本網版印刷金屬化方案,藉由減少高溫製造步驟 數及藉由減少製造步驟之總數來降低製造成本。在降低製 造成本之同時’所述技術亦藉由使用包含效率增強特徵(諸 201251057 41245pif 如梯度折射率RTWCG SiOx ARC )之電池設計結構提高電 池轉化效率。伴隨ARC形成,所述技術產生極佳品質SE 及RTWCGSiOx紋理化。RTWCGSiOx紋理化藉由進一步 增加光捕捉來改良ARC已經很低的反射率。 圖1展示一或多個實施例之高效率低成本RTWCG SiOx ARC/SE/TO結晶太陽電池100的橫截面圖。本文所 述之方法及製程是關於新穎結晶太陽RTWCG SiOx ARC/SE/TO電池設計,其含有:(i)使電池表面充分鈍化 且為極佳ARC的SiOx薄膜介電層’(ϋ)優良品質以 及(iii)平坦或紋理化SiOx (TO)表面。晶圓或基板μ❶ 為半導體材料’通常為石夕。選擇性發射極層12〇安置於基 體140上。選擇性發射極由於在前接觸11〇下重摻雜而提 供低接觸電阻,且對接觸之間的較輕摻雜區提供前侧純 化。所述元件亦包含安置於選擇性發射極之輕摻雜區(深 發射極)上的ARC塗層130。後接觸150位於電池之後面。 視情況,電池可包含紋理化氧化物表面135。紋理化 特徵可應用於具有起始平坦前表面之電池。其可經由另一 短溫和濕化學步驟或藉由使用伴隨ARC及 ^^,^^RxwcoSi〇x RTWCGSi0xARC/SE/T0電池設計(圖υ具有極低反射 率、優良品質選擇性發射極及藉由更複雜PERL技術提供 的後表面鈍化。在一或多個實施例中,ARC、SE及τ〇妗 強特徵在單一步驟中產生。 曰 RTWCG Si〇x ARC/SE/T0電池設計之平滑發射極使 20 201251057 41245pif 電流向栅指(grid finge〇之側向流動的電阻損耗最小。此 與使用紋理化發射極表面之其他高效率電池設計(諸如 PERI^電池)形成職。對於這些其他電池設計,電阻損 耗可能為造成較低填充因子(fill factor,FF )之限制因素。 相較於低效率至中等效率矽電池設計,併有平滑發射 極表面及紋理化Si0x ARC之RTWCG Si〇x arc/se/t〇的 電,没计在電池效率方面獲勝。此歸因於顯著減少的發射 極溥層電阻率損耗、較低的接觸電阻、較高的分流電阻及 較低的二極體理想因子。此外,相較於最習知之在設計中 不包含SE或包含不良功能性se的n+/p結晶矽太陽電池, KTWCG SiOx ARC/SE/T0電池設計之高度可再現極佳品 吳SE確保良好藍光響應(blue response)。由RTWCG SiOx ARC/SE/TO電池設計產生的強前表面場及後表面場以及 良好邊緣分離分別進一步提高在整個AM1.5光譜中的光 譜響應及減少電損耗。 圖2描述一或多個實施例之低成本高效率rtwcg SiOx ARC/SE/T0新穎太陽電池製造技術。視RTWCG溶 液濃度而定,在20秒至1分鐘内,新穎rtwCG SiOx製 程設定成在進行前金屬化及後金屬化之太陽電池上同時產 生如下增強特徵: i·當場化學清洗電池表面(包含金屬化表面),使其為 互連作準備; ii. 使發射極表面純化且當在平坦發射極表面上生 長時AM1.5平均加權反射率(AWR)低於1〇%的梯度折 21 201251057 41245pif 射率 SiOx ARC ; iii.藉由可控制地回蝕未金屬化發射極表面產生之 極有效SE。 本發明之RTWCG SiOx ARC/SE/ ( TO )結晶石夕太陽電 池設計及技術減少且簡化了太陽電池加工步驟數。此外, 其採用目前技術之太陽電池及太陽電池模組特徵,諸如較 高導電性之接觸及EVA密封材料之替代物。其亦利^ RTWCG製程自身提供之某些益處,諸如在發射^亟中使用 彎折與尾型擴散分佈曲線。因為彎折與尾型擴散分佈曲線 具有相對較深的接面深度’故貫際上去除了前栅線與接面 短路之可能性。此又使得可使用較高導電性之接觸及較低 接觸電阻網版印刷金屬化溶液,從而降低了由柵線下擴散 分佈曲線之高淨表面濃度產生的已經很低的接觸電阻。這 些益處與極有效SE耦合產生具有強前表面場、低理想因 子及大藍光響應增益從而促成電池效率顯著提高的電池会士 構。 / RTWCG SiOX ARC/SE/ΤΟ結晶石夕太陽電池製造技術 使用低成本製程方法,其簡化或去除了本領域中已知之其 他高效率矽太陽電池技術的各種製程步驟。下文概述n//p (P,B) Si太陽電池之製造技術。 在擴散前進行切割損傷移除及清洗。 具有彎折與尾型淨多數載流子濃度擴散分佈曲線之 磷擴散’且較佳加以機械或其他類型之邊緣遮蔽(b〇rder masking)以防止電池邊緣之重擴散。 22 201251057 41245pif 標準網版印刷前接觸及後接觸及一步的習知前接觸 及後接觸退火。 一或多個實施例之環保RTWCG SiOx ARC/SE/ ( TO) 單一製程步驟為低成本濕化學製程,其在1分鐘或小於1 分鐘内達成以下操作: 1·清洗裸太陽電池之矽及金屬化表面; 11·可執行n+/p及p+/n或增強效率擴散之n+/p/p+ 或p+/n/n+結構的邊緣分離; iii.在未金屬化電池表面上,視石夕基板類型而定生長 AM1.5 AWR在5%-9%之間的梯度折射率Si0xARC ; IV.視情況當場TO特徵可使AM 1.5 AWR進一步降 至3% ; v. 形成與大量低成本製造相容之極佳品質se ; vi. 由相對較鬲生長速率(>2〇〇奈米/分鐘)rtWCG si〇x溶液產生之Si0x膜可伴隨arc/se特徵產生τ〇特 徵。由較慢生長速率(<5〇奈米/分鐘)RTWCGSi〇x溶液 產生之SiOx膜可能需要在〇 5%_2% HF (水溶液)中進行另一 忉秒_20秒蝕刻步驟。 在擴散前進行切割損傷移除及矽晶圓清洗 在根據圖2製造元件前,製備矽基板表面2〇〇。 在經由擴散形成發射極前對矽(Si)半導體晶圓進行 =表面製備為本領域f所熟知且通常簡_晶圓清洗。由 厂導體工業使用且亦適用於習知太陽電池製造技術且尤其 適用於大多數面效率石夕太陽電池技術之表面清洗技術通常 23 201251057 41245pif 分成四組:前端製程(front-end of line,FEOL)、擴散端 製程(diffusion-end of line,DEOL )、金屬化端製程 (metallization-end of line ’ MEOL )及後端製程(back-end 〇f line,BEOL)。Another object of one or more embodiments is to provide an RTWCG dual-private solution in which the sl0x growth solution is compatible with the screen printing, metallization and post-metallization of bare-battery solar cells. Another object of the embodiment, or another embodiment, is to provide an rtWcg process that allows the S10x thin film dielectric layer to grow strictly on the unmetallized surface rather than the metallized surface, thereby allowing the cell to be interconnected or Another purpose of the practical example is to provide a financial record that produces a gradient index on the surface of the emitter of the battery of the battery. 'There is a low air f amount 丨5 (also _丨5, am(5) weight reflectivity (AWR) An anti-reflective coating for visible light absorption in the domain - or another object of the various embodiments is to provide a surface in which the S10x film is cleaned by a metallized surface of the solar cell. Another purpose of the embodiments is to provide A rtwcg = 〇χ clothing process, wherein the Sl0x film causes the front side of the screen printing to be passivated based on the silver gate line and the contact contact. Another purpose of the embodiment is to provide a rtwcg "X garment" The bond film S10x is grown while the depth of the unembedded emitter is not metallized to completely remove the heavily doped domain layer to form a so-called selective emitter (SE) efficiency enhancement feature. 15 201251057 41245pif One or more Another item of an embodiment In order to provide an RTWCG SiOx process, the surface of the si〇x film grown on the smooth crucible surface is textured to form a texture (j oxide, TO) efficiency enhancement feature. One or more Another object of the embodiment is to provide all of the above-described needs and efficiency-enhanced battery design features in a single short RTWCG SiOx process step, and to form a simple but efficient n+/p or p+/n RTWCG si〇x ARC/SE/ (TO) Solar cell structure and n+/p/p^ p+/n/n+ si〇x ARC/SE/TO efficiency-enhanced cell structure for high efficiency and low cost use of solar grade c_si, mc-Si and polycrystalline substrate Crystalline solar cell. Another purpose of one or more embodiments is to provide n+/p or p+/n RTWCG SiOx ARC/SE/(TO) and n+/p/p+ and p+/n/n+ SiOx ARC/ The SE/TO solar cell structure design includes a so-called kink-and-tail net majority carrier concentration diffusion profile in the emitter, and the efficiency of the bending is shallow and the tail is steep. Possibility. Another object of one or more embodiments is to provide a high efficiency n+/p/p+ and p+/n/n+ crystallization. RTWcg SiOx/ARC/SE/TO process, cell design and technology for solar cell structures, where n+ and port+diffusion are screen-printed or spin-coated on a substrate in a single high-diffusion process step. Another object of one or more embodiments is to provide an RTWCG Si0x process for high efficiency n+/p/p+ and p+/n/n+ crystallization solar cell structures, wherein n+ and p+ diffusion are in a single high temperature diffusion process. The steps are performed without separate edge isolation process steps. 16 201251057 41245pif Another object of one or more embodiments is to provide an n+/p_si RTWCG SiOx ARC/SE/T0 solar cell structure design, method, process and technique for any flat surface crystalline germanium emitter, and for Any n+/p_Si RTWCG SiOX ARC/SE solar cell structure design, method, process and fabrication technique on a smooth or textured emitter surface, and which is compatible with, including but not limited to, all of the following crystals: semiconductor grade and Czochralski (Cz) or float zone (FZ) single crystal Si (c-Si), polycrystalline Si (mc_Si), polycrystalline germanium and string ribbon Si. Another object of one or more embodiments is to provide an n+/p-Si RTWCG SiOX ARC/SE/ΤΟ solar cell structure and technology that functions equally well with the p+/n_Si RTWCG SiOX ARC/SE/ΤΟ solar cell structure. . Another object of one or more embodiments is to provide an enhanced efficiency n+/p or p+/n RTWCG SiOx ARC/SE/ (by using an RTWCG formulation capable of removing a diffusion layer while producing a backside purification and edge separation). TO) Method of battery structure. Another object of one or more embodiments is to provide a simple and low cost RTWCG SiOx based crystalline germanium solar cell technology that removes the diffusion layer from the rear surface of the solar cell and passivates the back surface of the solar cell by using the RTWCG process. At the same time, good edge separation is produced to produce a barely efficient n+/p-Si or p+/n RTWCG SiOx ARC/SE/(TO) cell structure. Another object of one or more embodiments is to provide an RTWCG SiOX method, n+/p-Si RTWCG SiOx ARC/SE/ΤΟ and p+/n-Si 17 201251057 41245pif RTWCG SiOx ARC/SE/TO processes and techniques, It can be designed from other conventional single-sided planar crystals to other less-known Si solar cell battery structures (including but not limited to Vertical Multi-Junction (VM J), spherical battery and double-sided Other crystal 矽 solar cell designs in the range of n+pp+ or p+nn+ crystallized solar cell structure) are used in combination. Another object of one or more embodiments is to include n+/p-Si or p+/n-si RTWCG SiOx ARC/SE for cells having flat or textured emitter surfaces and for cells having flat surfaces n+/p_Si or p+/n-Si and Π+ΡΡ+ or p+nn+ RTWCG SiOX ARC/SE/TO, current technology materials and efficiency enhancement solar cell process steps, including but not limited to providing low front and back Novel technical solution for surface recombination and advanced diffusion technology for ensuring strong front and back surface fields, better screen printing paste and achieving metallization narrower, higher vertical and horizontal, more conductive, contact resistance than current technology Lower metallization process with lower annealing temperature. Another object of one or more embodiments is to provide a so-called transparent conductive coating (transparent) in which a variety of substrates are grown RTWCG SiOM (where M is a compatible metal) to form a thin film solar cell and various other potential applications. Conductive coating, TCO) method and process. Another object of one or more embodiments is to provide a process, design, and technique for manufacturing a high efficiency, low cost non-(four) solar cell having the characteristics of RTWCG Si〇M TCQ. Or - in addition to the various embodiments - the object is to provide a planar based and photonic (optoelectronic) component application that can benefit from the n+/p Si4p+/n_si 18 201251057 41245 pif RTWCGSiOxARC/SE (/TO) method, process and technique, Or benefit from the incorporation of low to medium-high dielectric constant RTWCG Si〇x thin film dielectric layers or high transparency, suitable resistivity and relatively low reflectivity 2RTWCg SiOM TCO. The above and other objects, features, and advantages of the present invention will be apparent from the description of the appended claims. [Embodiment] The present invention discloses an RTWCG SiOx method and process for RTCCG SiOx ARC/SE/TO crystallization solar cell design and manufacturing technology for high efficiency and low cost crystalline cerium (si) solar cells, the crystallization solar cell These include, but are not limited to, single crystal Si (c_Si), polycrystalline Si (mc-Si), microcrystalline Si (pc-Si), and polycrystalline germanium solar cells and solar cell modules. The RTWCG SiOx process and process are a modified version of the previously disclosed room temperature humidification student length (RTWCG) process and process (see U.S. Patent Nos. 6,080,683 and 6,593,077 and 6,613, 697, incorporated herein by reference). The technique provides a catalytic process for uniformly growing an oxide layer over 10,000 angstroms thick at room temperature (e.g., 1 Torr. The composition can be used to prepare SiOx layers in processes and applications that have heretofore been limited by cost and temperature requirements. The RTWCG SiOx ARC/SE/TO solar cell design and technology reduces manufacturing costs by reducing the number of high temperature manufacturing steps and reducing the total number of manufacturing steps by using a low cost screen printing metallization scheme. While reducing the cost of fabrication, the described technology also improves cell conversion efficiency by using a cell design structure that includes efficiency enhancement features (201251057 41245pif such as gradient index RTWCG SiOx ARC). With the ARC formation, the technique produces excellent quality SE and RTWCGSiOx texturing. RTWCGSiOx texturing improves the ARC's already low reflectivity by further increasing light trapping. 1 shows a cross-sectional view of one or more embodiments of a high efficiency, low cost RTWCG SiOx ARC/SE/TO crystalline solar cell 100. The method and process described herein relates to a novel crystalline solar RTWCG SiOx ARC/SE/TO battery design comprising: (i) a SiOx thin film dielectric layer that is sufficiently passivated to the surface of the cell and is an excellent ARC. And (iii) a flat or textured SiOx (TO) surface. The wafer or substrate μ❶ is a semiconductor material 'usually Shi Xi. The selective emitter layer 12 is disposed on the substrate 140. The selective emitter provides low contact resistance due to heavy doping at the front contact 11 and provides for front side purification of the lighter doped regions between contacts. The element also includes an ARC coating 130 disposed on a lightly doped region (deep emitter) of the selective emitter. The rear contact 150 is located behind the battery. Optionally, the battery can include a textured oxide surface 135. The texturing feature can be applied to a battery having an initial flat front surface. It can be designed via another short temperature and wet chemical step or by using ARC and ^^,^^RxwcoSi〇x RTWCGSi0xARC/SE/T0 battery design (Figure υ has very low reflectivity, excellent quality selective emitter and Back surface passivation provided by more complex PERL technology. In one or more embodiments, ARC, SE, and τ stress characteristics are produced in a single step. 曰RTWCG Si〇x ARC/SE/T0 battery designed smooth emitter Minimizing the resistance loss of the 20 201251057 41245pif current to the grid finger (the lateral flow of the grid finge〇. This is in contrast to other high efficiency battery designs (such as PERI^ batteries) that use textured emitter surfaces. For these other battery designs, Resistive losses may be the limiting factor for lower fill factor (FF) compared to low efficiency to medium efficiency 矽 battery designs with smooth emitter surface and textured Si0x ARC RTWCG Si〇x arc/se /t〇's power, not counting battery efficiency. This is attributed to significantly reduced emitter layer resistivity loss, lower contact resistance, higher shunt resistance and lower diode In addition, the KTWCG SiOx ARC/SE/T0 battery is designed to be highly reproducible, compared to the most well-known n+/p crystalline solar cells that do not contain SE or contain poor functional se. Ensures good blue response. The strong front and back surface fields and good edge separation generated by the RTWCG SiOx ARC/SE/TO battery design further improve the spectral response and reduce electrical losses throughout the AM1.5 spectrum. Figure 2 depicts one or more embodiments of a low cost, high efficiency rtwcg SiOx ARC/SE/T0 novel solar cell fabrication technique. Depending on the concentration of the RTWCG solution, the novel rtwCG SiOx process is set to be within 20 seconds to 1 minute. The pre-metallization and post-metallization of the solar cell simultaneously produces the following enhancement features: i. On-site chemical cleaning of the cell surface (including metallized surface) to prepare for interconnection; ii. Purifying the emitter surface and when flat A gradient of AM1.5 average weighted reflectance (AWR) less than 1〇% when grown on the emitter surface 201251057 41245pif SiOx ARC ; iii. By controlled etchback of unmetallized hair The extremely effective SE produced by the extreme surface. The RTWCG SiOx ARC/SE/(TO) crystallized solar cell design and technology of the present invention reduces and simplifies the number of solar cell processing steps. In addition, it uses the current technology of solar cells and solar cells. Module features such as higher conductivity contacts and alternatives to EVA sealing materials. It also benefits certain benefits of the RTWCG process itself, such as the use of bend and tail-type diffusion profiles in the launch. Since the bending and tail-type diffusion profiles have relatively deep junction depths, the possibility of shorting the front gate lines to the junctions is eliminated. This in turn allows for the use of higher conductivity contacts and lower contact resistance screen printing of the metallization solution, thereby reducing the already low contact resistance resulting from the high net surface concentration of the under-gate diffusion profile. These benefits coupled with extremely efficient SE produce a battery structure with a strong front surface field, low ideal factor, and large blue light response gain resulting in a significant increase in battery efficiency. / RTWCG SiOX ARC/SE/ΤΟ 石 夕 太阳 solar cell manufacturing technology uses a low cost process method that simplifies or removes various process steps of other high efficiency 矽 solar cell technologies known in the art. The manufacturing techniques of n//p (P, B) Si solar cells are summarized below. Cutting damage removal and cleaning prior to diffusion. Phosphorus diffusion' having a net majority-carrier concentration diffusion profile of the bend and tail shape and preferably mechanical or other type of edge masking to prevent re-diffusion of the battery edges. 22 201251057 41245pif Standard screen printing pre- and post-contact and one-step pre-contact and post-contact annealing. One or more embodiments of the environmentally friendly RTWCG SiOx ARC/SE/(TO) single process step is a low cost wet chemical process that achieves the following operations in 1 minute or less: 1) Cleaning the bare solar cell and metal 11; can perform n+/p and p+/n or edge separation of n+/p/p+ or p+/n/n+ structures for enhanced efficiency diffusion; iii. on the surface of unmetallized cells, depending on the type of substrate The growth index AM1.5 AWR is between 5% and 9% gradient index Si0xARC; IV. On-the-spot TO characteristics can further reduce AM 1.5 AWR to 3%; v. Formation compatible with a large number of low-cost manufacturing Excellent quality se; vi. The Si0x film produced by the relatively 鬲 growth rate (> 2 〇〇 nm/min) rtWCG si〇x solution can produce τ〇 characteristics with the arc/se feature. An SiOx film produced from a slower growth rate (<5 Å nm/min) RTWCGSi〇x solution may require another 忉20 second etching step in 〇 5% 2% HF (aqueous solution). Cutting damage removal and 矽 wafer cleaning before diffusion Before the components were fabricated according to Fig. 2, the surface of the ruthenium substrate was prepared 2 〇〇. Conducting a bismuth (Si) semiconductor wafer prior to forming the emitter via diffusion = surface preparation is well known in the art and is typically wafer cleaning. The surface cleaning technology used by the factory conductor industry and also suitable for the conventional solar cell manufacturing technology and especially suitable for most surface efficiency solar cell technology is generally 23 201251057 41245pif divided into four groups: front-end of line (FEOL) ), diffusion-end of line (DEOL), metallization-end of line 'MEOL', and back-end 〇f line (BEOL).

現今使用兩種基本類型之晶圓清洗:主要用於feol 及DEOL製程之RCA型濕式清洗及用於me〇L及BEOL 製程之基於溶劑之清洗。與擴散前Si表面之表面清洗相關 的是FEOL製程。 儘管數種新穎技術(諸如氣相清洗、uv輔助清洗、 低溫氣霧劑清洗及電漿清洗)展示前景,但半導體工業對 於大多數FEOL清洗步驟仍依賴於濕式製程。熟知及最廣 泛使用之FEOL清洗製程為RCA清洗工序。1965年,W. 科恩(W· Kern )在為RCA (美國無線電公司(Ra(}i〇 Corporation 〇f America ))工作期間開發出基本RCA程序_ 由此得名。矽表面之RCA清洗使用兩個步驟,稱作標準 清洗1 (SCI)及標準清洗2 (SC2)。在SC1步驟中使 晶圓曝露於稀過氧化氫水溶液與氫氧化銨之熱混合物,以 移除有機表面膜及粒子。傳統SC1步驟由丨體積份Hah 比1體積份NH4〇h比5體積份40構成。SC2步驟設計 成使用1體積伤H2〇2比1體積份HC1比6體積份h2〇之 溶液移除離子及重金屬原子污染物。在臨擴散前使用經稀 釋之1體積伤HF比50體積份H2〇移除薄二氧化石夕層, 其中金屬污染物可能因SCI而積聚。 曰 因為目前大多數矽基板為太陽級基板,且大多數矽晶 24 201251057 41245pif 圓製造商提供厚度在180微米-250微米範圍内的預清洗石夕 晶圓,故已提出且使用傳統RCAFEOL清洗之改良形式。 其中之一為在SCI步驟及SC2步驟之前、之後及之間進行 「食人魚(Piranha)」(98% H2S04 及 30% H2〇2)及 HF 步 驟。舉例而言,艾美克(IMEC)展示標準SC2可替換為 稀0.1莫耳/公升HC1而不使用氏〇2,減少了化學品消耗 且節約了成本,同時仍可維持金屬移除特性。 改良RCA濕式清洗繼續成功的一個原因為超高純度 水(ultra high purity water,UHPW)及化學品之可用性。 除化學純度提高以外,關於RCA清洗之最顯著趨勢為使 用更稀混合物以試圖減少表面粗链化。現今極少數技術領 先的公司仍將傳統的(5:ι:ι ) nh4oh:h2o2:h2o或 HCl.H2〇2.H2〇分別用於SCI及SC2。其中諸多公司至少稀 釋10倍。 美國專利第6,613,697號描述一種FEOL Si晶圓清洗 工序,其為傳統RCA清洗之改良形式。藉由包含本領域 中一般已知的在SCI步驟及SC2步驟之前、之後及之間使 用「食人魚」及HF步驟’在p型及η型(1〇〇)及(ill ) 基板上生長高品質RTWCG SiOX膜。根據一或多個實施 例’美國專利第6,613,697號中所揭露之改良fe〇L清洗調 配物及工序可在擴散前用於薄(約2〇〇微米)或更薄石夕基 板。 用於在發射極形成(亦即擴散)前清洗矽晶圓表面之 改良RCA (MoPiranha)及改良食人魚(MoRCA)工序步 25 201251057 41245pif 1. 在 50°C-60°C 下,在 MoPiranha 溶液[2 份 98% H2S04 : 1份30% H2〇2 : 20份H20]中清洗3分鐘-5分鐘; 2. 超高純度水(UHPW)沖洗; 3. 在 0.5% HF (水溶液) 中清洗1分鐘; 4. UHPW 沖洗; 5. 在 50°C-60°C 下在 MoRCA SC-1 溶液[3 份 NH4OH : 1份H202 : 25份H20]中清洗3分鐘-5分鐘; 6. UHPW沖洗2次; 7. 在0.5% HF (水溶液)中清洗30秒; 8. UHPW 沖洗; 9. 在 50°C-60°C 下在 MoRCA SC-2 溶液[25 份 0.05 莫耳/公升HC1 : 1份H202]中清洗3分鐘-5分鐘; 10. UHPW 沖洗; 11. 在 0.5%HF (水溶液) 中清洗30秒; 12. UHPW 沖洗; 13. N2乾燥。 f折與尾型淨多數載流子濃度擴散分佈曲線 如圖2A中所說明,首先在經表面製備之矽基體2⑽ 上沈積發射極層210。 習知網版印刷n+/pSi及可能更高效的ρ+/η&太陽電 /也通吊使用簡單的均質擴散來形成發射極,金屬接觸下之 摻雜量與發射極表面之未金屬化部分上相同。為在發射極 與柵線之間產生低接觸電阻,在網版印刷接觸下需要高表 26 201251057 41245pif 濃度。然而,,劑或_劑梅 it上層」:其大大降低電池之藍先響Ϊ 較淺發_上絲賴纽㈣軸船農度之 ,層電阻一起造成串聯電:二且: “反所致的分流電阻值頻繁下降亦成問題『 據。人所知,電池製造商當前不使用本領域中已知之 f =尾f擴散分佈曲線是因為表面供體(d_0濃度過 才冊線與n++發射極表面之間的接觸電阻改良,但 I光曰應低而電池效率劣化。高度摻雜表層將必須自發 私愚表面之未金屬化部分回姓。此將形成所謂的選擇性發 =極(SE) ’ 一種已由RTWCG施arc/se/t〇結晶石夕太 陽電池設計及技術提供之增強特徵。 本文之論述將限於本揭露内容中所述之用於製造高 效率低成本結晶矽太陽電池的n+p (PB) Si電池結構。然 而,應瞭解,藉由使用本文所揭露之相同製造技術工序, 可成產生尚效率低成本p+n Si RTWCG Si〇x ARC/SE/TO 結晶矽太陽電池結構’亦可能產生n + /p/p+Si或p+/n/n+Si RTWCG SiOx ARC/SE/TO結晶矽太陽電池結構。其他結構 亦為於本領域中具有一般知識者顯而易見。 彎折與尾型磷擴散分佈曲線歸因於由磷源在矽中之 高濃度所產生的雙重擴散機制。在此類型擴散中,併入擴 散層表面之總磷遠高於相應的電活性磷。然而,在彎折下, 27 201251057 41245pif ί農與輯雜濃錢賤乎相等。_濃度取半 於雜質兀素在石夕中之固體溶解度。舉例而言,在㈣〆、 墙在石夕中之_簡度為約2xlG21個原子/立方公分。’ 為利用藉由使用RTWCG施ARc/se/ ( 供的效J增益’根據—或多個實施例,_之量可為= 低於既定擴散溫度下雜料n轉度。形成科 折與尾型擴散分佈曲線之擴散溫度可介於875t至 之間。選擇擴散時間以產生G5微米·Q65微米的接面^ 度’其中對於RTWCG SiOx ARC/SE電池結構’近似最 深度為0.55微米’且對於RTWCG &〇χ arc/se/t〇電 結構,近似最佳深度為0.60微米至〇 65微米。 ' 當擴散分佈曲線具有高濃度碟源時,發射極之薄 阻主要取決於高濃度區域之大小。隨後,彎折與尾型擴 分佈曲線可產生具林同薄層電阻之發射極,儘管其^ 深度相等。當擴散時間在87(TC-95(TC擴散溫度範圍之下 限延長時’絲為低濃度尾部相對於冑濃度域之較長且 不太陡奴分佈曲線。在較低溫度下擴散之特定薄層^阻 的發射極可產生因肖特基型分流(Seh磁ytypeshunt)減 少而填充因子較高的網版印刷太陽電池。在較低溫度下擴 散較長持續時間的發射極可產生較高吸雜效率 efficiency) , , ^ 下内部量子效率較高。然而,低溫發射極之較深尾部延伸 ^生不太陡峭的擴散分佈曲線且具有較弱前表面場。此使 向度複合發射極内之吸收增加,從而因短波長下之收集效 28 201251057 41245pif 率降低而發生電流損耗。 圖3中提供對於RTWCGSi〇XARC/SE/T〇單晶矽太 陽電池設計產生的彎折與尾型淨多數供體遭度深度^佈曲 線的-實例。所述擴散分佈曲線使用擴散電阻法使用圖4 所不之溶爐設置或任何其他習知方法擴散/摻雜技術獲 得。在600微米厚(觸)抑柴氏(cz)基板上進行實 驗性破擴散。使用敞口管(。卿_),擴散溫度為_。卜 擴散時間為24分鐘,繼而進行7分鐘吹洗及1〇分鐘驅動。 设置點(setpoint)為8〇(rc ’以8t/分鐘勻速上升,且以 3 C/分鐘較慢地料下降。如圖3中 約祕,立方公分,且彎折在發射極表面下 :=。剛速下降緩慢’但尾部仍㈣,從而確 保形成相對強的前表面場。 用於子效率轉,RTWCGSic)XARC/SE製程在 +/八士 、圖3中之彎折與尾型擴散分佈曲線的小面積 妙I,也時使電池藍光響應相較於裸電池改良約 ^ ’ RTWCG SK)X ARC/SE製程自發射極之未金 屬化表面⑽約0.2微米(由線3⑽所示),以產生最佳 ^米°此意謂這些小轉電狀擴散分佈 德,如W,在自主動區發射極表面移除約G·2微米 因此^▲可見’剩餘表面濃度仍高於1G2G/立方公分, 因此對於向效率電池而言過高。 (>2 0Γ太3 J Γ呈現之分佈曲線較適用於使用具有較大 (不未/分鐘)Sl0x生長速率之生長溶液的rtwcg 29 201251057 4I245pifThere are two basic types of wafer cleaning today: RCA type wet cleaning for the Feol and DEOL processes and solvent based cleaning for the MEL and BEOL processes. Associated with the surface cleaning of the Si surface prior to diffusion is the FEOL process. While several novel technologies such as gas phase cleaning, uv assisted cleaning, low temperature aerosol cleaning, and plasma cleaning are showing promise, the semiconductor industry still relies on wet processes for most FEOL cleaning steps. The well-known and most widely used FEOL cleaning process is the RCA cleaning process. In 1965, W. Kern developed a basic RCA program during his work for RCA (Ra(}i〇 Corporation 〇f America) _ hence the name. RCA cleaning on the surface uses two The steps, called Standard Cleaning 1 (SCI) and Standard Cleaning 2 (SC2), expose the wafer to a hot mixture of dilute aqueous hydrogen peroxide solution and ammonium hydroxide in the SC1 step to remove organic surface films and particles. The conventional SC1 step consists of a volume of Hah to 1 part by volume of NH4〇h to 5 parts by volume 40. The SC2 step is designed to remove ions using a volume of H2〇2 to 1 part by volume of HC1 to 6 parts by volume of h2〇. Heavy metal atomic contaminants. Use a diluted 1 volume HF to remove a thin layer of SiO2 before diffusion. Metallic contaminants may accumulate due to SCI. 曰Because most of the ruthenium substrates are currently Solar-grade substrates, and most of the twins 2012 20125757 41245pif circle manufacturers offer pre-cleaned Shihua wafers with thicknesses ranging from 180 μm to 250 μm, and have been proposed and improved using conventional RCAFEOL cleaning. SCI step and SC2 step Before, after and between the "Piranha" (98% H2S04 and 30% H2〇2) and HF steps. For example, IMEC shows that the standard SC2 can be replaced with 0.1 mol/min. The liter of HC1 without the use of 〇2 reduces chemical consumption and saves costs while still maintaining metal removal characteristics. One of the reasons for the continued success of improved RCA wet cleaning is ultra high purity water (UHPW). And the availability of chemicals. In addition to the increased chemical purity, the most significant trend for RCA cleaning is the use of leaner mixtures in an attempt to reduce surface thickening. Today, a handful of technology-leading companies still use traditional (5:ι:ι Nh4oh:h2o2:h2o or HCl.H2〇2.H2〇 is used for SCI and SC2, respectively, many of which are diluted at least 10 times. US Patent No. 6,613,697 describes a FEOL Si wafer cleaning process, which is a conventional RCA cleaning process. Modified form. By using "Pigaver" and HF step 'on p-type and n-type (1) and (ill) substrates before, after and between SCI step and SC2 step, generally known in the art. Growing high quality R TWCG SiOX film. The improved FE〇L cleaning formulation and process disclosed in one or more embodiments of the 'US Patent No. 6,613,697 can be used for thin (about 2 micron) or thinner substrates before diffusion. Improved RCA (MoPiranha) and modified piranhas (MoRCA) for cleaning the surface of the wafer before the emitter is formed (ie, diffused). Step 25 201251057 41245pif 1. At 50°C-60°C in MoPiranha Wash the solution [2 parts 98% H2S04: 1 part 30% H2〇2: 20 parts H20] for 3 minutes - 5 minutes; 2. Ultra-high purity water (UHPW) rinse; 3. Wash in 0.5% HF (aqueous solution) 1 minute; 4. UHPW rinse; 5. Wash in MoRCA SC-1 solution [3 parts NH4OH: 1 part H202: 25 parts H20] for 3 minutes - 5 minutes at 50 °C - 60 °C; 6. UHPW rinse 2 times; 7. Wash in 0.5% HF (aqueous solution) for 30 seconds; 8. UHPW rinse; 9. In MoRCA SC-2 solution at 50 °C-60 °C [25 parts 0.05 m / liter HC1 : 1 Wash in portions of H202] for 3 minutes to 5 minutes; 10. UHPW rinse; 11. Wash in 0.5% HF (aqueous solution) for 30 seconds; 12. UHPW rinse; 13. N2 dry. F-Fold and Tail-Type Net Most-Carrier Concentration Diffusion Profile As illustrated in Figure 2A, an emitter layer 210 is first deposited on a surface-prepared tantalum matrix 2 (10). Conventional screen printing n+/pSi and possibly more efficient ρ+/η& solar/convene suspension using simple homogeneous diffusion to form the emitter, the doping amount under metal contact and the unmetallized portion of the emitter surface Same on the same. In order to produce a low contact resistance between the emitter and the gate line, a high concentration of 26 201251057 41245 pif is required under screen printing contact. However, the agent or _ agent Mei it upper layer:: it greatly reduces the blue of the battery first Ϊ 浅 浅 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The frequent drop in the shunt resistance value is also a problem. As far as is known, battery manufacturers do not currently use the f = tail f diffusion profile known in the art because of surface donors (d_0 concentration over the line and n++ emitter) The contact resistance between the surfaces is improved, but the I diaphragm should be low and the battery efficiency is degraded. The highly doped surface layer must be spontaneously returned to the unmetallized portion of the surface. This will form the so-called selective hair = (SE) An enhancement feature that has been provided by the RTWCG application of arc/se/t〇 crystal solar cell design and technology. The discussion herein will be limited to the fabrication of high efficiency, low cost crystalline germanium solar cells as described in this disclosure. +p (PB) Si cell structure. However, it should be understood that by using the same fabrication techniques disclosed herein, a low cost p+n Si RTWCG Si〇x ARC/SE/TO crystallization solar cell can be produced. Structure ' may also produce n + /p/p+Si p+/n/n+Si RTWCG SiOx ARC/SE/TO crystalline 矽 solar cell structure. Other structures are also apparent to those of ordinary skill in the art. Bending and tail-type phosphorus diffusion profiles are attributed to the source of phosphorus The double diffusion mechanism produced by the high concentration in the sputum. In this type of diffusion, the total phosphorus incorporated into the surface of the diffusion layer is much higher than the corresponding electroactive phosphorus. However, under the bending, 27 201251057 41245pif ί The thick money is almost equal. The concentration is half the impurity solubility of the impurity alizarin in Shi Xi. For example, in (4) 〆, the wall in the stone _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ By using RTWCG to apply ARc/se/ (supply efficiency J gain' according to - or a plurality of embodiments, the amount of _ can be = lower than the n-degree of the diffusion at a given diffusion temperature. Forming the fold and tail type diffusion The diffusion temperature of the distribution curve can be between 875 ft and about. The diffusion time is chosen to produce a junction of G5 micron and Q65 micrometers, where the approximate depth is approximately 0.55 micrometers for the RTWCG SiOx ARC/SE cell structure and for RTWCG &;〇χ arc/se/t〇 electrical structure, approximately the best depth It is 0.60 micron to 〇65 micron. 'When the diffusion profile has a high concentration disc source, the thin resistance of the emitter mainly depends on the size of the high concentration region. Subsequently, the bending and tail-type expansion curve can produce the same thin The emitter of the layer resistance, although its depth is equal. When the diffusion time is 87 (TC-95 (the lower limit of the TC diffusion temperature range is extended, the filament is a longer concentration of the low concentration tail relative to the erbium concentration domain and is less steeply distributed) Curves. The emitter of a particular thin layer that diffuses at lower temperatures can produce screen-printed solar cells with a higher fill factor due to a reduced Schematic shunt (Seh magnetic ytypeshunt). Diffusion of a longer duration emitter at a lower temperature produces a higher gettering efficiency, and the internal quantum efficiency is higher. However, the deeper tail of the low temperature emitter extends a less steep diffusion profile and has a weaker front surface field. This increases the absorption in the complex composite emitter, resulting in current loss due to a decrease in the rate of collection at a short wavelength. Figure 3 provides an example of the bending and tail-type net majority of the donor's depth of curvature for the RTWCGSi〇XARC/SE/T〇 single crystal 矽 solar cell design. The diffusion profile is obtained using a diffusion resistance method using a furnace setup as shown in Figure 4 or any other conventional diffusion/doping technique. Experimental devitrification was performed on a 600 micron thick (touch) sin (cz) substrate. Use an open tube (.clear_) with a diffusion temperature of _. The diffusion time was 24 minutes, followed by a 7 minute purge and a 1 minute drive. Setpoint is 8〇 (rc ' is rising at a constant rate of 8t/min, and is slower down at 3 C/min. As shown in Figure 3, it is about the secret, cubic centimeter, and bent under the emitter surface: = The rapid rate drops slowly 'but the tail is still (4), thus ensuring the formation of a relatively strong front surface field. For the sub-efficiency transfer, RTWCGSic) XARC / SE process in + / Ba Shi, Figure 3 bending and tail type diffusion distribution The small area of the curve, I also makes the battery blue response better than the bare cell improvement of the 'RTWCG SK) X ARC/SE process from the unmetallized surface of the emitter (10) about 0.2 microns (shown by line 3 (10)), In order to produce the best ^ meters ° This means that these small turn-type diffusion distributions, such as W, remove about G · 2 microns from the emitter surface of the active region, so ^ ▲ visible 'remaining surface concentration is still higher than 1G2G / cubic The centimeters are therefore too high for an efficient battery. (>2 0Γ太3 J Γ The distribution curve is more suitable for the use of rtwcg 29 with a larger (not / min) Sl0x growth rate. 201251057 4I245pif

SiOx ARC/SE/TO製程。為產生初始近似最佳Si0x厚度22〇 奈米-240奈米,所述製程自發射極之未金屬化表面回蝕 0.25微米至〇.3微米(由線310所示)。如圖3中可見,主 動區中之剩餘表面濃度仍略高於最佳的1〇19/立方公分。對 於上述擴散分佈曲線,儘管Si〇x生長後電池之藍光響應 顯著改良,但自發射極主動區回蝕約0.3微米後之高表面 濃度在經回姓主動區上產生僅為5〇歐/平方單位歐/平 方單位的薄層電阻。此薄層電阻對於高效率電池而言過低。 如以下選擇性發射極部分中所述,rTwcg SiOx AKC/SE可具有〇·5 «至〇·55微米之擴散態接面深度 (junction depth,xj) ’且彎折可在距表面約〇丨微米處,以 使Isc、Voc及FF最大,且因此使電池效率最大。初始表 面濃度可為約6xl020/立方公分,且最終表面濃度(自未金 屬化表面回蝕約0.2微米後)應為8χ1〇18/立方公分至1〇19/ 立方公分。回蝕後,所得未金屬化發射極區域之擴散分佈 曲線可具有Μ斜率’其產生強面場。對於高效率電 池,在塗佈前,發射極之薄層電阻可為2〇歐/平方單位_25 歐/平方單位,且在RTWCG Si0x ARC/SE形成後為則歐 /平方單位-120歐/平方單位。 邊緣分離 結晶石夕太陽電池加工中所用之晶圓通常換雜棚,但可 使用如本領域中所熟知之任何?型基板,且^型接面一般 擴政至p型基板中。標準n型摻雜通常使用市售麟源進行。 可使用如本領域中所熟知之其他型摻雜劑。與來源 30 201251057 41245pif 無關,磷不僅擴散至所要 及後表面上。此在— 表面中’而且擴散於邊緣 徑。出於此_ 物㈣之間產生分流路 刻及雷射切割。作為伊準邊緣分離技術,包含電漿韻 晶圓邊緣之路徑通n ’邊緣接面分離或移除圍繞 樣堆疊(- 曝露之邊緣。 L之^置於電雜刻室内以移除 金屬mi試移除後接面。A多數㈣商在後側使用紹 =件;中和其作用,由此取得二 == =,/#_叙_度區_融結合麟在銘/石夕中 良的溶解性通常造成對n型層之破壞無效。此產 生弱後表面場,最終產生低電池效率。 除非移除圍繞晶圓邊緣之寄生發射極擴散’否則大多 數工業電池具有可能低至6〇%之極低填充因子。本領域中 已知多種不同方法在矽太陽電池上執行邊緣分離,包含(但 不限於)電H圓筒姓刻、習知雷射開槽、乾式侧、線内 濕式蝕刻(inline wet etching)及施配蝕刻膏。水射流導引 雷射(water jet-guided laser )為一種新興.的新穎雷射製程, 其可能克服習知雷射之問題。 直至數年前,電漿圓筒姓刻為太陽電池之邊緣分離的 標準製程,但用適當線内製程替換所述製程受到極大關 注。分批技術因堆疊及去堆疊大量晶圓而在製程流 31 201251057 41245pif (process flow)中產生強破壞。此問題使得—些 製造商選擇擔破壞性製程步驟,鮮其所㈣ ^ 電池效率齡降低。最成功的购邊緣分離抛之 射刻劃,其據稱適用於線内加卫,且無需接觸晶_。‘·,、雷 -般認為中斷與電渡圓筒钱刻相關之製程流極 利。雷射及蝕刻製程各具有特定優點及本領域中已知 些主要缺陷。因此,習知f射邊緣分離之#代方法必須 定是否可進一步提高邊緣分離步驟之商業效能。 、° 藉由增強後表面場獲得較佳紅光響應。增強後表面場 之已知方法為使用n+pp+_Si擴散電池結構。旋塗擴散^ 後,藉由管錢散綺紐’射晶_排列成使得具有相 同推雜劑類型之晶圓表面彼此面對。儘管此技術已^登明可 產生良好效率矽太陽電池,但其確實需要其他旋塗及去除 有機物雙重步驟。這些額外步驟提高製造成本,且降低製 程流,從而使其不適用於大量太陽電池製造。 相較於使用網版印刷鋁後表面場(aluminum back surface field,A1-BSF)之傳統n+p Si電池結構,進行硼擴 散之n+pp+Si電池結構產生更高效電池。其藉由改良矽太 陽電池之後表面鈍化,藉由產生減少後表面複合且提高近 紅光及紅光收集效率之較強後表面場進行。用p+nn+Si電 池結構替換Π+ΡΡ+Si電池結構可延長有效少數載流子主體 哥命,從而產生較高開路電壓。 在一或多個實施例中,使用線内製程無需邊緣分離製 程步驟以及電池堆疊及去堆疊。藉由在擴散步驟期間遮蔽 32 201251057 41245pif 電池邊緣,可防止電池邊緣重擴散。圖4展示預期傳送帶 型擴散設備400。矽晶圓410置於具有低熱導率之半導體 級陶瓷板415、420之間’所述半導體級陶瓷板的擴張及收 縮常數類似於矽基板之擴張及收縮常數。陶瓷板安裝於下 擴散室430側壁,且由上部不鏽鋼構件440緊固在適當位 置。所述設備中所用之对熱不鏽鋼應為半導體級不鏽鋼, 且雜質外擴散少。 潔淨的矽基板一般疏水,造成於本領域中熟知之問 題。可藉由在室溫或接近室溫下在潔淨矽基板上喷灑水性 擴散源(諸如稀磷酸及稀硼酸)產生非均一擴散源層。在 一或多個實施例中’在175°C至20(TC之溫度下,在高於大 氣壓力20托-50托之微正壓下喷灑丨秒_5秒可防止上述問 題。 ^線内溫度勻速上升及勻速下降可在氮氣環境中進 行。如上所述,在5〇°C/分鐘至i〇〇°c/分鐘之快速溫度勻 速亡升開始時塗覆擴散源。獲得均-擴散源層,然而,在 進订擴散且移除擴散玻璃後,觀察到汙染,尤其在摻雜删 之表面上。汙染問題藉由在達到擴散溫度前^分鐘至2分 鐘添加^量氧氣流至連續氮氣流中來克服。隨後,在不應 ==〇C/分鐘之溫度勻速下降的前i分鐘_2分鐘後中止 氧氣流。 绫,之機械鮮崎擴散源使其*能覆蓋電池^ 、、 亦阻止來自相對表面之任何交又垆喑。鋅由佶Η 此簡單的線内齡舱散又録精由使月 擴散技*(其巾擴散源在快速溫度勻速上夫 33 201251057 41245pif (5(M〇〇°C/分鐘)開始時沈積),可在矽晶圓之兩個相對面 上同時獲得優良品質n+擴散層及p+擴散層。此外,根據 本發明’儘管存在機械遮罩,但仍可能發生的電池邊緣的 任何不適宜交叉摻雜可在RTWCG SiOX ARC/SE ( TO )製 程期間飯刻掉。因為此方法無需邊緣分離製程步驟,故其 相應地降低加工成本’同時提高RTWCG si〇x ARC/SE/ (TO )電池效率。 藉由使用上述擴散程序,RTWCG n+/p/p+ Si或 p+/n/n+ Si結晶矽太陽電池效率因如下原因而提高:形成 強後表面場、後表面上複合中心之密度較小以及前接觸及 後接觸電阻顯著降低。在對網版印刷前金屬化及後金屬化 進行一些改良下,需要低得多的退火溫度。降低之退火溫 度因降低加工步驟之能量消耗而降低製造成本。此外,優 良品質RTWCG SE特徵之分流電阻(shunt resistance,Rsh ) 將提高,使得前柵線與接面不太可能短路。 液體擴散源之優點為本領域中已知。危險的化學摻雜 劑(諸如氧氣化磷(n+摻雜)、膦(n+摻雜)、三氯化硼(护 摻雜)、三溴化硼(p+摻雜)及二硼烷(p+摻雜))可替換 為安全的稀磷酸(n+摻雜)及硼酸(p+摻雜)。 、 建議使用液體擴散源作為產生線内同時別 p+/n/n+ Si擴散之擴散劑實例。亦建議物理遮蔽之實:^ 4)。如本領域中具有通常知識之卜者所瞭解,㈣ 源可用任何其他類型之擴散源(諸如固體、氣體、^ 網版印刷擴散源、旋塗擴散源)來替換。類似地,=使用 34 201251057 41245pif 任何其他邊緣遮蔽方案,繼而使用RTWCGSi〇xARc/sE/ (TO)製程之任何衍生製程自η+/ρ &、& 或p+/n/n+ Si太陽電池結構之邊緣移除非所需擴散雜質而 不背離本發明之教示,且仍由本發明涵蓋。 網版印刷前接觸及後接觸及一步前接觸及後接觸退 火 隨後如圖2B所示,將金屬化後接觸23〇及前柵線22〇 塗覆於元件。 光譜實驗室(Spectrolab)在20世紀70年代末藉由網 版印刷金屬化引人地面梦太陽電池接觸。儘管此製^的確 已經受住時_測試,但由此類型金屬化產生之接觸存在 嚴重侷限性。為使鋪具有足夠__電阻,發射極表 面必需具有高雜濃度。由於前織於銀之 =大⑽微米),故縱橫比相對不良。其具有相對較低 ^導電性’且最後在通常覆蓋電池之整個後表面的銘金屬 =火,度下沿㈤)平面產生尖峰。儘管藉由網版印刷 金屬化獲付之細具有缺陷,但其具有高度成本競爭性, 且對於高產量製造極具可調整性。迄今為止,尚無其他可 行技術可在成本或可調整性方面競爭。 八 網版印刷金屬化中所用之膏由以下物質構成:小金屬 逾、低炫點玻璃複合物(玻璃料)以及有機黏合劑及溶 知n+/p料池結構,f通#含有銀(^)粉 末。為降低接觸電阻,可添加提高前接觸 、 之摻雜濃度的含磷化合物至膏中。對於區域 耵於後表面膏,通常使 35 201251057 41245pif 用A1來摻雜下方p型區域。在網版印刷各側後,立即藉由 在350 C-400C之溫度下加熱以乾燥膏。隨後通常將接觸 在帶式爐中在高達900°c下焙燒,所述溫度高於Ag_Si共 熔溫度835°C。 八 本領域中熟知基於Ag之前栅對n+-Si發射極的接觸 電阻可能對焙燒條件高度敏感。用於後接觸網版印刷之膏 主要由銀以及另外某一小百分比之鋁構成。後接觸焙燒之 條件亦對確保後接面中和為高度關鍵。當攙雜A1膏組分以 形成『後表面場』時,溫度梯度區域熔融可能為一重要問 題。通常使用紅外燈而非標準熔爐加熱元件進行焙燒。 正在開發具有高產量潛力以及改良金屬覆蓋率、指電 阻(fingerresistance)、接觸電阻及材料成本的新穎金屬化 技術。展示潛在效益之前接觸及後接觸金屬化製程技術 為:奈米油墨、金屬氣霧劑喷射、金屬粉末雷射燒結、接 觸異質接面及電鍍。最後,電漿氣相沈積(plasma vap〇r deposited,PVD)之TiN、TiW及TaN產生銅之障壁層, 且為銀及鋁金屬化的潛在替代方法。 在前柵線下使用較厚且較重掺雜之區域為金屬接觸 焙燒步驟提供較大寬容度。其使得可使用穿透較深且較具 導電性之網版印刷金屬調配物。 回银及生長SiOx層 前網版印刷金屬化及後網版印刷金屬化後,如圖2C 中所說明,無需其他表面製備,RTWCG溶液在電池之未 金屬化表面上生長RTWCGSiOx薄膜250。所述方法可用 36 201251057 41245pif 於製備執行多種功能之SiOx層。 在一或多個實施例中,使用控制之回蝕摻雜矽表面層 及生長SiOx層來形成SiOx層。因為耗用石夕,故石夕晶圓中 存在控制之「回蝕」。同時,表面反應在表面上產生Si〇x。 總SiOx生長為生長溶液系統中兩個競爭反應之平衡。如 本文所用之SiOx厚度指層之最終SiOx厚度。Si〇x生長速 率指在1個時間單位(通常為1分鐘)内產生之總 厚度。生長既定SiOx厚度通常需耗用較大厚度之初始矽 基板,因此生長之總SiOx層小於Si回钮。舉例而言,在 形成100奈米SiOx層時,會耗用15〇奈米Si。 在一或多個實施例中,所述層可快速 '〜- I/、% 地 生長,從而形成抗反射塗層。由於層之組分梯度,所述層 提供較好的抗反射。相較於在紋理化多結晶晶圓上之 SiNxARC,拋光晶圓上之RTWC(J ARC可具有相同或較低 反ΐί。在一或多個實施例令,層之折射率呈梯度變化,_ 使得取外表面之折射率接近於叫(其折射率為約⑺, 且朝向層之内部折射率提高,且在si㈤基板界面處接近 石夕之折射率(其為約3.4)。 在-或多個實施例中,Si0x生長製程產生降低石夕表面 ^反應性的純化層。在其他實施例中,SiOx製程對石夕層吸 J (殊〇且減少雜質。詳言之,紙層中之摻雜劑雜 貝可低於起㈣層巾之掺輔含量之戶 與所用化學品之純度直接相關。當使用高度 氧化物極料且提供高轉之舰及予。°寺 37 201251057 41245pif 在一或多個實施例中,使用回蝕精確地使發射極層變 薄’例如僅回蝕發射極層之一部分。舉例而言,回蝕及s丨〇 χ 生長可移除擴散製程後剩餘之_(p)無感層(dead 1叮打)。 所述溶液僅與矽反應,因此經焙燒之前栅可用作遮罩,且 所述製程產生自對準之選擇性發射極。 在其他實施例中,SiOx層生長達足夠厚度,以移除全 部發射極。此製程產生鈍化表面。 在其他實施例中,RTWCG製程能夠藉由蝕刻Si〇x 層之表面產生紋理化氧化物(το)層,以使Si〇xARC紋 理化。S i〇x層紋理化而非矽紋理化具有某些優點。T〇 sί〇χ 層由於矽表面破損較小且矽表面積減小而展示降低之前表 面複合速度及較咼程度之前表面鈍化。在生長步驟期間, 在尚生長速率條件(例如> 2〇〇奈米/分鐘)下可形成紋理 化氧化物表面。紋理化製程亦可在生長si〇x後使用另一 秒)弱酸濕式製程步驟進行。用於紋理化之Si〇x 厚度為約0.2微米至0.22微米(而非標準si〇x ARC/SE之 〇·13微米),其可能需要略長的生長時間(長約3〇秒_6〇 秒)且使回蝕深度自約0.2微米提高至約〇3微米(使得 淨表面ρ濃度較低,接近「藍光電池(bluecell)」)。 在一或多個實施例中’在摻雜半導體表面上生長si0x 層。在一或多個實施例中’在n+或n++ Si表面上生長SiOx 層。在一或多個實施例中,在p+4p++ &層上生長si〇x 層。 在一或多個實施例中’將基板浸入RTWCG SiOx液體 38 201251057 41245pif 溶液中。浸入技術不僅在發射極之未金屬化部分上生長 SiOx膜,而且在電池之邊緣及未金屬化後表面上生長Si〇x 膜。此方法用於進行為產生RTWCG SiOx ARC/SE/ (; TO) 而進行的大部分實驗研究。 已成功地使用其他RTWCG技術將RTWCG溶液傳遞 於基板上。喷塗技術使用特別設計之霧化器在矽電池表面 上傳遞薄RTWCG溶液膜。在漂浮(f]oating )技術中,將 太陽電池之前侧置於RTWCG溶液之表面;液體溶液之表 面張力使電池不會下沉。施配技術自上方沿平行於柵線之 方向展開RTWCG溶液。由於溶液之水性組成,彎液面形 成,其足夠強從而可防止溶液流出電池。使用機械元件技 術及諸如刷子或滾筒之元件傳遞RTWCG溶液。某些機械 元件需要溶液之黏度經由添加纖維素或任何其他矽非污染 性凝膠而增加。 RTWCG SiOx形成後,用水沖洗電池,隨後由氮氣或 乾燥空氣吹乾。儘管水之純度對於其他電池加工步驟很重 要’但其對於RTWCG膜沖洗並不特別重要。在實驗上, 用超高純度水(約18兆歐-公分)沖洗之RTWCG電池與 用簡單較低純度逆滲透水沖洗之RTWCG電池的效能無顯 著差異。 在一或多個實施例中,使用改良的RTWCG溶液生長 SiOx薄膜。可去除某些組分(諸如矽源)以形成簡化溶液, 其可用於製造高效率低成本石夕太陽電池。這些RTWCG SiOx溶液具有高生長速率’且產生用作具有極低AM 1 5 39 201251057 41245pif 平均加權反射之抗反射塗層(ARC)的優良品質SiOx膜。 伴隨ARC形成’新穎RTWCG SiOx溶液產生多個已知提 高光伏電池之效率的其他重要特徵。由此由新穎RTWCG SiOx溶液簡化多個昂貴製造步驟,所述溶液在單一製程步 驟中同時產生所有增強特徵。 本文所述之RTWCG SiOx方法及製程為室溫濕化學 製程,其藉由催化作用在矽基板上快速生長基於氧化石夕 (SiOx)之薄介電膜。用於太陽電池應用之RTWCG Si〇x 溶液的生長速率為約500奈米/分鐘。生長溶液可調配成在 約18秒内生長約150奈米之ARC膜厚度。為整合於現有 製造時間表中,SiOx生長時間可調節為25秒至1分鐘, 對於10'\¥00 3丨0乂八11(:細電池設計,其可轉化為14〇奈 米/分鐘至150奈米/分鐘之生長速率。對於RTWCG siC)x ARC/SE/TO電池設計,生長速率為220奈米/分鐘至24〇 奈米/分鐘。生長速率值可用實驗藉由量測生長適宜厚度之 氧化物所要之時間確定。對於超快Si〇x生長速率溶=, 在前一分鐘内,重摻雜n+矽基板或p+矽基板上生長之 SiOx膜的厚度可高達500奈米,而對於較長生長時間,經 正規化SiOx生長速率穩定降低。 , 隨著SiOx膜較深生長,繼續反應所需之氧必須穿過 增加之SiOx厚度向Si0x/Si界面遷移。隨著反應進/行,生 長速率愈變愈小。因此,隨si〇x生長時間變化' Rttwcg SiOx膜之生長速率並不恆定。此實際上在膜之極佳均一性 以及對SiOx厚度之較大控制方面具有優勢。 201251057 41245pif 若以潔淨矽基板起始,則Si〇x膜極均一。圖5展示 在8吋半導體級c_Si基板上生長之4〇〇奈米厚rtwcg SiOx膜的SEM ®,其具有鏡樣表面。如由橢圓偏光儀所 測疋,上述RTWCG SiOx膜之Si〇x膜厚度偏差為約 〇·5%。AFM揭露之平均表面粗糙度(average耐似 roughness,ASR)低至〇1奈米。對於潔淨太陽級平坦矽 基板’膜厚度偏差小於1〇/〇。 舉例而S,使用橢圓偏光儀在獨立測試設施上對六個 太陽級5忖Cz Si基板中之每-者執行厚度量測。基板上 之SiOx厚度在68奈米-110奈米範圍内。在各基板上之5 點厚度量測展示最佳Si〇x膜中低至〇75%之離均差至 1.03%之高偏差。 如展示角錐覆蓋之n+c_Si表面上生長之Si〇x膜的諾 馬斯基(Nomarski)顯微圖(χΐ,100)的圖6(a)中所示, 潔淨矽基板上生長之Si0x膜具有良好一致性。藉由諾馬 斯基顯微術採集之圖展示角錐結構之面之間無對比度差 異。由此可推斷,RTWCGSi〇X膜生長在於 結晶位向上無任何顯著優先生長的情況下進行。實際上, 即使在多孔矽基板上存在的各種結晶位向上生長時(圖6 (b)),SiOx膜亦相當均一且形狀一致。RTWCG si〇x膜之 良好一致性使其可理想地用於紋理化太陽電池表面。 兀件等級(device-quality)之RTWCG SiOx膜藉由使SiOx ARC/SE/TO process. To produce an initial approximate optimum Si0x thickness of 22 奈 nano-240 nm, the process etched back from the unmetallized surface of the emitter by 0.25 microns to 微米.3 microns (shown by line 310). As can be seen in Figure 3, the remaining surface concentration in the active zone is still slightly above the optimum of 1 〇 19 / cubic centimeter. For the above diffusion profile, although the blue light response of the cell after Si〇x growth is significantly improved, the high surface concentration after etchback from the emitter active region of about 0.3 μm yields only 5 〇/square on the active region of the return-to-back family. Sheet resistance in ohms per square unit. This sheet resistance is too low for high efficiency batteries. As described in the Selective Emitter section below, rTwcg SiOx AKC/SE may have a diffusion depth (junction depth, xj) of «·5 «to 55·55 μm and the bend may be approximately from the surface. Micron to maximize Isc, Voc, and FF, and thus maximize battery efficiency. The initial surface concentration can be about 6 x 1020 /cm ^ 3 and the final surface concentration (after etchback from the undoped surface by about 0.2 microns) should be from 8 χ 1 〇 18 / cubic centimeter to 1 〇 19 / cubic centimeter. After etch back, the resulting diffusion profile of the unmetallized emitter region can have a Μ slope' which produces a strong field. For high-efficiency batteries, the sheet resistance of the emitter can be 2 ohms/square unit _25 ohms/square unit before coating, and after the formation of RTWCG Si0x ARC/SE is ohms/square unit - 120 ohms/ Square unit. Edge Separation Wafers used in the processing of crystal solar cells are usually shed, but can be used as any as is well known in the art? The type of substrate, and the junction is generally expanded into the p-type substrate. Standard n-type doping is typically carried out using commercially available sources. Other types of dopants as are well known in the art can be used. Irrespective of the source 30 201251057 41245pif, phosphorus diffuses not only to the desired and back surfaces. This is in the surface - and spreads over the edge diameter. Due to this, there is a shunting and laser cutting between the objects (4). As the edge-edge separation technology, the path of the edge of the wafer containing the plasma is separated by n' edge junction or removed from the sample stack (- the edge of the exposure. L is placed in the electric cavity to remove the metal mi test After the removal of the joint. A majority (four) quotient on the back side using the shang = piece; neutralize its role, thereby obtaining two == =, /#_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Solubility usually causes ineffective damage to the n-type layer. This produces a weak back surface field, which ultimately results in low cell efficiency. Unless the parasitic emitter diffusion around the edge of the wafer is removed, most industrial cells are likely to be as low as 6〇%. Very low fill factor. A number of different methods are known in the art for performing edge separation on a tantalum solar cell, including but not limited to, electric H-cylinder surname, conventional laser slotting, dry side, in-line wet Inline wet etching and dispensing of etching pastes. Water jet-guided lasers are an emerging new laser process that can overcome the problems of conventional lasers. Until a few years ago, The name of the plasma cylinder is engraved as the standard for the separation of the edge of the solar cell. Process, but replacing the process with an appropriate in-line process is of great concern. Batch technology creates strong damage in process flow 31 201251057 41245pif (process flow) due to stacking and de-stacking a large number of wafers. This problem makes some manufacturers Choosing a destructive process step, freshly (4) ^ Battery efficiency is reduced. The most successful purchase of edge separation and throwing, it is said to be suitable for in-line reinforcement, and does not need to contact crystal _. '·,, Lei It is generally believed that the process flow associated with the interruption of the electric cylinder is extremely advantageous. The laser and etching processes each have certain advantages and major defects known in the art. Therefore, the conventional method of f-edge separation must be Whether the commercial efficiency of the edge separation step can be further improved. ° A better red light response is obtained by enhancing the back surface field. A known method of enhancing the back surface field is to use an n+pp+_Si diffusion cell structure. After that, the wafers are arranged so that the wafer surfaces with the same dopant type face each other. Although this technology has been proven to produce good efficiency, solar cells, There are two additional steps required for spin coating and organic removal. These additional steps increase manufacturing costs and reduce process flow, making it unsuitable for use in large solar cell manufacturing. Compared to the use of screen printing aluminum surface field (aluminum back surface field) , A1-BSF) traditional n+p Si cell structure, boron diffusion n + pp + Si battery structure produces a more efficient battery. By improving the surface passivation after the solar cell, by reducing the back surface recombination and improve The near-red light and red light collection efficiency is stronger after the surface field is performed. Replacing the Π+ΡΡ+Si battery structure with the p+nn+Si battery structure can prolong the effective minority carrier main body life, thereby generating a higher open circuit voltage. In one or more embodiments, the use of an in-line process eliminates the need for edge separation process steps as well as battery stacking and de-stacking. Battery edge re-diffusion can be prevented by masking 32 201251057 41245pif battery edges during the diffusion step. Figure 4 shows an intended conveyor type diffusion device 400. The germanium wafer 410 is placed between the semiconductor grade ceramic plates 415, 420 having a low thermal conductivity. The expansion and contraction constant of the semiconductor grade ceramic plate is similar to the expansion and contraction constant of the germanium substrate. The ceramic plate is mounted to the side wall of the lower diffusion chamber 430 and is secured in place by the upper stainless steel member 440. The pair of hot stainless steels used in the apparatus should be semiconductor grade stainless steel with less out-diffusion of impurities. Clean tantalum substrates are generally hydrophobic, causing problems well known in the art. A non-uniform diffusion source layer can be produced by spraying an aqueous diffusion source such as dilute phosphoric acid and dilute boric acid on a clean tantalum substrate at or near room temperature. In one or more embodiments, the above problem can be prevented by spraying the leap seconds for _5 seconds at a temperature of 175 ° C to 20 (at a temperature of TC of 20 Torr to 50 Torr above atmospheric pressure. The uniform increase in the internal temperature and the uniform rate of decrease can be carried out in a nitrogen atmosphere. As described above, the diffusion source is applied at the beginning of the rapid temperature of 5 ° ° C / min to i ° ° c / min. The source layer, however, after the diffusion of the diffusion and removal of the diffused glass, contamination is observed, especially on the doped surface. The contamination problem is added to the continuous flow by increasing the oxygen flow from 2 minutes to 2 minutes before reaching the diffusion temperature. The nitrogen flow is overcome. Then, the oxygen flow is stopped after the first i minutes_2 minutes after the temperature of the temperature should not fall ==〇C/min. 绫, the mechanical smear diffusion source enables it to cover the battery ^, It also prevents any crossover from the opposite surface. Zinc by 佶Η This simple line of inner-age compartment is also recorded by the moon diffusion technique* (its towel diffusion source is at a constant temperature uniform speed 33 201251057 41245pif (5( M〇〇°C/min) deposition at the beginning), which can be on the opposite sides of the germanium wafer A good quality n+ diffusion layer and a p+ diffusion layer are obtained. Furthermore, according to the present invention, any unsuitable cross-doping of the cell edge that may occur despite the presence of a mechanical mask can be performed during the RTWCG SiOX ARC/SE (TO) process. The meal is engraved. Because this method does not require an edge separation process step, it correspondingly reduces the processing cost' while increasing the RTWCG si〇x ARC/SE/(TO) cell efficiency. By using the above diffusion procedure, RTWCG n+/p/p+ The solar cell efficiency of Si or p+/n/n+ Si crystals is increased by the following reasons: the formation of a strong back surface field, a lower density of the recombination center on the back surface, and a significant decrease in the front contact and back contact resistance. Metallization and post-metallization require some much lower annealing temperatures. The reduced annealing temperature reduces manufacturing costs by reducing the energy consumption of the processing steps. In addition, the shunt resistance (Rsh resistance) of the excellent quality RTWCG SE features Will increase so that the front gate line and junction are less likely to be shorted. The advantages of liquid diffusion sources are known in the art. Hazardous chemical dopants (such as oxygen) Phosphorus (n+ doped), phosphine (n+ doped), boron trichloride (protective doping), boron tribromide (p+ doped) and diborane (p+ doped) can be replaced by safe dilution Phosphoric acid (n+ doped) and boric acid (p+ doped). It is recommended to use a liquid diffusion source as an example of a diffusing agent that generates p+/n/n+ Si diffusion in the line. It is also recommended to physically mask: ^ 4). It is understood by those of ordinary skill in the art that (iv) the source can be replaced by any other type of diffusion source (such as solid, gas, screen printing diffusion source, spin-on diffusion source). Similarly, = 34 201251057 41245pif Any other edge masking scheme, followed by any derivative process using the RTWCGSi〇xARc/sE/ (TO) process, removes unwanted diffusion from the edges of the η+/ρ &, & or p+/n/n+ Si solar cell structure Impurities do not depart from the teachings of the present invention and are still encompassed by the present invention. Screen printing pre-contact and post-contact and one-step front contact and rear contact annealing. Subsequently, as shown in Fig. 2B, the metallized contact 23 〇 and the front gate line 22 涂覆 are applied to the component. The Spectrolab was exposed to the ground-dream solar cell contact by screen printing metallization in the late 1970s. Although this method has indeed been tested by the time of residence, the contact resulting from this type of metallization has serious limitations. In order for the shop to have sufficient __resistance, the emitter surface must have a high impurity concentration. Since the front weave is silver = large (10) micrometers, the aspect ratio is relatively poor. It has a relatively low ^ conductivity' and finally produces a sharp peak along the (five) plane of the inscription metal = fire under the entire back surface of the cell. Although the fines obtained by screen printing metallization are flawed, they are highly cost competitive and highly adaptable for high volume manufacturing. To date, there are no other technologies available to compete in terms of cost or adjustability. The paste used in the eight-screen printing metallization consists of small metal over- and low-spot glass composites (glass frit) and organic binders and dissolved n+/p material pool structure, f-pass # contains silver (^ )powder. In order to reduce the contact resistance, a phosphorus-containing compound which increases the doping concentration of the front contact may be added to the paste. For areas that are behind the surface paste, 35 201251057 41245pif is usually used to dope the underlying p-type region with A1. Immediately after each side of the screen printing, the paste was dried by heating at a temperature of 350 C-400C. The contact is then typically fired in a belt furnace at up to 900 ° C, which is above the Ag_Si eutectic temperature of 835 ° C. It is well known in the art that the contact resistance of the gate-to-n+-Si emitter based on Ag may be highly sensitive to firing conditions. The paste used for postcontact screen printing consists primarily of silver and a small percentage of aluminum. The conditions of postcontact roasting are also critical to ensure that the back junction is neutral. Melting the temperature gradient region can be an important issue when doping the A1 paste component to form a "back surface field." Infrared lamps are typically used instead of standard furnace heating elements for firing. Novel metallization technologies with high yield potential and improved metal coverage, fingerresistance, contact resistance and material cost are being developed. Prior to the display of potential benefits, the contact and post-contact metallization process technology is: nano ink, metal aerosol spray, metal powder laser sintering, contact heterojunction and electroplating. Finally, plasma vap〇r deposited (PVD) TiN, TiW and TaN produce copper barrier layers and are potential alternatives to silver and aluminum metallization. The use of a thicker and heavier doped region under the front gate line provides greater latitude for the metal contact firing step. It makes it possible to use a screen printing metal formulation that penetrates deeper and more electrically. Back-silver and growth SiOx layer After pre-screen printing metallization and post-screen printing metallization, as illustrated in Figure 2C, the RTWCG solution grows the RTWCGSiOx film 250 on the unmetallized surface of the cell without the need for additional surface preparation. The method can be used to prepare a SiOx layer that performs multiple functions with 36 201251057 41245pif. In one or more embodiments, the SiOx layer is formed using a controlled etch back doped yttrium surface layer and a grown SiOx layer. Because of the consumption of Shi Xi, there is control of "etch back" in Shi Xi wafer. At the same time, the surface reaction produces Si〇x on the surface. Total SiOx growth is the balance of two competing reactions in the growth solution system. The SiOx thickness as used herein refers to the final SiOx thickness of the layer. The Si〇x growth rate refers to the total thickness produced in one time unit (usually 1 minute). Growing a given SiOx thickness typically requires the use of a larger thickness of the initial ruthenium substrate, so the total SiOx layer grown is smaller than the Si button. For example, when forming a 100 nm SiOx layer, 15 Å of nano Si is consumed. In one or more embodiments, the layer can be grown rapidly '~-I/, % to form an anti-reflective coating. The layer provides better anti-reflection due to the compositional gradient of the layers. Compared to SiNxARC on textured polycrystalline wafers, the RTWC on the polished wafer (J ARC can have the same or lower inverse. In one or more embodiments, the refractive index of the layer changes gradient, _ The refractive index of the outer surface is close to that of the outer surface (the refractive index is about (7), and the refractive index toward the inner layer of the layer is increased, and the refractive index of the stone (nearly 3.4) is closer to the interface of the si (five) substrate. In one embodiment, the SiOx growth process produces a purified layer that reduces the surface reactivity of the sapphire. In other embodiments, the SiOx process adsorbs J on the sap layer (respectively and reduces impurities. In detail, the doping in the paper layer The miscellaneous miscellaneous shells can be directly related to the purity of the chemicals used in the (four) layer of towels. When using high-altitude polar materials and providing high-turning ships and yue. ° Temple 37 201251057 41245pif in one or In various embodiments, the etchback layer is used to accurately thin the emitter layer 'eg, only one portion of the emitter layer is etched back. For example, etch back and s 丨〇χ growth may remove the remaining _ after diffusion process ( p) non-inductive layer (dead 1 beat). The solution only reacts with hydrazine Thus, the gate can be used as a mask before firing, and the process produces a self-aligned selective emitter. In other embodiments, the SiOx layer is grown to a sufficient thickness to remove all emitters. This process produces passivation In other embodiments, the RTWCG process can produce a textured oxide (το) layer by etching the surface of the Si〇x layer to texture the Si〇xARC. The S i〇x layer is textured rather than textured. It has certain advantages. The T〇sί〇χ layer exhibits a reduction in surface recombination velocity and a degree of enthalpy before the surface passivation due to the smaller surface damage and reduced surface area of the crucible. During the growth step, the growth rate condition (eg, &gt Textured oxide surface can be formed at 2 nanometers per minute. The texturing process can also be performed using a weak acid wet process step after growing si〇x. Si〇x thickness for texturing It is about 0.2 micron to 0.22 micron (rather than the standard si 〇 x ARC/SE 13 13 micron), which may require a slightly longer growth time (about 3 sec - 6 sec seconds) and make the etchback depth 0.2 micron increased to about 微米3 microns The net surface ρ concentration is made lower, approaching the "blue cell". In one or more embodiments, 'the Si0x layer is grown on the doped semiconductor surface. In one or more embodiments' at n+ or n++ A SiOx layer is grown on the Si surface. In one or more embodiments, the Si〇x layer is grown on the p+4p++ & layer. In one or more embodiments, the substrate is immersed in an RTWCG SiOx liquid 38 201251057 41245 pif solution. The immersion technique not only grows the SiOx film on the unmetallized portion of the emitter, but also grows the Si〇x film on the edge of the cell and on the unmetallized surface. This method was used to perform most of the experimental studies performed to generate RTWCG SiOx ARC/SE/(; TO). Other RTWCG techniques have been successfully used to deliver the RTWCG solution to the substrate. The spray technique uses a specially designed atomizer to deliver a thin film of RTWCG solution on the surface of the tantalum cell. In the floating (f]oating technique, the front side of the solar cell is placed on the surface of the RTWCG solution; the surface tension of the liquid solution is such that the battery does not sink. The dispensing technique spreads the RTWCG solution from above along parallel to the gate line. Due to the aqueous composition of the solution, the meniscus is formed, which is strong enough to prevent the solution from flowing out of the battery. The RTWCG solution is delivered using mechanical component technology and components such as brushes or rollers. Some mechanical components require the viscosity of the solution to increase via the addition of cellulose or any other non-contaminating gel. After the RTWCG SiOx is formed, the battery is rinsed with water and then blown dry with nitrogen or dry air. Although the purity of water is important for other battery processing steps, it is not particularly important for RTWCG film processing. Experimentally, there was no significant difference in the performance of RTWCG cells flushed with ultra-high purity water (approximately 18 megohm-cm) and RTWCG cells flushed with simple lower purity reverse osmosis water. In one or more embodiments, the SiOx film is grown using a modified RTWCG solution. Certain components, such as a helium source, can be removed to form a simplified solution that can be used to make high efficiency, low cost, stone solar cells. These RTWCG SiOx solutions have a high growth rate' and produce a good quality SiOx film for use as an anti-reflective coating (ARC) with an extremely low AM 1 5 39 201251057 41245 pif average weighted reflection. The formation of 'the novel RTWCG SiOx solution with ARC produces a number of other important features that are known to increase the efficiency of photovoltaic cells. This simplifies a number of expensive manufacturing steps from the novel RTWCG SiOx solution, which simultaneously produces all of the enhanced features in a single process step. The RTWCG SiOx method and process described herein is a room temperature wet chemical process which rapidly grows a thin dielectric film based on oxidized SiOx on a ruthenium substrate by catalysis. The growth rate of the RTWCG Si〇x solution for solar cell applications is about 500 nm/min. The growth solution can be formulated to grow an ARC film thickness of about 150 nm in about 18 seconds. For integration into existing manufacturing schedules, SiOx growth time can be adjusted from 25 seconds to 1 minute, for 10'\¥00 3丨0乂8 11 (: fine battery design, which can be converted to 14 nanometers per minute to Growth rate of 150 nm/min. For RTWCG siC) x ARC/SE/TO battery design, growth rates ranged from 220 nm/min to 24 N/min. The growth rate value can be determined experimentally by measuring the time required to grow an oxide of a suitable thickness. For ultrafast Si〇x growth rate dissolution, the thickness of the SiOx film grown on the heavily doped n+矽 substrate or p+矽 substrate can be as high as 500 nm in the first minute, and normalized for longer growth times. The SiOx growth rate is steadily reduced. As the SiOx film grows deeper, the oxygen required to continue the reaction must migrate through the increased SiOx thickness to the Si0x/Si interface. As the reaction progresses/rows, the growth rate becomes smaller and smaller. Therefore, the growth rate of the Rttwcg SiOx film is not constant as the growth time of si〇x. This is actually advantageous in terms of excellent uniformity of the film and greater control over the thickness of the SiOx. 201251057 41245pif If the substrate is cleaned, the Si〇x film is extremely uniform. Figure 5 shows a SEM ® of a 4 Å nanometer thick rtwcg SiOx film grown on an 8 Å semiconductor grade c-Si substrate with a mirror-like surface. The thickness of the Si〇x film of the above RTWCG SiOx film is about 5%·5% as measured by an ellipsometer. AFM revealed an average surface roughness (average resistance to roughness, ASR) as low as 〇1 nm. For a clean solar grade flat 矽 substrate, the film thickness deviation is less than 1 〇 / 。. For example, thickness measurements were performed on each of the six solar grade 5 忖 Cz Si substrates at an independent test facility using an ellipsometer. The SiOx thickness on the substrate is in the range of 68 nm to 110 nm. The 5-point thickness measurement on each substrate showed a high deviation from the mean difference of 1.0% in the optimum Si〇x film to 1.03%. As shown in Figure 6(a) showing the Nomarski micrograph (χΐ, 100) of the Si〇x film grown on the surface of the n+c_Si covered by the pyramid, the Si0x film grown on the clean germanium substrate is shown. Has good consistency. The graphs acquired by Norma Microscopy show no contrast difference between the faces of the pyramid structure. From this, it can be inferred that the RTWCGSi〇X film growth proceeds in the case where the crystallographic position is upward without any significant preferential growth. In fact, even when various crystal sites existing on the porous tantalum substrate are grown upward (Fig. 6(b)), the SiOx film is quite uniform and uniform in shape. The good consistency of the RTWCG si〇x film makes it ideal for texturing solar cell surfaces. Device-quality RTWCG SiOx film by making

用本文揭露之生長溶液調配物生長。SiOx臈可在以下物曾 上生長: S 201251057 41245pif i.各種結晶石夕基板(諸如c_Si及mc_Si); ϋ· 非晶砍基板; ,m.半導體基板,包含(但不限於)Ιπ ν族化合物 半導體(諸如GaAs)及I-II-VI族半導體。 除非另外規定,否則在小於1〇〇奈米/分鐘之相對較低 生長速率溶液調配物中生長的RTWCG Si〇x膜均一且形 狀一致。 車父佳RTWCG SiOx生長溶液經由包含如下步驟之網 版印刷製程選擇。 I.選擇SiOx生長溶液之組分。 Π.選擇SiOx生長控制。 III. 組成及化學SiOx組成及污染控制。 IV. 針對具有各種尺寸之大量結晶矽太陽電池測試 RTWCG SiOx 溶液。 ν·針對各種金屬化方案測試RTWCG SiOx溶液。 VI.測試RTWCG SiOx溶液與光阻之相容性。 VII·使用如下技術測試RTWCG SiOx之均一性及一 致性: i. 高解析度諾馬斯基顯微術; ii. 掃描電子顯微術(Scanning Electron Microscopy > SEM); iii. 透射電子顯微術(Transmission Electron Microscopy » TEM); iv. 原子力顯微術(Atomic Force Microscopy, 42 201251057 41245pif AFM)。 VIII. 使用如下技術測試RTwcG SiOx化學組成及 SiOx膜各組分之原子濃度: i·能罝分散 X 射線分析(Energy-Dispersive X-ray analysis,ED ΑΧ); ii. X 射線光電子光譜(X-ray Photoelectron Spectroscopy ’ XPS)研究及深度分佈曲線; iii. 奥格電子光譜(Auger Electron Spectroscopy, AES )深度分佈曲線; iv·次級離子質譜(Secondary Ion Mass Spectroscopy,SIMS)深度分佈曲線; ν·全反射 X 射線螢光(Total reflection X-Ray Fluorescence,TXRF)深度分佈曲線; vi.傅里葉變換紅外線(Fourier Transform Infrared, FTTR)深度分佈曲線; IX. 氣相分解(Vapor Phase Decomposition,VPD) SiOx膜表面。 X. SiOx厚度藉由使用如下技術量測: i.橢圓偏光儀; ϋ·德卡特輪靡儀(Dektak profilometer ); iii. SiOx膜側面之SEM圖。 XI. 使用如下技術測試RTWCG SiOx膜之光學特性 (包含隨波長變化之折射率及消光係數): i.高解析度橢圓偏光儀; 43 201251057 41245pif ϋ·用UV/Vis分光光度測定法獲得之隨波長變化的 反射率曲線; iii· Si〇x膜之SEM橫截面圖。 ΧΠ.使用目前技術之i-v/c-v凱思立繪圖儀(Keithley plotter)獲得之隨_ι〇〇伏至+100伏之施加電墨變化的ι γ 曲線及C-V曲線,且提取相關電學數據,包含: i. 洩漏電流; ii. 擊穿電壓; iii. 靜電介電常數; lv.在各種塗佈SiOx之矽基板上製造的A1 (Au) / 生長態(as-grown ) rTwcg SiOx/Si/Au-Ti-Ag 小閘極面積 MOS電容器曝露於各種環境(包含(但不限於)乾熱、高 強度近UV輻射及高強度電漿)之前及之後,所述m〇S 電容器上的移動電荷密度; v.如下物質上的暗及照射j_v特徵及isc、Voc、FF、 Pmax、Rs 及 Rsh : i.小面積及大面積單晶(c_Si) RTWCGSiOxARC/SE 太陽電池; 比小面積及大面積多結晶(mc-Si) RTWCG SiOx ARC/SE/ (TO)太陽電池; iii. 具有網版印刷接觸之習知n+/p Si同質接面矽太 陽電池; iv. 特定電池設計,包含(但不限於): a)所有後接觸電池 44 201251057 41245pif b ) 球狀太陽電池 c)垂直多接面(vertical multi-junction,VMJ)電池。 XIII. 裸電池與 RTWCG SiOx ARC/SE/ (TO)製程後 之相同電池的效能數據。 XIV. RTWCG SiOx ARC/SE/ (TO)太陽電池曝露於各 種環境後的效能數據。 XV,内部及外部量子效率曲線。 用於測試之大多數太陽電池為具有平坦或紋理化發 射極表面之習知n+/p (P,B) Si網版印刷金屬化電池。電池 獲自各電池製造商。涵蓋基板之其他組態。The growth solution formulation disclosed herein is grown. SiOx臈 can be grown on the following materials: S 201251057 41245pif i. Various crystalline stone substrate (such as c_Si and mc_Si); ϋ·amorphous chopped substrate; m. semiconductor substrate, including but not limited to Ιπ ν compound Semiconductors (such as GaAs) and I-II-VI semiconductors. Unless otherwise specified, RTWCG Si〇x films grown in relatively low growth rate solution formulations of less than 1 nanometer per minute are uniform and consistent in shape. The car father's RTWCG SiOx growth solution was selected via a screen printing process comprising the following steps. I. Select the components of the SiOx growth solution. Π Select SiOx growth control. III. Composition and chemical SiOx composition and pollution control. IV. Test RTWCG SiOx solution for a large number of crystalline germanium solar cells of various sizes. ν·Test RTWCG SiOx solution for various metallization schemes. VI. Test the compatibility of RTWCG SiOx solution with photoresist. VII. Test the homogeneity and consistency of RTWCG SiOx using the following techniques: i. High resolution Nomas-based microscopy; ii. Scanning Electron Microscopy >SEM; iii. Transmission electron microscopy Transmission Electron Microscopy » TEM; iv. Atomic Force Microscopy (42 201251057 41245pif AFM). VIII. The chemical composition of RTwcG SiOx and the atomic concentration of each component of SiOx film were tested using the following techniques: i. Energy-Dispersive X-ray analysis (ED ΑΧ); ii. X-ray photoelectron spectroscopy (X- Ray Photoelectron Spectroscopy ' XPS) study and depth profile; iii. Auger Electron Spectroscopy (AES) depth profile; iv·Secondary Ion Mass Spectroscopy (SIMS) depth profile; ν·全Total reflection X-Ray Fluorescence (TXRF) depth profile; vi. Fourier Transform Infrared (FTTR) depth profile; IX. Vapor Phase Decomposition (VPD) SiOx Membrane surface. X. SiOx thickness is measured by using the following techniques: i. ellipsometer; Dektak profilometer; iii. SEM image of the side of the SiOx film. XI. The optical properties of the RTWCG SiOx film (including the refractive index and extinction coefficient as a function of wavelength) were tested using the following techniques: i. High-resolution ellipsometer; 43 201251057 41245pif ϋ·With UV/Vis spectrophotometry Reflectance curve of wavelength change; iii· SEM cross-section of Si〇x film. ΧΠ Use the current technology iv/cv Keithley plotter to obtain the ι γ curve and CV curve of the applied ink change with _ 〇〇 〇〇 to +100 volts, and extract relevant electrical data, including : i. leakage current; ii. breakdown voltage; iii. electrostatic dielectric constant; lv. A1 (Au) / grown state (as-grown) rTwcg SiOx/Si/Au fabricated on various SiOx coated substrates -Ti-Ag small gate area MOS capacitors are exposed to various environments (including but not limited to dry heat, high intensity near UV radiation and high intensity plasma) before and after the mobile charge density on the m〇S capacitor v. Dark and illuminating j_v characteristics and isc, Voc, FF, Pmax, Rs and Rsh on the following materials: i. Small area and large area single crystal (c_Si) RTWCGSiOxARC/SE solar cells; more than small area and large area Crystallized (mc-Si) RTWCG SiOx ARC/SE/ (TO) solar cells; iii. conventional n+/p Si homojunction solar cells with screen printing contacts; iv. specific battery design, including (but not limited to) ): a) all rear contact batteries 44 201251057 41245pif b ) spherical solar cells c) vertical Junction (vertical multi-junction, VMJ) cell. XIII. Performance data for the same battery after bare cell and RTWCG SiOx ARC/SE/ (TO) process. XIV. RTWCG SiOx ARC/SE/ (TO) Performance data for solar cells exposed to various environments. XV, internal and external quantum efficiency curves. Most solar cells used for testing are conventional n+/p (P, B) Si screen printing metallized cells having a flat or textured emitter surface. The battery is obtained from each battery manufacturer. Covers other configurations of the substrate.

Sl0x薄膜各組分之大多數原子濃度藉由XPS獲得; 其他較厚SiOx膜各組分之原子濃度藉由AES獲得。除非 另外規定’否則Si0x薄膜之XPS及AES深度分佈曲線橫 座標中的深度參考Ta2〇5频料算。所選樣品之橢圓偏 光儀數據以及經蝕刻特徵之德卡特分佈曲線(Dektak pmfile)展示SiOX臈之實際厚度多達對應於哪或aes 深度分佈曲線之橫座標的厚度的2倍。 由於需要大量實驗數據較較佳RTWCG SiOx溶液Most of the atomic concentrations of the components of the Sl0x film are obtained by XPS; the atomic concentrations of the other thicker SiOx films are obtained by AES. Unless otherwise specified, the depth of the XPS and AES depth profile of the Si0x film is referenced to the Ta2〇5 frequency. The ellipsometer data of the selected sample and the Dektak pmfile of the etched features show that the actual thickness of the SiOX crucible is up to 2 times the thickness of the abscissa corresponding to which or the depth profile of the aes. Due to the large amount of experimental data required, the RTWCG SiOx solution is better.

p+ 測試基板。 池或Si基板上進 I結果與RTWCG 、反射率及自發射 度貫驗甲,使用具有鏡 通向正型光阻之光微影 45 201251057 41245pif 遮罩為狹窄微米級線以及較大毫米級未覆蓋區域。較大 無光阻區域充當可見光導引以在較窄的線中生長適告厂、 之SiOx膜’其可用於德卡特輪廓測定法( profilometry)。薄膜顏色與其厚度之間存在本領域中 之關係。在較大面積之無光阻基板上觀察到正確Si〇^、〇 厚度後’自生長溶液提取樣品,用水沖洗,乾燥且 阻。隨後由SiOx膜移除之前及之後的德卡特分佈曲線2 P白之間的差值&十鼻SiOx膜厚度以及發射極回钮之程声'。’ 在一或多個實施例中,室溫濕化學生長溶液包含^氟 化物酸性溶液及含有一或多個能夠促進矽表面之氧化反應 之元素的還原氧化系統。所述溶液提供蝕刻(移除矽層) 與氧化物生長(沈積SiOx層)之平衡。 曰 藉由全面的實驗研究,現已知RTWCGSiOx生長溶液 可含有大量金屬離子Me+n/Me+(n+m)之組合,其中n 至 4,且m為1至4。這些金屬離子包含(但不限於)諸如p+ test substrate. I-result and RTWCG, reflectivity and self-emissivity on the cell or Si substrate, using photolithography with mirror-to-positive photoresist 45 201251057 41245pif mask for narrow micron-scale lines and larger millimeter-level Coverage area. The larger, non-resistive region acts as a visible light guide to grow the SiOx film in a narrower line. It can be used for decatometry. There is a relationship between the color of the film and its thickness in the art. The sample was extracted from the growth solution after the correct thickness of Si〇 and 〇 was observed on a large area of the non-resistance substrate, rinsed with water, dried and hindered. The difference between the De Carter distribution curve 2 P white before and after removal by the SiOx film & the thickness of the ten-nose SiOx film and the sound of the emitter button. In one or more embodiments, the room temperature wet chemical growth solution comprises a fluoride solution and a reduced oxidation system comprising one or more elements capable of promoting oxidation of the surface of the crucible. The solution provides a balance between etching (removing the tantalum layer) and oxide growth (depositing the SiOx layer).藉 Through a comprehensive experimental study, it is known that the RTWCGSiOx growth solution may contain a combination of a large amount of metal ions Me+n/Me+(n+m), where n to 4, and m is 1 to 4. These metal ions include, but are not limited to, such as

Ti、Co、V、Cr、Fe、Ni、Cu、Y、Sr、Ce、Ba、Zr、Nb、Ti, Co, V, Cr, Fe, Ni, Cu, Y, Sr, Ce, Ba, Zr, Nb,

Ru、Rh、Pb、Ag、La、W及Pd之金屬離子。其他rtwcg SiOx丨谷液調配物產生良好結果’且包含A〗、%、Be、Bi、Metal ions of Ru, Rh, Pb, Ag, La, W, and Pd. Other rtwcg SiOx gluten solution formulations produce good results' and include A, %, Be, Bi,

Mg、Ce、Hf、Ta、Ti及Zr之各種無機金屬氧化物及i及 Br之各種非金屬氧化物。據研究包含(但不限於)Bi、Ti、 Co、V、Ce、A卜La及Mg之各種金屬氣化物及金屬氟化 物用作RTWCG SiOx生長溶液之組分亦具有相對良好結 果。將各種含有上述離子之無機金屬氧化物與其他成分一 起溶解於含氟化物酸性水溶液中,以使生長溶液與矽基板 46 201251057 41245pifVarious inorganic metal oxides of Mg, Ce, Hf, Ta, Ti, and Zr, and various non-metal oxides of i and Br. Various metal vapors and metal fluorides including, but not limited to, Bi, Ti, Co, V, Ce, A, and Mg are also used as components of the RTWCG SiOx growth solution to have relatively good results. The inorganic metal oxide containing the above ions is dissolved together with other components in the aqueous fluoride acid solution to grow the solution and the ruthenium substrate 46 201251057 41245pif

之間發生還原氧化(氧還)反應。在較佳生長溶液中,Si〇X 厚度與伴隨的回㈣太陽電池之未金屬化表面之量之間存 在適宜比率。 上述段落中所列之一或多種金屬離子或非金屬離子 之組合產生基於酸之Si〇x生長溶液。各種溶液之生長速 率”於數奈米/分鐘至高達500奈米/分鐘。各種類別之金 屬及非金屬離子之作用為提供還原氧化(氧還)水性組分 及視情況選用之可添加至生長溶液中以促進基於si〇之薄 膜生長的催化劑(諸如H2TiF6、Pd(〇2C3F3)2、TiCl4及 (NH4)2TiF6)及其類似物。A reductive oxidation (oxygen) reaction occurs between them. In a preferred growth solution, there is a suitable ratio between the Si〇X thickness and the amount of the unmetallized surface of the accompanying (four) solar cell. The combination of one or more of the metal ions or non-metal ions listed in the above paragraphs produces an acid-based Si〇x growth solution. The growth rate of various solutions ranges from a few nanometers per minute to as high as 500 nanometers per minute. The various classes of metal and non-metal ions act to provide a reduced oxidation (oxygen) aqueous component and, optionally, can be added to the growth. A catalyst (such as H2TiF6, Pd(〇2C3F3)2, TiCl4, and (NH4)2TiF6) and the like are promoted in the solution to promote the growth of the Si〇-based film.

本文描述改良之RTCWG溶液;然而,亦可使用諸如 題為「矽上基於SiO之氧化物的室溫濕化學生長製程 (Room Temperature Wet Chemical Growth Process of SiOThe modified RTCWG solution is described herein; however, a room temperature Wet Chemical Growth Process of SiO such as SiO based oxide can also be used.

Based Oxides on Silicon)」之美國專利第6,080,683號及題 為「使用在基板上室溫濕化學生長基於Si〇之氧化物的製 私製備薄膜介電層的方法(Method of Making Thin Films Dielectrics Using a Process for Room Temperature Wet Chemical Growth of SiO Based Oxides on a Substrate)」之美 國專利第6,593,077號中所述之溶液。 RTWCG介電膜由Si-Ο-χ構成,其中Si為石夕,Ο為氧, 且X可為氮、碳、氟或氫。在小很多之程度上,膜亦由微 量Si-Ο-Μ構成,其中Μ為金屬離子。較佳SiOx膜之XPS 深度分析展示大部分微量金屬經氧化或鍵結於Si、N及其 他非金屬微量雜質。藉由分析離子蝕刻之Si、Ti、SiC、 47 201251057 41245pif BN、Ti〇2、熱Si〇2及各種其他金屬標準物來精確測定用 於計算結合能值(bonding energy )在解卷積峰 (deconvoluted peak)中之SiOx組分之原子百分比的敏感 度因子(sensitivity factor )。 在一或多個實施例中’ RTWCG溶液中可包含添加劑 以提供導電層。由金屬氮化物(諸如Bi、Ti、Co、Cu、Se 及Ce)構成之各種RTWCG生長溶液產生具有高si-〇-M (例如Si-O-Cu、Si-O-Bi、Si-0-Se)濃度之膜。亦可包含 由基於Bi、Ti、Co、V、Ce、A卜La及Mg之氯化物及氟 化物組成之族群中選出的金屬氯化物及氟化物以促進導電 層形成。這些膜可導電,在太陽光譜之可見光部分中透明 且具有約10%之相對較低AWR。Si-Ο-Μ膜可用作本領域 中已知之透明導電氧化物(transparent conductive oxide, TCO)的較高品質較低成本替代物。RTWCG TCO具有各 種電子及光電子(光子)應用,包含在製造高效率低成本 薄膜太陽電池令之應用。在不受任何操作模式或理論限制 之情況下’含有這些化合物之KTCWG溶液呈現出能夠進 行類似於可在SiOx層中形成金屬之無電電鍍(electroless plating)之製程。 在一或多個實施例中,RTCWG溶液包含氟化物源。 例示性氟化物源包含H2SiF6、NH4F、HF、H2TiF6、BaF、 BF4及其他金屬及非金屬氟化物。RTCWG溶液亦可包含一 或多種酸’其亦可為氟化物源。例示性酸包含H2SiF6、 HC1、HF、HNO3及HzSO4。非侵入性添加劑可包含(但不 48 201251057 41245pif 限於)NHJ、HF、HCn、氏〇、HN〇3、迅〇2及二氧化矽 源(諸如膠狀二氧化矽、Si〇2及其他可溶性金屬矽酸鹽)。 根據本發明,這些添加劑可尤其用於調節化學組成、調節 生長>谷液之pH值、5周師膜之金屬及非金屬雜質濃度、改 變RTWCG SiOx膜之生長速率,及調節回姓未金屬化發射 極表面之速率。 本文中描述特別調配用於高效率低成本結晶太陽電 池應用之RTWCG SiOx溶液。開發這些新穎RTWCG溶液 之重點不僅為低成本且環保之調配物,而且為可進行增加 數目之任務的調配物。 彎折與尾型發射極擴散後,習知網版印刷金屬化產生 前接觸及後接觸。RTWCG製程允許使用網版印刷膏,其 提供較低接觸電阻且更具導電性之前柵接觸。最後,單一 步驟RTWCG SiOx生長溶液同時進行如下操作: i.當場清洗包含金屬化的電池表面; il 可能產生優良品質邊緣分離; ϋ 產生低反射率SiOx ARC ; iv·鈍化電池表面,包含基於Ag之前接觸及A1後接 觸; v.產生優良品質選擇性發射極(SE);以及 vi·產生紋理化SiOx (TO)表面。 連同強前表面場的固有形成,上述RTWCG SiOx ARC/SE/ (TO)特徵促成矽太陽電池之效率顯著提高。相 較於本領域中已知之其他高效率電池設計,RTWCG SiOx 49 201251057 41245pif ARC/SE/ (TO)技術藉由去除某些加工步驟(包含一些需 要能量之熱步驟)而大大降低製造成本。 特別關注本文所述之rTWCG SiOx生長溶液之各種US Patent No. 6,080,683 and "Method of Making Thin Films Dielectrics Using a Method for Wet Chemical Growth of Si〇 Based Oxides on a Substrate at Room Temperature" Process for Room Temperature Wet Chemical Growth of SiO Based Oxides on a Substrate, US Patent No. 6,593,077. The RTWCG dielectric film is composed of Si-Ο-χ, wherein Si is Shi Xi, Ο is oxygen, and X may be nitrogen, carbon, fluorine or hydrogen. To a much smaller extent, the membrane is also composed of a micro Si-Ο-Μ, in which ruthenium is a metal ion. The XPS depth analysis of the preferred SiOx film shows that most of the trace metals are oxidized or bonded to Si, N and other non-metallic trace impurities. By analyzing ion-etched Si, Ti, SiC, 47 201251057 41245pif BN, Ti〇2, thermal Si〇2 and various other metal standards to accurately determine the binding energy in the deconvoluted peak ( The sensitivity factor of the atomic percentage of the SiOx component in the deconvoluted peak). Additives may be included in the RTWCG solution in one or more embodiments to provide a conductive layer. Various RTWCG growth solutions composed of metal nitrides such as Bi, Ti, Co, Cu, Se, and Ce are produced with high si-〇-M (for example, Si-O-Cu, Si-O-Bi, Si-0-). Se) film of concentration. Metal chlorides and fluorides selected from the group consisting of chlorides and fluorides of Bi, Ti, Co, V, Ce, A, and Mg may also be included to promote the formation of a conductive layer. These films are electrically conductive, transparent in the visible portion of the solar spectrum and have a relatively low AWR of about 10%. The Si-ruthenium-iridium film can be used as a higher quality, lower cost alternative to transparent conductive oxide (TCO) known in the art. RTWCG TCOs are used in a variety of electronic and optoelectronic (photonic) applications, including in the manufacture of high efficiency, low cost thin film solar cells. Without being limited by any mode of operation or theory, the KTCWG solution containing these compounds exhibits a process that is capable of performing electroless plating similar to the formation of metals in the SiOx layer. In one or more embodiments, the RTCWG solution contains a fluoride source. Exemplary fluoride sources include H2SiF6, NH4F, HF, H2TiF6, BaF, BF4, and other metals and non-metal fluorides. The RTCWG solution may also contain one or more acids' which may also be a fluoride source. Exemplary acids include H2SiF6, HCl, HF, HNO3, and HzSO4. Non-invasive additives may include (but not limited to 2012, 2012, 51,051,245, pif) NHJ, HF, HCn, strontium, HN〇3, Xenon 2, and cerium oxide sources (such as colloidal cerium oxide, Si 〇 2 and other soluble metals) Citrate). According to the present invention, these additives can be used, inter alia, to adjust the chemical composition, adjust the growth, pH of the solution, the concentration of metal and non-metallic impurities in the film for 5 weeks, change the growth rate of the RTWCG SiOx film, and adjust the metal to the surname. The rate at which the emitter surface is turned. Specially formulated RTWCG SiOx solutions for high efficiency, low cost crystalline solar cell applications are described herein. The development of these novel RTWCG solutions is not only a low-cost, environmentally friendly formulation, but also a formulation that can perform an increased number of tasks. After bending and tail-type emitter diffusion, conventional screen printing metallization produces front contact and back contact. The RTWCG process allows the use of screen printing paste, which provides lower contact resistance and is more conductive prior to gate contact. Finally, the single-step RTWCG SiOx growth solution is simultaneously operated as follows: i. On-site cleaning contains a metallized cell surface; il may produce good quality edge separation; 产生 produces low reflectivity SiOx ARC; iv·passivates the cell surface, including before Ag based Contact and contact after A1; v. Produce a good quality selective emitter (SE); and vi· produce a textured SiOx (TO) surface. Together with the inherent formation of a strong front surface field, the above-mentioned RTWCG SiOx ARC/SE/(TO) characteristics contribute to a significant increase in the efficiency of the solar cell. Compared to other high efficiency battery designs known in the art, RTWCG SiOx 49 201251057 41245pif ARC/SE/(TO) technology greatly reduces manufacturing costs by removing certain processing steps, including some thermal steps that require energy. Pay special attention to the various types of rTWCG SiOx growth solutions described herein.

Me /Me氧還系統、氧化催化劑及非侵入性組分的開發。 非侵入性組分使SiOx之金屬雜質濃度最小,且產生充分 鈍化矽表面之低反射率透明SiOx膜。需要所述溶液自發 射極之未金屬化表面回蝕適合厚度而不破壞電池金屬化之 完整性。 如本文所述,較佳RTWCG Si0x生長溶液使用氧還系 統、水性均質氧化催化劑及非侵入性無機添加劑。各峰之 XPS BE分析展示微量未氧化金屬僅存在於表面上^ si〇x 主體區域中發現的雜質的約100%與氮、矽或氧形成穩定 化合物。此觀察結果適用於在Si以及研究之所有其他基板 (諸如GaAs及IV族、III-V族、Ι-ΙΙ·νΐ族之其他半導體基 板)上生長之RTWCG SiOx膜。 為產生用於石夕太陽電池應用之較佳RTWCG §i〇x生 長浴液調配物’ RTWCG SiOx生長溶液調配物包含各種金 屬離子Me+n/Me+㈣,其中^^4,且瓜為1至4。 已成功地祕提高Μ溶狀生錢率及/或降低氧化物 中金屬濃度程度的-些金屬或非金屬離子包含(但不限於)Development of Me/Me oxygenation systems, oxidation catalysts and non-invasive components. The non-invasive component minimizes the metal impurity concentration of SiOx and produces a low reflectivity transparent SiOx film that is sufficiently passivated to the surface of the crucible. The unmetallized surface etch back of the spontaneous emitter of the solution is required to be suitable for thickness without compromising the integrity of the battery metallization. As described herein, the preferred RTWCG Si0x growth solution utilizes an oxygen system, an aqueous homogeneous oxidation catalyst, and a non-invasive inorganic additive. The XPS BE analysis of each peak shows that traces of unoxidized metal are only present on the surface. About 100% of the impurities found in the bulk region form a stable compound with nitrogen, helium or oxygen. This observation is applicable to RTWCG SiOx films grown on Si and all other substrates studied, such as GaAs and Group IV, Group III-V, other semiconductor substrates of the Ι-ΙΙ·νΐ family. In order to produce the preferred RTWCG §i〇x growth bath formulation for the Shixi solar cell application, the RTWCG SiOx growth solution formulation contains various metal ions Me+n/Me+ (4), of which ^^4, and the melon is 1 To 4. Has successfully succeeded in increasing the rate of limulus dissolution and/or reducing the extent of metal concentrations in oxides - some or none of the metal or non-metal ions include (but are not limited to)

Ti、c〇'V'o'Ni、Sr、Cu、Ce、Y、Zr、Nb、RuRh、Ti, c〇'V'o'Ni, Sr, Cu, Ce, Y, Zr, Nb, RuRh,

Fe、Ba、Pb、IM、ϊ、Br、A1、Sb、Be、历、Hf、Ta、w、Fe, Ba, Pb, IM, ϊ, Br, A1, Sb, Be, calendar, Hf, Ta, w,

La、Ir、Os、As、Sn、Ag及Mg。各種金屬離子之功能為 作為氧還組分,例如K3Fe(CN)6形成Fe2+/Fe3+氧還系統。 50 201251057 41245pif 其他金屬離子充當提高RTWCG恤薄膜之生長速率的 均質氧化催化劑組分。La, Ir, Os, As, Sn, Ag, and Mg. The function of various metal ions is as a component of oxygen, for example, K3Fe(CN)6 forms a Fe2+/Fe3+ oxygen system. 50 201251057 41245pif Other metal ions act as a homogeneous oxidation catalyst component that increases the growth rate of the RTWCG shirt film.

非知入性添加劑包含(但不限於)NaF、k〇h、NaF 及NH4F及HF、Ηα、H2S〇4、H2o及H2o2。這些添加劑 可調節生長速率,減少諸如由金屬及非金屬㈣所致之光 及電損耗’及調節贿未金屬化之發射極表面之速率。然 而’在SiOx生長溶液之所有有機組分替換為無機組分後, 出現SiOx品質之顯著改良。 在一或多個實施例中,產生高品質RTWCG Si〇x ARC/SE/(TO)特徵之RTWCGSi〇x生長調配物實質上不 含石夕,。「實質上不含」;^源意謂RT c w G溶液中無大量石夕 、原β羊D之,不有思添加石夕源,且溶液不含石夕組分。微量 f 3 i不會損害RTCWG溶液之無石夕品質,因為已瞭解微 1雜質可此難以移除且不會影響溶液之功能。微量指矽含 量低於1重量%或低於0.1重量%。 在一些實施例中,矽以百萬分率程度存在。 這些較佳凋配物不僅可降低成本,而且可維持 膜厚度、生長速率及回蝕之間的理想平衡。 〜夕種元素,且尤其過渡金屬元素具有多個氧化態,使 得其通常可參與氧還反應。對RTWCG SiOx生長製程及發 射極之未金屬化表面回錄重要的兩種氧還反應為原子轉 移,應(諸如氧化加成/縣消除)及f子轉移反應。基本 的氧還反應為「自交換」反應,其涉及氧化性物質與還原 !生物質之間的退化反應(degenerate reacti〇n)。相對大量之 51 201251057 41245pif 有機化合物(諸如氣化N_(正丁基)*定錯)及無機物(諸 如K3Fe(CN)6)產生電子交換,諸如!^2+與Fe3+離子之間 的電子交換。 已發現無機金屬或非金屬氧化物、無機金屬或非金屬 氯化物及無機金屬或非金屬氟化物之諸多組合,且其用於 產生RTWCGSiOx纟長溶液。如下段落含有高度精簡的實 驗研究主體,其自先前RTWCG技術巾發現的次佳較複雜 洛液開發出較佳簡化RTWCG生長溶液。新穎rtWCG生 長溶液在膜中引入較少金屬組分,具有較高生長速率且較 適合於大規模製造低成本高效率RTWCG si〇x ARC/SE/TO矽太陽電池。 圖7展示在(l〇〇)p_si基板上生長之先前技 SiOX薄膜的XPS深度分佈曲線。生長溶液由以下物質構 成.3體積份用二氧化矽飽和之34%H2SiF6、2體 1體積份5%氯化N_(正丁基)吡啶鑌及2體積 伤5%K3Fe(CN)6(水料所述生長溶液由於約2〇分鐘之長 生長時間而對於在製造環境中產生Si〇x ARC並不十分實 用。Si及〇原子深度分佈曲線相當恆定,使得其ami 5 AWR值僅略低於經最佳化之習知cVD沈積之別Νχ ARc 膜。 去除所有有機組分後,膜之品質改良。圖8中之AEs 深度分佈曲線為在3分鐘内由經如下物質構成之無機生長 溶液調配物在p-Si基板上生長之11〇微米厚Si〇x膜的深 度分佈曲線:5體積份34% H2SiF6(水溶液)、!體積份6〇% 52 201251057 41245pif H2TiF6 (水溶液) 及1體積份5% K3Fe(CN)6 (水溶液)σ 由於Fe濃 度相對較低,故此SiOx膜具有用於太陽電池應用之良好 電學及介電特性。其為與太陽電池之前接觸及後接觸金屬 化完全相容的初始RTWCG溶液調配物之一。然而,可見 光之總反射率僅略低於緩慢生長速率S i 〇 X溶液調配物(圖 7>n+-Si發射極表面之未金屬化部分未回蝕至足以形成優 良品質選擇性發射極。如本文所示,RTWCG si〇x膜之金 屬含量可藉由在其他較佳生長溶液調配物中生長或藉由增 加在稀HF( 水溶液) 中之短姓刻步驟而進一步降低。 具有Si源組分且生長低金屬RTWCG Si〇x膜之較佳 溶液由如下物質構成:1體積份至5體積份34% H2SiF6(水 溶液〕、1體積份至4體積份60% H2TiF6 (繼)、1體積份至4 體積份10% K3Fe(CN)6(*㈣)及}體積份至5體積份2〇公 克Co(OH)2溶解於1公升水中之溶液。鈷改良所得^〇χ 膜之光學特性。圖9 (a)中展示制此較佳溶液調配物之 生長態SiOx膜的XPS表面研究。藉由高效xps系統僅發 現微量Fe。此SiOx膜之低(5.4%)平均反射率由圖9 (J) 中所示之膜的梯度折射率來解釋。 使用橢圓偏光儀發現生長態膜之表面上的折射率為 約1.4。此值與膜表面之原子化學組成良好地一致,其 31.5%為石夕’ 62%為氧’且5 6%為碳。少量氮、氟、^量 鐵及其他金屬以及非金屬雜質總共占膜表面組成之〇9%里 如圖9(b)中顯而易見,膜之表面富含吨。缺而°, 朝向SiOx/Si界面,SiOx組成變得逐漸更富含石夕。si〇x膜 53 201251057 41245pif 具有梯度折射率,其隨深度自表面處之約1 4增加至 SiOx/Si界面處之約3.5。此梯度折射率解釋了膜之低反射 率。 RTWCG SiOx膜之TXRT深度分佈曲線展示金屬雜質 之最大濃度處於或接近膜之表面,可能是由來自生長溶液 吸收所致。生長RTWCG膜,隨後水沖洗之後,大多數表 面金屬污染物可藉由溫和HF(水溶液}钱刻移除。圖中之 XPS深度分佈曲線中展示SiOx膜之主要組分的原子濃 度。膜在由如下物質構成之溶液中生長:3體積份用二氧 化石夕飽和之H2SiF0、2體積份60%及2體積 份10〇/〇 K3Fe(CN)6 (水溶液)。用水沖洗所得RTWCG Si〇x膜, 11¾•後在稀氫氟酸溶液(1體積份HF (濃溶液)對64體積 ,H2〇)中姓刻15秒。最後,用DI水沖洗樣品,且用氮 氣乾燥。溫和钱刻產生較低含量之金屬雜質。以之原子濃 度自約1.3%降至儀器貞測極限〇1%以下,且同樣,丁丨自 約1%降至亦低於儀器偵測極限。作為增加之利益,溫和 飯刻產生紋理化SiOx膜表面’其使AM 1.5 AWR自初值 4.9%降至 3.08%。Non-invasive additives include, but are not limited to, NaF, k〇h, NaF and NH4F and HF, Ηα, H2S〇4, H2o and H2o2. These additives can adjust the growth rate, reduce the light and electrical losses caused by metals and non-metals (d), and adjust the rate of the unmetallized emitter surface. However, after all the organic components of the SiOx growth solution were replaced with inorganic components, a significant improvement in SiOx quality occurred. In one or more embodiments, the RTWCGSi〇x growth formulation that produces high quality RTWCG Si〇x ARC/SE/(TO) features is substantially free of Shi Xi. "Substantially free"; ^ source means that there is no large amount of Shi Xi, the original β sheep D in the RT c w G solution, there is no thought to add Shi Xiyuan, and the solution does not contain Shi Xi components. The trace f 3 i does not impair the quality of the RTCWG solution, as it is understood that the micro 1 impurity can be difficult to remove without affecting the function of the solution. The trace amount of the finger is less than 1% by weight or less than 0.1% by weight. In some embodiments, 矽 exists in parts per million. These preferred formulations not only reduce cost, but also maintain an ideal balance between film thickness, growth rate, and etchback. The elements of the genus, and especially the transition metal elements, have a plurality of oxidation states such that they generally participate in the oxygen-reactive reaction. The two oxygens important for the RTWCG SiOx growth process and the unmetallized surface trace of the emitter also react to atomic transfer, such as oxidative addition/counter elimination and f-sub-transfer reactions. The basic oxygen also reacts as a "self-exchange" reaction involving a degenerate reaction between the oxidizing species and the reducing biomass. A relatively large number of 51 201251057 41245pif organic compounds (such as gasified N_(n-butyl)*) and inorganics (such as K3Fe(CN)6) produce electronic exchange, such as! Electron exchange between ^2+ and Fe3+ ions. Many combinations of inorganic or non-metal oxides, inorganic or non-metal chlorides, and inorganic or non-metal fluorides have been found and are used to produce RTWCGSiOx long solutions. The following paragraphs contain highly streamlined experimental subjects that have developed a better simplified RTWCG growth solution from the sub-optimal complexes found in previous RTWCG technology towels. The novel rtWCG growth solution introduces less metal components into the film, has a higher growth rate and is more suitable for mass production of low cost and high efficiency RTWCG si〇x ARC/SE/TO(R) solar cells. Figure 7 shows the XPS depth profile of a prior art SiOX film grown on a (l〇〇)p_si substrate. The growth solution consists of 3 parts by volume of 34% H2SiF6 saturated with cerium oxide, 2 parts by volume, 1 part by volume of 5% N-(n-butyl)pyridinium chloride and 2 volumes of 5% K3Fe(CN)6 (water). The growth solution is not very practical for producing Si〇x ARC in a manufacturing environment due to a growth time of about 2 minutes. The depth distribution curves of Si and germanium atoms are quite constant, so that the ami 5 AWR value is only slightly lower. Optimized cVD deposits are different from ARc film. After removing all organic components, the quality of the film is improved. The depth distribution curve of AEs in Figure 8 is formulated by inorganic growth solution composed of the following materials within 3 minutes. Depth distribution curve of 11〇μm thick Si〇x film grown on p-Si substrate: 5 parts by volume 34% H2SiF6 (aqueous solution), ! parts by volume 6〇% 52 201251057 41245pif H2TiF6 (aqueous solution) and 1 part by volume 5 % K3Fe(CN)6 (aqueous solution) σ Since the Fe concentration is relatively low, the SiOx film has good electrical and dielectric properties for solar cell applications. It is fully compatible with solar cell front contact and post contact metallization. One of the initial RTWCG solution formulations. However, The total reflectance of the light is only slightly lower than the slow growth rate S i 〇X solution formulation (Fig. 7) The unmetallized portion of the n+-Si emitter surface is not etched back enough to form a good quality selective emitter. As shown, the metal content of the RTWCG si〇x film can be further reduced by growth in other preferred growth solution formulations or by increasing the short-step process in dilute HF (aqueous solution). A preferred solution for growing a low metal RTWCG Si〇x film consists of 1 part by volume to 5 parts by volume of 34% H2SiF6 (aqueous solution), 1 part by volume to 4 parts by volume of 60% H2TiF6 (by), 1 part by volume to 4 10% by volume K3Fe(CN)6(*(4)) and} parts by volume to 5 parts by volume of 2〇g of Co(OH)2 dissolved in 1 liter of water. The optical properties of the obtained film are improved by cobalt. The XPS surface of the grown SiOx film for this preferred solution formulation is shown in (a). Only a trace amount of Fe is found by the high efficiency xps system. The low (5.4%) average reflectance of this SiOx film is shown in Figure 9 (J). The gradient index of the film shown is explained. The surface of the grown film was found using an ellipsometer. The refractive index is about 1.4. This value is in good agreement with the atomic chemical composition of the surface of the film, 31.5% of which is Shi Xi '62% is oxygen' and 5 6% is carbon. A small amount of nitrogen, fluorine, iron and other metals and The total non-metallic impurities account for 9% of the surface composition of the film. As is apparent from Fig. 9(b), the surface of the film is rich in tons. The surface of the film becomes SiOx/Si interface, and the composition of SiOx becomes gradually richer. Si〇x film 53 201251057 41245pif has a graded index of refraction which increases with depth from about 14 at the surface to about 3.5 at the SiOx/Si interface. This gradient index explains the low reflectivity of the film. The TXRT depth profile of the RTWCG SiOx film shows that the maximum concentration of metal impurities is at or near the surface of the film, possibly due to absorption from the growth solution. After growing the RTWCG film, after the water rinse, most of the surface metal contaminants can be removed by mild HF (aqueous solution). The XPS depth profile shows the atomic concentration of the main component of the SiOx film. Growth in a solution of the following composition: 3 parts by volume of H2SiF0 saturated with sulfur dioxide, 2 parts by volume of 60% and 2 parts by volume of 10 〇/〇K3Fe(CN)6 (aqueous solution). The obtained RTWCG Si〇x film was rinsed with water. After 113⁄4•, in the dilute hydrofluoric acid solution (1 part by volume of HF (concentrated solution) to 64 volumes, H2〇), the first name is engraved for 15 seconds. Finally, the sample is rinsed with DI water and dried with nitrogen. Low content of metal impurities. The atomic concentration dropped from about 1.3% to less than 1% of the instrument's detection limit, and similarly, the Ding from about 1% fell below the detection limit of the instrument. As an added benefit, mild The meal produces a textured SiOx film surface which reduces the AM 1.5 AWR from an initial value of 4.9% to 3.08%.

在一或多個實施例中,RTWCG溶液由如下物質構 成.2體積份j^TiF6、2體積份用Si02過飽和之膠狀二氧 化石夕及1體積份1〇% K3Fe(CN)6(水溶液)。在平滑n+/p c_si 晶圓上生長之平滑RTWCG SiOx膜具有極低AM1 5 AWR 4·78%。參見圖1卜所述溶液產生類似於圖10之膜(Si /辰度隨深度逐漸增加)的膜。其折射率隨深度自135之表 54 201251057 41245pif 面值增加至SiQx/Si界面處之3·5。已展示膜之表面碳大大 提咼膜之化學穩定性,而對梯度折射率無很大影響。 已發現生長態SiOx膜高達1%之相對較大表面金屬雜 質/辰度在很大程度上由商品級HjiF6矽源組分引入,所述 組分廣泛用於树及其他基板上近室溫㈣沈積(iiquid phase deposition,LPD) Si〇2膜。已嘗試用其他&組分來 替換傳統HjiF6矽源組分。圖12展示使用由如下物質構 成之生長溶液生長之RTWCG SiOx膜的xps深度分佈曲 線:5體積份70% NH4SiF6 (水料)、2體積份6〇% H2TiF6 (水 溶液)、2體積份10% K3Fe(CN)6 (水錄)及3體 公克C。陶2料於丨公升· H—製In one or more embodiments, the RTWCG solution is composed of 2 parts by volume of j^TiF6, 2 parts by volume of colloidal silica dioxide supersaturated with SiO2, and 1 part by volume of 1% by weight of K3Fe(CN)6 (aqueous solution). ). The smooth RTWCG SiOx film grown on a smooth n+/p c_si wafer has an extremely low AM1 5 AWR 4.78%. Referring to Figure 1, the solution produced a film similar to the film of Figure 10 (Si/Tens is gradually increasing with depth). The refractive index increases with depth from the surface of 135 to the surface of the SiQx/Si interface. It has been shown that the surface carbon of the film greatly enhances the chemical stability of the film and has no significant effect on the gradient index. It has been found that up to 1% of the relatively large surface metal impurities/density of the grown SiOx film is largely introduced by the commercial grade HjiF6 tantalum component, which is widely used on trees and other substrates at near room temperature (4) Iiid phase deposition (LPD) Si〇2 film. Attempts have been made to replace traditional HjiF6 source components with other & components. Figure 12 shows the xps depth profile of an RTWCG SiOx film grown using a growth solution consisting of 5 parts by volume of 70% NH4SiF6 (water), 2 parts by volume of 6% H2TiF6 (aqueous solution), 2 parts by volume of 10% K3Fe (CN) 6 (water record) and 3 body grams C. Pottery 2 is made in the 丨 升 · H-system

n+-Si基板上之生長態膜具有低於xps偵測極限之Ti及R 原子濃度。140奈米厚膜在400奈米-1200奈米光譜内之 AM1.5 AWR 為 5.14%。 自RTWCG SiOx生長溶液調配物去除;g夕源組分使得 SiOx生長速率提高且具有足夠回蝕深度,以形成保持網版 印刷前接觸及後接觸之完整性的極佳品質選擇性發射極, 且使得所得SiOx膜之金屬雜質濃度降低。以下為較大量 測試調配物中之兩個實例。 圖13展示使用如下物質之溶液在n+c_;si基板上生長 之低金屬雜質RTWCG SiOx膜的XPS深度分佈曲線:2體 積份60% H2TiF6 (水溶液)、2體積份5% K3Fe(CN)6 (水料)及3 體積份Ηζ〇。在大量n+p C-Si及mc_si小面積矽太陽電池 上測試上述RTWCG溶液之具有不同組分濃度之形式。由 55 201251057 41245pif 所得高品質RTWCG Si〇x ArC/se電池結構獲得良好結 果。生長悲SiOx膜中所含之金屬雜質之量因較長的生長 後水沖洗時間而減少。Fe及Ti金屬雜質之原子濃度低於 0.1%且形成Si-Me或Me-Ο鍵,如由氧、矽、鈦及鐵峰之 XPS結合能所發現。 在RTWCG SiOx生長期間回蝕之未金屬化發射極表 面之厚度取決於溶液濃度,其可經改變以產生優良品質選 擇性發射極,同時生長最佳厚度2Si〇x八尺(:膜。舉例而 吕,特定調配物由相對較高濃度之印下丨匕及K3Fe(CN)6構 成。在平滑n+/p c-Si發射極表面上生長14〇奈米厚Si〇x ARC膜之時間為約50秒。所述溶液產生AM1 5 AWR為 6.45/〇之膜,且自未金屬化發射極表面回触〇 18_〇 微米 之深度。 圖14展示在n+c-Si基板上由如下物質之較佳生長溶 液(下文稱作ντ溶液)生長之低金屬雜質RTWCGsi〇x 膜之組分的xps深度分佈曲線:丨體積份至3體積份6〇〇/〇 HJiF6(水料〕及1體積份至3體積份的i公克_5公克v 〇 溶解於i公升⑽阳恤)中之溶液。…溶液滿足开^ 5 優良品質RTWCG Si〇x ARC/SE之所有必需要求,且提供 最高效率增益之-。其與前表面及後表面金屬化完全相 容。發現主要集巾在膜表面之金屬雜f的濃度低於美國國 家航空航天局格倫研究中心(NASA Glerm)之高解松声 XPS系統的儀器偵測極限。 ° 又 由諸如圖13及圖14中所用之生長溶液在重推雜於 56 201251057 41245pif 表面上生長平滑120奈米-150奈米厚Si〇x膜。其生長態 AM1.5 AWR值5%至9%藉由另一T〇形成步驟減小。平滑 SiOx膜對於可見光輻射為高度透明,尤其朝向4〇〇奈米 -1200奈米AM 1.5太陽光譜之波長下限。在波長下限,所 有其他標準單層(尤其多層ARC)吸收最高。實施實例展 示即使對於240奈米厚SiOx膜’可見光之吸收亦低於丨%。 。在很大程度上,VT及相關生長溶液之最昂貴組分為 60% HzTiFw水溶液> 組分。此外,已觀察到化學品批次之間 存在品質問題,尤其若獲自不同供應商。出於經濟及品質 控制原因,在實驗室中產生此組分。每公升1〇% 5〇%hf(水 溶液〉溶解10公克至275公克範圍内之任何量的工業級Ti〇2 銳鈦礦。直接添加2公克至50公克V2〇5至其中,或首先 將2公克至5〇公克V2〇5溶解於1〇%至3〇% HC1 (水溶液) 中且產生V2〇5/HCl(水溶液〉與HzTOVHF(水溶液〉之不同比率混 合物。使用超高純度水 '半導體級HF及半導體級Ηα。 ^含有較高濃度V+離子組分之SiOx生長溶液以逐漸提 同之生長速率產生SiOx膜。表1展示在n+_Si基板上同時 產生RTWCG SiOx ARC/SE/TO電池結構所必需之時間長 度。,視添加至恆定量V2〇5組分中之Ti〇2源之量而定,13〇 不米150奈米之SiOx厚度(參見表1 )需要不超過^秒至 約15秒。在此實驗及多個其他類似實驗中,si〇x厚度由 預先建立之色碼eGde)及/或藉由使用光阻遮蔽之 石夕表面的德卡特分佈曲線估算。 57 201251057 41245pif 中之Ti02濃度 之V2〇5濃度 373公克Ti02/公升 52公克V2〇5/公升 298公克Ti02/公升 52公克V2〇5/公升 224公克Ti02/公升 52公克V,0 J公井 149公克Ti02/公升 52公克V2〇5/公升 75公克Ti02/公升 52公克V2〇5/公升The grown film on the n+-Si substrate has Ti and R atomic concentrations below the xps detection limit. The 140 nm thick film has an AM1.5 AWR of 5.14% in the 400 nm to 1200 nm spectrum. Removed from the RTWCG SiOx growth solution formulation; the g source component increases the SiOx growth rate and has sufficient etch back depth to form an excellent quality selective emitter that maintains the integrity of the pre- and post-screening contact, and The metal impurity concentration of the obtained SiOx film is lowered. The following are two examples of larger quantities of test formulations. Figure 13 shows the XPS depth profile of a low metal impurity RTWCG SiOx film grown on a n+c_;si substrate using a solution of the following materials: 2 parts by volume 60% H2TiF6 (aqueous solution), 2 parts by volume 5% K3Fe(CN)6 (water) and 3 parts by volume. The above RTWCG solutions were tested for different component concentrations on a large number of n+p C-Si and mc_si small area tantalum solar cells. The high quality RTWCG Si〇x ArC/se battery structure obtained by 55 201251057 41245pif obtained good results. The amount of metal impurities contained in the growing sad SiOx film is reduced by the longer post-growth water rinse time. The atomic concentrations of Fe and Ti metal impurities are less than 0.1% and Si-Me or Me-Ο bonds are formed, as found by the XPS binding energy of oxygen, bismuth, titanium and iron peaks. The thickness of the etched back unmetallized emitter surface during RTWCG SiOx growth depends on the solution concentration, which can be varied to produce a good quality selective emitter while growing at an optimum thickness of 2 〇 x 8 ft. (film. For example Lu, the specific formulation consists of a relatively high concentration of ruthenium and K3Fe(CN) 6. The time to grow a 14 Å thick Si〇x ARC film on the smooth n+/p c-Si emitter surface is about 50 seconds. The solution produced a film with an AM1 5 AWR of 6.45/〇 and a depth of 〇18_〇 microns from the unmetallized emitter surface. Figure 14 shows the following on the n+c-Si substrate The xps depth profile of the components of the low-metal impurity RTWCGsi〇x film grown by a preferred growth solution (hereinafter referred to as ντ solution): 丨 volume parts to 3 parts by volume 6 〇〇 / 〇 HJiF6 (water) and 1 part by volume Up to 3 parts by volume of i gram _5 gram v 〇 dissolved in i liter (10) mascara) solution... The solution meets all the necessary requirements for open quality 5 RTWCG Si〇x ARC/SE and provides the highest efficiency gain - It is completely compatible with the metallization of the front and back surfaces. The concentration of metal miscellaneous f on the surface is lower than the instrument detection limit of the high resolution SOPS system of NASA Glerm. ° Further re-push by growth solutions such as those used in Figures 13 and 14. Mixed with 56 201251057 41245pif smooth growth of 120 nm - 150 nm thick Si〇x film. Its growth state AM1.5 AWR value 5% to 9% is reduced by another T〇 formation step. Smooth SiOx film for Visible radiation is highly transparent, especially towards the lower wavelength limit of the 4 〇〇 nano-1200 nm AM 1.5 solar spectrum. At the lower wavelength limit, all other standard monolayers (especially multilayer ARC) have the highest absorption. The example shows even for 240 nm. The absorption of visible light by thick SiOx films is also less than 丨%. To a large extent, the most expensive component of VT and related growth solutions is the 60% Hz TiFw aqueous solution> component. In addition, chemical batches have been observed. There are quality problems, especially if they are obtained from different suppliers. For economic and quality control reasons, this component is produced in the laboratory. 1〇% 5〇%hf per liter (aqueous solution) dissolves from 10g to 275g Ren Quantity of industrial grade Ti〇2 anatase. Add 2g to 50g V2〇5 directly to it, or first dissolve 2g to 5〇g of V2〇5 in 1〇% to 3〇% HC1 (aqueous solution) And a mixture of V2〇5/HCl (aqueous solution) and HzTOVHF (aqueous solution) is produced. Ultra-high purity water 'semiconductor grade HF and semiconductor grade Ηα are used. ^ SiOx growth solution containing a higher concentration of V+ ion component is gradually added The same growth rate produces a SiOx film. Table 1 shows the length of time necessary to simultaneously produce the RTWCG SiOx ARC/SE/TO cell structure on the n+_Si substrate. Depending on the amount of Ti 〇 2 source added to the constant amount of V 2 〇 5 component, the SiOx thickness of 13 〇 not 150 nm (see Table 1) needs to be no more than ^ seconds to about 15 seconds. In this experiment and in a number of other similar experiments, the si〇x thickness was estimated from the pre-established color code eGde) and/or by the Dekater distribution curve using the photoresist masked surface. 57 201251057 41245pif Ti02 concentration V2〇5 concentration 373 grams Ti02/liter 52 grams V2〇5/liter 298 grams Ti02/liter 52 grams V2〇5/liter 224 grams Ti02/liter 52 grams V,0 J well 149 Gram Ti02 / liter 52 grams V2 〇 5 / liter 75 grams Ti02 / liter 52 grams V2 〇 5 / liter

15秒 秒〜 <1秒 <1秒 表1.數種生長溶液生長金屬藍RTWCGSiOx膜所需 之時間。V2〇5組分之濃度保持恆定(52公克/公升),而 Ti02銳鈦礦組分之濃度變化。 由於電池之先行部分(leading part)與電池之滞後部 分(lagging part)之間的生長時間差異較小,故在工業枣 境中控制表1中之超高生長速率極具挑戰性。在一或多個 實施例中,溶液應經調整為在至少2〇秒且最佳25秒至工 分鐘内生長ARC/SE/TO結構。 圖15展示在重摻雜磷之n+c_Si基板上生長之低 雜質RTWCG SiOx膜之主要組分的xps深度分佈曲線。 =於產生所述社超低成本生長溶㈣如下㈣構成:ι 體積份至3體積份1〇公券/公斗τ·η ,Λ0/ 很 Λ見/Α升Tl〇2銳欽礦溶解於15%至 中之溶液及i體積份至 =2=解於肌HC1(_)中之溶液。此溶液克 13〇 ^奈米厚RTWCGSl〇X膜所需之時間為20秒-30 較高生長速率溶液(諸如圖15 生長速率缝更富切,甚至在相較於較低 因,較快生長溶液產生表面折射率、^此。出於此原 千冋運2.2且逐漸增加至 58 201251057 41245pif /Si界面處之3 5的膜。朝向si〇x/Si接面,石夕濃度逐 f 2 t,.而其氧原子濃度隨Si〇X深度逐漸減少。儘管這 二田3 Si之SlOx膜的反射率高於圖1〇中Si〇x膜之反射 率’但其鳩1.5 AWR仍遠低於1〇%。相較於目前技術之 任何其他單層,這些富含秒之Si〇x膜在可見光譜中更透 明,且比多層ARC透明得多。 產生150奈米厚優良品質RTWCGSiOx膜之高生長速 ^低成本溶液藉由將單—金屬氧化物、金屬氯化物或金 屬氣化物組分溶解於各種濃度之HF水溶液中來製備。本 文所述之過渡金屬兀素之氧化物為較佳金屬氧化物组分。 SiOx生長速率隨著金屬氧化物組分之濃度增加而提高,且 在較=程度上隨著所用HF之濃度增加而提高。 溶解於HF(水溶液〕中之五氧化二飢溶液為藉由將金屬氧 化物組分溶解於耶中產生的生長溶液之 示在重摻_之石夕基板上生長13〇奈米至15二= RTWCG施膜所需之時間長度與溶解於50% HF_ 規化量的曲線°Si0x生長速率在較大程度 之V2〇5濃度,且在較小程度上取決於HF 水溶液之稀釋度。將不同量之v2〇5溶液溶解於不同耶(水 溶液)濃度中。在類似的重摻_之n+_si基板上,使用不同 生長溶液生長M0奈米厚施膜。量測形成臈所需之時 間’且結果展讀表2中。如可見,恒定量之 於逐漸增強的漠射之溶液的生長時間僅較$ 減少。逐漸增大量之V2〇5溶解於等濃度HF t之溶液以也 59 201251057 41245pif 生長時間減少明顯得多。 ▽2〇5濃度小於7.5公克ν9Ος/公并HF , ΐ產生銳之原子濃度祕0.1%的Si0x膜。諸=表2中生^容 =二容:產生金屬飢之原子濃度逐漸增加之‘ 之超=由在1G秒以内生長14G奈米厚Si0x膜 。同生長速率溶液產生的品質控制問題,較佳v 度為低於7.5公克v2〇5/公升HF (水溶液),且較佳1 ^ ’ 10%至30%。 /展1马 每公升HF之V2〇5公克 數 10% HF (水溶液) 20% HF (水溶液) 3〇%HF~ (水溶液) 40% HF (次泡该、 〇公見V2〇5/公升HP 185秒 180秒 180秒 πη ίΊ'~ 3.0公克V2〇5/公升hf 54秒 51秒 45秒 44 ΰ'~~ 12 $>1' 4.5公克V2〇s/公升HF 23秒 22秒 26秒 6.0公克V2〇5/公升hf 16秒 14秒 ~~13¾~ 7.5公克V205/公升hf 16秒 11秒 11秒 8务L、 9.0公克V205/公并HF 10.5 公克 V2〇5/5:fFHF 16秒 ~16秒 8秒 ~~7^~~ 8秒 Ο 5秒 [4秒 12.0公克V205/公升HF 12秒 5秒 5#~~ 表2.使用具有不同量催化劑V2〇5溶解於不同濃产 HF(水溶液〉中之生長溶液生長金屬藍rtwcG SiOx膜所需之 時間。 圖 Π ( a)展示由 V2O5/50% HF (水溶液) 生長溶液生長之 低金屬雜質RTWCG SiOx膜之主要組分的xps深度分佈 曲線。在約30秒内,在n+ c-Si基板上生長約140奈米厚 201251057 41245pif 膜三如可見,此快速生長Si〇x膜富含矽,且具有梯度矽 及氧深度分佈曲線。在圖17(b)中展示釩峰處於背景水 準(background level) ’因此,低於xps系統之〇 1%儀器 偵測極限。 如本領域中所熟知,XPS、AES及其他表面分析技術 不能彳貞測具有低原子序之元素(諸如氫)。然而,SIMS可 成功地用於測定RTWCG SiOx膜中所存在之氫以及其他 雜質之量。圖18展示在與用於圖16之溶液類似配方的溶 液中生長的快速生長富含Si之SiOx膜中發現的主要非金 屬雜質之SIMS原子濃度深度分佈曲線。所述膜具有相對 較高之碳原子濃度、相對較低之氫原子濃度及甚至更低之 氣及氮原子濃度。 RTWCG SiOx膜(圖18)之碳原子濃度顯著高於本領 域中已知之低溫SiOx沈積的原子濃度。舉例而言,RJWCG SiOx膜之碳原子濃度比在250°C之溫度下使用本領域中已 知之「原子層沈積(atomic layer deposition,ADL )」的「使 用胺基碎焼*之超低溫Si〇2沈積(Extra Low-temperature15 seconds Second ~ < 1 second < 1 second Table 1. Time required for growth of the metallic blue RTWCGSiOx film by several growth solutions. The concentration of the V2〇5 component was kept constant (52 g/L), while the concentration of the Ti02 anatase component varied. Since the difference in growth time between the leading part of the battery and the lagging part of the battery is small, controlling the ultra-high growth rate in Table 1 in an industrial environment is extremely challenging. In one or more embodiments, the solution should be adjusted to grow the ARC/SE/TO structure for at least 2 sec and optimally 25 seconds to minutes. Figure 15 shows the xps depth profile of the main components of the low impurity RTWCG SiOx film grown on the heavily doped phosphorus n+c_Si substrate. = Produce the company's ultra-low-cost growth solution (4) as follows: (4) Composition: ι volume to 3 parts by volume 1 〇 coupon / gong τ · η, Λ 0 / very see / soar Tl 〇 2 sharp Qin mine dissolved in 15% to medium solution and i parts by volume to = 2 = solution in muscle HC1 (_). The time required for this solution is 13 〇 ^ nanometer thick RTWCGSl 〇 X film is 20 seconds - 30 higher growth rate solution (such as Figure 15 growth rate slit is more cut, even faster than the lower cause, faster growth The solution produces a surface refractive index, which is the same as that of the film at the interface of 58 201251057 41245pif /Si. The orientation of the Si〇x/Si junction is the same as f 2 t The oxygen atom concentration decreases with the depth of Si〇X. Although the reflectivity of this Ertian 3 Si SlOx film is higher than that of the Si〇x film in Figure 1但, its 鸠1.5 AWR is still much lower than 1〇%. These second-rich Si〇x films are more transparent in the visible spectrum and much more transparent than multilayer ARC compared to any other single layer of the current technology. Producing a high quality 150W thick RTWCGSiOx film The growth rate low-cost solution is prepared by dissolving a mono-metal oxide, a metal chloride or a metal vapor component in various concentrations of HF aqueous solution. The transition metal halogen oxide described herein is a preferred metal. Oxide component. SiOx growth rate increases with the concentration of metal oxide components Increased, and at a higher degree, increases as the concentration of HF used increases. The pentoxide bismuth solution dissolved in HF (aqueous solution) is a growth solution produced by dissolving the metal oxide component in yeah. The length of time required to grow 13 〇 nanometer to 15 = = RTWCG on the heavily doped 夕 夕 substrate is the curve dissolved in the 50% HF_ regulatory amount. The growth rate of Si0x is greater than the concentration of V2 〇 5 And to a lesser extent, depending on the dilution of the HF aqueous solution. Different amounts of v2〇5 solution are dissolved in different y (aqueous) concentrations. On similar heavily doped n+_si substrates, different growth solutions are used. G0 nanometer thick film was applied. The time required to form strontium was measured' and the results were shown in Table 2. As can be seen, the growth time of a constant amount of solution of gradually increasing desertification was only less than $. The solution of V2〇5 dissolved in the same concentration of HF t is also significantly reduced by the growth time of 59 201251057 41245pif. The concentration of ▽2〇5 is less than 7.5g ν9Ος/gong and HF, and the Si produces a sharp atomic concentration of 0.1% of Si0x film.诸=表2中生^容=二容: Producing metal hunger The atomic concentration is gradually increased by 'exceeding by growing 14G nanometer thick Si0x film within 1G seconds. The quality control problem with the growth rate solution is preferably less than 7.5g v2〇5/liter HF (aqueous solution) ), and preferably 1 ^ '10% to 30%. / Exhibition 1 horse per liter HF V2 〇 5 gram 10% HF (aqueous solution) 20% HF (aqueous solution) 3〇% HF~ (aqueous solution) 40% HF (Secondary bubble, 〇 public see V2 〇 5 / liter HP 185 seconds 180 seconds 180 seconds πη ίΊ '~ 3.0 grams V2 〇 5 / liter hf 54 seconds 51 seconds 45 seconds 44 ΰ '~~ 12 $>1' 4.5 Gram V2 〇s / liter HF 23 seconds 22 seconds 26 seconds 6.0 grams V2 〇 5 / liters hf 16 seconds 14 seconds ~ ~ 133⁄4 ~ 7.5 grams V205 / liters hf 16 seconds 11 seconds 11 seconds 8 hours L, 9.0 grams V205 / public And HF 10.5 gram V2 〇 5 / 5: fFHF 16 seconds ~ 16 seconds 8 seconds ~ ~ 7 ^ ~ ~ 8 seconds Ο 5 seconds [4 seconds 12.0 grams V205 / liter HF 12 seconds 5 seconds 5 # ~ ~ Table 2. Use The time required for the growth of the metal blue rtwcG SiOx film with different amounts of the catalyst V2〇5 dissolved in different concentrated HF (aqueous solution). Figure Π (a) shows the xps depth profile of the main components of the low-metal impurity RTWCG SiOx film grown from a V2O5/50% HF (aqueous) growth solution. In about 30 seconds, about 140 nm thick is grown on the n+ c-Si substrate. 201251057 41245 pif Membrane As seen, this rapidly growing Si〇x film is rich in yttrium and has a gradient 矽 and oxygen depth profile. The vanadium peak is shown at background level in Figure 17(b) and is therefore below the 1% instrument detection limit of the xps system. As is well known in the art, XPS, AES, and other surface analysis techniques cannot speculate elements (such as hydrogen) having a low atomic sequence. However, SIMS can be successfully used to determine the amount of hydrogen and other impurities present in the RTWCG SiOx film. Figure 18 shows the SIMS atomic concentration depth profile of major non-metallic impurities found in a rapidly growing Si-rich SiOx film grown in a solution similar to the solution used in Figure 16. The membrane has a relatively high carbon atom concentration, a relatively low hydrogen atom concentration, and even a lower gas and nitrogen atom concentration. The carbon atom concentration of the RTWCG SiOx film (Fig. 18) is significantly higher than the atomic concentration of the low temperature SiOx deposition known in the art. For example, the carbon atom concentration ratio of the RJWCG SiOx film is "at the atomic layer deposition (ADL)" which is known in the art as "the ultra-low temperature Si〇2 using the amine-based mash*" at a temperature of 250 °C. Deposition (Extra Low-temperature

Si〇2 Deposition Using Aminosilanes )」(I·鈴木(I. Suzuki) 等人)的碳原子濃度高多達兩個數量級。然而,RTWCG SiOx及Si02 ADL膜之氫及氮的原子濃度幾乎一致。 因為RTWCG SiOx為室溫製程,故氫之原子濃度隨著 朝向SiOx/Si界面之深度逐漸減少。此表明本領域中已知 之氫鈍化作用在SiOx/Si界面處最小’且顯然不存在於石夕 主體中。然而,本文所述之小面積MOS元件之ι_ν特徵 201251057 41245pif 展不藉由在RTWCG SiOx生長後在約2〇〇t:之相對低溫下 加熱基板,Si〇x膜中之一些氫使Si0x/Si5面充分鈍化。 在較高溫度下加熱SiOx膜甚至可鈍化一些矽主體缺陷。 在大量小面積太陽電池上進行之實驗展示在超低成 本高生長速率RTWCG生長溶液中富含別之Si〇x膜(諸 如圖15及圖17中之膜)之RTWCG在成本與電學及介電 特性之間提供良好折衷。其可較仙於在較低成本太陽級 c-Si、mc-Si或多晶矽基板上形成優良品質RTWa} Si〇x ARC/ S E/T0結晶矽太陽電池結構。儘管所得膜具有略高反 射,,但由這些溶液生長之Si0x膜具有低金屬濃度且與 太%電池上存在之金屬化相容。類似於其他rTWcg SiOx 生長浴液,優良品質SE及TO效率增強特徵同時產生。 太陽電池應用之RTWCG SiOx較佳溶液調配物除使 用Fe、Ti、V及Co離子以外,亦存在各種其他Me+n/Me+(n+m) 離子’其中η為0至4,且m為1至4。特定實例包含(但 不限於)金屬離子,諸如:Ti、Co、V、Cr、Fe、Ni、Cu、 Y、Sr、Ce、Ba、Zr、Nb、Ru、Rh 及 Pd。然而,這些離 子中有一些僅微弱地催化SiOx之生長,使得其對於大量 太1%電池製造不實用。舉例而言,最快速Nb:HF生長溶液 調配物耗用40分鐘生長必需厚度之rTwcg Si〇x ARC 膜。 將含有金屬基團之化合物(例如K3Fe(CN)6、V205、 Ti〇2銳鈦礦、Co(OH)2等)溶解於酸性溶液中,以產生促 進基於SiOx之薄膜生長同時產生優良品質選擇性發射極 62 201251057 41245pif =^調配物。較佳溶液含有各種濃度之Ηρ(_,且可 3有各觀度其他酸(諸如Hcl、H2S〇4及HN〇3)之組合。 組分用於⑽發射極,而其他酸可能為溶解某些不易 /谷解於HF t之金屬離子組分所需。 溶解於HF (树)中之IV族Sn4+及pb4+離子為相對較 J的y RTWCGSi0x催化劑。在本發明之一較佳實施例 中,基於Pb之RTWCG SiOX生長溶液藉由每ι公 二^0%耶溶解3公克_7·5公克pb〇2製備。如同所有盆 他生長溶_配物,參見圖19,Si〇x 液中催化狀濃度。 i + 在80秒内在重摻雜叙㈣丨基板上生長極均一金屬 备(130奈米]50奈米厚)Si〇x層的低成本卿⑺⑽ 生長溶液可藉由在i公升50% HF(水溶液〉中溶解45公 Pb〇2製備。所得膜僅含有微量(若存在)pb原子 且具有良好電子學/光學特性。可藉由在·_5〇%之間^ HF(水溶幻濃度來調節由所述溶液回蝕之發射極之厚度 =生優良品質選擇性發射極。存在多種共催化劑,其可 提高其生長速率而不會顯著增加所魏之金屬 ^ . 實例為基於Ti、Co、V及Fe之化合物。 丨又' 含有數種氧化離子(包含(但不限於)Μη〇4·& & 〇 2 ^ HF水溶液亦可用作RTWCG Si〇x膜生長之均化 致力於開發最有效最低成本且環保的RTWcg生 液,已成功地使用非金屬催化劑在n+/p c_Si及mc_si表: 63 201251057 41245pif 上生長SlOx。含VII族氣ϋ及填離子之酸性水溶液 可用於RTWCGSiOx生長溶液中。> RTyCG SiOx生長溶液藉由將五氧化峨(l2〇5)溶解於各 種/辰度之HF(水溶幻中製備。所述溶液可在不超過5〇秒内 生長所要SiOx ARC厚度。這些生長溶液與標準結晶n+/pSi〇2 Deposition Using Aminosilanes) (I. Suzuki et al.) has a carbon atom concentration as high as two orders of magnitude. However, the atomic concentrations of hydrogen and nitrogen in the RTWCG SiOx and SiO 2 ADL films are almost identical. Since RTWCG SiOx is a room temperature process, the atomic concentration of hydrogen gradually decreases with depth toward the SiOx/Si interface. This indicates that the hydrogen passivation known in the art is minimal' at the SiOx/Si interface and is clearly not present in the core body. However, the ι_ν feature 201251057 41245pif of the small-area MOS device described herein does not heat the substrate at a relatively low temperature of about 2〇〇t: after the growth of the RTWCG SiOx, and some of the hydrogen in the Si〇x film makes the Si0x/Si5 The surface is fully passivated. Heating the SiOx film at higher temperatures can even passivate some of the defects in the ruthenium body. Experiments conducted on a large number of small-area solar cells show the cost and electrical and dielectric properties of RTWCG enriched in other Si〇x films (such as the films in Figures 15 and 17) in ultra-low cost, high growth rate RTWCG growth solutions. Provide a good compromise between features. It is superior to the formation of a good quality RTWa} Si〇x ARC/S E/T0 crystalline germanium solar cell structure on a lower cost solar grade c-Si, mc-Si or polycrystalline germanium substrate. Although the resulting film has a slightly higher reflectance, the SiOx film grown from these solutions has a low metal concentration and is compatible with the metallization present on the battery. Similar to other rTWcg SiOx growth baths, excellent quality SE and TO efficiency enhancement features are produced simultaneously. In addition to the Fe, Ti, V and Co ions, there are various other Me+n/Me+(n+m) ions in the RTWCG SiOx solution for solar cell applications, where η is 0 to 4 and m is 1 To 4. Specific examples include, but are not limited to, metal ions such as Ti, Co, V, Cr, Fe, Ni, Cu, Y, Sr, Ce, Ba, Zr, Nb, Ru, Rh, and Pd. However, some of these ions only weakly catalyze the growth of SiOx, making it impractical for a large number of 1% battery fabrication. For example, the fastest Nb:HF growth solution formulation consumed a rTwcg Si〇x ARC film of the necessary thickness for 40 minutes. A compound containing a metal group (for example, K3Fe(CN)6, V205, Ti〇2 anatase, Co(OH)2, etc.) is dissolved in an acidic solution to produce a film which promotes SiOx-based film growth while producing excellent quality. Sex emitter 62 201251057 41245pif = ^ formulation. Preferred solutions contain various concentrations of Ηρ(_, and may have a combination of other acids such as Hcl, H2S〇4, and HN〇3. The components are used for (10) the emitter, while other acids may be dissolved. Some of the metal ion components that are not easily/solved in HF t are required. The Group IV Sn4+ and pb4+ ions dissolved in HF (tree) are relatively y RTWCGSi0x catalysts. In a preferred embodiment of the present invention, The Pb-based RTWCG SiOX growth solution was prepared by dissolving 3 g of _7·5 g of pb〇2 per metric metric metric solution. As with all pots, the solution was dissolved, as shown in Figure 19, catalyzed by Si〇x solution. Concentration. i + Growth of a very uniform metal (130 nm] 50 nm thick on a heavily doped (four) ruthenium substrate in 80 seconds. The Si〇x layer of low-cost qing (7) (10) growth solution can be obtained by i liter 50 % HF (aqueous solution) is dissolved in 45 psi Pb 〇2. The obtained film contains only traces (if any) of pb atoms and has good electronic/optical properties. It can be obtained by _ _5 〇 % HF (water immersion concentration) To adjust the thickness of the emitter etched back by the solution = raw good quality selective emitter. There are a variety of co-catalysts, which can Increasing the growth rate without significantly increasing the metal of the alloy. Examples are compounds based on Ti, Co, V and Fe. 丨 ' contains several oxidizing ions (including but not limited to Μη〇4·&& 〇 2 ^ HF aqueous solution can also be used as a homogenization of RTWCG Si〇x film growth to develop the most effective and lowest cost and environmentally friendly RTWcg raw liquid, which has successfully used non-metallic catalysts in n+/p c_Si and mc_si tables: 63 201251057 417.5pif growth of SlOx. Acidic aqueous solution containing VII gas and ion-filling can be used in RTWCGSiOx growth solution.> RTyCG SiOx growth solution is prepared by dissolving pentoxide (12 〇5) in various / HF ( Prepared in water-soluble phantom. The solution can grow the desired SiOx ARC thickness in no more than 5 sec. These growth solutions and standard crystal n+/p

Si太電池之剷網版印刷金屬化相容。所得優良品質Si〇x 膜具有低反射率、充分鈍化發射極之表面,且產生優良品 質選擇性發射極。可供吾等使用之所有含魏合物在溶: 於基於HF之酸性溶液令時生長Si〇x膜,所述含蛾化合物 包含(但不限於)碘酸(HI〇3)、碘化鉀(KI)及的厂 若電池完全浸入超過1分鐘,則視網版印刷A1膏、 燒結溫度及時間而^,I2〇^hf生長溶液可與基於Al的後 網版印刷接觸反應,從而使其退化。若具有A1後接觸之太 陽電池完全浸人基㈣之生長麟,則必驗用高生長速 率調配物。當然,可使用除完全浸入以外之其他方法來避 免與A1後接觸之不適宜反應。電池可漂浮在生長溶液上且 發射極面向下,或生長溶液之薄膜可僅塗覆於發射極表面 上。 在-個實驗中,調配含有不同量之l2〇5溶解於不同濃 度之HF(水溶液〕中的RTWCG Si〇x生長溶液。LQs濃度在 0.3公克/公升-2公克/公升範圍内,且HF(ww濃度在 10〇/。-50%範圍内。已確定類似重摻雜n+矽表面上之 生長速率主要取聽⑽濃度,且在較小程度上取決於所 用HF之濃度。2公克LOW公升5〇% HF (水溶液〉之濃度在 64 201251057 41245pif 約15秒内產生130奈米至丨 八杳I Ο /1八44· irw 不水厚金屬藍氧化物。0.3Si Tai battery shovel screen printing metallization compatible. The resulting good quality Si〇x film has a low reflectivity, sufficiently passivates the surface of the emitter, and produces a good quality selective emitter. All of the Wei-containing compounds that can be used by us are dissolved: the Si〇x film is grown when the HF-based acidic solution is used, and the moth-containing compound includes, but is not limited to, iodic acid (HI〇3), potassium iodide (KI). If the battery is completely immersed for more than 1 minute, the screen printing A1 paste, sintering temperature and time can be used, and the I2〇^hf growth solution can react with Al-based screen printing to degrade it. If the solar cell with A1 contact is completely immersed in the growth phase of the base (4), a high growth rate formulation must be tested. Of course, other methods than complete immersion can be used to avoid unsuitable reactions with post-A1 contact. The battery can float on the growth solution with the emitter facing down, or the film of the growth solution can be applied only to the emitter surface. In one experiment, RTWCG Si〇x growth solution containing different amounts of l2〇5 dissolved in different concentrations of HF (aqueous solution) was formulated. The concentration of LQs was in the range of 0.3 g/L-2 g/L, and HF ( The ww concentration is in the range of 10 〇 / -50%. It has been determined that the growth rate on the surface of the heavily doped n + 矽 is mainly the concentration of the listener (10), and to a lesser extent depends on the concentration of HF used. 2 gram LOW liters 5 〇% HF (aqueous solution) concentration in 64 201251057 41245pif in about 15 seconds produces 130 nm to 丨 杳 杳 I Ο /1 八 44 · irw not water thick metal blue oxide. 0.3

SiOx厚度。 •度在5分鐘内生長相同 關於生長溶液組分之進一牛昝 1205及KI以外,有相對大量二:f露’除m〇3、 良品質之RTWCG Si0x 物f可用於產生改 K 寻膜以用於太陽電池及其他應 SU4、PI3、P2l4、Til4、Vl3、col2、贿2、Asi3、_、卿、 1¾、卿及叫。根據本發明,溶解於HF(_中之一 或多種含埃化學物質之各種組合將推化或共催化siox膜 且在 H+-S!或 P+-Sl 表面上產生 Rtwcg Si〇x arc/se/t〇 電池結構之效率增強特徵。亦已證明上述催化劑在添加至 本文所述之數種SiOx生長溶液中時可提高在非&基板上 生長之RTWCG_^質。舉例而言’若將A%添加至圖 14中之VT RTWCG生長溶液中,則在p_GaAs及n GaAs 基板上生長之RTWCG Ga-As-Ο薄膜介電層的鈍化能力顯 著提高。 ,、 相較於習知結晶太陽電池設計,由RTWCG Si〇x ARC/SE/T0電池結構獲得之效率增益歸因於顯著較低之 光、電阻及複合損粍。所述RTWCG SiOx膜之反射率及吸 收極低’ SiOx膜具有良好鈍化作用,產生高效選擇性發射 極(SE) ’且由於平滑se/紋理化SiOx概念而存在固有較 低之電阻損耗。 如本文所述之環保rjWCG SiOx方法及製程設計成 65 201251057 41245pif 可用於以習知網版印刷金屬化製造低成本高效率結晶矽太 陽電池。RTWCG SiOx ARC/SE/TO製程簡單、可控制,且 在不超過1分鐘内可進行如下操作: i. 當場清洗矽及金屬化表面; ii. 生長梯度折射率SiOx抗反射塗層(ARC),其在 製造型n+p Si基板上的AM1.5平均加權反射率(AWR) 為5%-9%,且在經最佳化RTWCG SiOxARC/TO電池結構 上的 AM 1.5 AWR 為 3°/。至 5% ; iii. SiOx使SiOx/發射極界面處之懸鍵極其充分地鈍 化; iv. 若使用本文所述之遮蔽擴散則產生良好邊緣分 離, V.使用標準網版印刷金屬化層作為遮罩以僅回蝕發射 極之主動區,由此產生與大規模低成本製造相容之極佳品 質SE ;以及 vi.產生視情況經紋理化之SiOx表面,其可進一步 減少光損耗。 本發明之上述及其他目的、特徵及優點將由以下本發 明較佳實施例之更特定實例而顯而易見。 實例1-超低成本RTWCG SiOX溶液。 較佳在製造設施中當場使用稀釋化學物質產生超低 成本RTWCG Si〇x水溶液調配物。此不僅顯著降低 HAiF6、HJiF6及其他溶液組分之成本,而且使製造商之 品質控制最佳。 66 201251057 41245pif 在本發明之一較佳實施例中,rtwcg Si〇x生長溶液 調配物無需石夕源,諸如HjiF6或先前技術rtwCG SiOx 生長溶液調配物中存在之任何其他石夕源。可使用ACS級或 更高級HFouw及超高純度水來稀釋溶液至所要1〇% 至40%濃度。亦可使用ACS或更佳等級之Ηα (*料)且稀 釋至所要濃度。RTWCG SiOx生長溶液亦包含非侵入性水 性組分’添加少里(母1公升HF (料幻1公克·ι〇公克)單 一較佳催化劑或較佳催化劑之組合至其中。較佳催化劑具 有ACS級或更佳等級,且實例包含(但不限於):二^匕 鈦(銳鈦礦)、五氧化二釩、五氧化碘、鐵氰化鉀、二氧化 錯’且視情況更包含氧化钻或氧化鈽。 自同一 FZ c-Si η+/ρ擴散晶圓切割兩個樣品。將一個 樣品完全浸入超低成本高生長速率基於釩之Si〇x生長溶 液中10秒’且將第二樣品浸人超低成本高生長速率基於飢 之SiOx生長溶液中40秒。藉由經緩衝HF (濃溶液)蝕 刻溶液移除所得Si〇x膜後,獲得剩餘發射極之淨多數載 流子濃度深度分佈曲紐展秘圖2G巾i據制書製造 此實驗之擴散樣品,且由索康實驗室公司(s〇lec⑽ Laboratories,Inc)執行測試。使用分佈電阻分析方法獲 多數載流子濃度深度分佈曲線,而薄層纽值藉由四^ 針量測獲得。如表3中可見,在1〇秒Si〇x生長時間後, 發射極之薄層電阻自其初始43歐/平方單位提高至約ιΐ4 =平方單位,且在40秒Si0x生長時間後,發射 電阻顯著更高,為約695歐/平方單位。 曰 67 201251057 41245pif RTWCG SiOx生長時間(秒) 0 10 20 30 40 一平均4PP溥層電阻(歐/平方單位) 43.2 114.4 260 406.8 695 表3.圖20中之n+/p c-Si樣品在數個SiOx生長時間 之平均四點探針薄層電阻值。 實例2-當場表面清洗及與網版印刷金屬化之相容性 所有實驗用小面積高效率電池均在潔淨室設施中製 造’但大多數當前技術之太陽電池製造在非潔淨室環境中 進行。非潔淨室環境因在電池表面上引入雜質而不利地影 響電池之效率。作為最後製造步驟之RTWCG SiOx ARC/SE製程藉由清洗主動表面及網版印刷前柵線而重獲 由於非潔淨室環境而損失之效率。此外,如以下實施實例 中可見,當場清洗降低了同一批次以及批次之間的效率離 差(efficiency dispersion ) ° 圖21 (a)展示具有角錐紋理化前表面之c_si太陽電 池的諾馬斯基圖,所述前表面具有為25微米的較高峰谷外 觀比(peak-to-valley aspect ratio)。如圖 21 (b)中可見, RTWCGSiOx製程與網版印刷金屬化完全相容。由於紋理 化表面(參見圖21 (c))之高外觀比,柵線之部分懸浮在 角錐之間而不能接觸谷之底部。 在大量塗佈RTWCG SiOx之小面積及大面積c_si、鑄 造mc-Si及多晶矽n+/p太陽電池上檢查前接觸之機械及電 完整性。發現較佳RTWCG SiOx製程不會不利地影響網版 印刷接觸。舉例而言,幾乎所有電池之串聯電阻(series 68 201251057 41245pif resistance ’ Rs)在RTWCg SiOx塗佈後降低多達40%。較 低之Rs促成顯著填充因子(FF)及效率提高。 RTWCG生長後Pmax提高超過1〇〇%不能僅由光損耗 減少或固有藍光響應提高來解釋。一種解釋為RTWCG生 長溶液在生長SiOx前立即當場清洗電池表面。此對於由 於各種污染物而具有不良表面條件之電池尤其有利,所述 污染物降低開路電壓(v〇c)及短路電流(Isc)。此外,藉 由清洗剞接觸,可緩和已知會降低填充因子(FF)之某些 金屬化相關條件。 本領域中熟知’在焙燒步驟期間,基於銀之氧化物污 ^基於Ag之網版印刷前接觸及習知基於Ag之後匯流排 (buss bar)。污染可降低匯流排之電導率且提高匯流排與互 連材料之間的接觸電阻。如圖21(b)中可見,RTWCG生 谷液不會用Si0x覆蓋金屬化層,且實際上清洗氧化物 污染,如由圖21 (a)中之經氧化RTWCG前金屬化層與 圖21 (b)中之潔淨銀色生長後金屬化層證實。 ’ 在自同一工業用大面積c_si及mc_Si電池切割之小面 積裸且塗佈SiOx之電池上執行長期耐久性測試。這些電 池保存在實驗室環射長達11彳。測試展示SiOx生長 後L基於Ag之前接觸抗老化且維持其銀顏色、完整性及 可,性。焙燒態Ag金屬化表面在曝露於相同實驗室環境 相等時間長度後變得氧化且較難焊接。 較佳短RTWCG SiOx ARC/SE/ ( TO )製程步驟與習知 基於A1之網版印刷接觸相容。某些RTWcg si〇x生長溶 69 201251057 41245pif 液組分(諸如Ηθ〇4)可使A1後接觸厚度略微變薄或使其 顏色自淺灰色變為暗灰色,且應避免。 當電池完全浸入生長溶液中時,少量A1後接觸溶解。 已展示SiOx臈之組成與品質均不會因此少量溶解之A1而 麦化’即使所述溶液重複再使用亦如此。在再使用之生長 溶液中生長的RTWCG膜中A1之存在不能藉由XPS或 AES分析偵測到。完全浸入再使用之生長溶液中的小面積 太陽電池之效能完全不亞於浸入新鮮溶液中之效能。 幾乎所有RTWCG SiOx生長溶液調配物均呈現出使 基於A1之網版印刷後接觸充分化學鈍化,此藉由一些長期 耐久性測試(包含上述長期測試)明確表明,其中將小面 積電池保存在化學實驗室環境中約U年。數年後,可見_ 些裸電池之A1後接觸退化為粉末狀外觀。塗佈si〇x之電 池的A1後接觸維持其化學、機械及電學完整性。SiOx thickness. • Degrees within 5 minutes of growth of the same composition of the growth solution components of the burdock 1205 and KI, there is a relatively large number of two: f dew 'except m 〇 3, good quality RTWCG Si0x material f can be used to produce modified K film For solar cells and other should be SU4, PI3, P2l4, Til4, Vl3, col2, bribe 2, Asi3, _, Qing, 13⁄4, Qing and call. According to the present invention, various combinations of one or more of the euchemical containing materials in HF will push or co-catalyze the siox film and produce Rtwcg Si〇x arc/se/ on the surface of H+-S! or P+-Sl. The efficiency enhancement characteristics of the t〇 cell structure have also been demonstrated to increase the RTWCG® quality grown on non- & substrates when added to several SiOx growth solutions described herein. For example, 'If A% is Adding to the VT RTWCG growth solution in Figure 14, the passivation ability of the RTWCG Ga-As-Ο thin film dielectric layer grown on the p_GaAs and n GaAs substrates is significantly improved. Compared with the conventional crystalline solar cell design, The efficiency gain obtained from the RTWCG Si〇x ARC/SE/T0 cell structure is attributed to significantly lower light, resistance and composite damage. The reflectivity and absorption of the RTWCG SiOx film is very low. SiOx film has good passivation. , producing a highly efficient selective emitter (SE)' and inherently lower resistive losses due to the smooth se/textured SiOx concept. The environmentally friendly rjWCG SiOx method and process design as described herein is designed to be 65 201251057 41245pif can be used Screen printing metal Manufacturing low-cost, high-efficiency, crystalline solar cells. The RTWCG SiOx ARC/SE/TO process is simple and controllable, and can be operated in less than 1 minute: i. cleaning the tantalum and metallized surface on the spot; ii. Refractive index SiOx anti-reflective coating (ARC) with an AM1.5 average weighted reflectance (AWR) of 5%-9% on a fabricated n+p Si substrate, and optimized for RTWCG SiOxARC/TO cells The structural AM 1.5 AWR is 3°/. to 5%; iii. SiOx makes the dangling bond at the SiOx/emitter interface extremely sufficiently passivated; iv. Produces good edge separation if using the shadow diffusion described herein, V Using a standard screen printing metallization layer as a mask to etch back only the active area of the emitter, thereby producing an excellent quality SE that is compatible with large scale, low cost manufacturing; and vi. producing optionally textured SiOx The above and other objects, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments of the present invention. Example 1 - Ultra low cost RTWCG SiOX solution. Use dilution on the spot The material produces an ultra-low cost RTWCG Si〇x aqueous solution formulation which not only significantly reduces the cost of HAiF6, HJiF6 and other solution components, but also optimizes the quality control of the manufacturer. 66 201251057 41245pif a preferred embodiment of the invention In one example, the rtwcg Si〇x growth solution formulation does not require any other Shishi source present in the Xiji source, such as HjiF6 or a prior art rtwCG SiOx growth solution formulation. The solution can be diluted to a desired concentration of 1% to 40% using ACS grade or higher HFouw and ultra high purity water. You can also use ACS or better grade Ηα (* material) and dilute to the desired concentration. The RTWCG SiOx growth solution also contains a non-invasive aqueous component 'additional oligo (mother 1 liter HF (material 1 gram ι gram) single preferred catalyst or a combination of preferred catalysts. Preferred catalyst has ACS grade Or better grades, and examples include, but are not limited to: bismuth titanium (anatase), vanadium pentoxide, iodine pentoxide, potassium ferricyanide, dioxins, and optionally oxidized drills or Cerium oxide. Two samples were cut from the same FZ c-Si η+/ρ diffusion wafer. One sample was completely immersed in an ultra low cost high growth rate vanadium-based Si〇x growth solution for 10 seconds' and the second sample was dipped. The human ultra-low cost and high growth rate is based on the hunger SiOx growth solution for 40 seconds. After removing the obtained Si〇x film by buffered HF (concentrated solution) etching solution, the net majority carrier concentration depth distribution of the remaining emitter is obtained. The curved sample of this experiment was made according to the book, and the test was performed by Socon Laboratories (s〇lec (10) Laboratories, Inc.). The distribution curve of the majority carrier concentration was obtained by the distributed resistance analysis method. Thin layer The value is obtained by four-pin measurement. As can be seen in Table 3, after 1 〇 Si〇x growth time, the sheet resistance of the emitter is increased from its initial 43 ohm/square unit to about ιΐ4 = square unit. And after 40 seconds of Si0x growth time, the emission resistance is significantly higher, about 695 ohms/square unit. 曰67 201251057 41245pif RTWCG SiOx growth time (seconds) 0 10 20 30 40 an average 4PP layer resistance (ohm/square unit 43.2 114.4 260 406.8 695 Table 3. Average four-point probe sheet resistance of n+/p c-Si samples in Figure 20 over several SiOx growth times. Example 2 - Surface cleaning and screen printing metallization Compatibility All small-area, high-efficiency batteries are manufactured in clean room facilities' but most current state-of-the-art solar cell manufacturing is carried out in non-clean room environments. Non-clean room environments are not good for introducing impurities into the cell surface. The effect of the battery affects the efficiency of the battery. The RTWCG SiOx ARC/SE process, which is the final manufacturing step, regains the efficiency lost due to the non-clean room environment by cleaning the active surface and the screen front grid. In addition, as in the following examples It can be seen that on-site cleaning reduces the efficiency dispersion between the same batch and the batch. Figure 21 (a) shows a Nomsky diagram of a c_si solar cell with a pyramidal textured front surface, the front surface It has a higher peak-to-valley aspect ratio of 25 microns. As can be seen in Figure 21 (b), the RTWCGSiOx process is fully compatible with screen printing metallization. Due to the high aspect ratio of the textured surface (see Figure 21 (c)), portions of the grid lines are suspended between the pyramids and cannot contact the bottom of the valley. The mechanical and electrical integrity of the precontact was examined on a small area of large coated RTWCG SiOx and large area c_si, cast mc-Si and polycrystalline 矽n+/p solar cells. It has been found that the preferred RTWCG SiOx process does not adversely affect screen printing contact. For example, the series resistance of almost all cells (series 68 201251057 41245 pif resistance 'Rs) is reduced by up to 40% after RTWCg SiOx coating. Lower Rs contributes to significant fill factor (FF) and improved efficiency. An increase in Pmax of more than 1% after RTWCG growth cannot be explained by only a reduction in optical loss or an increase in the intrinsic blue light response. One explanation is that the RTWCG growth solution cleans the surface of the cell on the spot immediately before growing SiOx. This is particularly advantageous for batteries having poor surface conditions due to various contaminants that reduce the open circuit voltage (v〇c) and the short circuit current (Isc). In addition, some metallization-related conditions known to reduce the fill factor (FF) can be mitigated by contact with the cleaning crucible. It is well known in the art that during the calcination step, silver based oxides are based on Ag-based screen printing prior to contact and conventional bus-based bars after Ag. Contamination reduces the conductivity of the busbar and increases the contact resistance between the busbar and the interconnect material. As can be seen in Figure 21(b), the RTWCG sap liquid does not cover the metallization layer with SiOx and actually cleans the oxide contamination, as shown by the oxidized RTWCG pre-metallization layer in Figure 21 (a) and Figure 21 ( b) The clean silver is confirmed by the metallization layer after growth. Long-term durability tests were performed on batteries that were barely coated and coated with SiOx from large industrial c_si and mc_Si cells cut in the same industry. These batteries are kept in the laboratory for up to 11 miles. The test demonstrates that SiOx grows after exposure to aging based on Ag and maintains its silver color, integrity and availability. The calcined Ag metallized surface becomes oxidized and more difficult to weld after exposure to the same laboratory environment for an equal length of time. The preferred short RTWCG SiOx ARC/SE/(TO) process steps are compatible with conventional A1-based screen printing contacts. Some RTWcg si〇x growth solutions 69 201251057 41245pif liquid components (such as Ηθ〇4) can make the contact thickness of A1 slightly thinner or make its color change from light gray to dark gray, and should be avoided. When the battery is completely immersed in the growth solution, a small amount of A1 is contacted and dissolved. It has been shown that the composition and quality of SiOx 不会 are not so dissolved in A1 and wheat is turned on, even if the solution is repeatedly used. The presence of A1 in the RTWCG film grown in the re-used growth solution cannot be detected by XPS or AES analysis. The small area of the solar cell completely immersed in the re-used growth solution is as effective as the immersion in the fresh solution. Almost all RTWCG SiOx growth solution formulations exhibit full chemical passivation of the A1-based screen printing contact, which is clearly demonstrated by some long-term durability tests (including the long-term tests described above) in which small area cells are stored in chemical experiments. About U years in the room environment. After a few years, it can be seen that the contact of A1 of some bare cells degenerates into a powdery appearance. The A1 postcontact of the coated Si〇x battery maintains its chemical, mechanical and electrical integrity.

實例 3-RTWCG SiOx ARC 太陽電池之效率大部分由其反射率決定,且因此由其 保留而非反射太陽能回外界之能力決定。諸多太陽電池製 造商仍使用二氧化鈦(TiOx)作為單層抗反射塗層(single layer antireflection coating,SLARC),通常將其喷塗於電 池上,隨後烘烤以去除溶劑。相對較低成本Ti〇x ARC之 主要缺陷為其具有相對較大(約15%) AMI.5 AWR。另外, TiOx膜覆蓋前表面金屬化層,從而需要將其自前匯流排移 除,以使得在太陽電池模組製造期間電池可互連成線。EXAMPLES 3-RTWCG SiOx ARC Solar cells are mostly determined by their reflectivity and are therefore determined by their ability to retain, rather than reflect, solar energy back to the outside world. Many solar cell manufacturers still use titanium dioxide (TiOx) as a single layer antireflection coating (SLARC), which is usually sprayed onto a battery and then baked to remove the solvent. The main drawback of the relatively low cost Ti〇x ARC is its relatively large (about 15%) AMI.5 AWR. In addition, the TiOx film covers the front surface metallization layer and thus needs to be removed from the front busbar so that the cells can be interconnected into wires during manufacture of the solar cell module.

氮化石夕(SiNx) ARC為較佳方法,因為其AM丨5 AWR 201251057 41245pif 為約12%°SiNx藉由化學氣相沈積(CVD)或電漿增強 CVD (plasma enhanced CVD,PECVD)在相對較低溫度 下在空氣或真空中沈積。出於製程、維護及尤其資本設備 觀點,SiNx沈積相當昂貴。然而,與Ti〇2 ARC相反,網 版印刷前栅金屬化膏可焙燒穿過SiNx薄膜,由此去除另 一相對較低產率的製程步驟,即自前匯流排表面移除膜。 為進一步降低單層ARC (single layer ARC,SLARC)膜之 相對較高反射率,可使用表面紋理化與雙層ARC (d〇uble layer ARC ’ DLARC)或三層 ARC (triple layer ARC, TLARC)。由於其成本相對較高,故工業上尚未使用 DLARC 或 TLARC。 因為SiNx ARC曰漸成為c_Si太陽電池工業標準,故 比較CVD SiNx與RTWCG SiOx膜之光學及電學特性具有 指導意義。圖22為由獨立實驗室對於其最佳siNxARC及 兩個未經最佳化之RTWCG SiOx ARC獲得的反射率曲 線。對於經最佳化之SiNx膜,400 nm-1200 nm波長範圍 之AM1.5 AWR為12.1%,且對於兩個未經最佳化之si〇x 膜,400 nm-1200 nm 波長範圍之 AMI.5 AWR 為 8.3%及 8.5% °CVD SiNx膜之較大反射率主要是因為可見光譜之 藍光區的顯著反射率提高。本文提供之AM 15平均加權 反射率(AWR)值使用本領域中已知之來自r哈斯通(R Hulstrom),R.伯德(R.Bird)及 C.瑞奥登(C. Riordan), 「所選地面條件之太陽光譜照射度數據集(Spectral solar irradiance data sets for selected terrestrial conditions )」,乂 71 201251057 41245pif 縻雲龙(5b/arCWA〇,第 15(4)卷,第 365-391 頁,1985 的 AM1.5光譜照射度數據(針對〗,〇〇〇瓦/平方公尺正規化 計算。 通常’藉由RTWCG製程產生之未經最佳化之Si〇x ARC的AM1.5 AWR在6°/〇-9%範圍内,其低於平滑石夕表面 上之任何其他SLARC薄膜的AM1.5 AWR。舉例而言,圖 23展示在n+/p Si彎折與尾型擴散結構(諸如圖3中)上 「生長之SiOx膜的RTWCG Si〇x反射率曲線之組群。 「PR4-y」記法表示在n+_p4吋經拋光單晶矽(c_si)晶圓 上生長之平面RTWCGSiOxARC,其中「y」為Si〇x生長 時間(以秒為單位)。 表4展示對於使用與圖12中相同之生長溶液在四個 不同基板組群上生長之膜,RTWCG Si〇X2 AM1 5 awr 隨生長時間的變化。第一欄含有圖23中Si〇x膜之 組群的數據。帛二财之AWR數歧關於在塗佈角錐之 tSin+/P擴散結構上生長之SiQx朗組群。在鑄造mc_Si mc-Si (帶狀)n+/p結構上生長之Si〇x膜的數據分 別在第三攔及第四攔中。 由表4可知’塗佈角錐之n+/p⑽Si擴散結構的塗佈 32.68%,且具有平滑表面之n+/p—擴散結構 =,AWR* 33.63%。生長適合厚度(7〇秒及⑽秒Nitroxide (SiNx) ARC is the preferred method because its AM丨5 AWR 201251057 41245pif is about 12%. SiNx is relatively high by chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD). Deposition in air or vacuum at low temperatures. SiNx deposition is quite expensive for manufacturing, maintenance, and especially capital equipment. However, in contrast to Ti〇2 ARC, the screen front metallization paste can be fired through the SiNx film, thereby removing another relatively low throughput process step, i.e., removing the film from the front busbar surface. To further reduce the relatively high reflectivity of single layer ARC (SLARC) films, surface texturing and double layer ARC (d〇uble layer ARC 'DLARC) or triple layer ARC (triple layer ARC, TLARC) can be used. . Due to its relatively high cost, DLARC or TLARC has not been used in industry. Since SiNx ARC is becoming the industry standard for c_Si solar cells, it is instructive to compare the optical and electrical properties of CVD SiNx and RTWCG SiOx films. Figure 22 is a reflectance curve obtained by an independent laboratory for its optimal siNxARC and two unoptimized RTWCG SiOx ARCs. For the optimized SiNx film, the AM1.5 AWR in the 400 nm-1200 nm wavelength range is 12.1%, and for two unoptimized si〇x films, the AMI is in the 400 nm-1200 nm wavelength range. 5 AWR is 8.3% and 8.5% ° The large reflectance of the CVD SiNx film is mainly due to the significant reflectance improvement of the blue region of the visible spectrum. The AM 15 mean weighted reflectance (AWR) values provided herein are known from the art from R Hulstrom, R. Bird, and C. Riordan. "Spectral solar irradiance data sets for selected terrestrial conditions", 乂71 201251057 41245pif 縻云龙(5b/arCWA〇, Vol. 15(4), pp. 365-391 , 1985 AM1.5 Spectral Irradiance Data (for 〗, 〇〇〇 / / 平方 平方 normalized calculation. Usually 'the AM1.5 AWR of the unoptimized Si〇x ARC produced by the RTWCG process In the range of 6°/〇-9%, it is lower than the AM1.5 AWR of any other SLARC film on the surface of the smooth stone. For example, Figure 23 shows the n+/p Si bend and tail type diffusion structure (such as Figure 3) "The group of RTWCG Si〇x reflectance curves of the grown SiOx film. The "PR4-y" notation indicates the plane RTWCGSiOxARC grown on the n+_p4吋 polished single crystal germanium (c_si) wafer, Where "y" is the Si〇x growth time (in seconds). Table 4 shows the same use as in Figure 12. The growth of the solution on four different substrate groups, RTWCG Si〇X2 AM1 5 awr as a function of growth time. The first column contains the data of the group of Si〇x films in Figure 23. AWR number of 帛二财The SiQx group is grown on the tSin+/P diffusion structure coated with the pyramid. The data of the Si〇x film grown on the cast mc_Si mc-Si (band) n+/p structure are respectively in the third block. It can be seen from Table 4 that the coating of the n+/p(10)Si diffusion structure of the coated pyramid is 32.68%, and the n+/p-diffusion structure with a smooth surface=, AWR* 33.63%. The growth is suitable for thickness (7 〇 and (10) seconds

Si〇x ARC/SE後,具有平滑表面 的歷實際上低於塗佈角錐之表面的纖。因 ”、、4射極之電阻損耗低於肖驗理化發射極,角錐紋 72 201251057 41245pif 理化發射極之較高電阻損耗尤其與高側向電阻有關,故使 用^錐紋理化發馳表面(諸如圖21⑷ 適合於 RTWCG SiOx ARC/SE 製程。 RTWCG SiOx生長 時間 (秒) c-Si平滑表面 (參見圖20) c-Si塗佈角錐之 表面(參見圖18) mc-Si (鑄 造)晶圓 mc-Si (帶 狀)晶圓After Si〇x ARC/SE, the surface with a smooth surface is actually lower than the surface of the coated pyramid. Because the resistive losses of the ", 4 emitters are lower than the physico-chemical emitters, the pyramids 72 201251057 41245pif The higher resistive losses of the physicochemical emitters are especially related to the high lateral resistance, so the texture is used to texture the surface (such as Figure 21(4) is suitable for RTWCG SiOx ARC/SE process RTWCG SiOx growth time (seconds) c-Si smooth surface (see Figure 20) c-Si coated pyramid surface (see Figure 18) mc-Si (casting) wafer mc -Si (strip) wafer

表4·在結晶n+/p c_si、鑄造mc_Si及多晶矽晶圓上 生長之RTWCG SiOx膜在400奈米-1200奈米波長範圍内 的AM 1·5平均加權反射率(AWR)隨SiOx生長時間的變 化。 帶狀mc-Si基板具有最高SiOx生長速率,其產生具 有最低AWR 6.35%的SiOx膜。出於尚未完全瞭解之原因, 鑄造n+/p mc-Si擴散晶圓上之SiOx生長速率較低,此解 釋了此特定擴散晶圓組群之較高AMI.5 AWR。在100秒之 相對較長SiOx生長時間後獲得低於1〇%之ami.5 AWR (表4)。隨後實驗使用較高生長速率si〇x溶液調配物在相 73 201251057 41245pif 同鑄造mc-Si擴散基板上進行。在45秒内獲得適當Si〇x 膜厚度,且產生低得多的AMI.5 AWR 6.32%。 如本文已展示’某些具有高達500奈米/分鐘之高Si〇x 生長速率的RTWCG調配物在不超過1分鐘内生長紋理化 ARC SiOx膜,同時產生極佳品質SE及表面鈍化。所得電 池具有低AMI.5 AWR,且在單一濕化學製程步驟中產生全 部 RTWCG SiOx ARC/SE/TO 增強特徵。 對於在紋理化SiOx表面且具有梯度折射率之高生長 速率RTWCG溶液中生長之SiOx膜獲得最低AM15 AWR 值。圖24中展示在平滑n+/p c_Si基板上生長之紋理化 RTWCG SiOx膜的反射率曲線。si〇x生長後,將τ〇_ι浸 於1% HF (水溶液)中15秒且產生3.09%之AM1.5 AWR值。 AM1.5 AWR為約4.5%之SiOx膜TO-2及TO-3為生長態 膜。這些低成本膜之AWR值與本領域中已知之因成本過 高而受限之三層ARC的AWR值一樣低或更低。 實例4-RTWCG SiOx薄膜透明度 為減少ARC薄膜之有用光吸收,其在300奈米-1200 奈米波長範圍内必須儘可能透明。相較於rTWCg si〇x ARC,傳統SLARC具有較大可見光吸收,尤其在光譜之 藍光部为中。儘管通常不加以解釋,但在較厚之多層 的情況下光吸收尤其顯著。 術語「透明層」指具有足夠低之消光係數值(k)之 層。舉例而言,若在可用AM1.5光譜之可見光區中k小於 0.10,則層在厚度為可見光之約四分之—波長時實質上不 74 201251057 41245pif 吸收可見H肖光係數⑴可等同於低吸收⑷(例 如小於〇」之k對應於小於1%之α),因為α=4 π k/λ。若k 高=(U ’Jt如钱Si〇2之情況下,則膜高度吸光,從而 使知·具有尚k之膜不適用於太陽電池ARC。 ^圖25 (a)展示目前技術之藉由使用高生長速率溶液 (诸如圖14中)生長之透明RTWCGSiOx厚膜(約2〇8奈 米)的折射率及消光係數。働奈米養奈米波長範圍内 之消光係數低於0·02,使得所述膜適用於產生紋理化表面 所必需之車 =厚膜。由諸如圖15中之生長溶液在Mi基板 上生長之富切之Si〇x關消光餘略高,為略低於⑽4 (參見圖25(b))。RTWCGARC之這些以直完全不亞於競 肀性ARC (諸如經最佳化之SiNx SLAR ( k > 0.06)、TiOx SLAR (k>G.G8)或已知雙層及三層ARC (k>Q」))。因 為RTWCG Si〇x膜高度透明且其反射率隨厚度逐漸降 低’故Sl〇X厚度之小變化相較於習知ARC*太關鍵。限 制3伽膜之厚度程度的因素為生長製程期間回崎射極 之深度。 實例5 RTWCG選擇性發射極 工業上認制選擇歸馳之麟已很糾間,但尚 未獲得實現此效率增_徵之成本有效方法。齡良好光 學效能很重要,但較佳RTWc G s i 〇χ生長製程亦產生高度 成本有效之優良品質選擇性發射極(SE)。 對於具有合理低接觸電阻之網版印刷接觸,必須使用 重擴散發雜。此狀大量表面缺陳而降低電池效率。 75 201251057 41245pif 然而,對於僅回蝕未金屬化發射極表面之RTWCG製程, 此不成問題。由此’接觸柵下之發射極區保持不受干擾且 重擴散。換言之,柵金屬充當回蝕發射極之未金屬化表面 的遮罩。因為RTWCGSiOX膜極快速(< 1分鐘)地生長, 故對柵不造成破壞。 接觸電阻為約1.0X1CT4歐-平方公分且薄層電阻為高 於100歐/平方單位且表面摻雜量為約lxl〇i9/立方公分的 良好網版印刷接觸為製造有效太陽電池之關鍵需要。使用 較厚、較重換雜之發射極使得金屬化培燒步驟期間的寬容 度大得多。其使得可使用較具穿透性及導電性之前栅金屬 化材料,減少電阻損耗且改良產率。網版印刷前接觸金屬 化層下之尚摻雜量產生小於1.0x1 〇_3歐-平方公分之可接受 之低接觸電阻及小密度之接面分流路徑。然而,此類型發 射極具有由不良藍光響應引起之低開路電壓以及不良短路 電流。 為模擬電池之前栅線,在平滑n+/p c_Si彎折與尾型擴 散發射極表面(諸如在圖3中)上產生窄光阻線。因^ RTWCG生長溶液與光阻不反應,故si〇x膜僅在發射極之 裸露部分上生長。在移除光阻及Si0x膜後獲得圖26中之 表面輪廓測定,且其展示經生長溶液回蝕之發射極之深 度。在一或多個實施例之一較佳實施例中,為獲得設計良 好之、母折與尾型擴散分佈曲線,對於RTWCG SiOx ARC/SE電池結構,生長溶液應回蝕發射極〇 2微米,且對 於RTWCG SiOx ARC/SE/TO電池結構,應回蝕略大於〇 25 76 201251057 41245pif 微米。 本發明之最佳彎折與尾型擴散分佈曲線在發射極表 面下約G.1鮮處具有彎折(參見圖3)。㈣折表示所謂 「無感層」或具有大缺陷密度之區域。因為rtwcg 生長溶液移除0.2㈣或大於〇·2微米之發射極未金屬化 表面,故在主動區上而非自前接觸下回蝕1感層。因 SE在SiOx ARC生長的同時形成。此新穎s雜念已在自 各太陽電池製造商獲得之大量製造型單 一)及多結晶一夕太陽電池批L成二: 出於如下簡單展示之原因,優良品質RTWcx} se目前為 RTWCG Si〇x ARC/SE/T0技術相較於未併有se或併有有 效,較低之目前技術SE的傳統電池技術之效率增益的單 '一最大原因。 RTWCG SiOx生長溶液回钕經嚴重破壞之發射極層 至取決於所用調配物及生長時間長度之深度。在一或多; 實施例之較佳實關巾,上述最佳生長溶㈣配成生長 130-220奈米厚Sl〇XARC且回則2Q微米·Q 25微米之未 金屬化發射極。近似最佳彎折與尾型磷擴散之初始接面深 度為約〇·55微米’彎折在O.W米之深度處,且表面淨多 數載流子濃度為5xl〇2Q/立方公分至8xl〇2〇/立方公分。生Table 4. AM 1·5 average weighted reflectance (AWR) of the RTWCG SiOx film grown on crystalline n+/p c_si, cast mc_Si, and polycrystalline germanium wafers in the wavelength range of 400 nm to 1200 nm with SiOx growth time Variety. The ribbon mc-Si substrate has the highest SiOx growth rate, which produces a SiOx film with a minimum AWR of 6.35%. For reasons not fully understood, the SiOx growth rate on the cast n+/p mc-Si diffusion wafer is lower, which explains the higher AMI.5 AWR for this particular diffusion wafer group. An ami.5 AWR of less than 1% was obtained after a relatively long SiOx growth time of 100 seconds (Table 4). Subsequent experiments were carried out using a higher growth rate si〇x solution formulation on phase 73 201251057 41245pif with a cast mc-Si diffusion substrate. A suitable Si〇x film thickness was obtained in 45 seconds and produced a much lower AMI.5 AWR 6.32%. As shown herein, certain RTWCG formulations having a high Si〇x growth rate of up to 500 nm/min grow the textured ARC SiOx film in less than one minute while producing excellent quality SE and surface passivation. The resulting cell has a low AMI.5 AWR and produces all RTWCG SiOx ARC/SE/TO enhancement features in a single wet chemical process step. The lowest AM15 AWR value was obtained for SiOx films grown in a high growth rate RTWCG solution with a textured refractive index on the textured SiOx surface. The reflectance curve of the textured RTWCG SiOx film grown on a smooth n+/p c_Si substrate is shown in FIG. After si〇x growth, τ〇_ι was immersed in 1% HF (aq) for 15 seconds and an AM1.5 AWR value of 3.09% was produced. The AM1.5 AWR is about 4.5% of the SiOx film TO-2 and TO-3 are grown films. The AWR values for these low cost films are as low or lower than the AWR values of the three layer ARCs known in the art that are too costly to limit. Example 4 - RTWCG SiOx Film Transparency To reduce the useful light absorption of the ARC film, it must be as transparent as possible in the wavelength range of 300 nm to 1200 nm. Compared to rTWCg si〇x ARC, conventional SLARC has a large absorption of visible light, especially in the blue portion of the spectrum. Although generally not explained, light absorption is particularly pronounced in the case of thicker layers. The term "transparent layer" refers to a layer having a sufficiently low extinction coefficient value (k). For example, if k is less than 0.10 in the visible light region of the available AM1.5 spectrum, the layer is substantially not at a thickness of about four-quarters of the wavelength of visible light. 201251057 41245pif absorption visible H-light coefficient (1) is equivalent to low The absorption (4) (for example, less than 〇) corresponds to less than 1% of α) because α = 4 π k / λ. If k is high = (U 'Jt is the case of money Si 〇 2, the film is highly absorbing light, so that the film having the y y is not suitable for the solar cell ARC. ^ Figure 25 (a) shows the current technology The refractive index and extinction coefficient of a transparent RTWCGSiOx thick film (about 2 〇 8 nm) grown using a high growth rate solution (such as in Fig. 14). The extinction coefficient in the wavelength range of 働 nanometer nanometer is lower than 0·02, The film is made suitable for the car = thick film necessary to produce a textured surface. The rich cut Si〇x off matte growth, such as the growth solution in Figure 15 on the Mi substrate, is slightly higher, slightly below (10) 4 ( See Figure 25(b)). These RTWCGARCs are exactly as good as competitive ARC (such as optimized SiNx SLAR (k > 0.06), TiOx SLAR (k>G.G8) or known double Layer and three-layer ARC (k>Q)). Because the RTWCG Si〇x film is highly transparent and its reflectivity decreases with thickness, the small change in the thickness of SlX is too critical compared to the conventional ARC*. The thickness of the gamma film is determined by the depth of the reverberation pole during the growth process. Example 5 RTWCG Selective Emitter Industry Appropriate Choice Lin has been very entangled, but has not yet obtained a cost-effective method to achieve this efficiency increase. Good optical performance is important, but the preferred RTWc G si 〇χ growth process also produces a highly cost-effective good quality selective emitter ( SE) For screen printing contacts with reasonable low contact resistance, it is necessary to use re-diffusion and impurity. This is a large number of surface defects and reduces battery efficiency. 75 201251057 41245pif However, for RTWCG which only etches back the surface of the unmetallized emitter Process, this is not a problem. The emitter region under the contact grid remains undisturbed and re-diffused. In other words, the gate metal acts as a mask for the unmetallized surface of the etched emitter. Because the RTWCGSiOX film is extremely fast (<1 Minutes of growth, so no damage to the grid. The contact resistance is about 1.0X1CT4 ohm-cm ^ 2 and the sheet resistance is higher than 100 ohm / square unit and the surface doping amount is about lxl 〇 i9 / cubic centimeter Printing contact is a key requirement for the manufacture of effective solar cells. The use of thicker, heavier emitters makes the latitude during the metallization step much greater It makes it possible to use a more transparent and conductive front gate metallization material, which reduces the resistance loss and improves the yield. The amount of doping under the contact metallization layer before screen printing produces less than 1.0x1 〇_3 ohm-square. Acceptable low contact resistance and small density junction shunt path. However, this type of emitter has a low open circuit voltage due to poor blue response and poor short circuit current. To simulate the cell front gate line, smooth n+/ A narrow photoresist line is created on the p c_Si bend and the tail-type diffused emitter surface (such as in Figure 3). Since the RTWCG growth solution does not react with the photoresist, the si〇x film grows only on the bare portion of the emitter. The surface profile measurement in Figure 26 was obtained after removal of the photoresist and SiOx film, and it exhibited the depth of the emitter etched back by the growth solution. In a preferred embodiment of one or more embodiments, to obtain a well-designed, mother-fold and tail-type diffusion profile, for a RTWCG SiOx ARC/SE cell structure, the growth solution should have an etched emitter of 〇2 μm, For the RTWCG SiOx ARC/SE/TO battery structure, the etch back should be slightly larger than 〇25 76 201251057 41245pif micron. The optimum bend and tail type diffusion profile of the present invention has a bend at about G.1 fresh under the emitter surface (see Figure 3). (4) Folding means the so-called "non-inductive layer" or an area with a large defect density. Since the rtwcg growth solution removes 0.2 (four) or more than 〇 2 μm of the emitter unmetallized surface, the sensitized layer is etched back on the active region rather than from the front contact. Since SE is formed while SiOx ARC is growing. This novel singularity has been produced in a large number of manufacturing single-units and polycrystalline solar cells from various solar cell manufacturers. In the following simple display, the excellent quality RTWcx} se is currently RTWCG Si〇x ARC The /SE/T0 technology has a single 'one biggest reason for the efficiency gain of the conventional battery technology of the current technology SE compared to the absence of se or effective. The RTWCG SiOx growth solution returns to the heavily damaged emitter layer to a depth depending on the formulation used and the length of growth time. In one or more of the preferred embodiments of the embodiment, the above preferred growth solution (4) is formulated to grow 130-220 nm thick S1 X XC and back to 2 Q microns · Q 25 microns of unmetallized emitter. The initial junction depth of the approximate optimal bend and tail-type phosphorus diffusion is about 〇·55 μm 'bend at the depth of OW m, and the net majority carrier concentration on the surface is 5xl 〇 2Q/cm ^ 3 to 8xl 〇 2 〇/cubic centimeters. Health

長溶,_發射極线表面後’ _未金屬化表面漠度為 8x10 /立方公分至lxl〇i9/立方公分,其在確保良好藍光鲠 應之同時仍可產生大於0.78之填充因子。 S 圖27展示兩個n+p c_si及一個薄膜多晶矽擴散結構 77 201251057 41245pif 隨RTWCG Si〇X生長時間變化的薄層電阻曲線。重擴散 C-Si平滑發射極結構具有約12歐/平方單位之初始薄層^ 阻、類似於圖3之彎折與尾型擴散及約0 7微米之接^深 度。如可由低初始薄層電阻推測,此擴散結構具有比最2 接面深度厚之深度,且具有0.2微米的極深彎折。1〇〇秒 RTWCG SiOx生長時間後,剩餘薄層電阻仍為約4〇歐/平 方單位。纟會製在RTWCG SiOx ARC/SE形成之前及之後在 這些擴散結構上製造之小面積電池之内部及外部量子效率 的曲線。如本文所示,儘管生長後藍光響應提高多達 其對應於多達52%之ISC提高及54%之Pmax提高,但所 述藍光響應遠非最佳。60秒SiOx生長時間後,深接面塗 佈角錐之c-Si結構的薄層電阻自約26歐/平方單位提高至 約85。。歐/平方單位’且7〇秒生長時間後提高至約^歐/ 平方單位。此與使用相同n+/p擴散結構製造之小批量大面 積電池的產生鄉之平均Pmax提高的藍光響應大幅提 一致。 同 圖27展示多晶矽η+/ρ擴散結構之薄層電阻提高速率 快於:Si電池之薄層電阻提高速率。6〇秒&〇χ生長時間 ,薄層電阻自約2〇歐/平方單位之生長前初始值達到約 1 5 7平方單位。針對多晶石夕基板可觀察到之相對於Cz cji或鑄造mc_Si基板的加速薄層電阻提高與可觀察 j寻。臈」多晶矽n+/p電池結構上的加速Si0x生長速率一 、員然,對於相等生長時間,較快生長速率將以更大程 又回麵未金屬化發射極,從而產生具有較大薄層電阻值之 78 201251057 41245pif 電池結構。結晶矽晶圓中氧之濃度與RTWCG Si〇X膜之生 長速率之間呈現出正相關;氧含量愈大,生長速率愈 大。 如本文所示,RTWCGSiOXARC/SE製程顯著提高電 池功率之旎力报大程度上是由於藍光響應提高。值得提及 的是,用於RTWCGSiOxARC及SE之增量最佳化的所有 c-Si、鑄造mc-Si及多晶矽大面積太陽電池為具有不同發 射極深度之製造型電池’一些過深,一些過淺。然而,這 些電池對於RTWCG SiOX ARC/SE電池結構均非最佳,更 不用提及增強效率RTWCG SiOX ARC/SE/TO電池結構。 除在未經最佳化擴散結構上製造之有限量之c_Si電池(亦 即圖3)以外,如後續部分更詳細描述,大面積電池均不 含有有意設計之彎折與尾型發射極擴散分佈曲線。儘管如 此,基於製造商之AM1.5 I-V數據,小批量(12個)CZ c-Si 6吋製造型電池上產生的RTWCGSiOXARC/SE電池結構 具有56%之平均Pmax提高及15.6%之平均AM1.5效率, 其中最高AM 1.5效率為16.4%。 基於製造商之AM1.5 I-V數據,9個6吋「薄膜」多 晶矽n+/p製造型太陽電池在產生RTWCG SiOx ARC/SE電 池結構後具有47.7%之平均Pmax提高。此表示相較於使 用SiNxARC之習知電池之絕對增益估算值為9.4%,如由 本領域中之數據計算,所述數據展示對於小面積電池,在 塗佈SiNx後最大Pmax (效率)提高為約39%且對於製造 型電池高達35%。深發射極電池之Pmax相較於利用任何 79 201251057 41245pifLong-dissolved, _ emitter line surface after _ unmetallized surface inversion of 8x10 / cubic centimeter to lxl 〇 i9 / cubic centimeter, which can ensure a good blue light 仍 while still producing a fill factor greater than 0.78. S Figure 27 shows two n+p c_si and one thin film polysilicon diffusion structure. 77 201251057 41245pif Thin layer resistance curve as a function of RTWCG Si〇X growth time. The re-diffused C-Si smooth emitter structure has an initial sheet resistance of about 12 ohms per square unit, similar to the bend and tail type diffusion of Figure 3, and a depth of about 107 microns. As can be inferred from the low initial sheet resistance, this diffusion structure has a depth that is thicker than the most joint junction depth and has an extremely deep bend of 0.2 microns. After 1 second of RTWCG SiOx growth time, the remaining sheet resistance is still about 4 〇 / square unit. The internal and external quantum efficiency curves of small-area cells fabricated on these diffusion structures before and after the formation of RTWCG SiOx ARC/SE are prepared. As shown herein, although the blue response after growth is increased as much as it corresponds to an ISC increase of up to 52% and a Pmax increase of 54%, the blue light response is far from optimal. After a 60 second SiOx growth time, the sheet resistance of the c-Si structure of the deep junction coated pyramid increased from about 26 ohms per square unit to about 85. . Euro/square unit' and increased to about ^ ohms per square unit after 7 seconds of growth time. This is in sharp agreement with the increased blue-light response of the average Pmax of the small batch large cell fabricated using the same n+/p diffusion structure. Fig. 27 shows that the rate of increase in sheet resistance of the polycrystalline 矽n+/ρ diffusion structure is faster than that of the Si battery. 6 〇 && 〇χ growth time, the sheet resistance from about 2 〇 / / square unit of the initial value before growth reached about 157 square units. The accelerated sheet resistance improvement and observable with respect to the Cz cji or cast mc_Si substrate can be observed for the polycrystalline substrate.臈” Polycrystalline 矽n+/p cell structure accelerates Si0x growth rate. 1. For the same growth time, the faster growth rate will return to the unmetallized emitter in a larger process, resulting in a larger sheet resistance. Value of the 78 201251057 41245pif battery structure. There is a positive correlation between the concentration of oxygen in the crystallization wafer and the growth rate of the RTWCG Si〇X film; the larger the oxygen content, the greater the growth rate. As shown in this article, the significant increase in battery power of the RTWCGSiOXARC/SE process is largely due to the increased Blu-ray response. It is worth mentioning that all c-Si, cast mc-Si and polycrystalline large-area solar cells for the incremental optimization of RTWCGSiOxARC and SE are manufactured batteries with different emitter depths. Some are too deep, some have shallow. However, these batteries are not optimal for the RTWCG SiOX ARC/SE battery structure, not to mention the enhanced efficiency RTWCG SiOX ARC/SE/TO battery structure. Except for a limited number of c_Si cells (ie, Figure 3) fabricated on an optimized diffusion structure, as described in more detail in the following sections, large-area cells do not contain intentionally designed bend and tail-type emitter diffusion profiles. curve. Nonetheless, based on the manufacturer's AM1.5 IV data, the RTWCGSiOXARC/SE cell structure produced on a small batch (12) CZ c-Si 6吋 fabricated cell has an average Pmax increase of 56% and an average AM1 of 15.6%. 5 efficiency, of which the highest AM 1.5 efficiency is 16.4%. Based on the manufacturer's AM1.5 I-V data, nine 6-inch "thin film" polysilicon 矽n+/p fabricated solar cells have an average Pmax increase of 47.7% after the RTWCG SiOx ARC/SE cell structure is produced. This represents an absolute gain estimate of 9.4% compared to conventional batteries using SiNxARC, as calculated from data in the art, which shows that for small area cells, the maximum Pmax (efficiency) increases after coating SiNx. 39% and up to 35% for manufacturing batteries. The deep-emitter battery Pmax is compared to the use of any 79 201251057 41245pif

其他ARC且仍不具有SE之習知電池的pmax不均衡地大 幅提高是歸因於RTWCG SiOX ARC/SE電池結構之藍光響 應的大幅提高。此可藉由後續部分中所示對電池執行的外 部量子效率曲線明確展示。即使對於不具有最佳彎折與尾 型擴散,但具有足夠厚的發射極以及在發射極表面足夠高 的初始淨多數供體濃度之電池,SE在RTWCG SiOX ARC/SE/ (TO)電池結構中之作用亦顯著高於本領域中已 知之其他SE方案。 在一或多個實施例之一較佳實施例中,效率增強 RTWCG SiOX ARC/SE/ ( TO )電池結構要求初始薄層電阻 為20歐/平方單位_25歐/平方單位。Si0x生長後,發射極 之薄層電阻必須為11〇歐/平方單位_丨2〇歐/平方單位。薄 層電阻為120歐/平方單位至15〇歐/平方單位時FF逐漸下 降且^薄層電阻超過150歐/平方單位時ρρ加速下降。 實例6·紋理化rTwCG SiOx膜 發射極之表面紋理化常用於習知n+/p結晶矽太陽電 池之設計中,以藉由減少離開表面之光的反射來減少光損 耗。主要用於c-Si太陽電池之表面紋理化藉由在擴散前化 學侧晶圓獲得。舉例而言,沿(100)石夕基板之(ιη) 面優先侧產生由「隨機角錐」覆蓋之表面。經驗展示這 二角錐之可具有25微米高度之峰(參見圖21 (e))可在 擴散後移除擴散破璃期間破裂。網版印刷製程可隨後產生 分流路控’分流路徑可大大降低分流電阻、填 路電壓,其均可顯著降低電池效率。 、于 201251057 41245pif 儘管本領域中已知之上述機械不良及製造優良品質 紋理化mc-Si基板之已知困難,大多數實驗室及電池製造 商仍使用某種形式之紋理化發射極表面。儘管在一些情況 下具有紋理化發射極之電池的AWR可顯著較低,但負面 效應為侧向發射極電阻損耗增加,從而降低填充因子。 據吾人所知,使用在平滑發射極表面上沈積之紋理化 乳化物(TO)(至少用於結晶石夕太陽電池)的概念最先由 NREL在1994年提出。若設計良好,則此方法可顯著減少 與較大有效薄片電阻率有關之電阻損耗,且可顯著降低上 述機械不良發生之可能性。舉例而言,NR£L之琪伊(Gee ) 等人使用CVD沈積之經最佳化紋理化Zn〇塗層,且報導 經包封c-Si晶圓之AM1.5 AWR低至6%,且展現經包封電 池效此相較於經包封SLAR平面電池之絕對改良高達 0.5%。 。 使RTWCG SiOX膜之表面紋理化以產生所謂τ〇特徵 的月力為本文所揭露之RTWCG SiOx ARC/SE/TO電池結 構設計的最後一個效率增強要素。習知紋理化發射極表面 由於電流向柵指之侧向流動而發生電壓下降,從而使得轉 化效率降低。平滑發射極表面及紋理化Si〇x確保發射極 之薄層電阻顯著降低,由此提高結晶矽太陽電池效率。經 最佳化之RTWCG TO膜進一步提高RTWCG Si〇x arc/se 太陽電池結構之已證實效率增益。 在低生長速率調配物中生長之RTWCG si〇x臈具有 平滑表面形貌。這些平滑SiOx膜可藉由持續川秒至15 81 201251057 41245pif 秒之另一短濕式製程步驟紋理化,以形成T〇 Si〇x特徵。 SiOx表面上(較佳在平滑發射極上生長)的所得角錐樣特 徵將再捕集將反射離開電池之光而無前述紋理化發射極表 面之不利影響。如下實施實例所示之此τ〇特徵之有效性 當光之入射角自垂直於電池表面移開時變得愈加重要。 圖28展示在太陽級c_Si基板上生長之RTWCQ Si〇x 膜在15秒1%HF(㈣液〕蝕刻之前及之後的AFM表面形貌。 約0.25微米之較厚si〇X膜具有進一步降低膜在可見光譜 上限中之反射率從而產生效率增益的紋理化特徵。如圖 所示,迄今記錄之最低AM1.5 AWR 3.09。/。存在於在平滑 n+c-Si發射極表面上生長隨後浸於i%HF(水㈣〕中15秒之 SiOx膜上。 高SiOx生長速率溶液產生紋理化Si〇x膜表面作為單 一 RTWCG SiOx ARC/SE/TO製程步驟之一部分。如圖24 中可見,這些SiOx膜具有約4.5%之極低AMI.5 AWR值。 因為角錐樣特徵為約120奈米高,故RTWCG Si〇x ARC/SE/TO製程步驟應產生不小於22〇奈米之膜厚度。為 達成此膜厚度,主動發射極應回姓0 25微米至0.3微米, 思明婷折與尾型擴散分佈曲線必須產生不小於〇 6微米之 接面深度。 實例7-用於太陽電池及其他應用之RTWCG Si〇x膜 的初步鑑定測試 已測試數種RTWCG溶液調配物之儲存期限。最長儲 存期限測試為約8年,對一種早期溶液調配物進行。對於 82 201251057 41245pif 此進行中之儲存期限測試’在所述時間範圍期間週期性使 用1加命保存在密封納爾金容器(nalgene container)中之 VT溶液(諸如圖14中),以在超過100個大面積c_Si、 mc-Sim及多晶石夕n+/p太陽電池上生長si〇x膜。迄今為 止’所產生RTWCGSiOxARC/SE電池結構之品質或所得 太陽電池效能無顯著變化。小面積n+/p太陽電池亦已用於 測試新近RTWCG生長溶液調配物之儲存期限。大多數新 穎調配物再次展示RTWCG電池結構或效能無顯著變化。 對高生長速率RTWCGSiOx膜之初步鑑定測試(包含 (但不限於)下述測試)表明這些Si0x膜不僅可潛在地用 於矽太陽電池應用,而且可用於大量其他電子(微電子) 及光電子(光子)應用。自相對大量之A1 (Au) /生長雜 RTWCG SiOx膜/Si/Au:Ti MOS電容器(前閘面積為約 〇·〇49平方公分)提取RTWCG SiOx膜之電學及介電特性。 在各種應力條件之前及之後在所製造之MOS電容器上獲 得I-V及C-V特徵,其用於測定:SiOx薄膜之(丨)電阻 率、(ii)洩漏電流、(iii)介電常數及(iv)擊穿電壓。 圖29 (a)展示SiOX膜厚度為11〇奈米之A1/生長態 RTWCG SiOx/Si/Ti-Au MOS 電容器的 i-v 特徵。經㈠ 110 伏至(+)110伏之偏壓電壓及(-)3伏至(+)3伏之偏壓電壓下 之I-V特徵展示SiOx薄膜内之移動離子密度極小。另一證 據為圖29(b)中在相同MOS電容器上獲得之性能良好的 C-V曲線。所述膜之I-V特徵不僅滿足太陽電池應用之標 準’而且滿足大量其他要求更高之電子及光電子(光子) 83 201251057 41245pif 元件應用之標準。 在一系列實驗中,使用本文所述之較佳RTWCGSiOx 生長溶液調配物產生A1/生長態SiOx/p-Si/Au:TiMOS電容 器。在於(-)100伏或(+)100伏之固定偏壓下多達1小時之 電壓應力之前及之後,獲得其I-V及C-V特徵。時間依賴 性洩漏電流及擊穿電壓未能展示由電壓應力產生之任何顯 著變化。 目前技術之RTWCG SiOx膜的浪漏電流密度在8兆伏 /公分之施加正電場下為約25奈安/平方公分,且在〇.3兆 伏/公分之施加正電場及負電場下為低於0.8奈安/平方公 分Ά漏電流。目前技術之RTWCG SiOx膜的電阻率為約 4xl〇14歐-公分。所述數據完全不亞於本領域中在低於 500°C之溫度下沈積之旋塗及CVD SiNx膜的已知數據。這 些結果展示RTWCG SiOx薄膜介電層適用作高效率矽太 陽電池以及微電子及光子應用之鈍化/抗反射塗層。 圖30展示最初在1〇〇。〇下加熱處理j小時繼而在 200C下加熱處理1小時之前及之後A1/生長態RTWcg SiOx (約1〇〇奈米厚)膜/p_Si Au:Ti M〇s電容器的i v特 徵。茂漏電流因加熱處理使生長態si〇x膜之表面乾括而 降低。獲自大量c-Si及mc-Si電池之lv數據展示可藉由 在約12Gt:T吹乾5分鐘去除生錢SiOx縣面之濕度。 在相關實驗巾發現,藉㈣單地在室溫下保存電池兩天至 天(視SiOx膜之厚度而^),提高的相對百分比 與在12(TC下加熱處理5分鐘之電池相同。 84 201251057 41245pif 分=在200°C、30(TC、450。(:及60(TC之逐漸升高溫度 下在空氣中加熱處理五個A1/生長態RTWCG SiOx膜 /p-Si/AuTi MOS電容器、五個小面積n+/p c_Si及五個小 面積 n+/p mc-Si RTWCG SiOx ARC/SE 太陽電池 1 小時。 如圖18中可見,SiOx表面相對較高之氫原子濃度隨深度 減少。基於實驗數據,低至2〇〇它之溫度可使氫向Si〇x/Si 界面遷移且使界面鈍化。在0.3兆伏/公分施加正偏壓及負 偏壓下在200°C下加熱處理長達}小時後,可觀察到洩漏 電流自約5x10 11安/平方公分降至低至2xi〇·12安/平方公 为。5忍為此降低部分歸因於si〇x/si界面之氫鈍化。在 200°C至450°C範圍内之溫度下進一步加熱處理長達i小時 後,MOS電容器之洩漏電流以較小速率逐漸降低。 在600°C下,所有MOS電容器之洩漏電流均略微提 南’且所有c-Si及mc-Si太陽電池之Pmax由於Voc及FF 之小幅降低而略降。這些發現很可能是由A1自金屬閘極穿 過MOS電容器之SiOx膜及太陽電池之Ag自前栅線擴散 產生一些小短路路徑引起。然而,值得提及的是,上述c_Si 及mc-Si小面積測試電池自相較於最佳RTWCg SiOx ARC/SE (TO)接面較淺之製造型太陽電池切割得到。根 據本發明’ RTWCG SiOx ARC/SE電池設計之發射極應為 〇·55微米厚’且RTWCG SiOx ARC/SE/ΤΟ電池設計為約 0.65微米厚。 圖31展示在曝露於相對較高強度(約5瓦/平方公分) 近U-V輻射六小時之前及之後,在近室溫下保存之A1/生 85 201251057 41245pif 長態RTWCG SiOx/Si/Au:Ti M〇S電容器的I-V特徵。此實 例中之SiOx厚度為約140奈米,其接近用作ARC之最佳 厚度。如由在小面積c-Si及mc-Si電池曝露於近UV輻射 長達6天之前及之後獲得的所述電池的數據證實’上 述UV應力條件未提高洩漏電流。在一個所述實驗中’ 12 個小面積c-Si電池及12個mc-Si小面積電池在上述UV曝 露下保存4天。令人驚訝地,Isc、V〇c、FF、Pmax及Rs 基本上不變或略微提高。在Ι-ν測試期間,電池之溫度由 小面積I-V系統保持在約25°C下,所述系統在獲得此及所 有其他應力測試實驗之所有Ι-V數據前使用NREL標準電 池校準。 使用可獲得在(-)200伏至(+)200伏之施加電壓下之當 場I-V特徵的現有高密度氙電漿(1〇5至1〇6,;μ3電子伏 特)系統研究電漿誘導之對SiOx薄膜之破壞。在SiOx膜 曝露於電漿環境數次後針對I_V曲線組群評估電漿誘導之 破壞。在2吋Si晶圓前侧上生長具有1%之大!^原子濃度 之50奈米薄SiOx膜。將優良品質Au-Ti歐姆接觸塗覆於 後表面上。 圖32展示5分鐘電漿曝露後,上述塗佈SiOx之2吋 P-Si晶圓的兩個ι_ν曲線。電漿密度為2xl〇i〇5/立方公分, 電子溫度為1.7電子伏特,電漿電位為9.8伏且中性氣體 (Xe)殘餘壓力為6χΐ〇-5托。I-V曲線明確表明存在正移動 離子,但兩個曲線表明之極小遲滯表明電漿產生之s丨〇 X / s i 界面陷牌具有極低密度,—樣品在隨後15分鐘電裝曝露 86 201251057 41245pif 後之I-V曲線再次展示近似一致之曲線。由此表明即使在 組合之20分鐘電漿曝露後,亦產生極小密度之電漿產生之 SiOx/Si界面陷阱,但SiOx膜中之金屬雜質濃度相對較大。 穿過SiOx膜之洩漏電流取決於電漿密度及中性(Ar) 氣體壓力。當施加(+)70伏之偏壓電壓時,對於2xi〇-5托 之Ar壓力’)¾漏電流為1.6毫安’而對於1 〇_4托之αγ麗 力,洩漏電流為2.7毫安。 對具有最差情形概況(Fe雜質原子濃度為約3%)之 SiOx膜施加(-)200伏偏壓。最初,其洩漏電流為57微安, 且在1分鐘曝露後為60微安。在對樣品施加(+)1〇〇伏(Ar 壓力77微托)偏壓後,SiOx膜具有高達7毫安之初始洩 漏電流,但在1分鐘後降至約6毫安。因為懷疑Si〇x頂 層中發生變化,故使SiOx膜曝露於高強度電漿25分鐘。 然而,XPS/SEM分析並未展示siQX表面發生任何變化。 電導率(σ)可藉由如下方程估算,The unbalanced large increase in pmax of other ARCs and conventional batteries that do not yet have SE is due to the significant increase in the blue response of the RTWCG SiOX ARC/SE battery structure. This can be clearly demonstrated by the external quantum efficiency curve performed on the battery as shown in the subsequent section. Even for batteries that do not have optimal bend and tail diffusion, but have a sufficiently thick emitter and an initial net majority donor concentration that is sufficiently high at the emitter surface, SE is in RTWCG SiOX ARC/SE/ (TO) cell structure The effect is also significantly higher than other SE schemes known in the art. In a preferred embodiment of one or more embodiments, the efficiency enhanced RTWCG SiOX ARC/SE/(TO) cell structure requires an initial sheet resistance of 20 ohms per square unit _ 25 ohms per square unit. After Si0x is grown, the sheet resistance of the emitter must be 11 〇/square unit _丨2〇 ohm/square unit. When the sheet resistance is 120 ohms/square unit to 15 ohms/square unit, the FF gradually decreases and when the sheet resistance exceeds 150 ohms/square unit, the ρρ accelerates down. Example 6 • Textured rTwCG SiOx Film Surface texture of the emitter is commonly used in conventional n+/p crystallization solar cell designs to reduce optical loss by reducing reflection from light exiting the surface. Surface texturing, which is primarily used for c-Si solar cells, is obtained by chemical-side wafers prior to diffusion. For example, a surface covered by a "random pyramid" is produced along the (ιη) plane preferential side of the (100) stone substrate. Experience has shown that this pyramid can have a peak height of 25 microns (see Figure 21(e)) that can be broken during diffusion to remove the diffusion during the break. The screen printing process can then generate a shunt path control' shunt path that greatly reduces shunt resistance and shunt voltage, all of which can significantly reduce battery efficiency. At 201251057 41245pif, despite the known mechanical difficulties known in the art and the known difficulties of fabricating good quality textured mc-Si substrates, most laboratory and battery manufacturers still use some form of textured emitter surface. Although the AWR of a battery with a textured emitter can be significantly lower in some cases, the negative effect is an increase in lateral emitter resistance loss, thereby reducing the fill factor. To the best of our knowledge, the concept of using a textured emulsion (TO) deposited on the surface of a smooth emitter (at least for crystallized solar cells) was first proposed by NREL in 1994. If well designed, this method can significantly reduce the resistive losses associated with larger effective sheet resistivities and can significantly reduce the likelihood of such mechanical failures. For example, NR £L's Gee et al. used CVD to deposit an optimized textured Zn〇 coating and reported that the AM1.5 AWR of the encapsulated c-Si wafer was as low as 6%. It also shows that the encapsulated battery has an absolute improvement of up to 0.5% compared to the encapsulated SLAR planar battery. . The monthly force that textures the surface of the RTWCG SiOX film to produce a so-called τ 〇 characteristic is the last efficiency enhancement element of the RTWCG SiOx ARC/SE/TO cell structure design disclosed herein. It is known that the textured emitter surface undergoes a voltage drop due to the lateral flow of current to the gate fingers, thereby reducing the conversion efficiency. Smoothing the emitter surface and texturing Si〇x ensures a significant reduction in the sheet resistance of the emitter, thereby increasing the efficiency of the crystallization solar cell. The optimized RTWCG TO film further enhances the proven efficiency gain of the RTWCG Si〇x arc/se solar cell structure. RTWCG si〇x臈 grown in low growth rate formulations has a smooth surface topography. These smooth SiOx films can be textured by another short wet process step of continuous flow to 15 81 201251057 41245 pif seconds to form T〇 Si〇x features. The resulting pyramidal features on the SiOx surface (preferably grown on a smooth emitter) will recapture the light that will be reflected off the cell without the adverse effects of the previously textured emitter surface. The effectiveness of this τ 〇 feature as shown in the following example becomes increasingly important as the angle of incidence of light is removed from perpendicular to the cell surface. Figure 28 shows the AFM surface topography of the RTWCQ Si〇x film grown on a solar grade c_Si substrate before and after 15 seconds of 1% HF ((iv) liquid) etching. The thicker si〇X film of about 0.25 μm has a further reduction of the film. The reflectance in the upper limit of the visible spectrum thus produces a textured characteristic of the efficiency gain. As shown, the lowest AM1.5 AWR 3.09 recorded to date exists on the smooth n+c-Si emitter surface and subsequently dip On a 15 second SiOx film in i% HF (water (iv)). The high SiOx growth rate solution produces a textured Si〇x film surface as part of a single RTWCG SiOx ARC/SE/TO process step. As can be seen in Figure 24, these The SiOx film has an extremely low AMI.5 AWR value of about 4.5%. Since the pyramidal feature is about 120 nm high, the RTWCG Si〇x ARC/SE/TO process step should produce a film thickness of not less than 22 Å. In order to achieve this film thickness, the active emitter should return a nominal value of 0 25 μm to 0.3 μm, and the Si Ming Ting fold and tail type diffusion profile must produce a junction depth of not less than 〇 6 μm. Example 7 - for solar cells and others The preliminary identification test of the applied RTWCG Si〇x film has tested several RTWC The shelf life of the G solution formulation. The maximum shelf life test is about 8 years for an early solution formulation. For 82 201251057 41245pif this ongoing shelf life test 'periodically saves 1 lifetime during the time range The VT solution (such as in Figure 14) in a sealed nalgene container was used to grow the Si〇x film over more than 100 large area c_Si, mc-Sim, and polycrystalline n+/p solar cells. To date, there has been no significant change in the quality of the resulting RTWCGSiOxARC/SE cell structure or the resulting solar cell performance. Small area n+/p solar cells have also been used to test the shelf life of recent RTWCG growth solution formulations. Most novel formulations are shown again. There is no significant change in the structure or performance of the RTWCG battery. Initial identification tests for high growth rate RTWCGSiOx films (including but not limited to the tests below) indicate that these Si0x films are not only potentially useful for solar cell applications, but also for a large number of other Electron (microelectronics) and optoelectronic (photonic) applications. Since a relatively large amount of A1 (Au) / growth hybrid RTWCG SiOx film / Si / Au: Ti MOS The electrical and dielectric properties of the RTWCG SiOx film were extracted (the front gate area was approximately 〇·〇 49 cm 2 ). IV and CV characteristics were obtained on the fabricated MOS capacitor before and after various stress conditions, which were used to determine: (丨) resistivity of SiOx film, (ii) leakage current, (iii) dielectric constant, and (iv) breakdown voltage. Figure 29 (a) shows the i-v characteristics of an A1/growth RTWCG SiOx/Si/Ti-Au MOS capacitor with a SiOX film thickness of 11 Å. The I-V characteristic at (1) a bias voltage of 110 volts to (+) 110 volts and a bias voltage of (-) 3 volts to (+) 3 volts shows that the mobile ion density in the SiOx film is extremely small. Another evidence is the good C-V curve obtained on the same MOS capacitor in Figure 29(b). The I-V characteristics of the film not only meet the standards for solar cell applications, but also meet a number of other more demanding standards for electronic and optoelectronic (photonic) 83 201251057 41245 pif component applications. In a series of experiments, A1/growth SiOx/p-Si/Au:TiMOS capacitors were produced using the preferred RTWCGSiOx growth solution formulations described herein. The I-V and C-V characteristics were obtained before and after the voltage stress of up to 1 hour at a fixed bias of (-) 100 volts or (+) 100 volts. Time-dependent leakage currents and breakdown voltages fail to exhibit any significant change in voltage stress. The current leakage current density of the RTWCG SiOx film of the prior art is about 25 N/cm 2 at a positive electric field of 8 megavolts/cm, and is low at a positive electric field and a negative electric field applied at 〇3 volts/cm. Leakage current at 0.8 N/cm2. The current technical RTWCG SiOx film has a resistivity of about 4 x 1 〇 14 ohm-cm. The data is no less than the known data for spin coating and CVD SiNx films deposited in the art at temperatures below 500 °C. These results show that the RTWCG SiOx thin film dielectric layer is suitable for high efficiency 矽 solar cells and passivation/anti-reflective coatings for microelectronics and photonic applications. Figure 30 shows initially at 1〇〇. The i v characteristics of the A1/growth RTWcg SiOx (about 1 Å nanometer thick) film/p_Si Au:Ti M〇s capacitor were measured by heating under the arm for 1 hour and then heating at 200 ° for 1 hour. The leakage current is reduced by the heat treatment to dry the surface of the grown state si x x film. The lv data display obtained from a large number of c-Si and mc-Si batteries can be removed by drying at about 12 Gt:T for 5 minutes to remove the humidity of the SiOx county. In the relevant experimental towel, it was found that the battery was stored at room temperature for two days until the day (depending on the thickness of the SiOx film), and the relative percentage of the increase was the same as that of the battery treated at 12 (TC for 5 minutes). 84 201251057 41245pif points = five A1/growth RTWCG SiOx films/p-Si/AuTi MOS capacitors, heat treated in air at 200 ° C, 30 (TC, 450. (and 60) at elevated temperature of TC A small area of n+/p c_Si and five small areas of n+/p mc-Si RTWCG SiOx ARC/SE solar cells for 1 hour. As can be seen in Figure 18, the relatively high hydrogen atom concentration on the SiOx surface decreases with depth. Based on experimental data. , as low as 2 〇〇, its temperature can transfer hydrogen to the Si〇x/Si interface and passivate the interface. Heat treatment at 200 ° C under a positive bias and a negative bias of 0.3 MV / cm. After an hour, it can be observed that the leakage current drops from about 5x10 11 amps/cm 2 to as low as 2 xi 〇 12 amps/cm 2 . 5 for this reduction is due in part to the hydrogen passivation of the si 〇 x / si interface. After further heating for a period of i hours at a temperature in the range of 200 ° C to 450 ° C, the leakage current of the MOS capacitor is small. The rate is gradually reduced. At 600 ° C, the leakage current of all MOS capacitors is slightly increased. And the Pmax of all c-Si and mc-Si solar cells is slightly reduced due to the small decrease of Voc and FF. These findings are likely to be The SiOx film from the metal gate through the MOS capacitor and the Ag of the solar cell diffuse from the front gate line to generate some small short circuit paths. However, it is worth mentioning that the above c_Si and mc-Si small area test cells are self-comparison The fabricated RT solar cell with the best RTWCg SiOx ARC/SE (TO) junction is cut. According to the invention, the emitter of the RTWCG SiOx ARC/SE cell design should be 〇·55 μm thick and RTWCG SiOx ARC/ The SE/ΤΟ battery is designed to be approximately 0.65 microns thick. Figure 31 shows A1/Life 85 201251057 stored at near room temperature before and after exposure to relatively high intensity (approximately 5 watts/cm 2 ) near UV radiation for six hours. 41245pif long-state RTWCG SiOx/Si/Au: IV characteristics of Ti M〇S capacitor. The SiOx thickness in this example is about 140 nm, which is close to the optimum thickness for ARC. For example, in small area c-Si and mc-Si battery was exposed to near UV radiation for up to 6 days and The data obtained from the battery obtained later confirmed that the above UV stress conditions did not increase the leakage current. In one of the experiments, '12 small-area c-Si cells and 12 mc-Si small-area cells were stored under the above UV exposure 4 day. Surprisingly, Isc, V〇c, FF, Pmax and Rs are substantially unchanged or slightly increased. During the Ι-ν test, the temperature of the battery was maintained at about 25 °C by the small area I-V system, which was calibrated using the NREL standard battery before all Ι-V data for this and all other stress testing experiments were obtained. Studying Plasma Induced Using Existing High Density Tantalum Plasma (1〇5 to 1〇6,; μ3 Electron Volt) System Obtaining Field IV Characteristics at (-) 200 V to (+) 200 V Applied Voltage Destruction of the SiOx film. The plasma induced damage was evaluated for the I_V curve group after the SiOx film was exposed to the plasma environment several times. Growing on the front side of the 2吋Si wafer is 1% big! ^ 50 nm thin SiOx film with atomic concentration. A good quality Au-Ti ohmic contact is applied to the back surface. Figure 32 shows two ι_ν curves for the above SiOx coated 2 吋 P-Si wafer after 5 minutes of plasma exposure. The plasma density is 2 x l 〇 i 〇 5 / cm ^ 3 , the electron temperature is 1.7 eV, the plasma potential is 9.8 volts and the neutral gas (Xe) residual pressure is 6 χΐ〇 - 5 Torr. The IV curve clearly indicates the presence of positively moving ions, but the two curves indicate a very small hysteresis indicating that the s丨〇X / si interface trapped by the plasma has a very low density—the sample is exposed to 86 after the next 15 minutes of electrical exposure 86 201251057 41245pif The IV curve again shows an approximately consistent curve. This shows that even after the combined 20 minutes of plasma exposure, the SiOx/Si interface trap generated by the plasma of very small density is produced, but the concentration of metal impurities in the SiOx film is relatively large. The leakage current through the SiOx film depends on the plasma density and the neutral (Ar) gas pressure. When a (+) 70 volt bias voltage is applied, the Ar pressure for 2 〇 〇 -5 Torr ') 3⁄4 leakage current is 1.6 mA' and for a 〇 _ 4 Torr α γ Li, the leakage current is 2.7 mA. . A (-) 200 volt bias was applied to the SiOx film having the worst case profile (Fe impurity atom concentration of about 3%). Initially, the leakage current was 57 microamperes and was 60 microamps after 1 minute exposure. The SiOx film had an initial leakage current of up to 7 mA after applying a (+) 1 〇〇 (Ar pressure 77 μTorr) bias to the sample, but dropped to about 6 mA after 1 minute. The SiOx film was exposed to high-strength plasma for 25 minutes because it was suspected that there was a change in the top layer of Si〇x. However, XPS/SEM analysis did not show any change in the surface of the siQX. The conductivity (σ) can be estimated by the following equation.

πά2 V 其中/為⑨漏電流,電壓,為樣品之直徑 且t為膜厚度。參見上文’一組特定量測值具有1 = 6毫安, V = 1〇〇伏,d = 5公分且1 = 5〇奈米。使用上述方程,施 膜具有σ=1.5χ1〇η/歐-公分,其對應於約6><1〇1()歐_公分之 相對較低膜電阻率。儘f此相對較高電導率是關於&污染 之最差情形概況’但其健完全不亞於f ^Ti〇x arc膜 87 201251057 41245pif 以及其他所謂室溫旋塗薄膜介電層之公開值 電池 編號ά 2 V where / is 9 leakage current, voltage, is the diameter of the sample and t is the film thickness. See above for a set of specific measurements with 1 = 6 mA, V = 1 〇〇, d = 5 cm and 1 = 5 〇 nanometer. Using the above equation, the film is applied with σ = 1.5 χ 1 〇 η / ohm - cm, which corresponds to a relatively low film resistivity of about 6 < 1 〇 1 () ohm centimeters. This relatively high conductivity is the worst case profile for & contamination, but its health is no less than the public value of f ^Ti〇x arc film 87 201251057 41245pif and other so-called room temperature spin-on film dielectric layers. Battery number

漁熱試驗(Damp heat test,Dff) : 80°C,相對濕度為約R 溶液 描述Damp heat test (Dff): 80 ° C, relative humidity is about R solution Description

Isc(安)Isc(安)

Voc (伏) 裸 A8-3 MA-1 塗佈SiOx後 96 ^ φί 139.62 199^62 199.98 '20329 204.93ϋ 501 5Ϊ2Voc (volts) bare A8-3 MA-1 after coating SiOx 96 ^ φί 139.62 199^62 199.98 '20329 204.93ϋ 501 5Ϊ2

513 •5lT 513 '51*3' 71.22 69.8Ϊ' 68.69 68'.3δ' 67.9 67.64 0.4652 FF(%) Rs(歐)513 •5lT 513 '51*3' 71.22 69.8Ϊ' 68.69 68'.3δ' 67.9 67.64 0.4652 FF(%) Rs(Europe)

0.3888 03933 0.3909 ^3999 α39Ϊ3 裸 A8-5 H-1 塗佈SiOx後 ·ϋϋ· 150.85 217.82 216.11 219^07 500 5Ϊ〇" 512 •5ΪΓ 70.83 67.ΪΪ' 68.27 '68.21' 0.4369 '03887 03835 2:9:4:4:9: 8 : 5 ; 7 : 6 ; 5 : 00—8 ·7: 4· : 4· : 2 : 3 : 5 3 PC 149.70.70:7171:7153. 144土輕 24〇Vj>B^i 裸 217.15ϋ 511 '5Ϊ2 68.47 68.08' 0.3791 0;3753 0.3833 A8-140.3888 03933 0.3909 ^3999 α39Ϊ3 Naked A8-5 H-1 After coating SiOx·ϋϋ·150.85 217.82 216.11 219^07 500 5Ϊ〇" 512 •5ΪΓ 70.83 67.ΪΪ' 68.27 '68.21' 0.4369 '03887 03835 2:9 :4:4:9: 8 : 5 ; 7 : 6 ; 5 : 00—8 ·7: 4· : 4· : 2 : 3 : 5 3 PC 149.70.70:7171:7153. 144 土轻 24〇Vj&gt ;B^i bare 217.15ϋ 511 '5Ϊ2 68.47 68.08' 0.3791 0;3753 0.3833 A8-14

B 塗佈SiOx後 96^Β^ΐ' 175.14 25153 251.88 "25Ϊ2" 255.09 25Ϊ53 500 '5ΪΪ' 512 512 512 5ΪΓ 70.98 64.'29" 64.97 66.'84' 66.25 65.'71" 0.3884 0.4156 α4Ϊ29 0.3552 "0'3548 0372Ϊ 8:1:1:9/5:6:9:8:6:21 6 ; 6 ; 4 : 8 1 : 3 : 2 : 9 : 5 : 1 一 ·4:·3;·°ί·5^ί-··3*··7*-·5*··4-· 4; 5τ-·6Γ-·6Γ-'6· 2τ-3· -* 3T-'6r;6r;5· 7-7-7-7-7 6.-8-8-8-8,-8- 49 表5_自同一大面積製造型電池切割之小面積塗佈 RTWCG SiOx之mc-Si太陽電池的濕熱耐久性測試。 表5含有在完全浸入三種不同RTWCG SiOx生長調配 物中之前及之後三個小面積mc-Si太陽電池的IV數據。其 展示在RTWCG SiOX ARC/SE mc-Si電地結構形成後及在 曝露於濕熱環境(80°C,相對濕度為約100%)長達24〇 小時後Isc、Voc、FF、Rs及Pmax所發生之變化。 88 201251057 41245pif 小於期望值的Isc、Voc及Pmax提高是由具有薄於最 佳發射極厚度之裸電池引起。具有較厚發射極之電池將充 分利用RTWCG SiOx生長期間所產生之SE。此實例展示 即使剩餘發射極極薄,電池在DH測試期間亦不會退化。 下一個實施實例含有製造型電池在塗佈SiOx之前及之後 的I-V數據’儘管所述電池對於RTWCG SiOx ARC/SE電 池設計並非最佳,但其具有較厚發射極。 實例 8 n+/p (P,B) RTWCG SiOx ARC/SE c-Si、轉造 mc-Si及多晶矽太陽電池之效能 RTWCG SiOx ARC/SE/TO低成本結晶矽太陽電池技 術充为適用於所有結晶石夕基板,諸如柴氏及浮區單晶 (c-Si)、鑄造多晶(mc_si)及帶狀多晶矽(多晶矽)基板。 所述RTWCG SiOx製程充分適合於現有製造方法(諸如網 版印刷金屬化),且僅擴散步驟需要修改。另外’其減少標 準加工步驟之數目及複雜性。 丁 生長溶液之最佳化考慮大量RTWCG Si〇x變數,諸如 溶液配方、生長速率及未金屬化之發射極的回蝕量。必須 考慮之結構魏包含接©深度、擴散分佈㈣及彎折與屋、 型擴散分佈曲線之f折深度。經最佳化之與金屬化相 RTWCG SiOx生長溶液必須能狗在不超過!分鐘内執行如 下操作: ° i. 當場清洗裸電池之表面; ii. 產生低反射率高透射率&(^膜; iii. 同時產生優良品質選擇性發射極; 89 201251057 41245pif iv.產生視情況經紋理化之膜表面。 可使用大量製造型C-Si以及鑄造及帶狀爪^义擴散結 構及裸太陽電池完成此項徹底研究。在具有彎折與尾型擴 散分佈曲線之擴散η+/ρ結構上僅製造少量小面積太陽電 池,RTWCG SiOx ARC/SE/ (TO)製程之要求。 表6含有12個未塗佈6 p寸製造型c-Si太陽電池之製 造商I-V數據及相同電池在塗佈SiOx後之I-V數據。電池 之發射極極厚且經角錐紋理化而非較佳之平滑表面。紋理 化發射極表面使得不可能獲得精確淨多數載流子濃度分佈 曲線或擴散分佈曲線形狀’故接面深度估算為大於〇 6微 米。Isc平均增益適中,為約40%,平均Voc增益驚人地 低,僅為5毫伏。然而’由於為約12%之實質上大幅 提高,故平均Pmax增益很顯著,為56%。基於製造商之 數據’所述批次之最大絕對AM1.5效率計算值為16.4%, 批次平均值為約15.6%。此平均效率明確展示RTWCgB After coating SiOx 96^Β^ΐ' 175.14 25153 251.88 "25Ϊ2" 255.09 25Ϊ53 500 '5ΪΪ' 512 512 512 5ΪΓ 70.98 64.'29" 64.97 66.'84' 66.25 65.'71" 0.3884 0.4156 α4Ϊ29 0.3552 "0'3548 0372Ϊ 8:1:1:9/5:6:9:8:6:21 6 ; 6 ; 4 : 8 1 : 3 : 2 : 9 : 5 : 1 1·4:·3; ·°ί·5^ί-··3*··7*-·5*··4-· 4; 5τ-·6Γ-·6Γ-'6· 2τ-3· -* 3T-'6r;6r ;5· 7-7-7-7-7 6.-8-8-8-8,-8- 49 Table 5_ Small-area coated RTWCG SiOx mc-Si sun from the same large-area manufacturing battery The wet heat durability test of the battery. Table 5 contains IV data for three small area mc-Si solar cells before and after complete immersion in three different RTWCG SiOx growth formulations. It is shown after the formation of the RTWCG SiOX ARC/SE mc-Si electrical structure and after exposure to a hot and humid environment (80 ° C, relative humidity of about 100%) for up to 24 hours after Isc, Voc, FF, Rs and Pmax The change that has taken place. 88 201251057 41245pif The increase in Isc, Voc and Pmax less than the expected value is caused by a bare cell having a thickness that is thinner than the optimum emitter. A battery with a thicker emitter will fully utilize the SE produced during RTWCG SiOx growth. This example shows that even if the remaining emitter is extremely thin, the battery will not degrade during the DH test. The next example contains I-V data for a fabricated cell before and after coating SiOx. Although the cell is not optimal for RTWCG SiOx ARC/SE cell design, it has a thicker emitter. Example 8 n+/p (P,B) RTWCG SiOx ARC/SE c-Si, converted mc-Si and polycrystalline germanium solar cell performance RTWCG SiOx ARC/SE/TO low cost crystallization solar cell technology is suitable for all crystallization Shixi substrate, such as Chai and floating zone single crystal (c-Si), cast polycrystalline (mc_si) and ribbon polycrystalline germanium (polycrystalline germanium) substrates. The RTWCG SiOx process is well suited for existing fabrication methods (such as screen printing metallization) and only the diffusion step requires modification. In addition, it reduces the number and complexity of standard processing steps. Optimization of the butyl growth solution considers a large number of RTWCG Si〇x variables, such as solution formulation, growth rate, and etchback of the unmetallized emitter. Structures that must be considered include the depth of the joint, the distribution of the diffusion (four), and the f-depth of the bend and the distribution curve of the house and type. Optimized and metallized phase RTWCG SiOx growth solution must be able to pass the dog! Do the following in minutes: ° i. Clean the surface of the bare cell on the spot; ii. Produce low reflectivity and high transmittance & (^ film; iii. Produce good quality selective emitter at the same time; 89 201251057 41245pif iv. Textured film surface. This thorough study can be done using a large number of manufactured C-Si and cast and ribbon-like diffusion structures and bare solar cells. Diffusion η+/ with a bend-to-tail diffusion profile ρ structure only produces a small number of small-area solar cells, RTWCG SiOx ARC/SE / (TO) process requirements. Table 6 contains 12 uncoated 6 p-inch manufacturing c-Si solar cell manufacturer IV data and the same battery IV data after coating SiOx. The emitter of the cell is extremely thick and textured by a pyramid rather than a smooth surface. The textured emitter surface makes it impossible to obtain a precise net majority carrier concentration profile or diffusion profile shape' Therefore, the joint depth is estimated to be greater than 〇6 μm. The average gain of the Isc is moderate, about 40%, and the average Voc gain is surprisingly low at only 5 millivolts. However, due to the substantial increase of about 12%, Therefore, the average Pmax gain is significant at 56%. Based on the manufacturer's data, the maximum absolute AM1.5 efficiency of the batch is calculated to be 16.4%, and the batch average is about 15.6%. This average efficiency clearly shows RTWCg.

SiOx電池設計及技術之可行性,尤其因為所述電池在碎矽 基板上製造,具有大縱橫比角錐紋理化發射極表面且擴散 分佈曲線對於高效率RTWCG SiOX ARC/SE電池設計遠非 最佳。 適合RTWCG SiOx生長溶液保持電池金屬化完整性 且產生將部分降低反射率,使表面鈍化且有利於優良品質 選擇性發射極之效率增強特徵。然而,任何既定小批量電 池(每批次至多3 0個電池)均含有2個至5個範圍内之任 何數目的電池在塗佈si〇x後具有極大pmax(效率)增益。 201251057 41245pif 而言,表6之第2號電池及第7號電池的Pmax分別 85.4%及97.7%。此由SiOx生長溶液在SiOX生長前 當%清洗電池表面及去除某些有害表面條件的能力來解 釋二本領域中已知之習知ARC塗佈技術不存在的此益處 使4^所測試之幾乎全部諸多製造型c_Si、mc_si及多晶矽 太陽電池批次的Pmax離差較小。圖33展示圖6中之電池 的Pmax離差在完全浸入RTWCG SiOx ARC/SE生長溶液 中後顯著變小。 表7中所示之1-V數據來自自同一塗佈角錐之6吋電 池切割的小面積n+/p c_Si太陽電池,其完全浸入圖12之 RTWCG SiOx生長溶液調配物中。生長後,將電池浸於1% HF(水溶液〕中以產生紋理tSi〇x表面。因為發射極很淺,估 算之接面深度為0.45微米-0.5微米,故預期在Si0x生長 後FF因回蝕發射極而降低。儘管所得約〇 25微米厚之發 射極對應於大於12〇歐/平方單位之發射極薄層電阻,但電 池之串聯電阻(rs)出乎意料地平均降低約23%。 18〇增益(參見表7)為!>111狀平均提高51.58%之主要 原因。相對較小之Voc提高(至多13毫伏)與對剩餘發 射極薄層電阻高於12〇歐/平方單位之塗佈電池收集的其 他相關I-V數據一致。儘管Isc可隨薄層電阻提高而逐漸 提高,但Voc及FF逐漸降低。測試電池A5-1及測試電池 A5-7不包含在平均增益内,因為分別為3〇秒及15〇秒之 浸入時間不產生類似於其餘電池之厚度的膜。但應注意, 如由電池A5-7之Rs下降15.7%所示,相對較長浸入時間 91 201251057 41245pif 似乎不會不利地影響網版印刷接觸之完整性。另一有趣的 觀察結果為Voc、Isc及FF僅隨50秒至70秒範圍内之浸 入時間略微變化;小的RTWCG SiOx製程時間變化不會很 大地影響電池效能。 接面深度對於使 RTWCG SiOx ARC/SE/ (TO) pmax (效率)最大為重要的。表8展示兩個小面積c_Si太陽電 池塗佈SiOx後之Pmax增益。其自具有塗佈角錐之表面及 經估算為約0·65微米之較深發射極的製造型n+/p c_Si大 面積電池切割得到。生長溶液調配物及生長後處理與表6 相同。電池20-2具有最佳v〇c及Pmax增益,分別為30 毫伏及109%。相對較大Pmax增益由因相對較大Rs下降 而提尚之FF促成。相對較大v〇c提高表明Si〇x表面鈍化 良好,但在浸入生長溶液中6〇秒後,剩餘薄層電阻過低, 為約50歐/平方單位。自兩個大面積太陽電池切割的則固 小面積電池的平均VGe提高為17 2毫伏。躲此批次之小 面積太陽電池’平均而言,Pmax提高67 91%,亦即在 至跳1%範圍内,但平均以增益相對較低,僅為 41 ·35% 〇 具有平滑發射極及料與尾·散分佈祕(諸如圖The feasibility of SiOx cell design and technology, especially since the cell is fabricated on a shredded substrate, has a large aspect ratio pyramidal textured emitter surface and the diffusion profile is far from optimal for high efficiency RTWCG SiOX ARC/SE cell designs. Suitable for RTWCG SiOx growth solutions to maintain cell metallization integrity and produce efficiency enhancement features that will partially reduce reflectivity, passivate the surface, and favor good quality selective emitters. However, any given small batch battery (up to 30 cells per batch) contains any number of cells in the range of 2 to 5 with a maximum pmax (efficiency) gain after coating si〇x. In 201251057 41245pif, the Pmax of the No. 2 battery and the No. 7 battery of Table 6 were 85.4% and 97.7%, respectively. This is explained by the ability of the SiOx growth solution to clean the surface of the cell and remove some of the deleterious surface conditions prior to the growth of SiOX. This benefit is not present in the conventional ARC coating technique known in the art. The Pmax dispersion of many manufactured c_Si, mc_si and polycrystalline solar cell batches is small. Figure 33 shows that the Pmax dispersion of the cell of Figure 6 is significantly reduced after being fully immersed in the RTWCG SiOx ARC/SE growth solution. The 1-V data shown in Table 7 was from a small area n+/p c_Si solar cell cut from a 6 吋 cell of the same coated pyramid, which was completely immersed in the RTWCG SiOx growth solution formulation of Figure 12. After growth, the battery was immersed in 1% HF (aqueous solution) to produce a textured tSi〇x surface. Since the emitter is very shallow and the junction depth is estimated to be 0.45 μm to 0.5 μm, it is expected that FF will be etched back after Si0x growth. The emitter is reduced. Although the resulting emitter of about 25 microns thick corresponds to an emitter sheet resistance greater than 12 ohms per square unit, the series resistance (rs) of the battery unexpectedly decreases by an average of about 23%. The 〇 gain (see Table 7) is the main reason for the average increase of 51.58% in the shape of .111. The relatively small Voc increase (up to 13 mV) and the residual emitter sheet resistance is higher than 12 〇 ohm/square unit. The other relevant IV data collected by the coated battery are consistent. Although the Isc can be gradually increased as the sheet resistance increases, the Voc and FF gradually decrease. The test battery A5-1 and the test battery A5-7 are not included in the average gain because respectively The immersion time of 3 sec and 15 sec. does not produce a film similar to the thickness of the remaining batteries. However, it should be noted that as the Rs of the battery A5-7 drops by 15.7%, the relatively long immersion time 91 201251057 41245pif does not seem to Will adversely affect the screen The integrity of the brush contact. Another interesting observation is that Voc, Isc, and FF only slightly change with the immersion time in the range of 50 seconds to 70 seconds; small RTWCG SiOx process time changes do not greatly affect the battery performance. Depth is important for maximizing RTWCG SiOx ARC/SE/(TO) pmax (efficiency). Table 8 shows the Pmax gain of two small-area c_Si solar cells coated with SiOx. The fabricated n+/p c_Si large-area cell is fabricated for a deeper emitter of about 0. 65 microns. The growth solution formulation and post-growth treatment are the same as in Table 6. Battery 20-2 has the best v〇c and Pmax gains. , 30 mV and 109% respectively. The relatively large Pmax gain is contributed by the FF which is raised by the relatively large Rs drop. The relatively large v〇c increase indicates that the surface passivation of Si〇x is good, but it is immersed in the growth solution. After the leap second, the remaining sheet resistance is too low, about 50 ohms/square unit. The average VGe of the solid small area battery cut from two large-area solar cells is increased to 17 2 millivolts. Solar cells 'on average, Pmax is increased by 6 7 91%, which is within 1% of the jump, but the average gain is relatively low, only 41 · 35% 〇 with smooth emitter and material and tail · scattered distribution secret (such as

ηΛΓ平方公*n+/pc-Sit池批次之最大voc提高為 m、。預期到此中等提高,因為RTWCG Si0x ARC/SE 八>、、、。構形成後,淨多數表面濃度為大於㈣19/立方公 分0 ^佈Sl〇X使小批量(10個)電池(包含表10中之3 92 201251057 41245pif ,,池)之效率平均提高5449% (am〇條件)。平均 提南50.79%。相比較而言,使用&Νχ塗層之製造型電池 的效率增益不超過35%,即使在CVD siNx沈積期間發生 的對電池主體之正效應下亦如此。在此小批量製造型電池 上三相較於塗佈SiNx之電池的絕對效率提高為約14 4〇/〇, 儘管RTWCGSiOx製程為不會鈍化主體之表面製程。基於 大量測試RTWCG SiOx電池,使用近似最佳之RTWCG SiOx ARC/SE/ ( TO )電池結構可達成相較於使用經最佳化 但無SE之SiNx ARC膜之電池大得多的絕對效率增益。 表9展示由太陽電池製造商量測之在塗佈si〇x之前 及之後小批量大面積低效率n+/p多晶矽製造型太陽電池 的I-V數據。應注意由RTWCG SiOx ARC/SE形成獲得的 平均Pmax增益為約48%。相比較而言,據吾人所知,製 造型電池上由SiNx塗層產生的Pmax平均增益小於35%, 其包含氫主體鈍化主動。 實驗研究已展示相較於較高效率c-Si電池,SiOx ARC/SE效率增強特徵更適用於低效率多晶矽製造型電 池。表10展示小批量製造型多晶Si太陽電池中之三個電 池在其完全浸入SiOx生長溶液中之前及之後的I-V數據。 所述電池在美國國家航空航天局格倫研究中心(NASA GRC)在標準AMO條件下測試;故標準AMI.5效率值應 高約20%。如這些電池之一上可見’塗佈SiOx後促成其 ΑΜ0效率Pmax大幅(97.5%)提高之主要參數為ISC提高 89.5%。此大幅Isc提高既不能由簡單的光損耗減少來解 93 201251057 41245pif 釋’亦不能由簡單的表面鈍化來解釋,因為v〇c之最大提 高僅為16_2毫伏。解釋必須為存在光學、表面鈍化及一些 其他因素之組合。 電池描i Isc Voc FF Pmax 裸1池1 5.81 安 593 _4 伏 68.20% 2_35 瓦 RTWCG SiOx塗佈55秒後之電池1 7.97 安 599.0 伏 74.90% 3_58 瓦 增益 37.18% 0.94% 9.82% 52.34% 裸電池2 (*) 5.71 安 585.9 伏 59.60% 1.99 瓦 RTWCG SiOx塗佈60秒後之電池2 (*) 8.18 安 597.0 伏 75.60% 3·69 瓦 增益 43.26% 1.89% 26.85% 85.43% 裸電池3 5.87 安 585.9 伏 68.60% 2.36 瓦 RTWCG SiOx塗佈60秒後之電池3 8.29 安 596.0 伏 73.30% 3.62 瓦 增益 41.23% 1.72% 6.85% 53.39% 裸電池4 5·83 安 592.8 伏 69.80% 2_41 瓦 RTWCG SiOx塗佈60秒後之電池4 8.23 安 595.0 伏 75.50% 3.70 X 增益 41.17% 0.37% 8.17% 53.53% 裸電池5 5.86 安 596.0 伏 70.90% 2.48 瓦 RTWCG SiOx塗佈60秒後之電池5 8_15 安 598.0 伏 74.00% 3.61 瓦 增益 39.08% 0.34% 4.37% 45.56% 裸電池6 5.89 安 588.0 伏 65.60% 2.70 瓦 RTWCG SiOx塗佈65秒後之電池6 8.26 安 592.0 伏 74.20% 3.81 瓦 增益 40.24% 0.68% 13.11% 41.11% 裸電池7 (*) 5.74 安 589.2 伏 53.00% 1.79 瓦 RTWCG SiOx塗佈65秒後之電池7 (*) 8.15 安 595.0 伏 72.90% 3.54 瓦 增益 41.99% 0.98% 37.55% 97.77% 裸電池8 5.88 安 588.3 伏 60.10% 2.08 瓦 RTWCG SiOx塗佈70秒後之電池8 8.11 安 593.0 伏 72.80% 3.50 瓦 增益 37.93% 0.80% 21.13% 68.27% 裸電池9 5.86 安 590.5 伏 67.80% 2.35 瓦 RTWCG SiOx塗佈60秒後之電池9 8.21 安 591_0 伏 "73.30% 3.55 瓦 增益 40.10% 0.08% ~8.11% 51.06% 94 201251057 41245pif 電池描述 Isc Voc FF Pmax 裸電池10 5.91 安 587.3 伏 68.40% 2.37 瓦 RTWCG SiOx塗佈60秒後之電池 10 8.27 安 590.0 伏 72.50% 3.53 瓦 增益 39.93% 0.46% 5.99% 48.95% 裸電池11 5.87 安 593.2 伏 69.90% 2.44 瓦 RTWCG SiOx塗佈60秒後之電池 11 8.17 安 597.0 伏 73.10% 3.56 瓦 增益 39.18% 0.64% 4.58% 45.90% 裸電池12 5.88 安 593.3 伏 70.20% 2.45 瓦 RTWCG SiOx塗佈60秒後之電池 12 8_24 安 596.0 伏 74.10% 3.64 瓦 增益 40.14% 0.46% 5.56% 48.57% 所有裸電池之平均值 5.84 安 590.3 伏 66.01% 2.31 瓦 所有塗佈RTWCG SiOx之電池的 平均值 8.19 安 594.9 伏 73.85% 3.61 瓦 平均增益 40.11% 0.78% 11.88% 56.03% 表6.在RTWCG SiOx塗佈之前及之後,使用碎晶圓 及塗佈角錐之表面的n+/p c-Si太陽電池(諸如圖20中) 的AM1.5 I-V數據。 95 201251057 41245pif 電池描述 反應 時間 〔秒) Isc裸電 池(安) Isc RTWCG SiOx 塗 佈(安) Voc 裸電 池 〔伏) Voc RTWCG SiOx 塗 佈(伏) FF 裸電 池 〔%) FF RTWCG SiOx 塗 佈(%) Rs 裸電 池 〔歐) Rs RTWCG SiOx 塗 佈(歐) Pmax 裸電 池 (瓦) Pmax RTWCG SiOx 塗 佈(瓦) A5-2 50 280.31 438.29 581.0 592.0 73.8 70.1 0.25 0.19 120.18 182.05 增益 56.36% 1.89% -4.95% -22.36% 51.48% A5-3 50 262.89 398.84 579.0 592.0 70.9 71.1 0.28 0.20 107.91 168.19 增益 51.71% 2.25% 0.28% -29.00% 55.86% A5-4 55 262.71 400.85 583.0 593.0 72.4 71.2 0.27 0.20 110.92 169.16 增益 52.58% 1.72% -1.77% -26.38% 52.51% A5-5 55 331.66 514.03 577.0 590.0 69.6 68.0 0.21 0.17 133.28 206.31 增益 54.99% 2.25% -2.28% -18.91% 54.80% A5-6 60 412.68 625.86 581.0 593.0 70.4 68.1 0.18 0.15 168.82 252.73 增益 51.66% 2.07% -3.17% -17.49% 49.70% A5-8 60 271.7 400.57 579.0 586.0 66.8 65.6 0.27 0.22 105.03 153.98 增益 47.43% 1.21% -1.80% -19.42% 46.60% A5-9*** 60 216.41 332.85 581.0 591.0 68.5 68.2 0.31 0.24 86.00 134.20 增益 53.81% 1.72% -0.38% -22.17% 56.04% A5-10 65 263.51 408.20 588.0 596.0 73.7 71.7 0.24 0.19 114.23 174.20 增益 54.91% 1.36% -2.82% -21.21% 52.49% A5-11 65 228.97 351.41 586.0 595.0 73,4 71.4 0.28 0.22 98.51 149.20 增益 53.47% 1.54% -2.71% -21.94% 51.45% A5-12 65 241.23 365.82 587.0 596.0 73.5 71.9 0.27 0.20 104.07 156.67 增益 51.65% 1.53% -2.19% -22.95% 50.54% A5-13*** 70 218.45 334.30 589.0 597.0 73.9 72.0 0.30 0.22 95.01 143.75 增益 53.03% 1.36% -2.45% -25.79% 51.30% A5-14 60 272.01 409.17 590.0 596.0 74.9 72.8 0.23 0.19 120.21 177.39 增益 50.42% 1.02% •2.84% -20.20% 47.57% A5-1* 30 263.51 408.20 588.0 596.0 73.7 71.7 0.24 0.19 114.23 174.20 增益 54.91% 1.36% -2.82% -21.21% 52.49% A5-7** 150 312.02 456.06 577.0 583.0 66.4 64.2 0.24 0.20 119.52 170.53 增益 46.16% 1.04% -3.37% -15.79% 42.67% 平均值 271.9 415.0 583.4 593.1 71.8 70.2 0.26 0.20 113.7 172.3 平均增益 52.65% 1.66% -2.28% -22.61% 51.58% 平均偏差 34.9 55.5 3.8 2.4 2.2 1.8 0.03 0.02 14.7 21.8 表7.自具有淺發射極、經估算接面深度為約0.45微 米且具有塗佈角錐之發射極表面的同一 6吋電池切割之小 面積n+/p c-Si太陽電池的I-V數據。 96 201251057 41245pif 電池編號 描述 Isc (毫 安) Voc (毫 伏) FF (%) Rs (歐) Pmax (毫瓦) 18-8 裸 222.2 569 50.71 0.408 64.1 完全浸 入30秒 317.4 589 61.1 0.268 114.2 提高 42.8% 3.5% 20.5% -34.3% 78.2% 20-2 裸 81.85 550 39.36 1.58 17.73 完全浸 入60秒 114.4 580 55.85 0.69 37.07 提高 39.8% 5.5% 41.9% -56.3% 109.1% 表8.在RTWCGSiOx塗佈之前及之後,使用碎晶圓及 塗佈角錐之表面的n+/p c-Si太陽電池(諸如圖21中)的 AM1.5 I-V 數據。 晶圓 之前 塗佈SiOX之後 Voc Isc Pmax FF Voc Isc Pmax FF 1 516 4.01 1.41 68.2 525 5.93 2.08 66.8 2 517 3.98 1.38 66.9 521 5.83 2.04 67.0 3 514 3.99 1.34 65.0 520 5.96 2.02 65.2 4 516 3.95 1.40 68.8 522 5.78 2.07 68.5 5 514 4.02 1.41 68.1 525 5.71 2.06 68.7 6 514 4.00 1.38 67.2 517 5.67 1.98 67.5 7 513 3.95 1.35 66.6 526 5.76 2.08 68.9 8 516 4.06 1.38 65.9 523 5.76 2.02 67.2 9 518 4.03 1.39 66.6 520 5.63 2.03 69.3 平均值 515 4.00 1.38 67.0 522 5.78 2.04 67.7 提高% 1.33% 44.57% 47.71% 0.93% 表9· RTWCG SiOx塗佈之前及之後,大面積n+/p多 晶矽製造型太陽電池上的AM1.5 I-V數據。 97 201251057 41245pif 電池編號 描述 Isc (安) Voc (毫伏) FF (%) Eff (%) P-33 裸 1.72 498 56.3 3.25 元全次入65秒 2.71 510.8 54.3 5.07 4s.古 向 57.6% 2.6% -3.6% 56.0% P-37 裸 1.69 500.5 57.9 3.3 完全浸入60秒 2.74 516.7 60.5 5.78 提而 62.1% 3.2% 4.5% 75.2% P-45 裸 1.53 505.3 62 3.23 完全浸入65秒 2.9 517.8 62.9 6.38 提向 89.5% 2.5% 1.5% 97.5% 表10.在塗佈SiOx之前及之後,所選低效率多晶矽製 造型太陽電池之AMO 25°c I-V數據。 最近’由伊奎特太陽能公司(Equity Solar, Inc)製造 出一批18個大面積(約243.5平方公分)鑄造mc_Sin+/p 太陽電池。由專門的獨立實驗室量測RTWCG SiOx生長之 刖及之後的I-V數據。平均而吕,am 1.5效率為約14.14%,The maximum voc of the ηΛΓ square male *n+/pc-Sit pool batch is increased to m. This is expected to increase moderately because RTWCG Si0x ARC/SE VIII >, ,,. After formation, the net majority surface concentration is greater than (4) 19/cm ^ 3 0 ^ cloth S 〇 X so that the efficiency of small batch (10) batteries (including 3 92 201251057 41245pif, pool in Table 10) is increased by an average of 5449% (am 〇 condition). The average is 40.79%. In comparison, the efficiency gain of a fabricated battery using & Νχ coating is no more than 35%, even under the positive effect on the battery body that occurs during CVD siNx deposition. The absolute efficiency improvement of the three-phase compared to the SiNx-coated battery on this small-volume-manufactured battery is about 14 〇/〇, although the RTWCGSiOx process is a surface process that does not passivate the body. Based on extensive testing of RTWCG SiOx cells, the use of an approximately optimal RTWCG SiOx ARC/SE/(TO) cell structure results in a much larger absolute efficiency gain than a battery using an optimized but SE-free SiNx ARC film. Table 9 shows the I-V data for small batches of large-area low-efficiency n+/p polycrystalline germanium-produced solar cells measured by solar cell manufacturers before and after coating si〇x. It should be noted that the average Pmax gain obtained by RTWCG SiOx ARC/SE formation is about 48%. In comparison, as far as we know, the Pmax average gain generated by the SiNx coating on the molded battery is less than 35%, which includes the hydrogen body passivation initiative. Experimental studies have shown that the SiOx ARC/SE efficiency enhancement feature is more suitable for low efficiency polysilicon fabricated cells compared to higher efficiency c-Si cells. Table 10 shows the I-V data of three of the small batch fabrication type polycrystalline Si solar cells before and after they were completely immersed in the SiOx growth solution. The battery is tested at NASA's Glenn Research Center (NASA GRC) under standard AMO conditions; therefore, the standard AMI.5 efficiency value should be approximately 20% higher. As shown in one of these batteries, the main parameter that promotes the increase in the ΑΜ0 efficiency Pmax (97.5%) after coating SiOx is that the ISC is increased by 89.5%. This large increase in Isc can not be solved by a simple reduction in optical loss. 93 201251057 41245pif can not be explained by simple surface passivation because the maximum increase of v〇c is only 16_2 mV. Interpretation must be a combination of optical presence, surface passivation, and some other factors. Battery Description i Isc Voc FF Pmax Bare 1 Pool 1 5.81 安 593 _4 volt 68.20% 2_35 watts RTWCG SiOx coated battery after 55 seconds 1.97 An 599.0 volts 74.90% 3_58 watt gain 37.18% 0.94% 9.82% 52.34% bare battery 2 (*) 5.71 amp 585.9 volt 59.60% 1.99 watt RTWCG SiOx coated battery after 60 seconds 2 (*) 8.18 amp 597.0 volt 75.60% 3·69 watt gain 43.26% 1.89% 26.85% 85.43% bare cell 3 5.87 amp 585.9 volts 68.60% 2.36 watts RTWCG SiOx coated battery after 60 seconds 3.29 amps 596.0 volts 73.30% 3.62 watts gain 41.23% 1.72% 6.85% 53.39% bare cells 4 5·83 amps 592.8 volts 69.80% 2_41 watts RTWCG SiOx coating 60 seconds After the battery 4 8.23 An 595.0 volts 75.50% 3.70 X gain 41.17% 0.37% 8.17% 53.53% bare battery 5 5.86 amp 596.0 volts 70.90% 2.48 watts RTWCG SiOx coated battery after 60 seconds 5 8_15 An 598.0 volts 74.00% 3.61 watts Gain 39.08% 0.34% 4.37% 45.56% bare cell 6 5.89 amp 588.0 volt 65.60% 2.70 watt RTWCG SiOx coated 65 seconds after battery 6 8.26 amp 592.0 volt 74.20% 3.81 watt gain 40.24% 0.68% 13.11% 41.11% bare battery 7 (*) 5.74 An 589.2 volts 53.00% 1.79 watts RTWCG SiOx coated battery after 65 seconds 7 (*) 8.15 An 595.0 volt 72.90% 3.54 watt gain 41.99% 0.98% 37.55% 97.77% bare battery 8 5.88 amp 588.3 volt 60.10% 2.08 watt RTWCG SiOx coated battery after 70 seconds 8 8.11 An 593.0 volts 72.80% 3.50 watt gain 37.93% 0.80% 21.13% 68.27% bare battery 9 5.86 amp 590.5 volts 67.80% 2.35 watts RTWCG SiOx coated battery after 60 seconds 9 8.21 amp 591_0 volts " 73.30% 3.55 watt gain 40.10% 0.08% ~8.11% 51.06% 94 201251057 41245pif Battery Description Isc Voc FF Pmax Naked Battery 10 5.91 Ann 587.3 Volt 68.40% 2.37 Watt RTWCG SiOx coated battery after 60 seconds 10 8.27 Am 590.0 V 72.50% 3.53 W Gain 39.93% 0.46% 5.99% 48.95% bare battery 11 5.87 amp 593.2 volts 69.90% 2.44 watts RTWCG SiOx coated battery after 60 seconds 11.17 amp 597.0 volts 73.10% 3.56 watt gain 39.18% 0.64% 4.58% 45.90% bare cell 12 5.88 amp 593.3 Volt 70.20% 2.45 watts RTWCG SiOx coated battery after 60 seconds 12 8_24 amp 596.0 volts 74.10% 3.64 watt gain 40.14% 0.46% 5.56% 48.57% average of all bare cells 5.84 amps 590.3 volts 66.01% 2.31 watts Average of all batteries coated with RTWCG SiOx 8.19 amps 594.9 volts 73.85% 3.61 watts average gain 40.11% 0.78% 11.88% 56.03% Table 6. Surfaces of shredded wafers and coated pyramids before and after RTWCG SiOx coating AM1.5 IV data for an n+/p c-Si solar cell (such as in Figure 20). 95 201251057 41245pif Battery description Reaction time [seconds] Isc bare cell (A) Isc RTWCG SiOx coating (A) Voc bare cell [volt] Voc RTWCG SiOx coating (volt) FF bare cell [%) FF RTWCG SiOx coating ( %) Rs bare cell [Europe] Rs RTWCG SiOx coating (Europe) Pmax bare cell (Watt) Pmax RTWCG SiOx coating (Watt) A5-2 50 280.31 438.29 581.0 592.0 73.8 70.1 0.25 0.19 120.18 182.05 Gain 56.36% 1.89% - 4.95% -22.36% 51.48% A5-3 50 262.89 398.84 579.0 592.0 70.9 71.1 0.28 0.20 107.91 168.19 Gain 51.71% 2.25% 0.28% -29.00% 55.86% A5-4 55 262.71 400.85 583.0 593.0 72.4 71.2 0.27 0.20 110.92 169.16 Gain 52.58% 1.72% -1.77% -26.38% 52.51% A5-5 55 331.66 514.03 577.0 590.0 69.6 68.0 0.21 0.17 133.28 206.31 Gain 54.99% 2.25% -2.28% -18.91% 54.80% A5-6 60 412.68 625.86 581.0 593.0 70.4 68.1 0.18 0.15 168.82 252.73 Gain 51.66% 2.07% -3.17% -17.49% 49.70% A5-8 60 271.7 400.57 579.0 586.0 66.8 65.6 0.27 0.22 105.03 153.98 Gain 47.43% 1.21% -1.80% -19.42% 46.60 % A5-9*** 60 216.41 332.85 581.0 591.0 68.5 68.2 0.31 0.24 86.00 134.20 Gain 53.81% 1.72% -0.38% -22.17% 56.04% A5-10 65 263.51 408.20 588.0 596.0 73.7 71.7 0.24 0.19 114.23 174.20 Gain 54.91% 1.36% -2.82% -21.21% 52.49% A5-11 65 228.97 351.41 586.0 595.0 73,4 71.4 0.28 0.22 98.51 149.20 Gain 53.47% 1.54% -2.71% -21.94% 51.45% A5-12 65 241.23 365.82 587.0 596.0 73.5 71.9 0.27 0.20 104.07 156.67 Gain 51.65% 1.53% -2.19% -22.95% 50.54% A5-13*** 70 218.45 334.30 589.0 597.0 73.9 72.0 0.30 0.22 95.01 143.75 Gain 53.03% 1.36% -2.45% -25.79% 51.30% A5-14 60 272.01 409.17 590.0 596.0 74.9 72.8 0.23 0.19 120.21 177.39 Gain 50.42% 1.02% •2.84% -20.20% 47.57% A5-1* 30 263.51 408.20 588.0 596.0 73.7 71.7 0.24 0.19 114.23 174.20 Gain 54.91% 1.36% -2.82% -21.21% 52.49% A5 -7** 150 312.02 456.06 577.0 583.0 66.4 64.2 0.24 0.20 119.52 170.53 Gain 46.16% 1.04% -3.37% -15.79% 42.67% Average 271.9 415.0 583.4 593.1 71.8 70.2 0.26 0.20 113.7 172.3 Average gain 52.65% 1.66% -2.28% -22.61% 51.58% Average deviation 34.9 55.5 3.8 2.4 2.2 1.8 0.03 0.02 14.7 21.8 Table 7. From the emitter surface with a shallow emitter, an estimated junction depth of about 0.45 μm and a coated pyramid IV data of a small area n+/p c-Si solar cell cut by the same 6-inch battery. 96 201251057 41245pif Battery Number Description Isc (milliampere) Voc (millivolts) FF (%) Rs (Europe) Pmax (milliwatts) 18-8 Naked 222.2 569 50.71 0.408 64.1 Fully immersed for 30 seconds 317.4 589 61.1 0.268 114.2 Increased 42.8% 3.5% 20.5% -34.3% 78.2% 20-2 Bare 81.85 550 39.36 1.58 17.73 Fully immersed for 60 seconds 114.4 580 55.85 0.69 37.07 Increased 39.8% 5.5% 41.9% -56.3% 109.1% Table 8. Before and after RTWCGSiOx coating, The AM1.5 IV data of the n+/p c-Si solar cells (such as in Figure 21) using the shredded wafer and the surface of the pyramid was applied. After the wafer is coated with SiOX, Voc Isc Pmax FF Voc Isc Pmax FF 1 516 4.01 1.41 68.2 525 5.93 2.08 66.8 2 517 3.98 1.38 66.9 521 5.83 2.04 67.0 3 514 3.99 1.34 65.0 520 5.96 2.02 65.2 4 516 3.95 1.40 68.8 522 5.78 2.07 68.5 5 514 4.02 1.41 68.1 525 5.71 2.06 68.7 6 514 4.00 1.38 67.2 517 5.67 1.98 67.5 7 513 3.95 1.35 66.6 526 5.76 2.08 68.9 8 516 4.06 1.38 65.9 523 5.76 2.02 67.2 9 518 4.03 1.39 66.6 520 5.63 2.03 69.3 Average 515 4.00 1.38 67.0 522 5.78 2.04 67.7 Increase % 1.33% 44.57% 47.71% 0.93% Table 9 · AM1.5 IV data on large-area n+/p polycrystalline silicon fabricated solar cells before and after RTWCG SiOx coating. 97 201251057 41245pif Battery Number Description Isc (A) Voc (millivolts) FF (%) Eff (%) P-33 Naked 1.72 498 56.3 3.25 yuan all into 65 seconds 2.71 510.8 54.3 5.07 4s. Ancient 57.6% 2.6% - 3.6% 56.0% P-37 bare 1.69 500.5 57.9 3.3 Complete immersion 60 seconds 2.74 516.7 60.5 5.78 Lifting 62.1% 3.2% 4.5% 75.2% P-45 bare 1.53 505.3 62 3.23 Full immersion 65 seconds 2.9 517.8 62.9 6.38 Lifting 89.5% 2.5% 1.5% 97.5% Table 10. AMO 25°c IV data for selected low efficiency polycrystalline germanium fabricated solar cells before and after coating SiOx. Recently, a large number of 18 large-area (about 243.5 square centimeters) cast mc_Sin+/p solar cells were manufactured by Equity Solar, Inc. The IW data of the RTWCG SiOx growth and subsequent I-V data were measured by a dedicated independent laboratory. On average, Lu 1.5 has an efficiency of about 14.14%.

Voc為603.5毫伏’ FF為78.9%,且平均JSC為約29.7毫 安/平方公分。應注意,塗佈SiOx後,三個電池之FF為約 82%或大於 82%,亦即為 81.95%、82·22%及 83.56%。83.56〇/〇 FF值接近在低喷射條件中操作之矽電池的理想理論極限 範圍85%-86%。據吾人所知,此FF值為對於大面積網版 印刷金屬化mc-Si太陽電池曾報導之最高ff,及對於任何 大面積結晶矽太陽電池報導之最高FF。 上述RTWCG SiOx膜使用兩種超低成本rtwcgVoc is 603.5 millivolts' FF of 78.9% and the average JSC is about 29.7 milliamps per square centimeter. It should be noted that after coating SiOx, the FF of the three cells is about 82% or greater than 82%, i.e., 81.95%, 82.22%, and 83.56%. The 83.56〇/〇 FF value is close to the ideal theoretical limit of 85%-86% for batteries operating in low injection conditions. To the best of our knowledge, this FF value is the highest ff reported for large area screen printed metallized mc-Si solar cells, and the highest FF reported for any large area crystalline germanium solar cell. The above RTWCG SiOx film uses two ultra-low cost rtwcg

SiOx溶液調配物(諸如實例1中)生長。140奈米_i5〇齐 98 201251057 41245pif ^厚Sl〇X膜之生長時間為約3G秒,且發射極之未金屬化 表面回触約0.20微米。令人遺憾地,所述膜在少於85%之 發射極表面上生長。發現在電_刻邊緣分雜間,自經 估鼻為⑽之主動電池區域意外移除n+發射極。偷生長 溶液不能在電池之發射極較少之部分上生長Si〇x歸因於 在重掺雜與輕摻雜縣面上之不同Si〇x生長速率的技術 ,用。顯,’若上述發射極部分未無意移除,則上述未經 最佳化之鑄造me_Si太陽電池之平均AM1 5效率將高於 16.2%。 'The SiOx solution formulation (such as in Example 1) was grown. 140 nm _i5 〇 98 98 201251057 41245 pif The growth time of the thick S1 X film is about 3 G seconds, and the unmetallized surface of the emitter is about 0.20 μm. Unfortunately, the film grows on less than 85% of the emitter surface. It was found that the n+ emitter was accidentally removed from the active battery area estimated to be (10) in the electric-edge edge. Stealing growth solutions cannot grow on the lesser part of the cell. Si〇x is attributed to the different growth rates of Si〇x in heavily doped and lightly doped counties. It is shown that if the above-mentioned emitter portion is not unintentionally removed, the average AM1 5 efficiency of the above-mentioned unoptimized cast me_Si solar cell will be higher than 16.2%. '

應注意,對於上述mc_Si批次,在塗佈si〇x後,平 均分流電阻(Rsh)值變為兩倍多。使用第一生長溶液之 11個電池的平均串聯電阻(Rs)在塗佈Si〇x後降低約 30/〇 ’亦即自7.75微歐降至5 41微歐。其餘7個使用第二 SiOx生長溶液之電池的平均Rs降低為約,自6 微歐降至5.59微歐。在這些RTWCG Si〇x ARC/SE電池上 獲得之高FF值與大幅Rsh提高及大幅Rs降低一致。厚發 射極電池中由於自裸電池去除某些短路路徑而可能發生多 達500%之Rsh提高。在幾乎所有深接面電池中均發生多 達60°/〇之RS降低’但難以充分解釋,因為在RTWCG si〇x ARC/SE電池結構形成期間回蝕相對較大(〇 2〇微米)厚 度之未金屬化發射極表面,且在RTWCG SiOx ARC/SE/TO 電池結構形成期間回蝕多達0.30微米厚度之未金屬化發 射極表面。 低成本SiOx ARC/SE/( TO )製程向太陽級C-Si、mc-Si 99 201251057 41245pif 及其他結晶矽太陽電池提供之總效能增益確實大於可藉由 任何其他已知目前先進技術之ARC/SE方案獲得之總效能 增益。但,使用RTWCG SiOx加工之優點並不止於電池層 面;其具有如下能力: i. 控制SiOx膜上部之折射率(參見圖25 (a)、圖25 ⑻); ii. 產生梯度折射率(參見圖9至圖15); iii. 使SiOx膜之上部紋理化(參見圖28)。 RTWCGSiOx製程可產生具有3%AM1.5平均加權反 射率(AWR)之SiOx膜(圖24),其極適用於產生良好玻 璃-EVA-SiOx-Si 結構。 圖34展示大面積6"製造型mc-Si太陽電池在RJWCG SiOx ARC/SE製程之前及之後及標準EVA封裝成微型模 組之後的外部及内部量子效率及反射率曲線。内部及外部 量子效率曲線明確展示500奈米下約61%之藍光響應增益 引起SiOx生長後電池效能的大幅增益。但此絕非由近似 最佳RTWCG SiOx ARC/SE/ ( TO )電池可獲得之最大可能 藍光響應增益,選擇此實例是因為其明確展示封裝後塗佈 RTWCG SiOx之電池的AM1.5 AWR降低。封裝前,電池 之AM1.5AWR為23.1%,封裝後,其降至ΐ6·7%β請注意, 這些反射率曲線包含柵及匯流排之反射率。 儘管塗佈RTWCG SiOx之太陽電池的電池效能相對 較大增益很重要,但電池效率才為使任何新穎電池製造技 術真正有意義之因素。以下為基於自大量n+/p §丨電池收集 100 201251057 41245pif ^ 比較數,近似最佳 RTWCGSi〇x ARC/SE/ (T〇) c_Si 2〇〇m電池的期望效能。效能計算值假定優良品質 JL古1及mC-Si太陽級基板具有平滑發射極,其 二、二似··佳•折與尾型擴散分佈曲線,發射極表面之淨 二i、體濃度為6xlo2。/立方公分18xlo20/立方公分,且 3在發射^表面下約G1微米處。接祕度應為0 5微 = 55微米。生長溶液自未金屬化發射極表面回蝕0.2 + 剩餘主動發射極表面濃度應為8x1q18/立方公分至 1 ίο /立方公分,且剩餘薄層電阻應為no歐/平方單位至 120^/平方單位。在這些條件下,低成本RTWCG SiOx生 長命液將產生咼度透明的低反射率ARC層、極佳品質 及30毫伏至50毫伏之v〇c提高。 比較數據展示,對於RTWCG SiOx ARC/SE c-Si電 =期望平均V〇e應為高於64〇毫伏,平均Tse應高於37 毫安/平方公分,FF為約80%且AM1.5效率計算值為約 18.9%。對於近似最佳RTWC(} Si〇x ARC/SE優良品質太 陽級n+/p C-Si電池結構,可獲得之期望平均效能為:v〇c 為約650毫伏,Isc為約38毫安/平方公分,FF為約82〇/0 且AM1.5平均效率為約2〇25%。對於優良品質太陽級鑄 造 mc_Sl 基板,塗佈 SiOx 後之 RTWCG SiOx ARC/SE mc-Si 電池結構平均應產生:約625毫伏之Voc、超過34.5毫安 /平方公分之電流密度、約8〇%之FF及高於1725%之 AM1.5平均效率。對於近似最佳RTWCG SiOxARC/SE優 良品質mc-Si電池結構,期望平均效能為:v〇e為約635 101 201251057 41245pif 毫伏,Jsc為約36毫安/平方公分,且FF為約0.815,其將 使AM 1.5平均效率提高至約18.6〇/〇。 據估算,藉由使用近似最佳RTWCG SiOx ARC/SE/TO 電池結構、優良品質太陽級基板、較佳品質前表面及後表 面網版印刷金屬化膏及經最佳化前栅設計,對於n+/p c-Si ’平均AM 1.5效率應高於21%,且對於鑄造mc-Si太 陽電池’平均AM 1.5效率應高於19%。藉由用實例1〇及It should be noted that for the above mc_Si batch, the average shunt resistance (Rsh) value becomes more than twice after coating si〇x. The average series resistance (Rs) of the 11 cells using the first growth solution decreased by about 30/〇' after coating Si〇x, i.e., from 7.75 microohms to 5 41 microohms. The average Rs of the remaining seven cells using the second SiOx growth solution decreased to about 6.5 ohms from 6 micro ohms. The high FF values obtained on these RTWCG Si〇x ARC/SE cells are consistent with a large Rsh increase and a large Rs reduction. A thick hair emitter battery may have an Rsh increase of up to 500% due to the removal of certain short circuit paths from the bare cell. RS reduction of up to 60°/〇 occurs in almost all deep junction cells' but is difficult to fully explain because of the relatively large etchback (〇2〇micron) thickness during RTWCG si〇x ARC/SE cell structure formation The surface of the emitter is unmetallized and etched back to an unmetallized emitter surface of up to 0.30 microns thickness during formation of the RTWCG SiOx ARC/SE/TO cell structure. The total performance gain provided by the low-cost SiOx ARC/SE/(TO) process to solar grade C-Si, mc-Si 99 201251057 41245pif and other crystalline germanium solar cells is indeed greater than that of any other known current state of the art ARC/ The total performance gain obtained by the SE scheme. However, the advantages of using RTWCG SiOx processing are not limited to the cell level; it has the following capabilities: i. Controls the refractive index of the upper portion of the SiOx film (see Figure 25 (a), Figure 25 (8)); ii. Produces a gradient index (see figure) 9 to Fig. 15); iii. Texturing the upper portion of the SiOx film (see Fig. 28). The RTWCGSiOx process produces an SiOx film (Figure 24) with an average weighted reflectance (AWR) of 3% AM1.5, which is well suited for producing a good glass-EVA-SiOx-Si structure. Figure 34 shows the external and internal quantum efficiency and reflectance curves for a large area 6" fabricated mc-Si solar cell before and after the RJWCG SiOx ARC/SE process and after standard EVA packaged into a micromodule. The internal and external quantum efficiency curves clearly show that approximately 61% of the blue response gain at 500 nm results in a significant gain in battery performance after SiOx growth. However, this is by no means the maximum possible blue light response gain available for an approximately optimal RTWCG SiOx ARC/SE/(TO) battery. This example was chosen because it clearly demonstrates the AM1.5 AWR reduction of the RTWCG SiOx coated battery. Before packaging, the AM1.5AWR of the battery is 23.1%. After packaging, it drops to ΐ6·7%β. Please note that these reflectance curves include the reflectivity of the grid and busbar. Although the battery efficiency of a solar cell coated with RTWCG SiOx is important, the battery efficiency is a factor that makes any novel battery manufacturing technology truly meaningful. The following is based on a large number of n+ / p § 丨 battery collection 100 201251057 41245pif ^ comparison number, approximate the best RTWCGSi 〇 x ARC / SE / (T 〇) c_Si 2 〇〇 m battery expected performance. The calculated value of the performance assumes that the JL ancient 1 and mC-Si solar-grade substrates have smooth emitters, and the second and second-like · good · fold and tail-shaped diffusion profiles, the net surface of the emitter surface, the body concentration is 6xlo2 . /cubic centimeters 18xlo20/cubic centimeter, and 3 is about G1 micron below the surface of the emitter. The accuracy should be 0 5 micro = 55 microns. The growth solution etches back from the unmetallized emitter surface 0.2 + The remaining active emitter surface concentration should be 8x1q18/cm ^ 3 to 1 ίο /cm ^ 3 , and the remaining sheet resistance should be no ohm / square unit to 120 ^ / square unit . Under these conditions, low-cost RTWCG SiOx will produce a low-reflectivity ARC layer with excellent transparency and excellent quality and a v〇c increase of 30 mV to 50 mV. Comparative data show that for RTWCG SiOx ARC/SE c-Si electricity = expected average V〇e should be higher than 64 〇 millivolts, average Tse should be higher than 37 mA / cm ^ 2, FF is about 80% and AM 1.5 The efficiency calculation is about 18.9%. For a near-optimal RTWC (} Si〇x ARC/SE good quality solar grade n+/p C-Si cell structure, the expected average performance is: v〇c is about 650 mV, Isc is about 38 mA/ In square centimeters, FF is about 82 〇/0 and the average efficiency of AM1.5 is about 2〇25%. For good quality solar grade mc_Sl substrates, the average structure of RTWCG SiOx ARC/SE mc-Si cells coated with SiOx should be generated. : Voc of about 625 millivolts, current density of more than 34.5 milliamps per square centimeter, FF of about 8〇%, and AM1.5 average efficiency of more than 1725%. For the best quality RTWCG SiOxARC/SE good quality mc-Si The cell structure, the expected average performance is: v 〇e is about 635 101 201251057 41245 pif millivolts, Jsc is about 36 mA / cm ^ 2, and FF is about 0.815, which will increase the average efficiency of AM 1.5 to about 18.6 〇 / 〇 It is estimated that by using an approximately optimal RTWCG SiOx ARC/SE/TO cell structure, a good quality solar grade substrate, a better quality front and back surface screen printing metallization paste and an optimized front gate design, n+/p c-Si 'average AM 1.5 efficiency should be higher than 21%, and for casting mc-Si solar cells 'flat AM 1.5 efficiency should be higher than 19%. By using examples and 1〇

實例 11 中之 n+/p/p+或 p+/n/n+ RTWCG SiOx ARC/SE/TO 石夕太陽電池結構替換上述實例中之n+/p RTWCG SiOx ARC/SE/TO電池結構’據估算c_Si太陽電池可獲得之 AM1.5平均效率為約22.5%,且鑄造mc-Si太陽電池之 AM1.5平均效率為略超過2〇〇/0。 實例9-塗佈RTWCGSiOX之VMJSi聚光電池 若介電層(諸如ARC薄膜)欲直接沈積或生長於si 表面上,則需要所述介電層使表面充分鈍化。對於本領域 習知之ARC、DLARC或TLARC抗反射塗層的大多數本 領域中已知沈積技術,此成問題。 KTWCG SiOX薄膜介電層在室溫下化學生長且產生 具有短程有序度(short-range order )之界限分明之非结晶 層。這些化學穩定的SiOx塗層使Si表面充分鈍化,且 RTWCG SiOx製程無需生長後退火。si〇x膜之化學穩定性 及表面鈍化取決於膜之組成,且擴展而言,取決於生長溶 液之組成。由於較小之金屬雜質濃度及梯度折射率,目前 技術之Si0x薄膜(參見圖9至圖15)具有優於先前Si〇x 102 201251057 41245pif 膜(參見圖7及圖8)之鈍化特性。 由於低ISC值,在其他聚光電池設計之情況下,限制 其可操作之濃度水準,垂直多接面(VMJ ) Si太陽電池(美 國專利第4,332,973號、美國專利第4,409,422號及美國專^ 利第4,516,314號)展示出用作高強度聚光太陽電池的前 景。Si VMJ電池結構中效率損耗之最大原因為其照射= 面、後表面及兩個未金屬化邊緣表面為高複合表面,其^ 有難以藉由任何傳統方法鈍化之曝露接面。具有已知良好 純化特性之傳統ARC(諸如熱Si〇2)由於溫度限制而^能 用於這些電池上。 b 光伏公司(Photo Volt,Inc.)向斯派瑪特公司 (SPECMAT,Inc.)提供了一些早期垂直多接面(VMJ) & 太陽電池[9],在所述太陽電池上RTWCG製程可在所有未 金屬化表面上同時生長SiOx塗層。清洗且姓刻裸 「PV4-14-X」電池後’光伏公司(photo Volt, Inc.)量測了 表11中之Si VMJ電池兩側的效能。隨後在生長相對較低 生長速率SiOx塗層(諸如圖5中)後量測效能。測試前 電池接受的唯一生長後處理為DI水沖洗及氮氣乾燥。 103 201251057 41245pif 餘刻並清洗 Si〇x生長後 增益 Voc (伏) 8.786 9.883 12.5% 前側 Isc (毫安) 0.17 0.34 100.0% FF 53.7% 60.7% 13 2% Pmax (毫瓦) 0.779 2.022 159.6% Voc (伏) 8.699 9.672 11.2% 後側 Isc (毫安) 0.15 0.30 100.0% FF 51.4% 59.3% 15 5% Pmax (毫瓦) 0.672 1.741 159.1% 表11.裸VMJ Si聚光電池(PV4-14-X )及塗佈rjwCG Si-O-C-Ν之VMJ Si聚光電池(PV4-14-X)的一個太陽強 度效忐參數。光伏公司執行裸電池表面之初始餘刻及表面 清洗以及性能參數量測。 應注意,在RTWCG SiOx塗佈後VMJ電池之Voc值 及FF值顯著&咼。塗佈後這些值及尤其ise之大幅提高不 能簡單地由光形式損耗減少來解釋。其明確表明表面鈍化 在相較於裸電池提南多達三倍之Pmax中發揮主要作用。 實例10_增強效率n+/p或p+/n結晶rTWcg Si〇x ARC/SE/ (TO)矽太陽電池製造技術。 在I1+/P (P,B)電池結構之接面形成期間,磷不僅擴散 至所要前晶圓表面中,而且擴散至邊緣及後侧表面中。在 工業實踐中’在移除磷二氧化矽玻璃(ph〇sph〇rus Siiica glass ’ PSG)後通常不嘗試移除後接面,且在一些情況下 不執行邊緣分離。焙燒後A1接觸減少此技術作用,但所取 得的成功通常僅有限’從而可能產生弱後表面場及低紅光 104 201251057 41245pif 響應。 基於實驗數據,RTWCG溶液調配物可在單一步驟中 ,除PSG,同時形成Si0x鈍化膜。其可用於各種電子/微 電子應用,因為SiOx生長僅在溶液與潔淨矽表面接觸時 開始對於太陽電池應用,其用於電池之後側,因為前側 需要前柵充當遮罩來形成選擇性發射極。 在本文所述之標準n+/pRTWCGSiOxARC/SE/ (TO) 結晶矽太陽電池製造技術中,移除PSG且沈積並焙燒標準 網版印刷接觸。最後,將RTWCG生長溶液塗覆於裸電池 以在所有未金屬化表面上生長薄Si〇x膜,同時自這些表 面回蝕某一厚度之擴散層。由此在電池前側上產生優良的 ARC及SE,且自邊緣移除一些接面。令人遺憾地,A1後 接觸下之n+擴散層仍完整’從而可能產生弱後表面場及高 度複合。 在一或多個實施例之一個實施例中,在PSG移除後, 使後側漂浮在RTWCG溶液上,或經由任何其他適當方法 將溶液僅傳遞至後侧。與傳遞系統無關,RTWCG溶液不 可與前側反應,因為形成優良品質SE取決於充當遮罩之 前柵線之存在。由此,RTWCG溶液與後似晶圓邊緣反 應,且自這些表面移除大多數n+接面,同時在所述表面上 生長鈍化SiOx薄膜層。沈積並焙燒前接觸及後接觸後, 使電池之前側漂浮在RTWCG溶液上或將RTWCG溶液經 由任何其他方法塗覆於電池之前側以產生si〇x ARC及 SE,且進一步減少仍存在於電池邊緣之任何接面。後金屬 105 201251057 41245pif 化層燒結時間及溫度必須經選擇以使得全部A1膜區域穿 過後側SiOx鈍化層,從而產生良好歐姆後接觸及強後表 面場。 本領域中已知僅單步基於HF之溶液不能完全移除 PSG。電池製造商可使用兩步或三步濕化學工序以獲得潔 淨石夕表面。對於上述基於RTWCG SiOx之標準梦太陽電池 製造,一些PSG保留在前表面上並非關鍵問題,因為所述 表面會伴隨SiOx ARC鈍化層及SE形成由RTWCG溶液當 場清洗。然而,電池之後側需要A1金屬化層下之無pSG 表面,且較佳含有p型摻雜劑之薄膜RTWCGSi〇x層達成 後表面鈍化,從而可在接觸燒結期間形成薄p+層。 在一或多個實施例之一較佳實施例中,可使用略作修 改之RTWCG調配物在電池之後側上產生含硼&〇χ:Β鈍化 膜。一或多個實施例之實施例使用添加至5體積份至1〇 體積份本文所述之快速RTWCG調配物中之丨體積份至5 體積份硼飽和水溶液。硼源可包含(但不限於)ACs或較 佳純度之H3B〇4、B2〇3及BI3。在一較佳實施實例中,將 〇·5公克-2公克B2〇3或BI3直接溶解於1公升實例i中之 任何快速生長溶液中。 實例10-1. 在一個貫施實例中,在後表面上產生含硼金屬化層之 小點。隨後塗覆快速生長RTWCG Si0x:B溶液以在後表面 上生長含爛SiOx:B純化薄膜。伴隨薄膜生長,RTwcg Si〇X:B溶液自後表面及晶圓邊緣移除任何剩餘PSG以及 106 201251057 41245pif 大多數n+接面。隨後沈積前柵線,且將前栅線與後表面點 一起在高溫(800°C-920°C)下燒結,由此產生與下方表面 之良好歐姆接觸,且在未金屬化後表面上形成淺p+接面。 隨後,諸如在實例1中,使電池以前側向下漂浮在快速 RTWCG溶液上。此在電池前侧之未金屬化部分上產生AR 塗層、SiOx鈍化膜及優良品質SE。最後,在整個後側上 產生A1後接觸以及基於Ag之匯流排,且在約4〇〇。〇之低 溫下燒結。 _ 實例10-2. 在一第二實施實例中,在標準PSG移除後,使用上述 溶液調配物生長RTWCG SiOx:B純化層。在此單一步驟 中,所述溶液同時清洗任何剩餘PSG,自整個後表面及邊 緣回蚀n+擴散層且生長Si〇x:B鈍化層。隨後在後側上沈 積Me:B點且在前侧上沈積基於Ag之栅線。隨後,電池進 行咼溫燒結(800。〇920。〇:)以產生歐姆接觸,同時在電池 之由SiOx:B薄膜覆蓋之後表面上產生淺p+層。隨後,在 電池前側上產生RTWCGSiOxARC/SE鈍化層,此進一步 促成邊緣分離。最後,用A1網版印刷整個後側,沈積匯流 排且在低(約400°C )溫度下燒結。 於太陽電池製造領域中具有通常知識之任一者應暸 解以上關於增強效率n+/p rTWCG SiOx ARC/SE/ ( TO )結 晶石夕太陽電池結構之描述可在適當修改後接觸結構且使用 任何η摻雜SiOx膜(亦即SiOx:P)的情況下用於製造增 強效率p+/n RTWCG SiOx ARC/SE/ ( TO )結晶矽太陽電池 107 201251057 41245pif 結構。上述 n+/p 或 p+/n RTWCG SiOx ARC/SE/ (TO)結 晶矽太陽電池結構之效率增強歸因於使用RTWCG製程自 太陽電池前表面及後表面移除擴散層,鈍化太陽電池前表 面及後表面,產生強前表面場且提高後表面場之強度,同 時產生良好邊緣分離。 實例11-發射極及後側純化之n+pp+或p+nn+ c-Si、 mc-Si或多晶矽RTWCG SiOx ARC/SE/ΤΟ雙面太陽電池 RTWCG SiOx ARC/SE/ (TO)製程原則上可用於通常 使用昂貴高壽命浮區(FZ) c-Si基板的目前技術之大多數 高效率太陽電池設計。然而,RTWCG SiOx ARC/SE/ ( TO ) 技術之固有經濟效率增強特徵可在較低廉太陽級柴氏 (Cz) c-Si基板、較低級mc_si基板或帶狀多晶矽基板上產 生相對較高效率之結晶雙面矽太陽電池。 圖2中之橫截面圖為高效率低成本RTwcg雙面太陽 電池之良好實施實例。所述簡單高效率低成本雙面 n+pp+ 或 P+HH+ C-Si 或 mc-Si RTWCG SiOx ARC/SE/ (TO)太陽 電池製造技術步驟包含: i. 任何稀蝕刻劑工序,諸如本文所述之M〇piranha及 MoRCA,其保持平滑晶圓表面同時自輕摻雜起始p型或n 型c-Si mc-Si晶圓移除表面切割損傷; ii. 較佳在帶式爐中使用稀液體擴散源及保護邊緣免於 n++及P++擴散之程序,藉由在晶圓兩侧同時形成n++及 P + +重#雜層來產生Π+ + ΡΡ + +或P + + nn++擴散結構; iii. 用稀HF(水溶液虫刻溶液移除擴散玻璃; 108 201251057 41245pif iv.使用目前技術之網版印刷膏網版印刷前栅線及後 栅線; V.在帶式爐中在本領域中已知產生低接觸電阻之溫度 及時間下共培燒前金屬化層及後金屬化層; vi. 在擴散晶圓兩側同時生長RTWCG SiOx膜,由此產 生低反射率ARC ’同時回钱n++及p++重擴散層之特定厚 度之未金屬化部分且蝕刻掉晶圓邊緣上存在的非所需擴散 層’從而無需習知邊緣分離製程步驟; vii. SiOx表面紋理化’其作為步驟vi中之快速Si〇x 生長溶液之副產物產生或在使用稀HF〕溶液之各別步 驟中產生。 使用 RTWCG SiOx ARC/SE/TO n++pp++或 p++nn++ 雙面太陽電池設計,可以與習知單面太陽電池設計相當之 成本獲得較大絕對功率增益。其原因為: i. 車父南擴散溫度及較短擴散時間產生強前表面場及後 表面場; ii. 平滑前表面以及重疊後表面原則上產生與使用紋理 化發射極表面之電池設計相比更接近一致的理想因子; iii. 金屬化層下之表面濃度足夠高從而確保低接觸電 阻; iv. 較深發射極防止焙燒步驟期間金屬化層與接面短 路; v. 平滑發射極表面具有紋理化si〇x ARC之電池設計 藉由使柵線分隔較遠而使柵遮擋損耗最小,因為由習知電 109 201251057 41245pif 池没计之紋理化發射極表面產生的較大側向電阻功率損耗 不存在;Example n: n+/p/p+ or p+/n/n+ RTWCG SiOx ARC/SE/TO Shixi solar cell structure replaces n+/p RTWCG SiOx ARC/SE/TO cell structure in the above example 'According to c_Si solar cell The average efficiency of AM1.5 available is about 22.5%, and the average efficiency of AM1.5 for cast mc-Si solar cells is slightly over 2 〇〇/0. Example 9 - VMJSi concentrating cell coated with RTWCGSiOX If a dielectric layer, such as an ARC film, is to be deposited or grown directly on the Si surface, the dielectric layer is required to sufficiently passivate the surface. This is problematic for most of the deposition techniques known in the art for ARC, DLARC or TLARC anti-reflective coatings known in the art. The KTWCG SiOX thin film dielectric layer chemically grows at room temperature and produces an amorphous layer with a well-defined short-range order. These chemically stable SiOx coatings provide sufficient passivation of the Si surface and the RTWCG SiOx process does not require post-growth annealing. The chemical stability and surface passivation of the si〇x film depends on the composition of the film and, in terms of expansion, depends on the composition of the growth solution. The current state of the art Si0x film (see Figures 9 through 15) has passivation characteristics superior to the previous Si〇x 102 201251057 41245 pif film (see Figures 7 and 8) due to the small metal impurity concentration and gradient index. Due to the low ISC value, in the case of other concentrating cell designs, the operability of the concentration level is limited, and the vertical multi-junction (VMJ) Si solar cell (U.S. Patent No. 4,332,973, U.S. Patent No. 4,409,422, and U.S. No. 4,516,314) shows the prospect of being used as a high-intensity concentrating solar cell. The biggest cause of efficiency loss in the Si VMJ cell structure is that the illumination = face, back surface, and two unmetallized edge surfaces are highly composite surfaces, which have exposed joints that are difficult to passivate by any conventional method. Conventional ARCs (such as thermal Si〇2) having known good purification characteristics can be used for these batteries due to temperature limitations. b Photovoltaics (Photo Volt, Inc.) provided some early vertical multi-junction (VMJ) & solar cells [9] to SPECMAT, Inc., on which the RTWCG process can be used. The SiOx coating was grown simultaneously on all unmetallized surfaces. After cleaning and surnamed “PV4-14-X” battery, Photo Volt, Inc. measured the performance on both sides of the Si VMJ battery in Table 11. Efficacy is then measured after growing a relatively low growth rate SiOx coating (such as in Figure 5). Prior to testing, the only post-growth treatment accepted by the battery was DI water rinse and nitrogen dry. 103 201251057 41245pif Residual and cleaned Si〇x growth gain Voc (volts) 8.786 9.883 12.5% front side Isc (milliampere) 0.17 0.34 100.0% FF 53.7% 60.7% 13 2% Pmax (milliwatts) 0.779 2.022 159.6% Voc ( Volts 8.699 9.672 11.2% Backside Isc (mA) 0.15 0.30 100.0% FF 51.4% 59.3% 15 5% Pmax (milliwatts) 0.672 1.741 159.1% Table 11. Bare VMJ Si concentrating battery (PV4-14-X) and A solar strength effect parameter of the rjwCG Si-OC-Ν VMJ Si concentrating battery (PV4-14-X) was coated. Photovoltaic companies perform initial engraving and surface cleaning of bare cell surfaces and measurement of performance parameters. It should be noted that the Voc value and the FF value of the VMJ battery after RTWCG SiOx coating were significantly & These values, and especially the sharp increase in is, after coating, cannot be explained simply by the reduction in loss of light form. It clearly shows that surface passivation plays a major role in Pmax up to three times that of bare cells. Example 10 - Enhanced Efficiency n+/p or p+/n Crystallization rTWcg Si〇x ARC/SE/ (TO) 矽 Solar Cell Manufacturing Technology. During the formation of the junction of the I1+/P (P, B) cell structure, phosphorus diffuses not only into the desired front wafer surface but also into the edge and backside surfaces. In industrial practice, the removal of the back joint is usually not attempted after removal of the ph〇sph〇rus Siiica glass (PSG), and in some cases edge separation is not performed. A1 contact after calcination reduces this technical effect, but the success achieved is usually only limited to produce a weak back surface field and low red light 104 201251057 41245 pif response. Based on the experimental data, the RTWCG solution formulation can form a Si0x passivation film in a single step, in addition to the PSG. It can be used in a variety of electronic/microelectronic applications because SiOx growth begins only for solar cell applications when the solution is in contact with a clean tantalum surface, which is used on the back side of the cell because the front side requires the front gate to act as a mask to form a selective emitter. In the standard n+/pRTWCGSiOxARC/SE/(TO) crystalline germanium solar cell fabrication techniques described herein, the PSG is removed and the standard screen printing contacts are deposited and fired. Finally, the RTWCG growth solution was applied to a bare cell to grow a thin Si〇x film on all unmetallized surfaces while etching back a diffusion layer of a certain thickness from these surfaces. This produces excellent ARC and SE on the front side of the battery and removes some of the junctions from the edges. Unfortunately, the n+ diffusion layer under contact with A1 is still intact', which may result in weak back surface fields and high recombination. In one embodiment of one or more embodiments, after removal of the PSG, the back side is floated on the RTWCG solution, or the solution is only delivered to the back side via any other suitable method. Regardless of the delivery system, the RTWCG solution cannot react with the front side because the formation of good quality SE depends on the presence of the front gate line that acts as a mask. Thus, the RTWCG solution reacts with the subsequent wafer edge and removes most of the n+ junction from these surfaces while growing a passivated SiOx film layer on the surface. After deposition and post-baking contact and post-contact, the front side of the cell is floated on the RTWCG solution or the RTWCG solution is applied to the front side of the cell via any other method to produce si〇x ARC and SE, and further reduction is still present at the edge of the cell. Any junction. The post-metal 105 201251057 41245 pif layer sintering time and temperature must be selected such that all of the A1 film regions pass through the back side SiOx passivation layer, resulting in good ohmic contact and a strong back surface field. It is known in the art that a single step HF based solution does not completely remove the PSG. Battery manufacturers can use a two- or three-step wet chemical process to obtain a clean stone surface. For the above-mentioned standard dream solar cell fabrication based on RTWCG SiOx, it is not a critical issue that some PSG remain on the front surface because the surface is cleaned by the RTWCG solution on-site with the SiOx ARC passivation layer and SE formation. However, the back side of the cell requires a pSG-free surface under the A1 metallization layer, and the thin film RTWCGSi〇x layer, which preferably contains a p-type dopant, achieves post-surface passivation, thereby forming a thin p+ layer during contact sintering. In a preferred embodiment of one or more embodiments, a boron-containing & 〇χ: passivation film can be produced on the back side of the cell using a slightly modified RTWCG formulation. An embodiment of one or more embodiments uses from 5 parts by volume to 1 part by volume of the RT volume fraction to 5 parts by volume of a boron saturated aqueous solution in the fast RTWCG formulation described herein. The boron source can include, but is not limited to, ACs or H3B〇4, B2〇3, and BI3 of better purity. In a preferred embodiment, 〇·5 gram-2 gram B2〇3 or BI3 is dissolved directly in any of the fast growing solutions in 1 liter of Example i. Example 10-1. In one embodiment, a small dot of a boron-containing metallization layer is produced on the back surface. The rapidly growing RTWCG Si0x:B solution was then coated to grow a rotten SiOx:B purified film on the back surface. With film growth, the RTwcg Si〇X:B solution removes any remaining PSG from the back surface and wafer edge and 106 201251057 41245pif most n+ junctions. The front gate line is then deposited, and the front gate line is sintered together with the back surface point at a high temperature (800 ° C - 920 ° C), thereby producing good ohmic contact with the underlying surface and forming on the unmetallized surface Light p+ junction. Subsequently, such as in Example 1, the front side of the battery was floated down on the fast RTWCG solution. This produces an AR coating, a SiOx passivation film, and a good quality SE on the unmetallized portion of the front side of the cell. Finally, an A1 post contact and an Ag based bus are produced on the entire back side, and are at about 4 Torr. Sintered at low temperatures. _ Example 10-2. In a second example, the RTWCG SiOx:B purification layer was grown using the above solution formulation after standard PSG removal. In this single step, the solution simultaneously cleans any remaining PSG, etches back the n+ diffusion layer from the entire back surface and edges and grows a Si〇x:B passivation layer. A Me: B point is then deposited on the back side and a grid based on Ag is deposited on the front side. Subsequently, the battery was subjected to temperature sintering (800 〇 920. 〇:) to produce an ohmic contact while a shallow p+ layer was formed on the surface after the battery was covered with the SiOx:B film. Subsequently, a RTWCGSiOxARC/SE passivation layer is produced on the front side of the cell, which further contributes to edge separation. Finally, the entire back side was printed with an A1 screen, the bus bar was deposited and sintered at a low (about 400 ° C) temperature. Anyone with general knowledge in the field of solar cell manufacturing should be aware that the above description of the enhancement efficiency n+/p rTWCG SiOx ARC/SE/(TO) crystallographic solar cell structure can be contacted with appropriate modifications and using any η In the case of doped SiOx film (ie SiOx:P), it is used to fabricate enhanced efficiency p+/n RTWCG SiOx ARC/SE/(TO) crystalline germanium solar cell 107 201251057 41245pif structure. The above-mentioned n+/p or p+/n RTWCG SiOx ARC/SE/(TO) crystallization solar cell structure efficiency enhancement is attributed to the removal of the diffusion layer from the front and back surfaces of the solar cell using the RTWCG process, passivating the front surface of the solar cell and The back surface creates a strong front surface field and increases the strength of the back surface field while producing good edge separation. Example 11 - Em+ and backside purified n+pp+ or p+nn+ c-Si, mc-Si or polycrystalline 矽RTWCG SiOx ARC/SE/ΤΟ double-sided solar cell RTWCG SiOx ARC/SE/ (TO) process is available in principle Most high efficiency solar cell designs of the current technology that typically use expensive high life floating zone (FZ) c-Si substrates. However, the inherent economic efficiency enhancement of the RTWCG SiOx ARC/SE/ ( TO ) technology produces relatively high efficiency on lower solar grade CzC-C-Si substrates, lower mc_si substrates or ribbon polycrystalline germanium substrates. The crystal is double-sided 矽 solar cells. The cross-sectional view in Figure 2 is a good example of a high efficiency, low cost RTwcg double sided solar cell. The simple high efficiency low cost double-sided n+pp+ or P+HH+ C-Si or mc-Si RTWCG SiOx ARC/SE/(TO) solar cell manufacturing technical steps include: i. Any dilute etchant process, such as this article M〇piranha and MoRCA, which maintain a smooth wafer surface while removing surface cut damage from lightly doped p-type or n-type c-Si mc-Si wafers; ii. preferably used in belt furnaces The dilute liquid diffusion source and the protection edge are free from the diffusion process of n++ and P++, and the Π+ + ΡΡ + + or P + + nn++ diffusion structure is generated by simultaneously forming n++ and P + + heavy hetero layers on both sides of the wafer; Iii. Removal of diffusion glass with dilute HF (aqueous solution enzymatic solution; 108 201251057 41245pif iv. Screen printing front and rear grid lines using screen printing pastes of the prior art; V. in belt furnaces in the art It is known to produce a low-contact resistance temperature and time to co-fire the pre-fired metallization layer and the post-metallization layer; vi. Simultaneous growth of the RTWCG SiOx film on both sides of the diffusion wafer, thereby producing a low reflectivity ARC 'while returning money n++ And the unmetallized portion of the p++ re-diffusion layer of a particular thickness and etching away the non-metallurgy present on the edge of the wafer The diffusion layer' thus eliminates the need for a conventional edge separation process step; vii. SiOx surface texturing 'which is produced as a by-product of the fast Si〇x growth solution in step vi or in a separate step using a dilute HF solution. RTWCG SiOx ARC/SE/TO n++pp++ or p++nn++ double-sided solar cell design can achieve large absolute power gain at a cost comparable to conventional single-sided solar cell designs. The reasons are: i. The diffusion temperature and the shorter diffusion time produce a strong front surface field and a back surface field; ii. Smoothing the front surface and overlapping the back surface in principle produces an ideal factor that is more consistent than the battery design using the textured emitter surface; iii. The surface concentration under the metallization layer is high enough to ensure low contact resistance; iv. The deeper emitter prevents the metallization layer from shorting to the junction during the firing step; v. The smooth emitter surface has a textured si〇x ARC battery design The gate occlusion loss is minimized by separating the gate lines farther because of the large lateral resistance work generated by the textured emitter surface not counted by the conventional power source 2012 201251057 41245pif pool. There is no loss;

Vi.輕摻雜前未金屬化表面及後未金屬化表面及良好 表面鈍化使複合損耗最小; vii. RTWCG SiOx/ARC/TO 膜可使 AM1.5 AWR 自 35% 降至低至3% ; viii. SiOx膜中之可見光譜吸收顯著小於習知arc,尤 其當與低透明度雙層或三層ARC設計比較時。 如本領域中所熟知,p+ Si表面之良好鈍化為使用爛 擴散毛射極之p+/n Si太陽電池及n++pp++或P++HH++雙面 太陽電池設計需解決之主要問題之一。其原因為數個鈍化 實驗已展示SiNx薄鈍化層不僅不能使p+矽表面以及n+石夕 表面鈍化,而且在高度P摻雜矽表面上,SiNx甚至展示微 弱的去鈍化性能。另一方面,RTWCGSi〇x在p+矽表面與 n+矽表面上均展示良好鈍化特性。 實例12-發射極及後側RTWCG SiOx鈍化且局部後表 面金屬化的Π+ΡΡ+或p+nn+ c_Si、mc_Si或多晶砂RTWrn SiOx ARC/SE/TO 太陽電池。 所謂發射極鈍化後側局部(PERL)擴散電池設計為 本領域中所熟知。其產生具有創紀錄之高效率(在標準 AM1.5光譜下接近25%)的電池。為使這些高效率pERL 電池之發射極鈍化,使用熱Si〇2之薄膜降低表面上之載流 子複合。電池之後表面僅在金屬接觸處局部擴散,以使後 側之複合最小同時維持良好電接觸。 110 201251057 41245pif 本領域中熟知使用擴散後表面來增強後表面場(back surface field ’ BSF)。作為標準程序,n+pp+擴散結構使用 石粦摻雜來形成n+發射極層’且使用蝴摻雜來形成bsf。此 方法因在具有較小彎曲度之較薄晶圓上產生潛在較高效率 之電池而提供優於習知n+/p電池結構之優勢。 RTWCG SiOx ARC/SE/TO技術可產生發射極及後側Vi. Lightly doped front unmetallized surface and unmetallized surface and good surface passivation to minimize composite loss; vii. RTWCG SiOx/ARC/TO film can reduce AM1.5 AWR from 35% to as low as 3%; Viii. Visible spectral absorption in SiOx films is significantly less than conventional arc, especially when compared to low transparency double or triple ARC designs. As is well known in the art, good passivation of the p+ Si surface is one of the major problems to be solved in the design of p+/n Si solar cells and n++pp++ or P++HH++ double-sided solar cells using rotten diffusion hair emitters. The reason for this is that several passivation experiments have shown that the SiNx thin passivation layer not only does not passivate the p+矽 surface and the n+ stone surface, but on the highly P-doped germanium surface, SiNx even exhibits weak depassivation properties. On the other hand, RTWCGSi〇x exhibits good passivation characteristics on both the p+矽 surface and the n+矽 surface. Example 12 - emitter and back side RTWCG SiOx passivated and partially post-surface metallized Π+ΡΡ+ or p+nn+ c_Si, mc_Si or polycrystalline sand RTWrn SiOx ARC/SE/TO solar cells. The so-called emitter passivation backside local (PERL) diffusion cell design is well known in the art. It produces a battery with a record high efficiency (close to 25% under the standard AM 1.5 spectrum). To passivate the emitters of these high efficiency pERL cells, a film of thermal Si〇2 is used to reduce carrier recombination on the surface. The surface of the cell is then locally diffused only at the metal contact to minimize recombination of the back side while maintaining good electrical contact. 110 201251057 41245pif It is well known in the art to use a diffused surface to enhance the back surface field (BSF). As a standard procedure, the n+pp+ diffusion structure uses doping of germanium to form an n+ emitter layer' and uses doping to form bsf. This approach provides advantages over conventional n+/p cell structures by creating potentially more efficient cells on thinner wafers with less curvature. RTWCG SiOx ARC/SE/TO technology produces emitter and back side

SiOx鈍化之n+pp+或p+nn+ C-Si或mc_Si太陽電池結構(諸 如圖36中)。藉由使用深接面彎折與尾型擴散分佈曲線及 標準網版印刷及攙雜接觸金屬化層,其產生包含以下之效 率增強特徵:(i)在有用之AM丨.5光譜中之低反射率及吸 收,(ii)前表面及後表面鈍化以及(iii)強前表面場及後 表面場。 使電池後側之複合最小同時產生良好後接觸之方法 屬於一或多個實施例之範疇。在此方案中,在除存在無 SiOx後層之小點處以外的各處使用Si〇x分離後層與金屬 ^層。重摻雜P+ (n+)之擴散後層之這些點的表面摻雜劑 濃度高於覆蓋SiOx之後層約兩個數量級。 、每為產生圖35中之電池結構,必須將前柵線網版印刷 ^只例11之n+ (或p+)擴散層上。隨後,可使用光微影 在後表面上界定小點區域。隨後可在未金屬化前表面 '、,、光阻後表面上同時生長RTWCG SiOx薄膜。在Si〇x 間,自每射極之未金屬化前表面及無光阻後表面回 :特定厚度。自後表面移除光阻後,網版印麟產生後接 八將僅直接接觸原先由光阻遮蔽之重摻雜區域。剩餘 111 201251057 41245pif 後碎表面將具有較低換雜濃度、良好純化性且將由—層 SiOx膜與金屬化層絕緣。 或者,產生前柵線且在後表面上網版印刷後金屬化層 之小點。共焙燒前金屬化層與後金屬化層後,在未金屬化 前表面與未金屬化後表面上同時生長RTWCG SiOx膜。最 後’在SiOx氧化物及先前網版印刷之點上網版印刷全區 域後金屬化層且在低(<500°C )溫下焙燒。因為所述金屬 化層未經SiOx膜覆蓋’故全區域後接觸金屬化層與位於 重擴散p++ (n++) Si表面上的先前金屬化之點形成良好 歐姆接觸。Si表面之其餘部分與全區域後接觸金屬化層由 具有良好鈍化性之紋理化(TO) SiOx膜分隔。 當在逐漸變薄之晶圓上製造高效率結晶石夕太陽電池 時,電池對於光譜之紅光部分愈加透明,從而較低效率。 使用紋理化後表面金屬化層(如圖36所述),反射光之路 徑延長,從而提高電池之紅光響應。 實例13·低成本增強效率a-Si薄膜太陽電池之低成本 RTWCGSiOM透明導電塗層。 透明導電氧化物(T C Ο )為本領域中所熟知,且在a - S i 及其他薄膜太陽電池中發揮主要作用。其他應用包含平板 顯示器及諸多其他電子(光電子)應用。習知TCO膜包含 In203:Sn (ITO)、Sn02:F (FTO)、Sn02:Sb (ΑΤΟ)及導電 聚合物。對於低成本高效率a-Si太陽電池及其他電子及光 電子應用,習知TCO膜出於如下原因而不能完全相容: i·相對較高沈積溫度; 112 201251057 41245pif ii.相對較低透明度; iii·相對較高反射率; iv.TCO/a-Si界面處之高缺陷密度; V.與下方a-Si層之相對較高接觸電阻; vi.相對較高成本。 各種金屬氮化物(包含(但不限於)基於Bi、Ti、Co 及Cu之氮化物)在如本文所示用作RTWCG溶液之組分 時產生具有較高Si-Ο-Μ含量之si〇x膜。產生一些si-0-Μ 膜(諸如Si-0-Cu及Si-O-Bi)且量測結果展示其具導電性。 初步結果展示低成本高生長速率RTWCG Si〇M膜(其中 Μ為包含(但不限於)(^或历之金屬組分)可提供目前 技術之TCO膜之良好替代物以用於薄膜太陽電池及各種 其他應用。 RTWCG SiOM優於目前技術之TCO膜的主要優點 為: i. 室溫製程使得可使用溫度敏感性基板; ii. 因與下方a-Si層之晶格匹配改良而產生的si〇]y[之 優良a-Si表面鈍化; iii. SiOM TCO在可見光譜中更透明,透明度高於95%; iv. SiOM之梯度折射率及與下方a_Si層之較佳折射率 匹配產生低於10%之AM 1.5 AWR ; v. SiOM膜之電導率可針對特定應用加以調整,如由在 不超過1分鐘内在c-Si矽基板上生長之數個Si〇Cu及 SiOBi SiOM膜所證實,所述膜之電阻率在1><1〇-3歐_公分 113 201251057 41245pif 至lxio·1歐-公分範圍内調整; vi.因為RTWCG SiOM表面可容易地紋理化,故易於 達成光捕捉; νϋ·對環境因素(諸如UV輻射、溫度變化及濕度)更 穩定; viii.SiOM TCO線内製造系統簡單且成本低。 較佳a-Si RTWCG SiOM TCO/ARC/SE電池結構之橫 截面使用n/i/p標準設計,例外為: ι.η+犧牲前層為較佳以使較佳塑膠/網版印刷前柵金 屬化層/n+/n/i/p/A1/塑膠低成本a_ s i電池的基於銀或銅之前 接觸電阻最小; 11.其中n+層僅與所述網版印刷前栅接觸,且自未金屬 化前電池表面之部分回蝕以形成優良品質SE ; in.與SE —起,其他固有效率增強特徵為較高透明 度、較低反射率、提高之收集效率及可能較高之填充因子 提高’其將顯著改良RTWCG SiOM a-Si薄膜太陽電池之 效率; iv.相較於本領域中已知之來自相同基本設計類別之 標準a-Si電池,環境穩定性較高。 實例14. GaAs基板上之RTWCG SiOx 在很大程度上’研究工作集中於在Si基板上生長Si0x 膜及所得膜之表徵。然而,RTWCG製程亦用於在非&基 板(包含GaAs、GaP、AlGaAs及CuInSe2薄膜)上產生各 種薄膜介電塗層。 114 201251057 41245pif 舉例而言,在數個化學系統中,在n型及p型QaAs 基板上生長極均一 RTWCG塗層。為展示GaAs基板上的 這些生長態塗層之可能性,本文提供在美國國家航空航天 局格倫研究中心(NASA GRC)獲得之關於數個n-GaAs 樣ασ中多個樣品的初步室溫光致發光強度 (photoluminescence intensity,PLI)數據。將未塗佈基板 之PLI數據與生長RTWCG塗層後之相同基板的pu數據 比較;圖37中展示pl光譜之峰強度。 在設計用於石夕上RTWCG SiOx薄膜之五個不同化學 系統中生長塗層。為達成一致性,調節在2分鐘至4分鐘 之間的生長時間以在五個樣品上各生長類似(約1〇〇奈米) 氧化物厚度。兩個塗層115-99-2及116-99-5之數據展示, 相較於未塗佈表面,PLI顯著提高。這些實驗數據展示室 溫氧化物可在不破壞GaAs表面的情況下生長。ιΐ5_99_2 及116-99-5塗層展示有前景之對GaAs表面之電子表面純 化。所述兩個塗層可適用於大量應用,包含空間太陽電池 之鈍化/第一層ARC,以及諸多其他電子及微電子應用, 諸如基於GaAs之整合CMOS元件的閘極氧化物。 如上所述,在GaAs上RTWCG介電塗層尚未如在矽 基板上RTWCG SiOx膜般深入研究。初步研究主要使用陳 舊的2吋GaAs基板及一些小面積GaAs太陽電池。另外, GaAs上基於Ga_As_〇之薄膜介電層(參見圖36)的 RTWCG化學系統調配物為用於在石夕基板上生長RTwc(} SiOx薄膜之相同調配物。然而,近年來,已發現各種GaAs 115 201251057 41245pif 特定添加劑’包含(但不限於)各種^及仏前驅物,諸 士 S2〇3 As2〇5、AsCl3及Ga2〇3。這些目前技術之用於 在GaAs上進行RTWCG的生長溶液提高所得膜之均一 性、生長速率及黏著性。應注意,當使用基於As、之添加 剤時,不僅备含As之Ga-As-O氧化物的生長速率提高至 高達120奈米/分鐘,而且膜之熱穩定性顯著提高。當加熱 塗佈RTWCG氧化物之GaAs樣品至5〇〇〇c時,厚度未發生 可觀察之變化。 λ 在一或多個實施例之一較佳實施例中,為用於太陽電 池應用,低成本生長溶液由2公克-5公克Asl3溶解於 HF(水溶液〕中構成。在1分鐘内,可生長高度均一之膜,盆 具有良好n+-GaAs鈍化能力,如由小面積n+/p GaAs同質 接面電池之42毫伏Voc提高所表明,所述電池在塗佈後 亦產生多達62.5°/〇之Pmax提高。 以下參考文獻以全文引用的方式併入本文中: 韓相敏(Sang M. Han )及伊瑞S.艾迪爾(Eray S. Aydil ), 「氟化Si〇2膜之介電常數較低的原因(Reason f0I· i〇wer dielectric constant of fluorinated Si02 films)」,應用物理學 雜諸(Journal of Applied Physics ),第 83 卷,第 4 期,1998 年2月15曰,第2172-2178頁。 C.F.葉(C.F. Yeh),S.S.林(S.S.Lin)及 T_Y_洪(T.Y.SiOx passivated n+pp+ or p+nn+ C-Si or mc_Si solar cell structures (see Figure 36). By using deep junction bend and tail diffusion profiles and standard screen printing and doped contact metallization layers, it produces the following efficiency enhancement features: (i) low reflection in the useful AM丨.5 spectrum Rate and absorption, (ii) front and back surface passivation and (iii) strong front surface field and back surface field. A method of minimizing the recombination of the back side of the battery while producing good post contact is within the scope of one or more embodiments. In this scheme, the layer and the metal layer are separated using Si〇x except for the presence of a small layer of the layer after the absence of SiOx. The concentration of the surface dopant at these points of the heavily doped P+ (n+) diffusion layer is about two orders of magnitude higher than the layer covering the SiOx. For each of the battery structures shown in Figure 35, the front gate line must be screen printed on the n+ (or p+) diffusion layer of Example 11. Subsequently, light lithography can be used to define a small dot area on the back surface. The RTWCG SiOx film can then be grown simultaneously on the surface of the un-metallized front surface, and after the photoresist. Between Si〇x, from the unmetallized front surface of each emitter and the non-resistance back surface: a specific thickness. After removing the photoresist from the back surface, the screen printing will produce a rear-to-back contact with only the heavily doped regions originally masked by the photoresist. Remaining 111 201251057 41245pif The post-crushed surface will have a lower trim concentration, good purity and will be insulated from the metallization layer by the SiOx film. Alternatively, a small dot of the metallization layer is produced after the front gate line is printed and the back surface is screen printed. After co-baking the metallization layer and the post-metallization layer, the RTWCG SiOx film is simultaneously grown on the unmetallized front surface and the unmetallized surface. Finally, the entire region is metallized at the point of SiOx oxide and previous screen printing and fired at a low (<500 ° C) temperature. Since the metallization layer is not covered by the SiOx film, the full area back contact metallization layer forms a good ohmic contact with the point of previous metallization on the surface of the re-diffused p++ (n++) Si. The remainder of the Si surface is separated from the full area back contact metallization layer by a well-passivated textured (TO) SiOx film. When a high-efficiency crystallized solar cell is fabricated on a gradually thinned wafer, the cell becomes more transparent to the red portion of the spectrum, resulting in lower efficiency. Using a textured back surface metallization layer (as described in Figure 36), the path of the reflected light is extended to increase the red light response of the cell. Example 13· Low Cost Enhanced Efficiency A-Si Thin Film Solar Cell Low Cost RTWCGSiOM Transparent Conductive Coating. Transparent conductive oxides (T C Ο ) are well known in the art and play a major role in a-S i and other thin film solar cells. Other applications include flat panel displays and many other electronic (photonic) applications. The conventional TCO film contains In203:Sn (ITO), Sn02:F (FTO), Sn02:Sb (ΑΤΟ), and a conductive polymer. For low cost and high efficiency a-Si solar cells and other electronic and optoelectronic applications, conventional TCO films are not fully compatible for the following reasons: i. relatively high deposition temperatures; 112 201251057 41245pif ii. relatively low transparency; • relatively high reflectivity; iv. high defect density at the TCO/a-Si interface; V. relatively high contact resistance with the underlying a-Si layer; vi. relatively high cost. Various metal nitrides, including but not limited to nitrides based on Bi, Ti, Co, and Cu, produce si〇x having a higher Si-Ο-Μ content when used as a component of the RTWCG solution as described herein. membrane. Some si-0-Μ films (such as Si-0-Cu and Si-O-Bi) were produced and the measurement results showed that they were electrically conductive. Preliminary results demonstrate low-cost, high growth rate RTWCG Si〇M films (wherein, including but not limited to, metal components) provide a good alternative to current state-of-the-art TCO films for thin film solar cells and Various other applications. The main advantages of RTWCG SiOM over current TCO films are: i. room temperature process makes it possible to use temperature sensitive substrates; ii. si〇 due to improved lattice matching with the underlying a-Si layer ]y[Excellent a-Si surface passivation; iii. SiOM TCO is more transparent in the visible spectrum, transparency is higher than 95%; iv. SiOM gradient index and better index matching with the lower a_Si layer yields less than 10 % AM 1.5 AWR ; v. The conductivity of the SiOM film can be adjusted for specific applications, as evidenced by several Si〇Cu and SiOBi SiOM films grown on a c-Si germanium substrate in no more than 1 minute. The resistivity of the film is adjusted in the range of 1 > 1 〇 -3 ohm _ cm 113 201251057 41245pif to lxio · 1 ohm - cm; vi. Because the surface of the RTWCG SiOM can be easily textured, it is easy to achieve light capture; Environmental factors (such as UV radiation, temperature changes) Humidity is more stable; viii. The manufacturing system of SiMO TCO is simple and low cost. The cross section of the a-Si RTWCG SiOM TCO/ARC/SE battery structure is designed using n/i/p standard, with the exception of: ι.η + sacrificial front layer is preferred to make the preferred plastic/screen printing front gate metallization layer /n+/n/i/p/A1/plastic low-cost a_si battery with minimum contact resistance before silver or copper; Wherein the n+ layer is only in contact with the screen printing front grid, and is partially etched back from the surface of the battery before the metallization to form a good quality SE; in. together with SE, other inherent efficiency enhancement features are higher transparency, Low reflectivity, improved collection efficiency, and possibly higher fill factor improvement 'will significantly improve the efficiency of RTWCG SiOM a-Si thin film solar cells; iv. compared to standards from the same basic design category known in the art a -Si battery, high environmental stability. Example 14. RTWCG SiOx on GaAs substrate To a large extent 'research work focused on the characterization of Si0x film grown on Si substrate and the resulting film. However, RTWCG process is also used in Non-amplifier substrates (including GaAs, GaP, AlGaAs, and Various thin film dielectric coatings are produced on CuInSe2 film. 114 201251057 41245pif For example, in a number of chemical systems, a very uniform RTWCG coating is grown on n-type and p-type QaAs substrates. To demonstrate these growths on GaAs substrates. The possibility of coatings, this article provides preliminary room temperature photoluminescence intensity (PLI) for multiple samples in several n-GaAs-like ασ obtained by NASA GRC. )data. The PLI data of the uncoated substrate was compared with the pu data of the same substrate after the growth of the RTWCG coating; the peak intensity of the pl spectrum is shown in FIG. The coating was grown in five different chemical systems designed for the RTWCG SiOx film on Shixia. To achieve consistency, the growth time between 2 minutes and 4 minutes was adjusted to grow similar (about 1 nanometer) oxide thickness on each of the five samples. The data for the two coatings 115-99-2 and 116-99-5 shows a significant increase in PLI compared to the uncoated surface. These experimental data show that room temperature oxides can grow without destroying the GaAs surface. The ιΐ5_99_2 and 116-99-5 coatings show promising purification of the electronic surface of the GaAs surface. The two coatings are suitable for a wide variety of applications, including passivation/first layer ARC of space solar cells, and many other electronic and microelectronic applications, such as gate oxides of GaAs-based integrated CMOS components. As described above, the dielectric coating of RTWCG on GaAs has not been studied intensively as the RTWCG SiOx film on the ruthenium substrate. Preliminary research mainly uses old 2-inch GaAs substrates and some small-area GaAs solar cells. In addition, the RTWCG chemical system formulation based on the Ga_As_〇 thin film dielectric layer on GaAs (see Fig. 36) is the same formulation for growing RTwc(} SiOx film on the Shixi substrate. However, in recent years, it has been found Various GaAs 115 201251057 41245pif specific additives 'including (but not limited to) various precursors and ruthenium precursors, S2 〇 3 As2 〇 5, AsCl 3 and Ga 2 〇 3. These prior art growth solutions for RTWCG on GaAs Increasing the uniformity, growth rate and adhesion of the obtained film. It should be noted that when the addition of yttrium based on As is used, not only the growth rate of the Ga-As-O oxide containing As is increased to as high as 120 nm/min. Moreover, the thermal stability of the film is significantly improved. When the GaAs sample of the RTWCG oxide is heated to 5 〇〇〇c, no observable change in thickness occurs. λ In a preferred embodiment of one or more embodiments For solar cell applications, a low-cost growth solution consists of 2 g to 5 g of Asl3 dissolved in HF (aqueous solution). Within 1 minute, a highly uniform film can be grown, and the pot has good n+-GaAs passivation capability, such as Small area The 42 mV Voc increase of the n+/p GaAs homojunction cell indicates that the cell also produces an increase in Pmax of up to 62.5 °/〇 after coating. The following references are incorporated herein by reference in their entirety: Han Xiangmin (Sang M. Han) and Eray S. Aydil, "Reason f0I·i〇wer dielectric constant of fluorinated SiO 2 films" Journal of Applied Physics, Vol. 83, No. 4, February 15, 1998, pp. 2172-2178. CF Yeh, SSin (SSLin) and T_Y _Hong (TY

Hong),「液相沈積之Si02-xFx作為閘極絕緣體的低溫加Hong), "The low temperature addition of liquid-deposited SiO2-xFx as a gate insulator

工 MOSFET ( Low-Temperature Processed MOSFET's with Liquid Phase Deposited Si〇2-x Fx as Gate Insulator)」,IEEE 116 201251057 41245pif 電子器件快報(IEEE Electron Device Letters ) , 16 (7),316 (1995) 黃千榕(Chien-Jung Huang),在矽上液相沈積si02 膜之品質最佳化(Quality Optimization of Liquid Phase Deposition Si02 Films on Silicon),日本應用物理學雜誌、 (Jpn. J. Appl. Phys_) , 41 (2002)第 4622-4625 頁 福雷(Faur)等人,「在矽上室溫濕化學生長基於Si〇 之氧化物的製程(Room Temperature Wet Chemical Growth Process of SiO-Based Oxides on Silicon)」,美國專利第 6,080,683 號,2000 年 7 月。 福雷(Faur)等人,「使用在基板上室溫濕化學生長基 於SiO之氧化物的製程製備薄膜介電層之方法(Method of Making Thin Film Dielectrics Using a Process for Room Temperature Wet Chemical Growth of SiO Based Oxides on a Substrate)」,美國專利第6,593,077號,2003年7月15曰。 福雷(Faur)等人,「使用室溫濕化學生長製程、方 法在半導體基板上獲得之低金屬雜質SiO薄膜介電層及其 應用(Low metallic Impurity SiO Thin Film Dielectrics on Semiconductor Substrates Using a Room Temperature Wet Chemical Growth Process, Method and Applications Thereof)」,美國專利第6,613,697號,2003年9月。 E.Y.王(E.Y.Wang),F.T.S.余(F.T.S. Yu) ,V.L.西姆 (V.L. Sims) , E_W.布蘭德霍斯特(E.W. Brandhorst)及 J.D. 布拉德(J.D. Broder),「矽太陽電池之抗反射塗層的最佳 117 201251057 41245pif 言史計(Optimum Design of Anti-reflection coating for silicon solarcells)」,會議記錄,第10屆IEEE光伏專家會議(i〇th IEEE Photovoltaic Specialists Conference ) , 1973,第 168-171 頁。 丹尼爾N.賴特(Daniel N. Wright),艾瑞克S.馬爾斯 坦因(Erik S. Marstein)及艾烏霍爾德(Arve Holt),石夕 太陽電池之雙層抗反射塗層(Double Layer Anti-Reflective Coatings for Silicon Solar Cells) , 0-7803-8707-4/05/$20.00 ◎2005 IEEE,第 1237-1240 頁。 D.鮑豪斯(D. Bauhaus),A.穆西(A, Moussi),A.齊 蔻池(A. Chikouche),J.M.瑞茲(J.M. Ruiz),「用於光 電子元件之抗反射塗層系統的設計及模擬:應用於矽太陽 電池(Design and simulation of antireflection coating systems for optoelectronic devices : Application to silicon solar cells)」,太陽能材料及太陽電池(Solar Energy Materials and Solar Cells),52, 1998,第 79-93 頁。 M.希德(M. Cid),N.斯蒂姆(N. Stem),C.布魯内蒂 (C· Brunetti),A.F·貝拉托(A.F. Beloto),C.A.S.拉姆斯 (C.A.S.Ramos),「用於高效率石夕太陽電池之抗反射塗層 的改良(Improvements in anti-reflection coatings for highefficiency silicon solar cells )」,表面及塗層技術 (Surface and CoatingsTechnology) , 106,1998,第 117-120 頁。 B.S.理查茲(B.S. Richards),單一材料Ti02雙層抗 118 201251057 41245pif 反射塗層「Single-material Ti〇2 double-layer antireflection coatings」,太陽能材料及太陽電池(Solar Energy Materials & Solar Cells) , 79, 2003,第 369-390 頁。 B. S.理查茲(B. S. Richards) , S. F.羅蘭(8.只 Rowlands),C. B.豪斯博格(C. Β· Honsberg),J. E.考特(J. E. Cotter),平面矽太陽電池之Ti02 DLAR塗層(Ti02 DLAR coatings for planar silicon solar cells),光伏電池進 展:研究及應用(Progress in Photovoltaics: Research and Applications),第11卷第1期,第27-32頁,線上刊登: 2002年12月16日。 連水楊(Shui-Yang Lien ),武東星(Dong-Sing Wuu ), 葉文長(Wen-Chang Yeh)及劉軍辛(Jun-Chin Liu),使 用溶膠-凝膠技術之用於矽太陽電池的三層抗反射塗層 (Si〇2/Si〇2~Ti02/Ti〇2 ) ( Tri-layer antireflection coatings (Si02/Si02 Ti02/Ti〇2) for silicon solar cells using a sol-gel technique ),太陽能材料及太陽電池(Solar Energy Materials and Solar Cells),第 90 卷,第 16 期,2006 年 10 月 16 曰,第 2710-2719 頁。 K丄·焦(K丄.Jiao ), W_A.安德森(W.A_ Anderson ),用 於金屬/絕緣體/n-Si/p-Si太陽電池之在室溫下沈積的 Si02/Ti02 雙層抗反射塗層(Si02/Ti02 double-layer antireflective coating deposited at room temperature for metal/insulator/n-Si/p-Si solar cells ),太陽電池(Solar Cells) 22,第 229-236 頁(1987)。 119 201251057 41245pif D.J.艾肯(D.J· Aiken),用於寬頻帶多接面太陽電池 之高效能抗反射塗層(High performance anti-reflection coatings for broadband multi-junction solar cells ),太陽倉皂 材料及太陽電池(Solar Energy Materials & Solar Cells ) 64, 第 393-404 頁(2000)。 M.郭(M. Kuo)等人,光學快報(Optics Letters) 33 (21),2527 (2008)。 Μ·力平斯基(M. LIPlASKI ),S.克盧斯卡(S· KLUSKA),H.科茲特納(H. CZTERNASTEK),P·澤巴(P. ΖΙξΒΑ),用於太陽電池應用之作為抗反射塗層的梯度 SiOxNy 層(Graded SiOxNy layers as antireflection coatings for solar cells application ),波蘭材料科學(Materials Science-Poland),24 (4),第 1009-1016 頁,2006。 梅森,N. (Mason,N.),2009,「高效率結晶矽PV電 池製造:概況及前景(High efficiency crystalline silicon PV cell manufacture : status and prospects)」,PVSAT-5,格林多 (Glyndwr),威爾士( Wales)。 麻衣,L. (Mai,L.)等人,2006,「用於網版印刷太陽電 池前表面之新穎發射極設計及金屬接觸(New emitter design and metal contact for screen printed solar cell front surfaces)」,第4屆IEEE世界光伏能量轉換會議(4th IEEE World Conf. on Photovoltaic Energy Conversion),夏威夷 (Hawaii),美國(USA)。 塔朱諾,B. (Tjahjono,B.)等人,2008,「經由使用雷射 120 201251057 41245pif 換雜獲得之高效率太陽電池結構(High efficiency solar cell structures through the use of laser doping)」,第 23 屆 EUPVSEC (23rd EUPVSEC),巴倫西亞(Valencia),西 班牙(Spain)。 赫希曼,W. (Hirshman,W.),2008,「選擇性研究之展 望(Banking on selective research)」,光子國際(Photon International),第 3 版,第 91 頁。 布克,F. (Book,F.)等人,2008,「兩步擴散步驟選擇 性發射極:比較由雷射或蝕刻糊劑獲得之遮罩開口(Two diffusion step selective emitter : comparison of mask opening by laser or etching paste)」,第 23 屆 EUPVSEC (23rd EUPVSEC),巴倫西亞(Valencia),西班牙(Spain)。 Ν· B.梅森(Ν· B. Mason) , T. M.布魯頓(T. Μ· Bruton) 及M. A.巴爾布納(M. Balbuena),歐洲PV-PV技術至能 量方案(PV in Europe-From PV Technology to Energy Solutions),羅馬(Rome),意大利(Italy) (2002) 227。 W. P.穆里根(W. P. Mulligan),D. H.羅絲(D. H. Rose), M. J.庫茲諾維(M. J. Cudzinovic)等人,第十九屆歐洲光 伏太陽能會議之會議錄(Proceedings of the 19th European Photovoltaic Solar Energy Conference),巴黎(Paris),法 國(France) (2004) 387。 M.田中(M. Tanaka) ,S.岡本(S.Okamoto),S.津下 (S. Tsuge)等人,第3屆世界光伏能量轉換會議之會議錄 (Proceedings of the 3rd World Conference on Photovoltaic 121 201251057 41245pifLow-Temperature Processed MOSFET's with Liquid Phase Deposited Si〇2-x Fx as Gate Insulator), IEEE 116 201251057 41245pif IEEE Electron Device Letters, 16 (7), 316 (1995) Huang Qianxi (Chien -Jung Huang), Quality Optimization of Liquid Phase Deposition Si02 Films on Silicon, Jpn. J. Appl. Phys_, 41 (2002) ) 4622-4625 page Faur et al., "Room Temperature Wet Chemical Growth Process of SiO-Based Oxides on Silicon", US Patent No. 6,080,683, July 2000. Faur et al., "Method of Making Thin Film Dielectrics Using a Process for Room Temperature Wet Chemical Growth of SiO on a Substrate at Room Temperature Wet Chemical Growth of SiO Based Oxide Processes" Based on Oxides on a Substrate), U.S. Patent No. 6,593,077, July 15, 2003. Faur et al., "Low metallic Impurity SiO Thin Film Dielectrics on Semiconductor Substrates Using a Room Temperature using a room temperature wet chemical growth process, a low metal impurity SiO thin film dielectric layer obtained on a semiconductor substrate. Wet Chemical Growth Process, Method and Applications Thereof), U.S. Patent No. 6,613,697, September 2003. EYWang, FTS Yu, VL Sims, E_W. EW Brandhorst and JD Broder, "Anti-solar battery resistance 117 Optimum Design of Anti-reflection coating for silicon solar cells, Conference Record, 10th IEEE Photovoltaic Specialists Conference, 1973, 168 -171 pages. Daniel N. Wright, Erik S. Marstein and Arve Holt, double-layer anti-reflective coating for Shi Xi solar cells (Double Layer Anti-Reflective Coatings for Silicon Solar Cells), 0-7803-8707-4/05/$20.00 ◎2005 IEEE, pp. 1237-1240. D. Bauhaus, A. Moussi, A. Chikouche, JM Ruiz, "Anti-Reflective Coating Systems for Optoelectronic Components" Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells, Solar Energy Materials and Solar Cells, 52, 1998, pp. 79- 93 pages. M. Cid, N. Stem, C. Brunetti, AF Beloto, CAS Ramos "Improvements in anti-reflection coatings for high efficiency silicon solar cells", Surface and Coatings Technology, 106, 1998, p. 117 -120 pages. BS Richards, single material Ti02 double layer anti-118 201251057 41245pif reflective coating "Single-material Ti〇2 double-layer antireflection coatings", solar energy materials and solar cells (Solar Energy Materials & Solar Cells), 79, 2003, pp. 369-390. BS Richards, SF Roland (8. Rowlands only), CB Β·Honsberg, JE Cotter, Ti02 DLAR coating for planar tantalum solar cells (Ti02 DLAR coatings for planar silicon solar cells, Progress in Photovoltaics: Research and Applications, Vol. 11, No. 1, pp. 27-32, published online: December 16, 2002. Shui-Yang Lien, Dong-Sing Wuu, Wen-Chang Yeh and Jun-Chin Liu, three-layer anti-solar technology for solar cells using sol-gel technology Reflective coating (Si〇2/Si〇2~Ti02/Ti〇2) (Tri-layer antireflection coatings (Si02/Si02 Ti02/Ti〇2) for silicon solar cells using a sol-gel technique ), solar materials and the sun Solar Energy Materials and Solar Cells, Vol. 90, No. 16, October 16, 2006, pp. 2710-2719. K丄.Jiao, W_A. Anderson, SiO2/Ti02 double-layer anti-reflection for metal/insulator/n-Si/p-Si solar cells deposited at room temperature Si02/Ti02 double-layer antireflective coating deposited at room temperature for metal/insulator/n-Si/p-Si solar cells, Solar Cells 22, pp. 229-236 (1987). 119 201251057 41245pif DJ Aiken, High performance anti-reflection coatings for broadband multi-junction solar cells, solar bar soap material and sun Solar Energy Materials & Solar Cells 64, pp. 393-404 (2000). M. Kuo et al., Optics Letters 33 (21), 2527 (2008). M. LIPlASKI, S. KLUSKA, H. CZTERNASTEK, P. Zeba (P. ΖΙξΒΑ), for solar cells Graded SiOxNy layers as antireflection coatings for solar cells application, Materials Science-Poland, 24 (4), pp. 1009-1016, 2006. Mason, N., 2009, "High efficiency crystalline silicon PV cell manufacture: status and prospects", PVSAT-5, Glyndwr, Wales. Mai, L. (Mai, L.) et al., 2006, "New emitter design and metal contact for screen printed solar cell front surfaces", 4th IEEE World Conf. on Photovoltaic Energy Conversion, Hawaii, USA (USA). Tajuno, B. (Tjahjono, B.) et al., 2008, "High efficiency solar cell structures through the use of laser doping" by using laser 120 201251057 41245pif 23rd EUPVSEC (23rd EUPVSEC), Valencia, Spain. Hirshman, W., 2008, "Banking on selective research", Photon International, 3rd edition, p. 91. Booker, F., et al., 2008, "Two-step diffusion step selective emitter: comparing two diffusion step selective emitters: comparison of mask opening By laser or etching paste), 23rd EUPVSEC (23rd EUPVSEC), Valencia (Spain). Ν·B. Mason, T. Μ· Bruton and MA. Balbuena, European PV-PV technology to energy solution (PV in Europe-From PV Technology to Energy Solutions), Rome, Italy (2002) 227. WP Mulligan, DH Rose, MJ Cudzinovic, etc., Proceedings of the 19th European Photovoltaic Solar Energy Conference , Paris, France (2004) 387. M. Tanaka, S. Okamoto, S. Tsuge, et al., Proceedings of the 3rd World Conference on Photovoltaic 121 201251057 41245pif

Energy Conversion),大阪(Osaka),日本(Japan) (2003) 955。 美國專利第4,332,973號及第4,409,422號及第 4,516,314 號。 瑪莉亞福雷(Maria Faur ),莫西福雷(Mircea Faur ), S.G.巴利(S.G. Bailey),D.J.弗拉德(D_J. Flood),D.J.布 林科(D.J. Brinker) ,Η.Μ.福雷(H.M. Faur),S.A.阿特維 茲(S.A. Alterovitz),D.R.惠勒(D.R. Wheeler)及 D.L. 波伊德(D.L. Boyd) , 「用於基於Si之太陽電池之純化/ 抗反射塗層的室溫濕化學生長(Room Temperature Wet Chemical Growth of Passivating/Antireflection Coatings for Si-Based Solar Cells)」,第2屆世界光伏能量轉換會議及 展覽會之會議錄(Proceedings at the 2nd World Conference and Exhibition on Photovoltaic Energy Conversion ) , 2000, 維也納(Vienna),奥地利(Austria),第1574頁。 B丄.沙特爾(B丄 Sater),「高強度矽VMJ電池之近 期結果(Recent Results on High Intensity Silicon VMJ Cell)」,美國太陽能會議之會議錄(Proc. at the American Solar Energy Conference),明尼蘇達(Minnesota),1995 年7月15日·7月20日。 J.利巴爾(J. Libal)等人,η型多晶矽太陽電池,ρ+擴 散石夕表面之BBr3擴散及純化(n-type multicrystalline silicon solar cells, BBr3 diffusion and passivation of p+ diffused silicon surfaces),第 20 屆 EU-PVSEC (20th 122 201251057 41245pif EU_PVSEC),巴塞羅那(Barcelona),2005,第 793-796 頁。 在回顧本發明之描述及實施例後,於本領域中具有通 .常知識者應瞭解,在實施本發明時’在不背離本發明之本 質的情況下可進行修改及等效替代。因此,本發明不欲受 上文明確描述之實施例限制,而僅受下文之申請專利範圍 限制。 【圖式簡單說明】 圖1為由斯派瑪特公司(Specmat,INC )開發的 KTWCG Si〇x ARC/SE/T〇結晶矽太陽電池設計的橫截面 圖。 圖2描述rTwcg SiOx ARC/SE/TO製造步驟。 圖3為對於RTwcG SiOX ARC/SE/TO單晶矽太陽電 池設計產生的彎折與尾型淨多數供體濃度深度分佈曲線。 圖4為預期傳送帶型擴散設備,其遮蔽基板邊緣且在 石夕晶圓之相對面上同時產生優良品質n+擴散層及擴散 層。 圖5為半導體級c_Si基板上生長之均一 4〇〇奈米厚 RTWCG Si〇x 膜的 SEM 圖。 子 圖6 (a)為在角錐覆蓋之n+ c_Si表面上生長之Si〇x 膜的諾馬斯基顯微圖(XI, 100)。 圖6 (b)為在多孔矽基板上生長之si〇x膜的諾馬 基顯微圖(XI, 100)。 . 圖7為先前技術RTWCG SiOx薄膜之XPS深度分佈 123 201251057 41245pif 曲線。 圖8展示在去除所有有機組分後SiOx膜改良之AES 深度分佈曲線。 圖9 (a)展示僅為痕量的金屬雜質之生長態Si0x膜 的XPS表面研究。 广圖9 (b)為圖9 (a)中之膜的XPS深度分佈曲線。 氧濃度隨深度逐漸減少,而矽濃度隨深度逐漸增加。 圖1〇為RTWCG SiOx膜之XPS深度分佈曲線。短溫 和触刻步驟後,樣品之Fe及Ti雜質濃度水準降至低於儀 益之偵測極限。 圖11為使用由如下物質構成之RTWCG SiOx溶液調 配物生長之RTWCG SiOx膜之主要組分的XPS深度分佈 曲線:2體積份H2TiF6 (水溶液)、 2體積份用二氧化矽過飽和 之膠狀二氧化矽及1體積份10%K3Fe(CN)6 (水溶液)〇 圖12為使用由如下物質構成之RTWCG溶液調配物 生長之低金屬雜質RTWCG SiOx薄膜之主要組分的xps 5木度分佈曲線.5體積份70% NH^SiFy水溶《〇、2體積份60% H2TiF6 (水溶液)λ 2 體積份 10%K3Fe(CN)6 (水溶液) 及3體積份藉 由將10公克Co(OH)2溶解於1公升10%HC1(水溶液)中製備 之溶液。 圖13為使用如下物質在n+ c-Si基板上生長之約400 奈米厚低金屬雜質RTWCG SiOx膜之主要組分的xps深 度分佈曲線:2體積份60% H2TiF6(水溶液)、2體積份5% K3Fe(CN)6 (水溶液)3體積份H20。 124 201251057 41245pif 圖14為使用由如下物質構成之RTWCG溶液調配物 在n+ c-Si基板上生長之低金屬雜質RTWCG si〇x薄膜之 主要組分的XPS深度分佈曲線:i體積份_3體積份6〇% 出1^6(水料〕及1體積份_3體積份M公克v2〇5/公升1〇% HC1 (水溶液)〇 圖15為使用由如下物質構成之超低成本rtwcq溶 液调配物在n+ C-Si基板上生長之低金屬雜質RTWCG SiOx薄膜之主要組分的XPS深度分佈曲線:丨'體積份ι〇 么克Ti〇2銳鈦礦溶解於2〇〇/0 HF(水溶液〉中之溶液及1體積 份3.5公克%〇5溶解於丨公升1〇% Ηα (水溶液)中之溶液。 圖16為不同濃度V2〇5溶解於50% HF (水溶液)中之 RTWCG生長溶液生長金屬藍13〇奈米_15〇奈米厚&〇又膜 所需之時間的圖。 ' 圖17 (a)為由諸如圖16中之生長溶液在n+ c_Si基 板上產生的RTWCG SiOx膜之主要組分的xps深度分佈 曲線。 圖17 (b)為在諸如圖16中之生長溶液中生長之 RTWCG SiOx 膜的 v 2p 峰。 圖18為在30秒内在藉由每i公升5〇%Η]ρ(^_^)溶解 1.7公克νζ〇5製備之生長溶液中生長的RTWCG Si〇x膜中 發現的主要非金屬雜質之SIMS擴散分佈曲線。 圖19為在重摻雜碟之石夕基板上生長130奈米-150奈 米厚RTWCG SiOx膜所需之時間與溶解於5〇% HF(水溶液) 中之Pb〇2之正規化量的曲線。 125 201251057 41245pif 圖20為屬於自同一 n+/pFZc-Si晶圓切割之樣品的發 射極的淨多數載流子濃度深度分佈曲線,其展示在1〇秒Energy Conversion), Osaka (Osaka), Japan (2003) 955. U.S. Patent Nos. 4,332,973 and 4,409,422 and 4,516,314. Maria Faur, Mircea Faur, SG Bailey, DJ J. Flood, DJ Brinker, Η.Μ. HM Faur, SA Alterovitz, DR Wheeler and DL Boyd, "Room for anti-reflective coatings for Si-based solar cells Room Temperature Wet Chemical Growth of Passivating/Antireflection Coatings for Si-Based Solar Cells, Proceedings at the 2nd World Conference and Exhibition on Photovoltaic Energy Conversion ) , 2000, Vienna, Austria, p. 1574. B丄Sater, "Recent Results on High Intensity Silicon VMJ Cell", Proc. at the American Solar Energy Conference, Minnesota (Minnesota), July 15, July 20, 1995. J. Libal et al., n-type polycrystalline silicon solar cells, BBr3 diffusion and passivation of p+ diffused silicon surfaces, 20th EU-PVSEC (20th 122 201251057 41245pif EU_PVSEC), Barcelona, 2005, pp. 793-796. In the course of reviewing the present invention, it will be appreciated by those skilled in the art that modifications and equivalent substitutions may be made without departing from the spirit of the invention. Therefore, the present invention is not intended to be limited to the embodiments disclosed herein, but only by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view of a KTWCG Si〇x ARC/SE/T〇 crystal solar cell design developed by Specmat, Inc. Figure 2 depicts the rTwcg SiOx ARC/SE/TO fabrication steps. Figure 3 is a plot of the net majority donor concentration depth profile for the bend and tail of the RTwcG SiOX ARC/SE/TO single crystal tantalum solar cell design. Figure 4 is an intended belt-type diffusion device that shields the edge of the substrate and simultaneously produces a good quality n+ diffusion layer and diffusion layer on the opposite side of the Shihua wafer. Figure 5 is a SEM image of a uniform 4 Å nanometer RTWCG Si〇x film grown on a semiconductor grade c-Si substrate. Figure 6 (a) is a Nomsky micrograph (XI, 100) of a Si〇x film grown on the surface of a pyramid-covered n+ c_Si. Figure 6 (b) is a Norma micrograph (XI, 100) of a Si〇x film grown on a porous tantalum substrate. Figure 7 is an XPS depth profile 123 201251057 41245pif curve for a prior art RTWCG SiOx film. Figure 8 shows the modified AES depth profile of the SiOx film after removal of all organic components. Figure 9 (a) shows an XPS surface study of an as-grown SiOx film with only traces of metallic impurities. Figure 9 (b) is the XPS depth profile of the film in Figure 9 (a). The oxygen concentration gradually decreases with depth, while the strontium concentration gradually increases with depth. Figure 1 shows the XPS depth profile of the RTWCG SiOx film. After the short temperature and the etch step, the Fe and Ti impurity levels of the sample fall below the detection limit of the instrument. Figure 11 is an XPS depth profile of the main components of the RTWCG SiOx film grown using the RTWCG SiOx solution formulation consisting of 2 parts by volume of H2TiF6 (aqueous solution), 2 parts by volume of gelatinous dioxide supersaturated with cerium oxide.矽 and 1 part by volume of 10% K3Fe(CN)6 (aqueous solution) 〇 Figure 12 is an xps 5 woody distribution curve of the main component of the low-metal impurity RTWCG SiOx film grown using the RTWCG solution formulation consisting of the following materials. 70% by volume NH^SiFy water soluble "〇, 2 parts by volume 60% H2TiF6 (aqueous solution) λ 2 parts by volume 10% K3Fe(CN)6 (aqueous solution) and 3 parts by volume by dissolving 10 g of Co(OH)2 in 1 liter of a solution prepared in 10% HCl (water solution). Figure 13 is an xps depth profile of the main components of a 400 nm thick low metal impurity RTWCG SiOx film grown on an n+ c-Si substrate using the following materials: 2 parts by volume 60% H2TiF6 (aqueous solution), 2 parts by volume 5 % K3Fe(CN)6 (aqueous solution) 3 parts by volume H20. 124 201251057 41245pif Figure 14 is an XPS depth profile of the main components of a low metal impurity RTWCG si〇x film grown on an n+ c-Si substrate using an RTWCG solution formulation consisting of: i parts by volume - 3 parts by volume 6〇% 1^6 (water) and 1 part by volume _3 parts by volume M gram v2 〇 5 / liter 1 〇 % HC1 (aqueous solution) 〇 Figure 15 is the use of ultra-low cost rtwcq solution formulation composed of the following substances XPS depth profile of the main component of the low-metal impurity RTWCG SiOx film grown on the n+ C-Si substrate: 丨 'volume ι 〇 克 〇 Ti〇 2 anatase dissolved in 2 〇〇 / 0 HF (aqueous solution > The solution in solution and 1 part by volume of 3.5 gram % 〇5 are dissolved in a solution of 〇 〇 Η α (aqueous solution). Figure 16 shows the growth metal of RTWCG growth solution in different concentrations of V 2 〇 5 dissolved in 50% HF (aqueous solution). Blue 13 〇 nano _15 〇 nanometer thickness & 〇 图 〇 膜 膜 膜 膜 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The xps depth profile of the component. Figure 17 (b) shows the RTWCG grown in a growth solution such as Figure 16. The v 2p peak of the SiOx film. Figure 18 is found in the RTWCG Si〇x film grown in a growth solution prepared by dissolving 1.7 g of νζ〇5 per liter of 〇5Η%Η]ρ(^_^) in 30 seconds. The SIMS diffusion profile of the main non-metallic impurities. Figure 19 shows the time required to grow a 130 nm-150 nm thick RTWCG SiOx film on a heavily doped disc substrate and dissolved in 5 % HF (aqueous solution). Curve of the normalized amount of Pb 〇 2 in the middle. 125 201251057 41245pif Figure 20 shows the net majority carrier concentration depth profile of the emitter belonging to the sample cut from the same n+/pFZc-Si wafer, which is shown in 1〇 second

SiOx生長時間及4〇秒生長時間後回触之主動。所述分佈 曲線在移除所得RTWCG Si0x膜後藉由擴散電阻分析方 法獲得。 圖21 (a)為RTWCGSi0x前塗佈角錐之太陽電 池的典型諾馬斯基圖,圖21 (b)為RTWCGSi〇x後塗佈 角錐之c-Si太陽電池的典型諾馬斯基圖,圖21 (c)為圖 21 (a)中塗佈角錐之裸n+/p c_Si結構的典型德卡特表面 分佈曲線。 ^圖22為由獨立太陽電池研究與開發實驗室獲得之其 取佳SlNx ARC及兩個未經最佳化RTWCG SiOx ARC的反 射率曲線。 圖23為塗佈RTWCG SiOX之n+/p擴散c_Si結構( 如圖3中)隨SiOXs長時間(以秒為單位 率曲線的組群。 圖24為在快速生長RTWCG Si〇x溶液中在具有平 發射極之n+/p c-Si基板上生長之紋理化&〇χ 反射率曲線的組群。 圖25 (a)為低金屬雜質高生長速率Si〇x膜(諸如 13中)之折射率及消光係數與波長的曲線。 圖25(b)為富含石夕之術膜的折射率及消光係數 波長的曲線。 圖26為展示在RTWCG施生長期間自未金屬化發 126 201251057 41245pif 射極厚度的德卡特分佈曲線。 散二(pB/s有沾衣發射極之兩個C_Si及一個mc_Si碟擴 ,1、·,。構隨si〇x生長時間變化的薄層電阻率 膜 的 圖28為在太陽、級c_Si基板上生長之RTWCG SiOx (水溶液)中細Π5秒之前(左)及之後(右) AFM表面形貌。 ,一 f 29( aD為 A1/生長態 RTWCG SiOX/Si/Ti-Au M0S 電容器在(-)110伏至+11〇伏偏壓電壓下的典型[V特徵。 圖=a) (ii)為 A1/生長態 RTWCG Si〇x/si/Ti Au m〇s 電谷器在()3伏至+3伏偏壓電壓下的典型 奈米厚施膜在諸如圖13中之溶液中生長。特徵、乃110 圖29(b)為圖29(a)中之MOS電容器的c_v曲線。 。圖30為在空氣中在100。〇下加熱處理!小時,繼而在 2〇〇°C下加熱處理1小時之前及之後,A1/生長熊si〇x /p-Si/Au:Ti MOS電容器(Si0x厚度:約1〇〇 ^米,前閘 極面積:0_049平方公分)之I-V特徵。 圖31為在曝露於高強度(約5瓦/平方公分)近uv 幸导射六小時之前及之後,保存在室溫下之A1/RTWCg SiOx/Si/Au:Ti MOS 電容器的 I-V 特徵。Si〇x 厚度:約 12〇 奈米。 圖32 (a)與圖32 (b)為在2xl〇5/立方公分之高密度 氙電漿、電子溫度1.7電子伏特、電漿電位9 8伏及6χ1〇_5 托之中性氣體(Xe)殘餘壓力中20分鐘後,塗佈5〇奈求 127 201251057 41245pif 厚SiOx之2吋P-Si晶圓的I-V曲線。I-V曲線在20分鐘 電漿曝露後獲得:(a)-100伏至+100伏;(b)+100伏至-100 伏0 圖33為在RTWCG SiOx生長之前及之後表6中之 n+/p c-Si太陽電池的pmax離差。 圖34為大面積(6”)製造型mc-Si太陽電池在RTWCG SiOx ARC/SE之前及之後的外部及内部量子效率及反射率 曲線’以及塗佈SiOx之電池在標準EVA封裝成微型模組 之後的反射率曲線。 圖 35 為 RTWCG SiOx ARC/SE/TO n++pp++或 p++nn++雙面C-Si、mc-Si或多晶矽太陽電池設計之橫截面 圖。 圖 36 為 RTWCG SiOx ARC/SE/TO n++pp++或 p++nn++前側及後側鈍化及局部後接觸之c-si'mc-si或多 晶矽太陽電池設計的橫截面圖。 圖37為數個n-GaAs樣品在RTWCG Ga-As-Ο之前及 之後的相對光致發光強度數據。 【主要元件符號說明】 100 :太陽電池 110 :前接觸 120 :選擇性發射極層 130 : ARC 塗層 135 :紋理化氧化物表面 140 :晶圓/基板/基體 128 201251057 41245pif 150 :後接觸 200 :砍基板表面/砍基體 210 :發射極層 220 :前栅線 230 :金屬化後接觸 250 : RTWCG SiOx 薄膜 300 :線 310 :線 400 :傳送帶型擴散設備 410 :矽晶圓 415 :半導體級陶瓷板 420 :半導體級陶瓷板 430 :下擴散室 440 :上部不鏽鋼構件 129SiOx growth time and active response after 4 seconds of growth time. The distribution curve was obtained by a diffusion resistance analysis method after removing the obtained RTWCG Si0x film. Figure 21 (a) is a typical Nomsky diagram of a solar cell coated with a pyramid before RTWCGSi0x, and Figure 21 (b) is a typical Nomsky diagram of a c-Si solar cell coated with a pyramid after RTWCGSi〇x, 21 (c) is a typical DeCarter surface profile of the bare n+/p c_Si structure coated with the pyramid in Figure 21 (a). Figure 22 shows the reflectance curves of the better S1Nx ARC and the two unoptimized RTWCG SiOx ARC obtained by the Independent Solar Cell Research and Development Laboratory. Figure 23 is a group of n+/p diffused c_Si structures coated with RTWCG SiOX (as in Figure 3) along with long-term (seconds) curve of SiOXs. Figure 24 is flat in the fast growing RTWCG Si〇x solution. The group of textured & reflectance curves grown on the n+/p c-Si substrate of the emitter. Figure 25 (a) shows the refractive index of the high growth rate of Si*x film (such as 13) in low metal impurities. And the curve of the extinction coefficient and the wavelength. Figure 25 (b) is the curve of the refractive index and the extinction coefficient wavelength of the film enriched with Shi Xi. Figure 26 shows the emitter from the unmetallized period during the growth of RTWCG 126 201251057 41245pif emitter Dekater distribution curve of thickness. Diffusion (pB/s has two C_Si and a mc_Si disc expansion of the emitter, 1, ·, the thin layer resistivity film with the growth time of si〇xFig. 28 AFM surface topography before (left) and after (right) for 5 seconds in RTWCG SiOx (aqueous solution) grown on a solar, grade c_Si substrate. A f 29 (aD is A1/growth RTWCG SiOX/Si/Ti -Au M0S Capacitor is typically [V characteristic at (-) 110 volts to +11 偏压 bias voltage [Fig. = a) (ii) is A1/growth The typical RTWCG Si〇x/si/Ti Au m〇s electric grid is grown in a typical nano-thick film at a bias voltage of 3 volts to +3 volts in a solution such as that in Figure 13. Features, 110 Figure 29 (b) is a c_v curve of the MOS capacitor of Figure 29 (a). Figure 30 is a heat treatment in air at 100 Torr for an hour, followed by heat treatment at 2 ° C for 1 hour and After that, the A1/growth bear si〇x /p-Si/Au: Ti MOS capacitor (Si0x thickness: about 1 〇〇 ^ m, front gate area: 0_049 cm ^ 2) IV characteristics. Figure 31 is exposed to high Strength (approx. 5 watts / cm ^ 2 ) IV characteristics of A1/RTWCg SiOx/Si/Au:Ti MOS capacitors stored at room temperature before and after six hours of exposure to uv. Si〇x thickness: approx. 12〇 Fig. 32 (a) and Fig. 32 (b) are high-density tantalum plasma at 2xl〇5/cubic centimeter, electron temperature of 1.7 eV, plasma potential of 98 volts and 6χ1〇_5 Torr. After 20 minutes in the residual pressure of the gas (Xe), the IV curve of the 2吋P-Si wafer of 127 201251057 41245pif thick SiOx was coated. The IV curve was obtained after 20 minutes of plasma exposure: (a)-100 Volt up to +100 ; (B) +100 volts to -100 volts pmax is 0 in the FIG. 33 6 n + / p c-Si solar cells in the table before and after growth RTWCG SiOx deviation. Figure 34 shows the external and internal quantum efficiency and reflectance curves of large-area (6”) fabricated mc-Si solar cells before and after RTWCG SiOx ARC/SE and the SiOx-coated cells in standard EVA packaged into micromodules. Reflectance curve after. Figure 35 is a cross-sectional view of the design of a rectangular W-Cy SiOx ARC/SE/TO n++pp++ or p++nn++ double-sided C-Si, mc-Si or polycrystalline silicon cell. Figure 36 shows the RTWCG SiOx ARC. /SE/TO n++pp++ or p++nn++ Cross-sectional views of c-si'mc-si or polycrystalline tantalum solar cell designs for front and back passivation and partial back contact. Figure 37 shows several n-GaAs samples at RTWCG Relative photoluminescence intensity data before and after Ga-As-Ο. [Main component symbol description] 100: Solar cell 110: Front contact 120: Selective emitter layer 130: ARC Coating 135: Textured oxide surface 140 : Wafer / Substrate / Substrate 128 201251057 41245pif 150 : Post Contact 200 : Cut Substrate Surface / Cut Substrate 210 : Emitter Layer 220 : Front Gate Wire 230 : Metallized Contact 250 : RTWCG SiOx Film 300 : Line 310 : Line 400 : Conveyor-type diffusion device 410 : 矽 wafer 415 : semiconductor-grade ceramic plate 420 : Semiconductor grade ceramic plate 430 : Lower diffusion chamber 440 : Upper stainless steel member 129

Claims (1)

201251057 41245pif 七、申請專利範圍: 生長基於氧化物之 L 一種用於在基板上室溫濕化學 層的組成物,包括·· 各氟化物之酸性水溶液;以及 含有一或多種由如下元素組成 的無機還原氧化系統:Ti、Co、v、c矢群中選出之元青 Y'Zr^Nb>Ru.Rh.Fe,Ba^b ''Ni'S-Cu^Ce Be、Bl、Hf、Ta、W、La、Ir、〇s 且 、Sn ' Ag 及 Mg ; 丹甲所迷組成物實質上不含矽。 2. -種用於在基板上室溫濕 層的組成物,包括: 氧μ 含氟化物之酸性水溶液;以及 含有-或多種由如下元素㈣之 的無機還原氧化系統mSb、Be、CHf] W、La、Ag、Ir、0s、As、Sl^Mg。 3. 如申請專利範圍第2項所述之用於在基板上室 濕化學生長基魏化物之層的城物,其巾所述組成衫 包括矽源。 4.如U利範]||第3項所述之用於在基板上室溫 濕化學生長基於氧化物之層的組成物,其巾所财源由用 Si〇2飽和之膠狀二氧化碎、H2SiF6及金屬魏鹽組成之族 群中選出。 5·如中請專利範圍第1項至第4項所述之用於在基板 130 201251057 41245pif 上室溫滿化學生長基於氧化物之層的組成物,其 化物源由 I^SiF6、NHJ ' HF、邮匕、BaF、BF4、跡 及其他金屬說化物及非金屬氟化物組成之族群中選出。 —6.如申請專利制第丨項至第5項所述之用於在基板 上至溫濕化學生長基於氧化物之層的組成物,更包括 所述無機還原氧化系統之元素且促進所述還原氧统 氧還反應的催化劑。 專魏㈣6顿叙祕撼板上室溫 濕化學生録魏化物之^敝祕,其 二(〇2C灿、Η观、卿及_細F6組成之族群^ 出。 8·如申請專利範圍…項至第7項所述之用於 化學生長基於氧化物之層的組成物,其令所述組 f物猎由將一或多種含有所述還原氧化系統之元素的化合 物溶解於含氟之水性酸性組分中產生。 替申,專利範㈣8項所述之祕在基板上室溫 二予録於氧化物之層的組成物,其中所述化合物由 2〇5及Pb〇2組成之族群中選出。 心如申請專利範圍第8項所述之用於在基板上室溫 =二,I基於氧化物之層的組成物,其中所述化合物由 2 5、205、Pb〇2、C()3〇4、Nb〇、Nb〇2、Nb2〇5、 e ^〇4及Fe2〇3組成之族群中選出。 u !*!_'如申睛專利範圍第1項至第10項所述之用於在基 至Μ濕化學生長基於氧化物之層的組成物,更包括 131 201251057 41245pif Co(〇H)2。 、12.如中請專利範圍第1項所述之用於在基板上室溫 濕化學生長基於氧化物之層的組成物,其中所述水溶液包 括KTiF6或HF,且所述還原氧化系統包括〖㈣哪,其 中所述組成物不含有機組分或石夕源。 、13_如申請專利範圍第1項所述之用於在基板上室溫 j化學生長基於氧化物之層的組成物,其巾所述水溶液包 、HJiF6或HF ’且所述還原氧化系統包括%〇5,其中所 述組成物不含有機組分或矽源。 把μ t如申。月專利範圍第1 J員或第2項所述之用於在基 水、化學生長基於氧化物之層的組成物,其中所述 水洛液包括HF,且所述還原氧化系統包括pb〇2。 柘卜i5:田如申°月專利|&圍第1項或第2項所述之用於在基 水、化學生絲於減物之相組成物,其中所述 水喊包括,且所述還原氧化系統包括1205。 二6生利範圍第1項所述之用於在基板上室溫 括HF ϋ 物之層的組成物,其中所述水溶液包 括®,且所述還原氧化系統包括Μ、 板上圍第1項至第16項所述之用於在基 屬化合物Γΐ中力於氧化物之層的組成物,更包括金 板上形成基;氧切板後’所述組成物在所述基 溫濕:8學第17項所述之用於在基板上室 基於氧化物之層的組成物,其中所述金屬化 132 201251057 41245pif 合物為金屬氮化物、金屬氣化物及金屬氣化物。 19.如申請專利範圍第18項所述之用於在基板上室 生長基於氧化物之層的組成物,其中所述金屬氮 =由,、^。…、…之氮化物組成之族 :中選出’且所述金屬氯化物及所述金屬氟化物由基於 成之族群令選出。1、U及叫之氯化物及氟化物組 2f· 一種製備摻雜半導體層之方法,包括·· 提供具有摻雜層之半導縣板;以及 刻所述學生長溶液’以同時钱 與生長之平衡以提“=層其鄉刻 包括儿種在摻雜半導體層上製備抗反射塗層之方法, ^有摻雜層之半導體基板;以及 B寺蝕刻所述摻雜層:溫濕化學生長溶液’以同 層具有組成梯生長氧化層,所述氧化 率,其中選擇飿刻與生長之平衡範圍内之折射 化層。 铒以知供具有預選特性之氧 其中用於在基板項及第21項所述之方法, 物包括含氟化物之酸性.長基於氧化石夕之層的組成 元素組成之族群中^,以及含有一或多種由如下 選出之几素的無機還原氧化系統:Ti、 133 201251057 41245pif c〇、v、Cr、Ni、Sr、Cu、Ce、Y、Zr、NbRu、RhFe、 Ba、Pb、Pd、I、Br、δι、qu、^ 价 A^Sb、Be、Bi、Hf、Ta、W、La、 Ir、Os、As、Sn、Ag 及 Mg。 23. 如㈣專利範圍第2Q項至第22項所述之方法, /、中在製備所述氧化層時耗用實f上所有所述播雜層。 24. 如申請專利範圍第2〇項至第22項所述之方法, ”中在製備所述氧化層時耗用所述摻雜層之厚度的一 分。 25. 如申請專概㈣24韻述之方法,其中所述換 雜層在所述基板之單面上。 26. 如申請專利範圍帛24項所述之方法,其 雜層在所述基板之兩面上。 2丨如申請專利範圍第25項或第26項所述之方法, 八中所述摻雜層在所述基板之側邊緣上。 28. 如申請專利範圍第2〇項至第27項所述之方法, f包括在曝祕_室溫濕化料餘液前珊所述摻雜 層之一部分。 ^ 29. 如申請專利範圍第Μ項所述之方法,其中遮 抗蝕劑或金屬化層。 為 30. 如申請專利範圍第2〇項所述之方法,其中所 、、特性由表面紋理、折射率、氧化層厚度、消光係數、擦 =層消耗、介f常數、纽率及化學組絲叙族群中^ 31. 如申請專利範圍第2〇項至第四項所述之方法, 134 201251057 41245pif 其中相對於開始時之所述摻雜層,在曝露後所述摻雜層的 表面之淨少數舰子濃度減少,且所述_層之四點^ 薄層電阻提高。 ..... 32‘如申請專利範圍第2〇項至第31項所述之方法, 其中所述基板包括矽,且所述氧化層包括Si〇x。彳 33. 如申請專利範圍第32項所述之方法,其中所 化層具有在所述氧化層之表面處的富氧組歧在所述氧化 層之後侧的少氧化物組成的組成梯度。 34. 如申請專利範圍第32項所述之方法,其中 化層形成鈍化層。 ' K 35. 如申請專利範圍第32項所述之方法,其中在曝* 於所述室溫濕化學生長溶液後,所述氧化層之換雜劑^ 相對於所述摻雜層減少。 胃 36. 如申請專利範圍第33項所述之方法,其中所述表 面在所述層之所述表面處包含至少5〇%氧,且在氡化物 導體界面處實質上不包含氧。 37. 如申請專利範圍第2〇項至第36項所述之方法, 更包括使所述基板曝露於包括金屬添加劑之室溫濕化學生 長溶液,其中生長導電氧化物薄膜。 ‘、予 38. 如申請專利範圍第37項所述之方法,其中所述金 屬添加劑包含由基於Bi、Ti、c〇、Cu、&及G之氮化^ 組成之族群中選出的金屬氮化物,以及由基於Bi、Ti、C〇、 V、Ce、Ab La及]vig之氯化物及氟化物組成之族群中選 出的金屬氯化物及金屬氟化物。 、 135 201251057 4124ipif 39. 如申請專利範圍第37項所述之方法,其中所述添 加劑包含由H3B〇4、B2〇3、BI3或組成之族群中選^ 的蝴源。 40. —種加工電子元件之方法,包括: ^供具有發射極層之石夕基板;以及 至少使所述發射極層曝露於室溫濕化學生長溶液,以 同時蝕刻發射極層且自所述發射極層生長SiOx層,其中 所述發射極層之至少一部分被移除。 41. 如申請專利範圍第40項所述之加工電子元件之 方法’其中所述發射極層在所述元件之前面上。 42. 如申請專利範圍第40項所述之加工電子元件之 方法’其中所述發射極層在所述元件之後面上。 43·如申明專利範圍第40項所述之加工電子元件之 方法,其中所述發射極層實質上包圍所述基板。 44. 如申δ月專利範圍第44項所述之加工電子元件之 其中自所述基板之側邊緣移除所述發射 生接面分離。 ι 45. 如申吻專利範圍第項所述之加工電子元件之 、、八中自所述元件之前面或後面之—移除所述發虽 層0 46. >申„月專利範圍第43項所述之力口工電子元件之 =其巾部分移除所述發射極以在變薄之所述發 上提供所述SiOx層。 47. 如申。月專利範圍第46項所述之力口工電子元件之 136 201251057 方法,其中所述SiOx層位於所述元件之入射面上,且用 作抗反射塗層。 48. 如申請專利範圍第46項所述之加工電子元件之 方法’其中所述SiOx層位於所述元件之後側上,且用作 反射塗層。 49. 如申請專利範圍第46項所述之加工電子元件之 方法,更包括: 在使所述發射極層曝露於所述室溫濕化學生長溶液 前,在所述發射極層上塗覆遮罩。 50. 如申請專利範圍第49項所述之加工電子元件之 方法’其中所述遮罩為金屬化接觸或抗蝕劑。 51.如申請專利範圍第4〇項所述之加工電子元件之 方法’用於實現以下目的中之—或多者:產生選擇性發射 極、產生抗反射塗層、產生鈍化膜、產生紋理化抗反射塗 層二移除發射極、產生透明導電氧化物、產生基於氧化物 之薄膜、產生犧牲層、使發射極變薄、清洗電子元件表面、 =矽酸鹽玻璃塗層以及鈍化垂直多接面矽 未金屬化表面。 5胃2. —種加工具有發射極層之基板的方法,包括: m提供絲板’所述%基板具有實質上包騎述基板之201251057 41245pif VII. Patent Application Range: Growth Based on Oxide L A composition for a wet chemical layer on a substrate at room temperature, including an acidic aqueous solution of each fluoride; and an inorganic substance containing one or more of the following elements Reduction Oxidation System: Yuanqing Y'Zr^Nb>Ru.Rh.Fe, Ba^b ''Ni'S-Cu^Ce Be, Bl, Hf, Ta, W, selected from Ti, Co, v, and c-vector groups La, Ir, 〇s and, Sn 'Ag and Mg; the composition of Danjia is substantially free of bismuth. 2. A composition for a wet layer at room temperature on a substrate, comprising: an acidic aqueous solution of an oxygen-containing fluoride; and an inorganic reducing oxidation system mSb, Be, CHf] W containing - or a plurality of elements (4) , La, Ag, Ir, 0s, As, Sl^Mg. 3. The article for use in the layer of wet chemically grown wad-wet on the substrate as claimed in claim 2, wherein the constituent shirt comprises a sputum source. 4. The composition of the oxide-based layer for wet chemical growth at room temperature on a substrate as described in U.S. Patent No. 3, wherein the source of the towel is made of colloidal oxidized slag saturated with Si〇2, Selected from the group consisting of H2SiF6 and metal Wei salt. 5. The composition for chemically growing an oxide-based layer at room temperature on substrate 130 201251057 41245pif as described in paragraphs 1 to 4 of the patent scope, the source of which is I^SiF6, NHJ 'HF Selected from the group consisting of postal, BaF, BF4, trace and other metal and non-metallic fluorides. - 6. The composition for chemically growing an oxide-based layer on a substrate to a temperature and humidity according to the above-mentioned items of the invention, further comprising an element of the inorganic reducing oxidation system and promoting the A catalyst that reduces oxygen and also reacts with oxygen. Special Wei (four) 6-ton secrets on the 撼 室温 室温 室温 学生 学生 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏The composition for chemically growing an oxide-based layer according to Item 7, wherein the group f is prepared by dissolving one or more compounds containing an element of the reducing oxidation system in a fluorine-containing water. Produced in an acidic component. The composition of the invention described in Section 8 of the patent, which is recorded on the substrate at room temperature, wherein the compound consists of a group consisting of 2〇5 and Pb〇2. The composition of the oxide-based layer on the substrate as described in claim 8 is wherein the compound consists of 2 5, 205, Pb 〇 2, C () 3〇4, Nb〇, Nb〇2, Nb2〇5, e^〇4, and Fe2〇3 are selected from the group consisting of u !*!_' as stated in items 1 to 10 of the scope of the patent application. A composition for growing an oxide-based layer in a base-to-wet chemical, further comprising 131 201251057 41245pif Co(〇H)2, 12. The composition for wet chemically growing an oxide-based layer on a substrate at room temperature, wherein the aqueous solution comprises KTiF6 or HF, and the reducing oxidation system comprises (4), wherein the composition does not contain a unit Or the composition of the oxide-based layer for chemically growing the room temperature on the substrate, as described in claim 1, the aqueous solution package, HJiF6 or HF' The reduced oxidation system comprises % 〇5, wherein the composition is free of organic components or lanthanum. The utility model is used in the base water, chemistry as described in the first or second item of the patent. A composition for growing an oxide-based layer, wherein the aqueous solution comprises HF, and the reduced oxidation system comprises pb〇2. 柘i i5: Tian Ru Shen ° month patent | & circumference 1 or 2 The phase composition for use in the base water, the chemical student, and the subtractive material, wherein the water is included, and the reducing oxidation system comprises 1205. a composition comprising a layer of HF sputum at room temperature, wherein the aqueous solution package And the reduced oxidation system comprises a composition for coating a layer of an oxide in the base compound according to items 1 to 16 of the crucible, and further comprising a base formed on the gold plate; After the oxygen cutting plate, the composition is used in the base temperature and humidity: the composition for the oxide-based layer on the substrate, as described in Item 17, wherein the metallization 132 201251057 41245pif compound is A metal nitride, a metal vapor, and a metal vapor. 19. The composition for growing an oxide-based layer on a substrate upper chamber according to claim 18, wherein the metal nitrogen = by, ^ . The family of nitrides of ..., ... is selected from the ' and the metal chloride and the metal fluoride are selected from the group based on the group. 1, U and called chloride and fluoride group 2f · A method for preparing a doped semiconductor layer, comprising: providing a semiconducting plate with a doped layer; and engraving the student long solution 'to simultaneously money and growth Balanced to "the method of preparing the anti-reflective coating on the doped semiconductor layer, the semiconductor substrate with the doped layer; and the etching of the doped layer by the B- Temple: temperature and humidity chemical growth The solution 'haves the same layer as the ladder growth oxide layer, the oxidation rate, wherein the refractive layer within the equilibrium range of engraving and growth is selected. The oxygen is provided for the preselected characteristics, which is used in the substrate item and the 21st The method of the present invention comprises the acidity of the fluoride, the group based on the composition of the constituent elements of the layer of the oxidized stone, and the inorganic reducing oxidation system containing one or more of the following selected elements: Ti, 133 201251057 41245pif c〇, v, Cr, Ni, Sr, Cu, Ce, Y, Zr, NbRu, RhFe, Ba, Pb, Pd, I, Br, δι, qu, ^ Price A^Sb, Be, Bi, Hf , Ta, W, La, Ir, Os, As, Sn, Ag, and Mg. 23. As in the method of (4) patent scopes 2Q to 22, in the preparation of the oxide layer, all of the soot layers on the real f are consumed. 24. See paragraph 2 of the patent application. To the method of item 22, wherein a portion of the thickness of the doped layer is consumed in the preparation of the oxide layer. 25. The method of claim 4, wherein the alternating layer is on a single side of the substrate. 26. The method of claim 24, wherein the hybrid layer is on both sides of the substrate. 2. The method of claim 25, wherein the doped layer is on a side edge of the substrate. 28. The method of claim 2, wherein the f comprises, prior to exposing the _ room temperature wet liquor residue, a portion of the doped layer. ^ 29. The method of claim 2, wherein the photoresist or metallization layer. 30. The method of claim 2, wherein the property is characterized by surface texture, refractive index, oxide thickness, extinction coefficient, rubbing layer consumption, interstitial constant, rate, and chemical composition In the Syrian group, the method described in the second to fourth aspects of the patent application, 134 201251057 41245pif wherein the surface of the doped layer after exposure is relative to the doped layer at the beginning A few ship's concentration is reduced, and the four-layer thin layer resistance of the _ layer is increased. The method of claim 2, wherein the substrate comprises ruthenium and the oxide layer comprises Si 〇 x. The method of claim 32, wherein the layer having a composition has a composition gradient of a small oxide composition on the side of the oxide layer at the surface of the oxide layer. 34. The method of claim 32, wherein the layer forms a passivation layer. The method of claim 32, wherein the dopant of the oxide layer is reduced relative to the doped layer after exposure to the room temperature wet chemical growth solution. The method of claim 33, wherein the surface comprises at least 5% oxygen at the surface of the layer and substantially no oxygen at the telluride conductor interface. 37. The method of claim 2, wherein the method further comprises exposing the substrate to a room temperature humidified student solution comprising a metal additive, wherein the conductive oxide film is grown. The method of claim 37, wherein the metal additive comprises a metal nitrogen selected from the group consisting of Bi, Ti, c, Cu, & a metal chloride and a metal fluoride selected from the group consisting of chlorides and fluorides based on Bi, Ti, C〇, V, Ce, Ab La and ]vig. 39. The method of claim 37, wherein the additive comprises a butterfly source selected from the group consisting of H3B〇4, B2〇3, BI3 or a group. 40. A method of processing an electronic component, comprising: providing a substrate having an emitter layer; and at least exposing the emitter layer to a room temperature wet chemical growth solution to simultaneously etch the emitter layer and from the The emitter layer grows a SiOx layer, wherein at least a portion of the emitter layer is removed. 41. The method of processing an electronic component of claim 40, wherein the emitter layer is on a front surface of the component. 42. The method of processing an electronic component as claimed in claim 40, wherein the emitter layer is on a rear surface of the component. The method of processing an electronic component according to claim 40, wherein the emitter layer substantially surrounds the substrate. 44. The processed electronic component of claim 44, wherein the emission interface is separated from a side edge of the substrate. ι 45. If the processing electronic component described in the first paragraph of the patent application, the eighth is from the front or the back of the component, the layer is removed. 46. > The force oral electronic component described in the section wherein the towel portion removes the emitter to provide the SiOx layer on the thinned hair. 47. The force described in claim 46. 136. The method of processing an electronic component according to claim 46, wherein the SiOx layer is located on the incident surface of the component and is used as an anti-reflective coating. The method of processing an electronic component according to claim 46, further comprising: exposing the emitter layer to the surface of the device A mask is applied to the emitter layer before the room temperature wet chemical growth solution. The method of processing an electronic component according to claim 49, wherein the mask is a metallized contact or a resist. 51. If the scope of patent application is the fourth item The method of processing electronic components is used to achieve - or more of the following: generating a selective emitter, producing an anti-reflective coating, producing a passivation film, producing a textured anti-reflective coating, removing the emitter, and producing Transparent conductive oxide, oxide-based film, sacrificial layer, thinner emitter, cleaned electronic component surface, = bismuth silicate glass coating, and passivated vertical multi-junction 矽 unmetallized surface. a method of processing a substrate having an emitter layer, comprising: m providing a wire plate, wherein the % substrate has substantially a substrate 一個面曝露於 述發射極層生長SiOx層, 以同時餘刻掉所述發射極層且自所 蜃’從而獲得具有完整發射極面、 137 201251057 4I24ipif 接面分離層及純化面之元件。 53. 如申請專利範圍第52項所述之加工具有發射極 .層之基板的方法,藉由使所述基板漂浮或懸浮在所述室溫 濕化學生長溶液溶液中達成。 54. 如申請專利範圍第52項所述之加工具有發射極 層之基板的方法,其中亦移除所述發射極上之任何殘餘的 二氧化碎玻璃。 55. —種加工具有發射極層之基板的方法,包括: 提供具有發射極層之石夕基板; 在單一步驟中使所述發射極層曝露於室溫濕化學生 長溶液,以同時蝕刻所述發射極層之至少一部分且自所述 發射極層生長SiOx層’從而獲得具有上面安置有抗反射 或反射層之完整發射極面的元件。 56. —種加工具有發射極層之基板的方法,包括: 提供具有發射極層之石夕基板; 在單步驟中使所述發射極層曝露於室溫濕化學生 長溶液,以同時蝕刻所述發射極層之至少一部分且自所述 發^極層生長Si0x層,從而獲得具有上面安置有純化層 之完整發射極面的元件。 57. 如申請專利範圍第2〇項至第允項所述之加工具 ,射極層之基板的方法’其中選擇㈣及生長條件以提 供紋理化氧化物表面。 58. 如申請專利範圍第56項所述之加工具有發射極 曰之基板的方法,其中生長速率大於2〇〇奈米/分鐘。 138 201251057 59. 如申請專利範圍第20項至第56項所述之加工具 有發射極層之基板的方法,其中選擇所述蝕刻及生長條件 以提供平滑氧化物表面。 60. 如申請專利範圍第59項所述之加工具有發射極 層之基板的方法,其中生長速率為約50奈米/分鐘至2〇〇 奈米/分鐘。 61. 如申請專利範圍第20項至第60項所述之加工具 有發射極層之基板的方法’其中所述基板由如下材料組成 之族群中選出:單晶矽、多結晶矽、多晶矽、微晶矽及非 晶矽、任何結晶組態之帶狀矽、III-V族、I-III_VI族及n-VI 族化合物半導體、GaAs、CuInSe2及CdTe、碳基板、石墨 基板、碳纖維及奈米碳管。 62·如申請專利範圍第61項所述之加工具有發射極 層之基板的方法,其中所述掺雜層為包含平滑、紋理化或 多孔矽表面之任何晶圓結構。 63. 如申請專利範圍第32項所述之加工具有發射極 層之基板的方法,其中在所述矽基板上產生所述Si〇x層, 所述♦基板含有如下擴散分佈曲線,其中所述基板之摻雜 劑濃度提高直至某一深度,之後隨深度降低至低於表面摻 雜劑濃度之濃度。 64. 如申請專利範圍第63項所述之加工具有發射極 層之基板的方法,其中所述擴散分佈曲線提供接面深度為 〇·5微米至0.65微米、表面濃度為5χ1〇20/立方公分至 8xl〇2G/立方公分且薄層電阻為25歐/平方單位至25歐/平 139 201251057 方單位的發射極。 65. —種加工太陽電池之方法,包括: 將如申請專利範圍第1項至第20項中任一項所述之 用於在基板上室溫濕化學生長基於氧化物之層的組成物盡 覆於摻雜層上含有前接觸及後接觸之太陽電池,以自未金 屬化表面回蝕所述摻雜層,從而在所述太陽電池之所述未 金屬化表面上形成基於氧化矽之抗反射塗層、選擇性發射 極且自邊緣移除接面。 66. —種加工太陽電池之方法,包括: 將申請專利範圍第1項至第20項中任一項所述之用 於在基板上室溫濕化學生長基於氧化物之層的組成物塗覆 於具有經殘餘的矽玻璃塗佈之摻雜層之矽基板,其中殘餘 的矽玻璃被移除,且所述組成物與所述基板晶圓之後面及 側邊緣反應,以自這些表面移除所述摻雜層的大部分,且 在所述矽基板之後面及側邊緣上生長鈍化薄膜層; 之後,在所述基板之前面及後面上沈積前接觸及後接 觸且焙燒;以及 最後,所述基板之前面與所述組成物反應,產生抗反 射塗層及選擇性發射極,且進一步減少仍存在於所述基板 之邊緣上之任何接面。 67. —種加工太陽電池之方法,包括: 將申請專利範圍第1項至第2〇項中任一項所述之用 於在基板上室溫濕化學生長基於氧化物之層的組成物塗覆 於具有經殘餘的矽玻璃塗佈之摻雜層之矽基板,以在未金 140 201251057 HIZHDpiI 屬=表面上生長含爛鈍化薄膜,且自基板之表面以及基板 之、緣移除任何剩餘的鱗石夕酸鹽玻璃以及所述摻雜層的大 部分; 、之後,沈積前柵線,且在800。(:至920。〇範圍内之高 溫下與後表面點一起燒結; 之後,使前側與如申請專利範圍第丨項至第18項中 任一項所述之用於在基板上室溫濕化學生長基於氧化物之 層的組成物溶液反應,以產生抗反射塗層、鈍化層及選 性發射極。 、68.如申請專利範圍第67項所述之加工太陽電池之 方法,其中所述金屬化點在所述組成物塗覆於所述後表面 後形成。 69. —種製造雙面太陽電池之方法,包括: 提供輕摻雜之起始p型或η型單晶矽或多結晶矽的晶 圓, 在所述晶圓之任一侧上形成η++重摻雜層及ρ++重摻 雜層; 移除殘餘的氧化物玻璃, 印刷後栅線及前栅線且焙燒, 使所述基板曝露於如申請專利範圍第1項至第18項 中任一項所述之用於在基板上室溫濕化學生長基於氧化物 之層的組成物’以與前側及後側反應,以產生抗反射塗層 及選擇性發射極’同時蝕刻掉存在於所述基板之邊緣上的 非所需擴散層。 141 201251057 -ri 7〇. —種製造太陽電池之方法,包括: 使具有摻雜層、前栅線及使用光微影術在後面產生之 小的點區域的矽基板曝露於如申請專利範圍第1項至第2〇 項中任一項之用於在基板上室溫濕化學生長基於氧化物之 層的組成物,以在未金屬化前表面及無光阻後表面上同時 生長基於氧化矽之薄膜且回蝕所述未金屬化表面及所述無 光阻後表面; μ 移除光阻;以及 形成與所述摻雜層之所述點區域直接接觸之後接觸。 71· —種用於在矽基板上產生擴散之系統,包括置於 下腔至壁上之上腔室壁,從而產生擴散室,所述擴散室基 本上含有加熱元件、夾在基板之邊緣部分上的上部遮罩及 下部遮罩以及可能定位於所述上腔室壁或所述下腔室壁或 =述上腔至壁與所述下腔室壁兩者上之用於噴灑擴 喑喈。 72.如申請專利範圍第7〇項所述之用於在矽基板 產生擴散之系統,其切晶圓置於兩個半導體級陶竟遮 之間,以保護所述基板之邊緣以免發生錄散,且所述 散源在快速溫度勻速上升(耽/分鐘·⑽。c/分鐘)開始 沈積’從而在所述石夕晶圓之兩個相對面上同時產生優良 質η+擴散層及ρ+擴散層。 142A face is exposed to the emitter layer to grow the SiOx layer to simultaneously remove the emitter layer and self-defect to obtain an element having a complete emitter face, a 137 201251057 4I24ipif junction separation layer and a purification face. 53. A method of processing a substrate having an emitter layer as described in claim 52, by floating or suspending the substrate in the room temperature wet chemical growth solution solution. 54. A method of processing a substrate having an emitter layer as described in claim 52, wherein any residual slag cullet on the emitter is also removed. 55. A method of processing a substrate having an emitter layer, comprising: providing a substrate having an emitter layer; exposing the emitter layer to a room temperature wet chemical growth solution in a single step to simultaneously etch the At least a portion of the emitter layer and a SiOx layer grown from the emitter layer to obtain an element having a complete emitter face with an anti-reflective or reflective layer disposed thereon. 56. A method of processing a substrate having an emitter layer, comprising: providing a substrate having an emitter layer; exposing the emitter layer to a room temperature wet chemical growth solution in a single step to simultaneously etch the At least a portion of the emitter layer and a Si0x layer are grown from the emitter layer to obtain an element having a complete emitter face with a purification layer disposed thereon. 57. The method of applying the tool of the emitter layer, the method of the substrate of the emitter layer, wherein the (4) and the growth conditions are selected to provide a textured oxide surface, as claimed in the scope of claims 2 to 10. 58. A method of processing a substrate having an emitter crucible as described in claim 56, wherein the growth rate is greater than 2 nanometers per minute. 138. The method of claim 20, wherein the etching and growth conditions are selected to provide a smooth oxide surface. 60. A method of processing a substrate having an emitter layer as described in claim 59, wherein the growth rate is from about 50 nm/min to 2 Å nm/min. 61. A method of processing a substrate having an emitter layer as described in claims 20 to 60 wherein the substrate is selected from the group consisting of: single crystal germanium, polycrystalline germanium, polycrystalline germanium, micro Crystalline and amorphous germanium, ribbons of any crystalline configuration, III-V, I-III_VI and n-VI compound semiconductors, GaAs, CuInSe2 and CdTe, carbon substrates, graphite substrates, carbon fibers and nanocarbons tube. 62. A method of processing a substrate having an emitter layer as described in claim 61, wherein the doped layer is any wafer structure comprising a smooth, textured or porous tantalum surface. 63. A method of processing a substrate having an emitter layer as described in claim 32, wherein the Si〇x layer is produced on the germanium substrate, the substrate comprising a diffusion profile, wherein The dopant concentration of the substrate is increased up to a certain depth and then decreased with depth to a concentration below the surface dopant concentration. 64. A method of processing a substrate having an emitter layer as described in claim 63, wherein the diffusion profile provides a junction depth of from 5 micrometers to 0.65 micrometers and a surface concentration of 5 χ 1 〇 20 per cubic centimeter To 8xl 〇 2G / cubic centimeter and sheet resistance is 25 ohm / square unit to 25 ohm / flat 139 201251057 square unit of the emitter. 65. A method of processing a solar cell, comprising: using a composition for wet chemically growing an oxide-based layer on a substrate at room temperature as described in any one of claims 1 to 20. Coating a solar cell comprising a front contact and a rear contact on the doped layer to etch back the doped layer from the unmetallized surface to form a ruthenium oxide-based resistance on the unmetallized surface of the solar cell A reflective coating, a selective emitter and a junction removed from the edge. 66. A method of processing a solar cell, comprising: coating a composition for wet chemically growing an oxide-based layer on a substrate at any temperature as described in any one of claims 1 to 20. a substrate having a doped layer coated with residual bismuth glass, wherein residual bismuth glass is removed, and the composition reacts with the back and side edges of the substrate wafer to remove from the surface a majority of the doped layer, and a passivation film layer is grown on the back and side edges of the germanium substrate; thereafter, pre-contact and post-contact are deposited on the front and back sides of the substrate and baked; and finally, The front side of the substrate reacts with the composition to produce an anti-reflective coating and a selective emitter, and further reduces any junctions still present on the edges of the substrate. 67. A method of processing a solar cell, comprising: coating a composition for wet chemically growing an oxide-based layer on a substrate at any temperature as described in any one of claims 1 to 2 Covering a germanium substrate having a doped layer coated with residual bismuth glass to grow a ruin-containing passivation film on the surface of the non-gold 140 201251057 HIZHDpiI genus, and removing any remaining from the surface of the substrate and the edge of the substrate The spheroidal acid glass and most of the doped layer; thereafter, the front gate line is deposited, and at 800. (: to 920. Sintering with the back surface point at a high temperature in the range of 〇; thereafter, the front side is used for wet chemistry at room temperature on the substrate as described in any one of the above claims A method of growing a composition of the oxide-based layer to produce an anti-reflective coating, a passivation layer, and a selective emitter. The method of processing a solar cell according to claim 67, wherein the metal The method is formed after the composition is applied to the back surface. 69. A method of manufacturing a double-sided solar cell, comprising: providing a lightly doped initial p-type or n-type single crystal germanium or polycrystalline germanium a wafer, forming a n++ heavily doped layer and a ρ++ heavily doped layer on either side of the wafer; removing residual oxide glass, printing the gate line and the front gate line, and firing, Exposing the substrate to a composition for wet chemically growing an oxide-based layer on a substrate at room temperature as described in any one of claims 1 to 18 to react with the front side and the back side To produce an anti-reflective coating and a selective emitter' while etching An undesired diffusion layer present on the edge of the substrate. 141 201251057 - ri 7 〇. A method of manufacturing a solar cell, comprising: having a doped layer, a front gate line, and using photolithography to generate behind The ruthenium substrate of the small dot region is exposed to a composition for wet chemically growing an oxide-based layer on a substrate at any temperature according to any one of claims 1 to 2 to Simultaneously growing a yttria-based film on the front surface and the non-resistive surface and etch back the unmetallized surface and the non-resistive rear surface; μ removing the photoresist; and forming the doped layer The point regions are in direct contact after contact. 71. A system for creating diffusion on a crucible substrate comprising placing a lower chamber to a wall above the wall to create a diffusion chamber, the diffusion chamber substantially containing a heating element, an upper mask and a lower mask sandwiched on an edge portion of the substrate and possibly positioned between the upper chamber wall or the lower chamber wall or the upper chamber to the wall and the lower chamber wall For spraying and expanding 72. The system for generating diffusion on a germanium substrate according to claim 7 of the patent application, wherein the cut wafer is placed between two semiconductor grade ceramics to protect the edge of the substrate from being recorded. Disperse, and the source starts to deposit at a rapid temperature (耽/min·(10)·c/min) to form a good quality η+diffusion layer and ρ on both opposite faces of the Shihua wafer. + diffusion layer. 142
TW101100742A 2011-03-11 2012-01-09 Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells TW201251057A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/028190 WO2012036760A1 (en) 2010-09-16 2011-03-11 Method, process and fabrication technology for high-efficency low-cost crytalline silicon solar cells

Publications (1)

Publication Number Publication Date
TW201251057A true TW201251057A (en) 2012-12-16

Family

ID=48140213

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101100742A TW201251057A (en) 2011-03-11 2012-01-09 Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells

Country Status (1)

Country Link
TW (1) TW201251057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745764A (en) * 2013-09-16 2016-07-06 特殊材料研究与技术有限公司(斯派克迈特) Methods, apparatus, and systems for passivation of solar cells and other semiconductor devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745764A (en) * 2013-09-16 2016-07-06 特殊材料研究与技术有限公司(斯派克迈特) Methods, apparatus, and systems for passivation of solar cells and other semiconductor devices
CN105745764B (en) * 2013-09-16 2018-08-14 特殊材料研究与技术有限公司(斯派克迈特) The method, apparatus and system of passivation for solar cell and other semiconductor devices
US10217893B2 (en) 2013-09-16 2019-02-26 Special Materials Research And Technology, Inc. (Specmat) Methods, apparatus, and systems for passivation of solar cells and other semiconductor devices

Similar Documents

Publication Publication Date Title
US10526538B2 (en) Methods, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells
CN105226112B (en) A kind of preparation method of efficient crystal silicon solar batteries
TWI475712B (en) Method for fabricating wafer for photovoltaic cell, method for fabricating photovoltaic cell unit, and method for fabricating photovoltaic cell module
TWI454557B (en) Improved polycrystalline texturing composition and method
TW200834944A (en) Doping techniques for group IB III AVIA compound layers
TW201013961A (en) Hybrid heterojunction solar cell fabrication using a metal layer mask
CN105745764B (en) The method, apparatus and system of passivation for solar cell and other semiconductor devices
US20200220033A1 (en) Metal-assisted etch combined with regularizing etch
Tang et al. Cu-assisted chemical etching of bulk c-Si: A rapid and novel method to obtain 45 μm ultrathin flexible c-Si solar cells with asymmetric front and back light trapping structures
CN106409977B (en) A kind of cleaning method of silicon chip of solar cell, the preparation method of solar cell
TW201515244A (en) Solar cell and solar cell module
CN204311157U (en) For the silicon chip of solar cell
Chaoui et al. Porous silicon antireflection layer for solar cells using metal‐assisted chemical etching
JP6688244B2 (en) High efficiency solar cell manufacturing method and solar cell manufacturing system
Imamura et al. Light trapping of crystalline Si solar cells by use of nanocrystalline Si layer plus pyramidal texture
JP2018050005A (en) Silicon substrate manufacturing method
CN114447135B (en) Solar cell and preparation method thereof
TW201251057A (en) Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells
CN105453238B (en) Chemical compositions for semiconductor manufacturing processes and/or methods, devices made using same
JP6741626B2 (en) High efficiency back electrode type solar cell and manufacturing method thereof
JP5724718B2 (en) Method for producing solar cell wafer, method for producing solar cell, and method for producing solar cell module
KR101151413B1 (en) Solar cell having multimple anti-reflection film and manufacturing method thereof
Perez-Sanchez et al. Silicon solar cells using low cost TiO/sub 2/thin layers prepared by chemical spray pyrolysis
CN115954414A (en) Photovoltaic cell, preparation method thereof and photovoltaic module
JP2024533257A (en) Methods and systems for photovoltaic devices using silicon particles - Patents.com