CN102216483A - 利用摩擦搅拌焊的高强度和刚度的钢结构 - Google Patents

利用摩擦搅拌焊的高强度和刚度的钢结构 Download PDF

Info

Publication number
CN102216483A
CN102216483A CN2009801459695A CN200980145969A CN102216483A CN 102216483 A CN102216483 A CN 102216483A CN 2009801459695 A CN2009801459695 A CN 2009801459695A CN 200980145969 A CN200980145969 A CN 200980145969A CN 102216483 A CN102216483 A CN 102216483A
Authority
CN
China
Prior art keywords
less
steel
friction rabbling
equal
rabbling welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801459695A
Other languages
English (en)
Inventor
R·艾尔
D·P·费尔柴尔德
S·J·福特
H·金
A·奥赛克森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Publication of CN102216483A publication Critical patent/CN102216483A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明提供了钢结构,该钢结构包括通过具有有利的显微结构的摩擦搅拌焊接件连接在一起的结构钢元件,以产生提高的焊接件强度和焊接件刚度。在本发明的一种形式中,所述钢结构包括:通过传统的熔化或二次精炼技术生产的两个或多个结构钢元件以及将这些元件的接合面连接在一起的摩擦搅拌焊接件,其中,摩擦搅拌焊接件具有介于5-60微米之间的原始奥氏体粒度以及小于50vol%的马氏体-奥氏体成分;摩擦搅拌焊接件强度高于起始结构钢,并且通过裂尖张开位移测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于或等于0.05mm,或者通过夏比V型缺口冲击测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。

Description

利用摩擦搅拌焊的高强度和刚度的钢结构
技术领域
本发明总体上涉及钢化学成分和钢结构。具体地,本发明涉及利用摩擦搅拌焊接件的钢化学成分和钢结构。更具体地,本发明涉及利用呈现出有利的强度和刚度特性的摩擦搅拌焊接件的钢化学成分和钢结构。
背景技术
主要通过熔焊来实现诸如成形件、锻件、铸件或板件之类的金属部件的连接,以构成用于各种工业的任意数量的结构或元件。例如,主要通过常见的电弧焊或熔焊来实现使用管道和管材形成用于油、气和地热井等的管线的构造。数十年来,管道业已经广泛地使用了多种熔焊技术,例如用于管道构造的有保护的金属电弧焊(SMAW)和机械化的气体保护金属电弧焊(GMAW)。已经做出了相当大的努力来发展能提供合适的焊接件特性(例如强度、刚度)的焊材和焊接工艺。
电弧焊或熔焊涉及被焊接的材料的熔化,以形成接缝。在这样的过程中,管径越大或管壁越厚,则焊接越慢,因为必须熔化更大量的金属并使其沉积在焊缝中。对于陆上管道,尤其是在偏远区域,由于与工人调度和通行(ROW)管线的设备相关的大的花费,焊接尽可能地省钱是重要的。对于海上管道,由于与布管驳船相关的大的花费,焊接尽可能地省钱是重要的。对于陆上或海上管线,在焊接和布置管线期间可能存在多方面原因导致的显著的应力。例如,在布管驳船操作期间,从布管驳船悬下的完成的管线会产生大的弯曲应力。管线除了包含内部压力之外可能还必须支承地面运动。此外,传统的熔焊焊缝可能会遭受与热相关的破坏,这降低了焊缝的机械完整性。这种品质的示例是残余张应力、加氢裂化、未熔合缺陷和低刚度。
根据管道厚度,利用广泛使用的熔焊工艺的管线钢的环形焊缝一般包括3-20条焊道。在标准的陆上管线构造过程中,通过具有与焊道数量大约一样多的许多焊接站来完成连接,每个站设计用于产生一条或两条特定的焊道,这限制了焊接速度。因此,整个过程需要相当多的人力和供其住宿所需的相关费用(尤其是在偏远的地方)以及时间,这影响了管线构造成本。
在高碳钢、例如具有在大约0.48-1.00范围内的CE的套管钢的情况下,当前的焊接技术要求将工件预热到100-400℃并且利用低氢技术形成焊缝。这些程序是必要的,以便将造成裂化可能性的硬HAZ的形成和与焊缝相关的氢的吸收减到最小。由于与这样的焊接技术相关的困难,通常使用各种连接件来机械连接高碳钢工件。
传统的熔焊在焊接金属或HAZ中均可以呈现出裂纹,这些裂纹是在焊接过程中或在某使用期之后形成的。焊接件的硬的低刚度区域尤其是HAZ可能容易在使用中产生裂纹,尤其是在将被焊接元件用在酸性场合或其他腐蚀性处理环境中时。在石化工业中,每年安装数千英里的管道来输送气体、石油和流体,维修成本是显著的。在这些裂纹发展到可能灾害性地传播的临界尺寸之前对其进行维修是很重要的。
对于焊接低熔点材料(例如铝合金),已经认识到并使用了摩擦搅拌焊接法(FSW)。将FSW应用到钢和其它高熔点材料的连接主要受限于缺乏能在高温(在1000-1400℃范围内)下操作的合适的工具材料。因此,在连接钢的领域内当前的FSW工作集中在工具改进上。很少有工作关注于理解钢中摩擦搅拌焊缝的微结构以获得适合于结构应用的机械特性。类似地,基本上没有发现用来解释基本钢化学成分和微结构对FSW连接特性(尤其是强度和刚度)的影响的工作。
在油气工业中,FSW的潜在的应用包括管线、船只、压力容器、储罐和海上结构的制造。FSW潜在地可应用于需要大量焊接的任何应用中,并且鼓励使用高热输入焊接程序、更快焊接工艺、或减少焊道数量。但是,对于这种应用,为了利用广泛使用的熔焊来完成FSW,必须克服许多挑战。在确定FSW对于管线连接的技术可行性方面的一个主要挑战是在接缝中获得所需的强度和刚度。在传统的熔焊中,接缝的目标特性是通过焊接金属化学成分和焊接程序来获得的,包括对于焊材如焊丝、保护气体和/或焊剂的仔细选择。在FSW中,基本上失去了选择独立的焊接金属化学成分的自由度,这些特性必须通过对基本金属的热机械加工来获得。就这点而言,需要形成最佳结构钢的方法与FSW相容。为了获得可接受的强度和刚度特性,可以通过传统过程将用于FSW的基本金属熔化或对其进行二次精炼,这些传统过程包括但不局限于使用电弧炉、真空炉、高炉/鼓风炉或氧气顶吹转炉,但是这里需要合适地选择化学成分、处理过程和粒度。许多结构钢具有20-75微米的粒度。具有更大处理程度的钢具有10-20微米范围内的粒度。更先进的热机械控制工艺(TMCP)处理能够产生5-10微米粒度的基本金属。更先进的TMCP处理能够形成具有1-5微米粒度的基本金属。根据基本金属和摩擦搅拌焊接件的最终应用,可以选择起始粒度并使其与合适的FSW程序匹配以产生所需的特性。
因此,存在对于新的有效的焊接技术的需要来制作钢结构。这包括使用摩擦搅拌焊制作的具有改进的焊接件强度和刚度的结构。还存在对于更快、更简单、资金耗费更少的焊接钢结构(尤其是管线构造)的方法的需要,以降低管线构造成本。还需要使形成和生产基本金属的方法与摩擦搅拌焊相容,以及根据摩擦搅拌焊接制成品的最终应用选择特定的基本金属。
定义
为了方便起见,在该说明书和权利要求中使用的各种结构钢和焊接术语定义如下。
可接受的焊接件强度:始终高于基本金属的强度等级的强度等级。
可接受的焊接件刚度:在低于或等于0℃下通过裂尖张开位移(CTOD)测试测量到的高于0.05mm的刚度。
HAZ:热影响区。
热影响区:临近焊接线并且受焊接热影响的基本金属。
刚度:抵抗断裂的能力。
疲劳强度:在周期载荷下抵抗断裂(裂纹萌生和传播)的能力。
屈服强度:与载荷承载对应而没有永久变形的强度。
FS:摩擦搅拌。
FSW:摩擦搅拌焊。
摩擦搅拌焊:用于在两工件之间形成焊缝的固态连接过程,其中,通过在工件之间插入转动工具并沿着接合面来回移动所述工具来产生用于连接金属工件的热量。
FSP:摩擦搅拌处理。
摩擦搅拌处理:通过将销部分地插入到结构中使得FSW工具压向结构表面来处理和调节结构表面的方法。
粒度:对基本显微结构单元尺寸的度量,其中,每个单元与相邻单元相比具有明显不同的晶体取向和/或基本显微结构。这里使用的粒度指的是金属的平均粒度,其可以通过对于冶金学领域的技术人员来说公知的多种技术中的一种进行测量。在ASTM E1382中描述了一种这样的技术。
焊缝:包含有熔化金属或在热机械方面发生改变的金属以及在熔化金属附近但超出熔化金属的基本金属的焊缝。被认为是在熔化金属附近范围内的基本金属部分根据对于焊接工程领域技术人员公知的因素而变化。
焊接件:通过焊接连接的元/部件的组件。
可焊性:焊接特定金属或合金的可行性。影响可焊性的多种因素包括化学因素、表面光洁度、热处理倾向、缺陷形成倾向等等。
碳当量:用于定义钢的可焊性的参数,由公式CE=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15表达,其中所有单位均是重量百分比。
加氢裂化:在焊接之后发生在焊缝中的裂化,其是由于被吸收的氢、诸如残余应力之类的应力、以及像马氏体之类的敏感显微结构的存在造成的。
TMAZ:热机械影响区。
热机械影响区:经历了温度周期变化和塑性变形的FSW焊缝区域。
TMAZ-HZ:TMAZ硬区,在FSW焊接件中最硬的区域。
双相体:包含两相(尤其是奥氏体和铁素体)的不锈钢。
结构钢:在使用中承受某种机械载荷的钢。
马氏体奥氏体成分(MA):铁素体钢或焊缝中的显微结构的残留区域,其在冷却时转化成马氏体和残留奥氏体的混合物。这些区域通常是在冷却时最后转化的区域。MA区域由于来自已在较高温度下转化的周围区域的碳排斥而被稳定化。由于稳定化,奥氏体到MA的转化是在比周围区域更低的温度下发生的。MA区域一般马氏体占优,而仅含有小体积分数的残余奥氏体(少于10%)。MA通常可见于经历双重热循环的焊缝或HAZ的原始奥氏体晶粒边界上。MA还可见于退化上贝氏体和下贝氏体的基于板条的显微结构的板条边界上。一般在存在于结构钢中的任意数量的板条、晶包或晶粒边界上观察到MA。
针状铁素体(AF):AF通常是钢焊缝中在冷却期间从奥氏体转化的第一分解产物,尽管有时会首先形成先共析铁素体(多角形铁素体)。AF在小的非金属内含物上集结,然后通过贝氏体式转化机理快速生长。AF晶粒一般呈现针状形态,并根据冷却速率和化学成分而具有大约2∶1至20∶1的长宽比。这种转化涉及剪切和扩散分量。转化温度控制着扩散和剪切分量之间的相互影响,从而确定AF形态。
粒状贝氏体(GB):指的是围绕位于中心的马氏体-奥氏体(MA)小“岛”的一簇3-5个相对来讲各方等大的贝氏体铁素体晶粒。一般的“晶粒”直径大约1-2μm。
上贝氏体(UB):指的是点缀有诸如渗碳体之类的碳化物相的脉道或薄膜的针状或板条贝氏体铁素体的混合物。钢中最常见的碳含量高于大约0.15wt%。
退化上贝氏体(DUB):一种贝氏体产物,其中每个集群通过剪应力成长成一组(群)平行板条。在板条生长期间以及在板条生长之后立即拒绝一些碳进入条间奥氏体。由于相对低的碳含量,内部奥氏体的碳富集不足以触发渗碳体板片的晶核生成。这种晶核生成确实发生在中碳含量和较高碳含量的钢中,导致传统的上贝氏体(UB)的形成。在DUB中的条间奥氏体上的较少的碳含量富集导致马氏体或马氏体-奥氏体(MA)混合物的形成,或者可以被保留为残余奥氏体(RA)。DUB可与传统的上贝氏体(UB)混淆。数十年前在中碳钢中首先识别出的UB类型包括两个关键的特征:(1)成群生长的平行板条组,和(2)在板条边界上的渗碳体薄膜。UB与DUB类似,因为二者都含有成群的平行板条;但是,关键的区别在于条间材料。当碳含量是大约0.15-0.40时,可以在板条间形成渗碳体(Fe3C)。这些“薄膜”相比于DUB中的间断MA而言是相对连续的。对于低碳钢,不形成条间渗碳体;而是残余奥氏体最终形成MA、马氏体或RA。
下贝氏体(LB):类似于DUB,LB具有成群的平行板条。LB还包括小的条内碳化物沉淀。这些板状颗粒总是沉淀在单个结晶态变体上,其取向成与主板条生长方向(板条的长尺寸)成大约55°。
板条马氏体(LM):LM作为成群的细平行板条出现。板条宽度一般小于大约0.5μm。没有回火的马氏体板条集群是没有碳化物的,而自动回火的LM呈现出条内碳化物沉淀。自动回火的LM中的条内碳化物形成在多于一个结晶态变体上,例如在马氏体的{110}面上。通常渗碳体不沿一个方向对齐,而是沉淀在多个面上。
回火马氏体(TM):TM指的是钢中经热处理的马氏体形式,其中热处理是在熔炉中或者通过区域性装置(例如使用加热包)执行的。这种形式的回火是在焊接成型操作之后实施的。在能实现渗碳体沉淀、但对于奥氏体形成而言太低的温度范围内的变化期间,当亚稳结构马氏体引起渗碳体沉淀时,显微结构和机械特性改变。
自动回火板条马氏体:在从诸如焊接之类的操作进行冷却期间发生自回火的马氏体。冷却时就地发生渗碳体沉淀,并且不像传统的回火那样需要再加热。
珠光体:一般是由铁素体和渗碳体(Fe3C)的交替层构成的两相层状混合物。在低碳结构钢中,珠光体通常以所谓的集群出现,集群的意思是具有共同层状取向的不同珠光体区的组群。
晶粒:多晶物质中的单个结晶体。
晶界:指的是金属中的窄带,其对应于从一个晶体取向到另一个晶体取向的过渡,从而将一个晶粒与另一个晶粒分开。
晶粒粗化温差:A3温度与发生快速晶粒生长的温度之间的温度范围。发生快速晶粒生长的温度取决于钢的化学成分和显微结构以及在高温下花费的时间量。
原始奥氏体粒度:指的是钢元件冷却到产生较低温度转化产物(例如AF、GB、DUB、LB或LM)的温度范围之前存在的平均奥氏体粒度。
发明内容
本发明提供了钢结构,该钢结构包括通过摩擦搅拌焊接件连接的结构钢元件,该摩擦搅拌焊接件具有有利的显微结构,以产生提高的焊接件强度和焊接件刚度。本发明还提供了制造这种钢结构的方法。
在本发明的一种形式中,一种有利的钢结构包括:通过传统的熔化或二次精炼技术生产的两个或多个结构钢元件,以及将这些元件的接合面连接在一起的摩擦搅拌焊接件,其中,起始结构钢的化学成分和粒度满足如下的一条或多条标准:
a)0.02wt%<Ti+Nb<0.12wt%,
b)0.7<Ti/N<3.5,
c)0.5wt%<Mo+W+Cr+Cu+Co+Ni<1.75wt%,
d)0.01wt%<TiN+NbC+TiO/MgO<0.1wt%,
e)至少2微米的平均粒度,
其中,摩擦搅拌焊接件具有介于5-60微米之间的原始奥氏体粒度以及小于50vol%的马氏体-奥氏体成分,摩擦搅拌焊接件强度高于起始结构钢,并且通过裂尖张开位移测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于或等于0.05mm,或者通过夏比(Charpy)V型缺口冲击测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。
在本发明的另一种形式中,一种用于焊接结构钢的有利的方法包括:提供两个或多个通过传统的熔化或二次精炼技术生产的结构钢元件,其中,起始结构钢的化学成分和粒度满足如下的一条或多条标准:
a)0.02wt%<Ti+Nb<0.12wt%,
b)0.7<Ti/N<3.5,
c)0.5wt%<Mo+W+Cr+Cu+Co+Ni<1.75wt%,
d)0.01wt%<TiN+NbC+TiO/MgO<0.1wt%,
e)至少2微米的平均粒度,
在足够形成摩擦搅拌焊接件的条件下对要被焊接的结构钢元件的接合面进行摩擦搅拌焊接,其中,摩擦搅拌焊接件具有介于5-60微米之间的原始奥氏体粒度以及小于50vol%的马氏体-奥氏体成分,摩擦搅拌焊接件强度高于起始结构钢,并且通过裂尖张开位移测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于或等于0.05mm,或者通过夏比V型缺口冲击测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。
本发明所披露的钢结构和用于焊接结构钢的方法的这些和其它形式及其有利的应用和/或用途将会从如下的详细描述中显而易见,尤其是在结合附图进行阅读时。
附图说明
为了帮助相关领域的普通技术人员制造和使用本文所述的主题,可参照附图,其中:
图1是通过摩擦搅拌焊连接两个管状结构钢元件的方法的示意图。
图2示出了在通过摩擦搅拌焊连接两个管状结构钢元件时使用金属垫片。
图3示出用于通过摩擦搅拌焊连接两个管状结构钢元件的摩擦搅拌焊工具部件(销和凸肩)。
图4在上部示出了当摩擦焊工具从右向左通过结构钢上方时对于结构钢的冷却和加热,在下部相应地示出了结构钢的温度和塑性应变随时间的变化。
图5示出了通过两个市售管线钢板产生的FSW接缝中的搅拌区中的CTOD刚度的变化。
图6示出了NbC的固溶温度随Nb和C含量的变化。
图7示出了TEM显微照片,显示了(a)在钢1中的细(~10nm)Nb(C,N)沉淀物和(b)在钢2中的较粗(~200nm)Ti(C,N)沉淀物的基本金属显微结构。
图8示出了SEM显微照片,显示了(a)钢3(本发明的钢)和(b)钢2(作为比较的钢)的X80钢的基本金属显微结构。
具体实施方式
这里详细描述和权利要求中的所有数值都是由“大约”或“大致”修饰的指定值,并且考虑了本领域普通技术人员可以预期到的实验误差和变化。
通过引用全文结合于此的US专利公开文献No.20070175967披露了一种焊接和修补金属部件中的裂纹的方法,该方法基于焊接件的预期用途在足够提供具有预先选定的特性或一组特性的焊缝或裂纹修补的条件下使要被焊接的金属部件经受摩擦搅拌焊和使要被修补的裂纹经受摩擦搅拌处理。
通过引用全文结合于此的US专利公开文献No.20070181647披露了摩擦搅拌处理和摩擦搅拌焊接方法在天然气输送和存储、油气井钻井完成和生产、以及油气精炼和化工厂的应用中用于连接和修补金属结构和元件的用途。
通过引用全文结合于此的US专利公开文献No.20080032153披露了油气和/或石油化工应用中的摩擦搅拌和激光冲击处理的应用。
通过引用全文结合于此的PCT专利公开文献No.WO2008/045631披露了一种钢复合物以及由其制造双相钢的方法。在一种形式中,双相钢包括含量按重量计大约0.05%到大约0.12wt%的碳;含量大约0.005wt%到大约0.03wt%的铌;含量大约0.005wt%到大约0.02wt%的钛;含量大约0.001wt%到大约0.01wt%的氮;含量大约0.01wt%到大约0.5wt%的硅;含量大约0.5wt%到大约2.0wt%的锰;和总量少于大约0.15wt%的钼、铬、钒和铜。所述钢具有由铁素体构成的第一相和包括从由碳化物、珠光体、马氏体、下贝氏体、粒状贝氏体、上贝氏体和退化上贝氏体构成的集合中选出的一种或多种成分的第二相。
通过引用全文结合于此的日本专利公开文献No.JP2008-31494披露了低合金结构钢,其对于在高于600℃时的扩大铁素体区和混合双相(铁素体+奥氏体)区或者对于通过添加铁素体稳定元素而形成的平衡相图中的减小的奥氏体相区具有设计的化学成分,所述铁素体稳定元素例如是Si(0.4~4%)、Al(0.3%~3%)、Ti(0.3%~3%)和/或其混合物。
概要
这里提供了钢结构以及制造这种钢结构的方法,该钢结构包括通过传统的熔化或二次精炼技术生产的结构钢元件,这些结构钢元件通过具有有利的显微结构的摩擦搅拌焊接件连接,以产生提高的焊接件强度和焊接件刚度。这里所披露的钢结构以及制造这种钢结构的方法在摩擦搅拌焊接件中提供了“可接受的”强度和刚度。所述钢结构和制造这种钢结构的方法教导了结构钢化学成分的范围、包括粒度在内的原始结构钢显微结构、以及获得这种可接受的焊接件强度和焊接件刚度的结合所需的摩擦搅拌处理参数。
这里所披露的钢结构以及制造这种钢结构的方法在广泛的碳和合金钢应用中具有实用性,尤其是用于油气工业中的管线。其他应用包括管线、船只、压力容器、储罐和海上结构的制造。这里所披露的钢结构以及制造这种钢结构的方法在需要大量焊接的应用中也是有用的,并且其对于使用高热输入焊接工艺、更快焊接过程或者对于焊道数量的减少具有诱惑力。这里所披露的利用摩擦搅拌焊接的钢结构以及制造这种钢结构的方法的非限制性的示例性优点包括:相比于熔焊降低了制造成本、相比于熔焊减少了焊接件缺陷、降低了NDE需求、降低了维修成本、以及减少了对熟练工人的需求。
摩擦搅拌焊工艺
摩擦搅拌焊(FSW)是固态连接技术,其不像熔焊那样涉及熔化和凝固。在摩擦搅拌焊期间,使用转动工具由通过摩擦和塑炼产生的热量来将两个不同的工件焊接在一起。将非消耗的转动工具推入要被焊接的材料中,然后使后面带有凸肩的中心销或探头与要被连接的两个部件接触。工具的转动将工件的材料加热并使其软化到塑性状态、但不达到工件材料的熔点。当工具沿着接合线运动时,工具前面的材料掠过被塑炼的环形物到达后部,从而消除接口。一些进入塑炼区的材料在从焊缝后部附近出来之前可以围绕转动工具行进多于一转,然后冷却到室温。
参见图1,示出了两个管状工件1和2,它们定位成使得它们的接合面3和4彼此接触。要将工件1和2沿着它们的接合面3和4彼此焊接。如图1中所示,摩擦搅拌焊(FSW)工具包括具有肩部5和摩擦销6的焊接头。肩部和销的相对尺寸或形状可以改变以适合特殊的焊接需要,并且对于本发明多种几何形状都是合适的。工件1和2通过诸如夹钳之类的机械装置保持在一起,以便在开始焊接之前和焊接期间所述接合面3和4实体上彼此接触。使摩擦搅拌焊接头5如由箭头7所示那样转动,向下插入到工件1和3中,正如由箭头8所示,并且沿周向推进,正如由箭头9所标示出的。对于单侧焊缝,工具插入的深度基本是被焊接的工件或元件的厚度。对于双侧焊缝,该深度可以大致是被焊接的工件的厚度的一半。因此,产生了环形焊缝。FSW工具可以由能够高温接合的任何工具材料构成,包括陶瓷、金属、复合材料以及它们的其他衍生材料。
在修补例如管状工件中的表面开口裂纹的情况下,使用与结合图1描述的程序类似的程序,除了所述销6不是一直地而是在表面上插入到工件中、并且推进工具的方向是沿着裂纹的轮廓之外。这被称作是不同于摩擦搅拌焊的摩擦搅拌修补或摩擦搅拌处理。修补和/或加工也称做处理。
在图2中示出的示例性实施方式中,工件1和2具有插置于接合面3和4之间的金属垫片11。这些工件布置成使得接合面与垫片11接触。FSW工具被推进以便于形成焊缝,该焊缝结合有工件1和2以及金属垫片11的基本金属。这被称作是不同于摩擦搅拌修补或摩擦搅拌处理的摩擦搅拌焊。
容易意识到的,在上面实施方式中描述的工件(也称做结构钢元件)可以由相同的基本金属(结构钢类型)构成,或者它们可以具有不同的钢类型。类似地,所述金属垫片可以由与用于连接的工件相同的金属构成,或者其可以具有特种合金来增强焊缝性能。因此,根据应用,用于摩擦搅拌焊的结构钢元件和金属垫片可以由相同的钢类型或由不同的材料构成。可以通过传统的熔化或二次精炼技术生产结构钢,包括但不局限于在真空炉、电弧炉、高炉/鼓风炉或氧气顶吹转炉中的熔化,并且一般具有2微米至100微米的平均基本金属粒度。非限制性的示例性结构钢包括从X50、X52、X60、X65、X70、X80、X90、X100和X120中选出的API(美国石油学会)5L管规范的管等级或者更高强度的钢。在另一个方面中,结构钢可以包括普通碳钢和合金钢,包括但不局限于AISI 1010、1020、1040、1080、1095、A36、A516、A440、A633、A656、4063、4340、6150以及其他AISI等级(包括高强度等级)。在又一个实施方式中,结构钢可以包括ASTM等级A285、A387、A515、A516、A517以及其他ASTM等级的低碳合金钢。
正如在图3中更详细示出的,FSW工具100包括两部分,摩擦销110和工具肩部120。所述肩部120是在FSW期间产生热量的主要装置,并且其阻止材料排出并且有助于工具周围的材料运动。摩擦销110的功能是主要使工具周围的材料变形,而其次要功能是产生热量。用在铝的FSW中的FSW工具一般具有圆柱形销,其具有多个小的特征,例如大的插入压力,限制了工具材料的选择和工具设计。对于钢的焊接,由W-Re或PCBN制成的可变销直径工具是有利的。多种FSW工具几何形状是与本发明相容的。本发明关注用于提高摩擦搅拌焊特性的基本金属冶金学结构/性质的选择。这里所描述的工具形成了必要的热机械循环,本发明的基本金属将很好地响应于所述热机械循环。
通过使用正确的工具设计和工艺参数可以形成无缺陷FSW。这些工艺参数包括但不局限于如下的一个或多个:摩擦搅拌焊工具的焊接运行速度、摩擦搅拌焊工具的转速、施加到摩擦搅拌焊工具的扭转载荷、摩擦搅拌焊工具上的向下力载荷或平移载荷、以及焊接件的冷却速率。工具设计和前面提到的工艺参数影响材料流动,其可以被控制以在处理期间补偿高应变率和温度。
FSW的好处主要来源于如下的特征:(1)相比于熔焊,实施连接需要较低的温度,接缝中较低的温度在接缝和被连接的基本金属(例如粗晶粒)中均造成了更少的不利影响;(2)由工具的转动导致的高度塑性变形,这形成了有助于提高强度和刚度的细粒度;(3)相比于熔焊,避免了焊接件中的氢脆化,熔焊通常容易由于电弧中的残余水分的分解而形成氢脆化。
当连接结构钢时在FSW接缝中同时获得强度和刚度的困难通过图4中的示意图可以图示出来。图4示出了当FSW工具在FSW过程中通过接缝中的任意点时的温度和应变变化。图表中的实线表示温度变化,而图表中的虚线表示塑性应变的变化。水平虚线表示铁素体与奥氏体之间的转化。当工具通过时,接缝中的每个点会经历三个热机械阶段:加热、加热+变形和最终冷却。在该说明中,冶金学结构的变化是针对假设固定点进行描述的,该假设固定点在温度和应变的改变方面被监控。在加热阶段,所述点的温度在工具到达之前由于热传导而升高,该热传导来自由前面区域中的变形产生的热量。温度的升高导致从铁素体到奥氏体的相变以及奥氏体晶粒的生长。在第二阶段,当工具到达该点时,晶粒经历塑性变形,由于动态再结晶导致晶粒细化。在第三阶段,动态再结晶的晶粒经历静态回复和再结晶以及随后的晶粒生长。根据钢铁化学成分、处理条件、包括粒度在内的初始显微结构、以及焊缝冷却速率,再结晶晶粒最后在冷却期间转变成一种可能的显微结构或可能的显微结构的混合物,这些可能的显微结构包括板条马氏体、自动回火板条马氏体、诸如粒状贝氏体或退化上贝氏体或下贝氏体之类的各种贝氏体中的任何一种、和/或马氏体奥氏体组分、或残留奥氏体。
因为摩擦搅拌焊接件或接缝的强度和刚度随着接缝显微结构而变化,所以FSW工艺参数可以用于提供目标显微结构。因为最终的显微结构是最终冷却之前的所有热机械处理的产物,所以控制FSW方法的工艺参数是必要的,以确保接缝中目标特性的获得。这里所披露的摩擦搅拌焊接缝的显微结构和机械特性取决于基本材料(结构钢)的化学成分、处理历史、显微结构和粒度以及FSW处理参数(摩擦搅拌焊工具的焊接运行速度、摩擦搅拌焊工具的转速、施加到摩擦搅拌焊工具的扭转载荷、摩擦搅拌焊工具上的向下力载荷或平移载荷、以及焊接件的冷却速率)。
因此,结构钢的FSW接缝可以具有可变的刚度,根据基本金属的化学成分和显微结构以及FSW处理参数,一些满足规定的可接受性CTOD或夏比V型缺口目标,一些不满足。图5描绘了在两个市售管线钢中产生的FSW接缝的搅拌区中的CTOD刚度的变化。低焊缝刚度的主要来源产生于具有高碳马氏体-奥氏体(MA)组分的大粒度和粗粒贝氏体的不理想显微结构。因此,存在控制摩擦搅拌焊的处理参数和基本钢(钢化学成分、包括粒度在内的原始显微结构)的需要,以便于所得的接缝具有总是满足所规定的可接受值的强度和刚度值。这里所披露的钢结构以及制造这种钢结构的方法规定了这些参数的范围,以生产具有总是满足或超出焊接件强度和刚度的可接受性指导准则的摩擦搅拌焊缝的钢结构。
示例性钢结构
这里所披露的钢结构的一种形式包括通过传统熔化技术生产的两个或多个结构钢元件以及将这些元件的接合面连接在一起的摩擦搅拌焊接件,其中起始结构钢的化学成分和粒度满足如下的一条或多条标准:
a.0.02wt%<Ti+Nb<0.12wt%,
b.0.7<Ti/N<3.5,
c.0.5wt%<Mo+W+Cr+Cu+Co+Ni<1.75wt%,
d.0.01wt%<TiN+NbC+TiO/MgO<0.1wt%,
e.至少2微米的平均粒度,
其中,摩擦搅拌焊接件具有5至60微米的原始奥氏体粒度以及小于50vol%的马氏体-奥氏体成分,摩擦搅拌焊接件强度高于起始结构钢,并且通过裂尖张开位移测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于0.05mm,或者通过夏比V型缺口冲击测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。
在一种形式中,摩擦搅拌焊接件可以具有小于或等于60、50或40、或30、或20、或10、或5微米的原始奥氏体粒度。在另一种形式中,摩擦搅拌焊接件可以具有高于或等于2、或5、或7、或10、或15、或20微米的原始奥氏体粒度。在FSW期间原始奥氏体粒度可以通过像钢化学成分、包括粒度在内的初始基本金属显微结构、FSW参数、刚好在FSW搅拌作用之前的加热速率、以及FSW搅拌作用之后的冷却速率这样的因素来控制。在确定原始奥氏体粒度时多个因素是有影响的,这控制FSW接缝中的最终室温粒度。动态和静态再结晶现象是特别有影响力的因素。在焊接期间在搅拌区内达到的最高温度的量级以及在这些温度下的时长也是特别有影响力的因素。FSW热机械循环的最高温度部分之前和之后的晶粒生长程度也是一个因素,在该期间的晶粒生长由温度、在该温度下的时间、以及对晶粒生长的显微结构的阻力控制。
关于通过动态再结晶的晶粒细化,多个因素控制粒度,包括但不局限于变形温度、塑性应变以及应变率。就重要性而言,温度对粒度可以具有显著的影响,接着是应变率,然后是应变。在该排列中,假设塑性应变超过了动态再结晶的临界应变。当塑性应变超过所述临界应变时,其对粒度没有额外的影响,而如果塑性应变小于所述临界应变,则其具有显著的影响。基于先前的研究,FSW期间的塑性应变超过了临界应变,因此,当显微结构在最高温度附近并且引起显著的由FSW施加的应变时,该应变不被当作一个主要因素。应变率对粒度有影响,应变率越高,粒度越细。但是,应变率的影响相比于温度是不太显著的。可以采用应变率的多个级别的幅度改变以产生可与10-20%的温度改变相当的影响。温度和应变率具有相反的效果;因此,温度降低以及较高的应变率造成更细的(动态)再结晶粒度,反之亦然。
当在FSW期间材料经受高温时,所达到的温度以及在高温下花费的时间量是影响粒度的重要因素。在其他研究者的过去的工作中,在钢的FSW期间发生的温度估计大约1000℃。已经发现,根据例如焊接区内的位置的变化,在钢的摩擦搅拌焊期间的实际温度可以高达1100℃,或者1200℃,或者甚至是1300℃。这些高温使新方法成为必要,以控制并优化搅拌区显微结构。较高的温度以及在较高温度下较长的时间增大了粒度。根据图4,影响晶粒生长的温度是那些等于或高于铁素体-奥氏体临界温度的温度,正如由水平虚线示意性表示的。该图实际上是示意性的,对于晶粒生长重要的温度或温度范围不可能仅由单个温度值表示。对于铁素体钢,正如对于冶钢领域的工程技术人员公知的,当温度分别在所谓的下和上临界温度A1和A3附近时发生像铁素体、贝氏体和马氏体这样的室温显微结构与较高温度的奥氏体结构之间的转化。当被焊接的材料的温度明显高于A3温度(这里也称做晶粒粗化温差)并且在该温度下花费的时间足够长时,在FSW期间发生晶粒生长。根据钢显微结构以及化学成分,晶粒粗化温差可以改变。
确定晶粒粗化温度是有利的,以更好地理解如何选择FSW参数和条件以最终控制显微结构粗度。正如对于冶钢领域的技术人员、尤其是对于高温钢处理领域的技术人员公知的,可以实施使用Gleeble或其他热循环模拟器的一系列实验来确定特定钢的晶粒粗化温度。可以实施热扭转或热压缩实验,籍此对一系列样本施加从900℃到1300℃、或者甚至高达1400℃的不同峰值温度。可以选择应变循环以模拟被研究的工艺,例如FSW。在达到预先规定的峰值温度并且将样本保持在该温度特定的时长之后,然后对样本进行淬火。淬火之后,可以使用标准金相技术测量原始奥氏体粒度。可以使用一系列实验来确定任何特定钢的晶粒粗化温度和温差,在实验中,系统地改变峰值温度以及在该峰值温度下的时间。作为对实验性方法的替换,可以使用许多模型化方法中的其中一种来预测钢的晶粒粗化行为。虽然不像前面提到的对于特定钢的实验技术那样精确,但是晶粒粗化行为的模型化预测可以足够精确地提供必要的信息以选择最佳的焊接条件来控制显微结构粗度。
FSW期间的晶粒生长可以刚好发生在热机械循环的高应变部分之前、刚好发生在该循环(如图4中所标示出的)之后,或者取决于FSW参数和运行速度,对于某种晶粒生长现象还可以发生在热循环的最高温度部分期间。不管其何时发生,是焊接热循环早期、中期或晚期,焊缝材料(搅拌区)达到的温度以及在这些温度上花费的时间量是控制粒度的主要因素。可以通过对FSW焊接参数的选择以及对FSW周围环境的温度控制来控制这些温度以及在高于A3温度的温度下花费的时间。FSW焊接参数可以包括例如焊接运行速度、工具转速和FSW工具上施加的力等项目。控制周围环境的温度可以包括基本材料的局部加热或冷却。
已经发现,如果FSW期间搅拌区温度在A3温度之上大于或等于100℃、或200℃、或300℃、或400℃并且在这些温度下保持长于数秒,则晶粒生长可以发生,导致粗粒度、大量MA和其他不理想的显微结构特征,并最终使性能退化。晶粒粗化温差在这里定义为FSW期间搅拌区的温度与被焊接的钢的A3温度之间的温度差。根据摩擦搅拌焊缝的用途限制晶粒粗化温差是所希望的。根据通过FSW生产的钢结构的应用以及被焊接的钢类型,晶粒粗化温差可以控制到小于或等于100℃、或200℃、或300℃、或400℃的量级。对于一些对强度和刚度仅有不过分的要求的一般应用,晶粒粗化温差可以控制到小于或等于400℃的量级。对于对机械特性有更高要求的其他应用,晶粒粗化温差可以控制到小于或等于300℃、或200℃、或100℃的量级。因此,根据应用,晶粒粗化温差的范围可以从0至400℃、或0至300℃、或0至200℃、或0至100℃。
关于在高于A3温度下花费的时间,根据由FSW生产的结构的应用以及被焊接的钢,将该时间控制到10秒或更少可能便足够了。在更高要求的结构应用中,可能有必要将在高于A3温度下花费的时间限制到8秒或更少。对于更高刚度的应用,可能需要将在高于晶粒粗化温度下花费的时间控制到6秒或更少,或者可选择地控制到4秒或更少。对于具有特别严格的刚度要求的结构应用,可以将在晶粒粗化温度之上花费的时间限制到2秒或更少,或者可选择地限制到1秒或更少。
可以通过对诸如FSW工具类型、焊接参数和二次温度控制(例如预热或增强冷却)之类的变量的选择来控制温度和时间(即,焊接热循环)。正如对于FSW领域的技术人员公知的,具有较高摩擦系数的工具材料相比于以类似焊接参数运行但具有较低摩擦系数的工具而言将会产生更高的温度。施加到FSW工具的较高的转速造成更高的温度。较慢的焊接运行速度也在焊缝中产生较高的温度。较慢的运行速度也使焊缝材料保持在较高温度更长的时间。工具几何形状影响(例如较大的肩部区域)也可以产生较高的温度。因此,对于焊接工程师而言,许多参数都可用于改变焊接热循环。
焊接运行速度和工具转速是控制焊接热循环中有影响力的FSW工艺变量。为了避免这里所披露的钢结构中的粗晶粒、大量MA、粗显微结构以及退化的机械性能(像低刚度),应该仔细地选择和控制FSW焊接参数以适合由FSW制造的钢结构的应用。太慢的焊接运行速度或太高的工具转速或者这二者的任意组合可以导致不可接受的显微结构和机械特性。
对于一般的应用,以小于或等于5英寸每分钟的运行速度操作FSW工艺可能便足够了。对于更高要求的应用,可能需要运行速度高于或等于5英寸每分钟,或者高于或等于10英寸每分钟。对于希望有高刚度的甚至更高要求的应用,可能需要焊接运行速度高于或等于15英寸每分钟,或者高于或等于20英寸每分钟。因此,根据应用,FSW工具的运行速度的范围可以为1至30英寸每分钟,或者5至30英寸每分钟,或者10至30英寸每分钟,或者15至30英寸每分钟,或者20至30英寸每分钟。
至于工具转速,对于一般的应用,对于必要的显微结构和特性以小于或等于800rpm的速度操作FSW工艺可能便足够了。对于更高要求的应用,可能需要工具速度小于或等于600rpm,或者小于或等于500rpm,或者小于或等于400rpm。对于希望有高刚度的甚至更高要求的应用,可能需要工具速度小于或等于300rpm,或者小于或等于200rpm。因此,根据应用,FSW工具的工具转速的范围可以为100至800rpm,或者100至600rpm,或者100至500rpm,或者100至400rpm,或者100至300rpm,或者100至200rpm。对于为了生产率目的而希望以高运行速度(例如15英寸每分钟或者以上)运行的某些具体应用,可能有必要使用高工具转速,例如1000rpm,或者2000rpm,但是在该操作期间产生的热量可以由运行速度抵消。通过这种抵消,搅拌区显微结构仍然可以使用这里所披露的新方法来控制,以获得目标显微结构和特性。
结构钢的初始显微结构可以不仅具有小到2微米的细的粒度,而且还可以在其内具有细的弥散粒子。这些细的弥散粒子可以包括但不局限于氮化物(例如TiN,BN)、碳化物(例如NbC)、碳氮化物(例如Nb(C,N),Ti(C,N))、氧化物(例如TiO、TiO2、MgO、TiO/MgO)、过渡元素的硼化物(例如TiB2,Fe2B,Cr2B)以及它们的组合。在用于这里所披露的摩擦搅拌焊的结构钢的一种形式中,TiN+NbC+TiO/MgO的组合wt%的范围可以从高于0.01wt%到小于0.1wt%,或者可选地从高于0.03wt%到小于0.07wt%。结构钢的起始显微结构以更细的初始粒度影响最终粒度的发展,导致更快的再结晶动力和更细的再结晶粒度,这是因为再结晶的成核现象优选地发生在晶界上。根据这里所披露的新的FSW工艺的结构钢(这里也称做“起始结构钢”或“原始结构钢”)的基本金属的起始粒度可以小到2微米。没必要给基本金属粒度设置上界,因为对于具有较粗晶粒的钢,根据特定钢化学成分和焊接条件,该新的FSW工艺将会产生网精细化并且呈现出60微米或更小的最终原始奥氏体粒度。起始结构钢显微结构中细的弥散粒子(其在FSW温度下是稳定的)的存在延缓了FSW期间热机械循环的所有阶段中的晶粒生长。一般地,这些细的弥散粒子的存在还与起始显微结构中更细的粒度有关,因为这些粒子在用于板制造的热机械控制处理(TMCP)期间延缓了晶粒生长。因此,起始结构钢显微结构中的细的粒度和细的第二相弥散粒子的结合对于这里所披露的钢结构和形成该钢结构的方法而言是有利的。
还可以使用某些合金元素例如Ti和Mg来在起始结构钢中产生细弥散粒子。存在在奥氏体晶粒内部的这些细弥散粒子可以作为用于间粒状铁素体(IGF)或针状铁素体(AF)以及沉淀钉扎的核以抑制晶粒生长。IGF形成在细弥散粒子周围,结果将奥氏体晶粒分成了更细的晶粒,这造成增强的强度和刚度。因此,在这些钢中抑制了奥氏体晶粒的粗化,IGF形成在它们内部,从而可以显著地改善显微结构。
起始结构钢的初始显微结构还可以没有碳隔离相,例如珠光体团。诸如珠光体团之类的粗的碳隔离相的存在可以导致FSW接缝中的低刚度,这是因为在该相中高的碳浓度可以在FSW期间增强粗MA成分的形成。MA可以形成在搅拌区中或附近区域(例如TMAZ或HAZ)中。在用于这里所披露的摩擦搅拌焊的结构钢的一种形式中,可以包括少于25vol%、或少于20vol%、或者少于15vol%、或者少于10vol%的珠光体。
控制最终粒度的另一个因素是FSW热循环后期中的晶粒生长。即使在通过动态再结晶产生细晶粒时,也可以通过利用第二相粒子进行的晶界钉扎或由溶质元素施加的拖曳避免晶粒生长。可以使用这两种方法中的一种或两种来细化粒度。可以仅通过对基本钢化学成分和处理过程的修改来结合这些方法。
对于通过粒子钉扎产生的晶粒生长延缓,可以使用第二相粒子,包括但不局限于氮化物(例如TiN,BN)、碳化物(例如NbC)、碳氮化物(例如Nb(C,N),Ti(C,N))、氧化物(例如TiO、TiO2、MgO、TiO/MgO)、文中所述形式的过渡元素的硼化物(例如TiB2,Fe2B,Cr2B)以及它们的组合。根据与摩擦搅拌焊一起发生的峰值温度的发现来选择这些粒子。这些粒子能够在高于1000℃下进行边界钉扎。例如,这些粒子对于1100℃、1200℃、1300℃或者甚至1400℃的峰值温度是有用的。对于通过溶质拖曳产生的晶粒生长延缓,相比于铁具有不同原子大小的溶质元素可能是有利的。非限制性的示例性溶质元素是钨、钼和铌。与铁相比在原子尺寸上没有大的不同的元素可以对晶粒生长产生次要作用,这些元素包括但不局限于铬、铜、钒、镍以及它们的组合。
对于晶粒生长延缓而言,已经发现了对于粒子设计可能较为重要的两个因素。第一个因素是粒子间距,较大的粒子间距允许晶界成环通过,并因此对晶粒生长提供了较少的阻力。相反,小的粒子间距可以防止晶界成环,并从而对晶粒生长提供了增加的阻力。这些粒子的粒子间距可以小于100、或80、或60、或40、或20、或10nm。第二相粒子尺寸可以由化学结构和钢制造期间的处理来控制。例如,TiN粒子的粒子间距可以通过低的Ti/N比率来减小,即,比氮化物的化学计量比(3.42)更低,而较高的比率提供了具有更大粒子间距的更粗粒子。
在第二相粒子的设计中可决定晶粒生长延缓的第二个因素是它们在FSW温度下的稳定性。不太稳定的粒子会变粗,从而增大了粒子间距,而更稳定的粒子不会变粗。对于钢的焊接应用有用的多个粒子的相对稳定性的列表的非限制性示例如下:
BN>TiO2>TiN>TiB2>NbC>VC
该列表不是穷举性的,而是可以例如扩展到包括Nb或V的许多碳化物和碳氮化物。
钉扎元素的浓度可以影响FSW温度下的稳定性,使粒子在1000℃以上的温度下稳定是重要的。图6描绘了在高温下钢中NbC的计算出的溶解性。正如可以从图表中看出的,在0.1至0.15wt%范围内的铌浓度可以在FSW温度下提供稳定的粒子。
生长的延缓还可以通过在钢中结合特定溶质元素来实现。在固溶体中的微合金化元素例如Nb、Ti、V、Mo和W延缓了钢中大部分的扩散受控过程。任意特定元素的原子尺寸与Fe原子的原子尺寸差别越大,则延缓越强。Nb、Mo和W在本文中可以是有利的微合金化元素。但是,诸如Nb、Mo、W之类的元素还可以促进MA成分的形成,浓度高的MA成分会降低刚度。因此,不能以高浓度添加这些元素。可以添加不会促进MA成分形成的第二组元素以提供对晶界运动的适度延缓。这些元素的示例包括但不局限于Cu、Cr、Co、Ni和Mn。
通过将合金元素进行组合可以显著增强溶质拖曳效果。Nb和B的组合添加可以对溶质拖曳产生强的协同效应,这是由于在高温下形成了(Nb,B)合成体。在奥氏体晶界上这些合成体的存在还可以通过增强Nb原子的溶质拖曳力来减小边界移动速度。
基于前面的讨论,通过溶质拖曳和粒子钉扎,起始结构钢中的化学成分的如下范围可以减小晶粒生长。
Figure BDA0000061953320000221
此外,可以将如下的元素添加到起始结构钢中来通过粒子钉扎减小晶粒生长。
Figure BDA0000061953320000222
在这些附加的元素中,0-500ppm、或者5-250ppm、或者5-100ppm、或者5-50ppm的硼的量对于减小结构钢中晶粒生长可能是有利的。
在前面提到的用于起始结构钢的化学成分的范围内,必须满足如下的一条或多条附加标准以获得在焊接件中产生足够强度和刚度的摩擦焊缝性能:
Figure BDA0000061953320000231
铌可以提供粒子钉扎和溶质拖曳。溶质拖曳机理是在高温下发生的,其中碳氮化铌已经部分溶解并且铌处在固溶体中。在较低温度下,铌会通过Nb(C,N)提供粒子钉扎。
具有这里所披露的摩擦搅拌焊接件的钢结构还包括少于50、或40、或30、或20、或15、或10vol%的马氏体-奥氏体(MA)成分,以便于获得可接受的强度和刚度。对于所披露的结构钢的化学成分的范围和原始奥氏体粒度,该范围内马氏体-奥氏体成分的形成会受到化学成分和焊缝的冷却速率的影响,尤其是在发生MA成形的温度范围900-200℃中。较慢的冷却速率一般促进较高温度转化产物的形成,这导致产生较高碳分配的脆性相,例如马氏体-奥氏体成分。
FSW焊缝中的显微结构成分的平衡可以包括马氏体、下贝氏体、细粒状贝氏体、退化上贝氏体、马氏体-奥氏体成分和包括针状铁素体在内的其他贝氏体铁素体相的组合。在较慢冷却和/或低化学成分的条件下,FSW焊缝显微结构可以包括多角形铁素体或可能的珠光体。还可以通过调整钢化学成分来控制MA的形成。因此,可以利用选定钢化学成分和控制焊缝冷却速率相结合来控制FSW焊缝中包括MA在内的各种成分的量。
影响这里所披露的钢结构的强度和刚度的另一个因素是用于摩擦搅拌焊的结构钢中的低水平的内含物和杂质元素的存在。在FSW之前,内含物可以从钢制造操作开始存在在钢中或者它们可以由工具磨损污染物产生或者从接缝表面上的污染物产生。工具工艺已经发展到使得来自于工具上的污染最小化的程度,但是焊接工程师仍然有责任通过适当的资格鉴定来确保足够的工具耐久性。可以通过仔细的焊前清洁程序来避免由于不良的焊缝制备导致的内含物。这里所披露的钢结构的另一个方面是,具有特制化学成分和良好清洁度的结构钢可以确保适合于高刚度的良好的晶界粘合力。晶界的脆变可以导致晶间断裂。这种断裂的出现通常与间隙合金元素有关,例如结构钢的含磷量和含硫量。在一种形式中,起始结构钢可以包括少于100ppm的硫和少于150ppm的磷。在另一种形式中,起始结构钢可以包括少于75ppm的硫和少于125ppm的磷。在又一种形式中,起始结构钢可以包括少于50ppm的硫和少于75ppm的磷。FSW期间经历的温度变化可以加大晶界脆变的可能性,这是由于比基本结构钢更大的原始奥氏体粒度和更易脆变的显微结构。
根据这里所披露的旨在获得最佳FSW相容性和最佳强度和刚度的钢的特征,选择具有低水平非金属内含物的钢是有利的,所述内含物例如是硫化锰、二氧化硅、氧化铝、氧化镁、氧化钙、氮化钛以及出现在钢中的各种尖晶石类物质和其他氧化物。当最终焊缝显微结构主要是马氏体和/或贝氏体时,这尤其是重要的。从脆性断裂阻力的观点出发,这些焊缝显微结构对非金属内含物的存在尤其敏感。为了满足所要求的刚度需求,限制焊缝的内含物含量是必要的,这对于FSW取决于基本金属。在适合于最佳摩擦搅拌焊缝的起始结构钢的一种形式中,从对抛光断面的观察确定出,钢可以包括少于每平方毫米100的内含物。这种要求涉及0.5微米或更大的内含物,这些内含物对于刚度是最不利的。在另一种形式中,起始结构钢可以包括少于每平方毫米75的内含物,或者少于每平方毫米50的内含物,或者少于每平方毫米40的内含物,或者少于每平方毫米30的内含物。对于要求高刚度的最高要求的应用,每平方毫米的内含物应该少于20。这些内含物要求涉及的仍然是0.5微米或更大的内含物。
对于用于FSW的起始结构钢的最佳配比,可以根据应用和刚度要求使用更低或更高的总体氧含量,但是应仅在合理的范围内。在将基于氧的粒子用于晶界钉扎的情况下,必须实现钢中总体氧含量的平衡。太少的氧会形成数量不足的粒子,而太多的氧会导致太多的粒子和低刚度。根据这里所披露的工艺,对于大多数的应用,氧的上界是200ppm。如果应用要求更严格的刚度需求,则可以降到150ppm或100ppm。如果晶界钉扎粒子不是基于氧的,那么传统的钢熔化操作一般将会产生不低于5ppm的氧含量。因此,根据应用和刚度要求,最佳氧含量的范围可以为5ppm到200ppm。
从前面所述的可以获知,为了增强FSW接缝的刚度和强度,粒度细化、目标化的显微结构成分、以及对杂质的限制是有利的。这可以利用初始结构钢化学成分、初始结构钢显微结构(包括粒度)和FSW处理和冷却条件的协同组合来实现。
在这里所披露的钢结构的另一种形式中,摩擦搅拌焊接件可以具有少于40微米的奥氏体粒度和少于25vol%的马氏体-奥氏体成分。在这里所披露的钢结构的又一种形式中,摩擦搅拌焊接件可以具有少于30微米的奥氏体粒度和少于15vol%的马氏体-奥氏体成分。在这里所披露的钢结构的又一种形式中,摩擦搅拌焊接件可以具有少于20微米的奥氏体粒度和少于10vol%的马氏体-奥氏体成分。
在利用摩擦搅拌焊接件形成钢结构时所使用的两个或多个结构钢元件可以由从X50、X52、X60、X65、X70、X80、X90、X100和X120中选出的API(美国石油学会)5L管规范的管等级或者由更高强度的钢组成。管的壁厚的范围可以为3.2mm-38.1mm、或6.4mm-31.8mm、或12.7-25.4mm。在另一种形式中,管的壁厚的范围可以为25.4-50mm。
在上面所描述的化学成分和显微结构的范围内使用结构钢形成的摩擦搅拌焊接件造成了可接受的强度和刚度的结合。在一种形式中,摩擦搅拌焊接件强度高于结构钢,并且在低于或等于0℃下通过裂尖张开位移测试测量到的摩擦搅拌焊接件刚度高于0.05mm,或者通过夏比V型缺口冲击测试在低于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。在该形式中,在低于或等于0℃下的裂尖张开位移可以替换地大于0.1mm、或0.15mm、或0.2mm、或0.25mm、或0.3mm。在该形式中,通过夏比V型缺口冲击测试在低于或等于0℃下测量到的摩擦搅拌焊接件刚度可以高于75J、或100J、或125J、或150J、或175J、或200J。
焊接结构钢的示例性方法:
这里所披露的用于焊接结构钢的方法的一种形式包括:提供两个或多个通过传统熔化技术生产的结构钢元件,其中起始结构钢的化学成分和粒度满足如下的一条或多条标准:
a)0.02wt%<Ti+Nb<0.12wt%,
b)0.7<Ti/N<3.5,
c)0.5wt%<Mo+W+Cr+Cu+Co+Ni<1.75wt%,
d)0.01wt%<TiN+NbC+TiO/MgO<0.1wt%,
e)至少2微米的平均粒度,
在足够形成摩擦搅拌焊接件的条件下对要被焊接的结构钢元件的接合面进行摩擦搅拌焊,其中,摩擦搅拌焊接件具有介于5-60微米之间的原始奥氏体粒度和少于50vol%的马氏体-奥氏体成分,摩擦搅拌焊接件强度高于起始结构钢,并且在低于或等于0℃下通过裂尖张开位移测试测量到的摩擦搅拌焊接件刚度高于或等于0.05mm,或者通过夏比V型缺口冲击测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。
在这里所披露的用于焊接结构钢的方法的一种形式中,所形成的摩擦搅拌焊接件可以具有小于或等于60、或50、或40、或30、或20、或10、或5微米的原始奥氏体粒度。在这里所披露的方法的另一种形式中,摩擦搅拌焊接件可以具有大于或等于2、或5、或10、或15、或20微米的原始奥氏体粒度。正如先前所描述的,FSW期间原始奥氏体粒度可以通过钢化学成分、包括粒度在内的初始基本金属显微结构来控制,就像通过钢处理过程、FSW处理参数以及FSW后的冷却速率来控制那样。
这里所披露的用于焊接结构钢的方法不仅应具有细的粒度,而且还可以具有在其内的细的弥散粒子。这些细的弥散粒子可以包括但不局限于氮化物(例如TiN,BN)、碳化物(例如NbC)、碳氮化物(例如Nb(C,N),Ti(C,N))、氧化物(例如TiO、TiO2、MgO、TiO/MgO)、过渡元素的硼化物(例如TiB2)以及它们的组合。在这里所披露的用于焊接结构钢的方法的一种形式中,TiN+NbC+TiO/MgO的组合wt%的范围可以从大于0.01wt%至小于0.1wt%,或者可选择地从大于0.03wt%至小于0.07wt%。
这里所披露的用于焊接结构钢的方法还应没有碳隔离相,例如珠光体团。在这里所披露的用于焊接结构钢的方法的一种形式中,可以包括少于25vol%、或少于20vol%、或少于15vol%、或少于10vol%的珠光体。
这里所披露的用于焊接结构钢的方法导致具有少于50、或40、或30、或25、或20、或15、或10vol%的马氏体-奥氏体(MA)成分的摩擦焊接件,以便获得可接受的强度和刚度。
这里所披露的用于焊接结构钢的方法可以使用由从X50、X52、X60、X65、X70、X80、X90、X100和X120中选出的API(美国石油学会)5L管规范的管等级或者由更高强度的钢组成的结构钢。正如前面所描述的,这些结构钢应该具有低水平的内含物和杂质元素。在一种形式中,该结构钢应该包括作为杂质元素的少于100ppm的硫和少于150ppm的磷。在另一种形式中,该结构钢应该包括作为杂质元素的少于75ppm的硫和少于125ppm的磷。在又一种形式中,该结构钢应该包括作为杂质元素的少于50ppm的硫和少于75ppm的磷。
这里所披露的用于焊接结构钢的方法使用与上面所描述的结构钢组分相结合的摩擦搅拌焊。为了形成合适的焊接件而应该被控制的FSW工艺条件包括但不局限于如下的一个或多个条件:摩擦搅拌焊接工具的焊接运行速度、摩擦搅拌焊接工具的转速、施加到摩擦搅拌焊接工具上的扭转载荷、摩擦搅拌焊接工具上的向下力载荷或平移载荷以及焊接件的冷却速率。
摩擦搅拌焊接工具的焊接运行速度的范围可以为1-30、或5-25、或10-20英寸每分钟。摩擦搅拌焊接工具的转速可以从100-700、或200-600、或300-500rpms。摩擦搅拌焊接工具上的向下力载荷或平移载荷可以大于或等于1000lbf和小于或等于25000lbf、或大于或等于5000lbf和小于或等于20000lbf、或大于或等于10000lbf和小于或等于15000lbf。焊接件成型之后,焊接件的冷却速率的范围可以从每秒10℃至每秒400℃、或每秒50℃至每秒300℃、或每秒100℃至每秒200℃。
这里所披露的使用在上面所述化学成分和显微结构范围内的结构钢的用于焊接结构钢的方法导致可接受的强度和刚度的结合。在一种形式中,摩擦搅拌焊接件强度高于结构钢,并且在低于或等于0℃下通过裂尖张开位移测试测量到的摩擦搅拌焊接件刚度高于0.05mm,或者通过夏比V型缺口冲击测试在低于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。在该形式中,在低于或等于0℃下的裂尖张开位移可以可选择地高于0.1mm、或0.15mm、或0.2mm、或0.25mm、或0.3mm。在该形式中,通过夏比V型缺口冲击测试在低于或等于0℃下测量到的摩擦搅拌焊接件刚度可以高于75J、或100J、或125J、或150J、或175J、或200J。
应用:
在一个方面中,这里所披露的摩擦搅拌方法在焊接和修补使用铸铁和碳钢元件的结构应用中是有用的。在另一个方面中,这里所披露的摩擦搅拌焊接方法在焊接和修补结构钢中是有用的。这些结构钢可以是用在油气工业中的管线钢,包括但不局限于从X50、X52、X60、X65、X70、X80、X90、X100和X120中选出的API(美国石油学会)5L管规范的管等级或者更高强度的钢。管的壁厚的范围可以为3.2mm-38.1mm、或6.4mm-31.8mm、或12.7-25.4mm、或25.5-50mm。
在又一个方面中,这里所披露的摩擦搅拌方法在焊接和修补普通碳钢和合金钢中是特别有用的。非限制性的示例性的普通碳钢和合金钢包括AISI 1010、1020、1040、1080、1095、A36、A516、A440、A633、A656、4063、4340、6150以及其他AISI等级(包括高强度等级)。其他示例性的低碳合金钢包括ASTM等级A285、A387、A515、A516、A517以及其他ASTM等级的低碳合金钢。
这里所披露的摩擦搅拌方法可以用于形成焊缝(例如点焊缝、对接焊缝和T形接缝)以及用于修补焊缝区域。更特别地,FSW方法可以用于连接和修补/处理与油气工业相关的结构和结构钢元件。可以在诸如制造这些元件的钢厂之类的制造基地或者在组装这些元件(例如管线)的装配场地实施经由FSW的连接。一般在场地实施经由FSP的修补和处理。所获得的结构呈现出良好的强度和刚度,并且在许多情况下,可以以较低成本连接和修补/处理。
这里所披露的钢结构以及制造这种钢结构的方法适合于形成和修补/处理油气勘探、生产和精炼应用中的结构。FSW对于在这些类型的应用中形成管状结构钢元件的点焊缝和对接焊缝是尤其有利的。
能够应用这里所披露的制造方法的油气勘探、生产、精炼工业中的非限制性的示例性的钢结构是管线焊接区域、钢悬链式立管(SCR)和顶部张紧立管(TTR)焊接区域、带螺纹的元件、石油钻井设备焊接区域(即,深水石油钻具的两个截面)、液化天然气(LNG)和增压LNG(PLNG)容器焊接区域、立管/套管接头、和井口装置。
在油气上游应用中,这里所披露的制造钢结构的方法适合用于连接和修补用在天然气输送和存储类应用中的结构和元件。特别地,可以使用这里所披露的制造钢结构的方法来实现沿管线的气体输送技术、压缩天然气(CNG)、增压液化天然气(PLNG)、液化天然气(LNG)和其他存储/输送技术。在天然气输送和存储类应用的一种形式中,这里所披露的制造钢结构的方法可以用于连接/处理管线、流动管线、收集管线、膨胀弯管和其他传输管线。在天然气输送和存储类应用的另一种形式中,这里所披露的制造钢结构的方法可以用于连接/处理由碳钢制成的材料和结构钢。在天然气输送和存储类应用的又一种形式中,这里所披露的制造钢结构的方法可以用于连接/处理LNG、CNG和PLNG存储和/或输送结构。这包括模块化LNG结构、运输船只、传输元件和管线以及相关的技术。
在油气勘探和生产应用中,这里所披露的制造钢结构的方法还可以用于连接和修补用于油气完井和生产的各种结构。这些结构包括但不局限于海上和陆上生产结构、石油管线、石油贮存罐、套管/油管、完井和生产元件、与流动管线连接装置连接的铸造结构、海底元件、向下钻进管状产品(例如OCTG)、上层模块以及相关的结构、脐带管/海底控制管缆、补给和供应船、以及火炬塔。更特别地,示例性的海上生产结构包括导管架平台、海上移动式钻井装置和相关的生产元件,像套管、系索、立管以及海底设备。海上移动式钻井装置包括但不局限于半潜式钻井平台和自升式钻井平台、张力腿平台(TLP)、深水沉箱采油船(DDCV)、顺应式平台、浮式采油储油及卸油(FPSO)船、浮式储油及卸油(FSO)船、船只、油罐等等。示例性的海底元件包括但不局限于管汇系统、采油树和BOP。示例性的上层模块以及相关装置包括甲板上层结构、钻井平台、生活区、直升机甲板以及相关结构。应该理解的是,FSW可以用于形成构成这些结构和元件的焊缝,FSP可以用于修补和处理构成这些结构的焊缝或接缝。
在下游应用中,这里所披露的制造钢结构的方法适合于连接和修补用在精炼和化工厂中的结构和元件。这里所披露的钢结构和制造这种钢结构的方法尤其通过对元件/结构的修补、异种金属连接、对钢结构的连接以及对难于焊接的材料(例如铸铁)的连接而在精炼和化工厂应用中提供了优势。这些应用包括但不局限于铸铁、热交换器管道和低高温处理和压力容器。示例性的低高温处理和压力容器包括蒸汽裂化器管、蒸汽转化管和精炼结构和元件。适合于所披露的FSW技术的示例性材料包括诸如13%Cr钢等级、双相不锈钢和优质双相不锈钢之类的防腐材料。
接下来是本发明的示例,这些示例不应理解为对本发明的范围或权利要求的范围构成限制。
示例
接下来的示例进一步阐明了这里所披露的钢结构以及制造这种钢结构的方法的有利性能。在所有的示例中,将试验板沿着轧制方向切成两半并且制备出对接接缝。通过砂磨将氧化皮去除,接着利用甲醇进行脱脂。使用氩保护气氛来防止焊接循环过程中的氧化和延长工具寿命,尽管氩保护在这里所披露的新的FSW技术中并不是关键的因素。
使用W-Re工具以每分钟3.5英寸的焊接速度、170rpm的工具转速执行FSW。根据ASTM E1820和/或BS 7448第1、2和4部分实施CTOD刚度测量。试样几何形状是标准的B×2B(a/W=0.5)、单边切口弯曲(SENB)结构。对于摩擦搅拌焊缝,疲劳预制裂纹设置在搅拌区和热机械影响区(TMAZ)内的多个位置。预制裂纹在全厚度(L-T)方向上取向。测试温度的范围是从环境温度到-60℃。
由使用标准金相程序的焊接件制备用于光学、扫描电子显微术(SEM)、透射电子显微术(TEM)和显微硬度研究的金相样本,接着利用2%的硝酸酒精溶液浸蚀。
示例1:
在FSW研究中使用大约1/2”厚的API X80级管线钢。钢的化学组成(wt%)列在表1中。在下面的示例中,所列出的CTOD是下界结果。
表1:钢的化学组成(wt%):
Figure BDA0000061953320000311
选择具有不同Nb+Ti含量的钢1和钢2来说明对断裂刚度的影响。具有较高Nb+Ti含量的钢1具有比钢2更优的刚度。钢2还呈现出了比钢1明显较大的原始奥氏体粒度(40-60μm)。
图7示出了透射电子显微图像,该图像示出了钢1中NbC和/或Nb(C,N)的高密度、细沉淀物(~10nm)的存在。相反,钢2中存在低密度、主要是Ti(C,N)的较粗沉淀物(~200nm)。
示例2:
在FSW研究中使用大约1/2”厚的高强度管线钢。钢的化学组成(wt%)列在表2中。
表2:钢的化学组成(wt%):
对钢3(本发明的)和钢2(作为比较的)进行试验来研究钢板的初始粒度和显微结构对FSW接缝的机械性能的影响。正如先前提到的,初始钢板粒度反映了第二相粒子由于TMCP处理而导致的影响。
图8示出了基本金属的扫描电子显微图像,其比较了钢3(本发明的)与钢2(作为比较的)的显微结构。在钢2中,基本金属显微结构主要是具有大约5μm至大约25μm粒度的初生铁素体。在显微结构中也存在第二相的微小片断,并且这些区域含有马氏体、贝氏体和珠光体团的混合物。另一方面,钢3示出了具有更细初始粒度的基本金属显微结构。该基本金属由粒度范围在大约5μm至大约15μm的初生铁素体相组成。钢3的第二相主要是粒状贝氏体(GB)和马氏体,而没有珠光体团。
申请人曾试图记载所披露的主题的可以合理预见的所有形式和应用。但是,可能存在不可预料但仍然等同的非实质性修改。虽然已经结合特定的示例性形式对本发明进行了描述,但是对于本领域技术人员来说,根据前面的描述在不脱离本发明的精神或范围的前提下许多改变、修改和变型都是显而易见的。因此,本发明旨在包含上面详细描述的所有的这些改变、修改和变型。
这里所引用的所有专利、测试/试验方法和其他文献(包括优先权文献)都通过引用结合于此,这些公开内容与本发明是一致的,并且允许将它们的所有权限结合于此。
当这里列出数值下限和数值上限时,从任何下限到任何上限的范围是可以预期的。在这里的详细描述和权利要求中的所有数值也应理解为通过“大约”进行修饰。

Claims (48)

1.一种钢结构,包括通过传统的熔化或二次精炼技术生产的两个或多个结构钢元件以及将这些元件的接合面连接在一起的摩擦搅拌焊接件,
其中,起始结构钢的化学成分和粒度满足如下的一条或多条标准:
a)0.02wt%<Ti+Nb<0.12wt%,
b)0.7<Ti/N<3.5,
c)0.5wt%<Mo+W+Cr+Cu+Co+Ni<1.75wt%,
d)0.01wt%<TiN+NbC+TiO/MgO<0.1wt%,
e)至少2微米的平均粒度,
其中,摩擦搅拌焊接件具有介于5-60微米之间的原始奥氏体粒度以及小于50vol%的马氏体-奥氏体成分,
其中,摩擦搅拌焊接件强度高于起始结构钢,并且通过裂尖张开位移测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于或等于0.05mm,或者通过夏比V型缺口冲击测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。
2.根据权利要求1所述的钢结构,其中,所述起始结构钢包括少于100ppm的硫和少于150ppm的磷。
3.根据权利要求2所述的钢结构,其中,所述起始结构钢包括少于50ppm的硫和少于75ppm的磷。
4.根据权利要求1所述的钢结构,其中,所述起始结构钢包括少于25vol%的珠光体。
5.根据权利要求4所述的钢结构,其中,所述起始结构钢包括少于15vol%的珠光体。
6.根据权利要求1所述的钢结构,其中,所述摩擦搅拌焊接件具有介于5-40微米之间的原始奥氏体粒度和少于25vol%的马氏体-奥氏体成分。
7.根据权利要求6所述的钢结构,其中,所述摩擦搅拌焊接件具有介于5-20微米之间的原始奥氏体粒度和少于10vol%的马氏体-奥氏体成分。
8.根据权利要求1所述的钢结构,其中,所述两个或多个结构钢元件是从X50、X52、X60、X65、X70、X80、X90、X100和X120中选出的API(美国石油学会)5L管规范的管等级。
9.根据权利要求1所述的钢结构,其中,所述两个或多个结构钢元件是从AISI等级1010、1020、1040、1080、1095、A36、A516、A440、A633、A656、4063、4340、6150以及ASTM等级A285、A387、A515、A516、A517选出的普通碳钢和合金钢。
10.根据权利要求1所述的钢结构,其中,通过裂尖张开位移测试在小于或等于0℃下测量到的所述摩擦搅拌焊接件刚度高于或等于0.1mm。
11.根据权利要求10所述的钢结构,其中,通过裂尖张开位移测试在小于或等于0℃下测量到的所述摩擦搅拌焊接件刚度高于或等于0.2mm。
12.根据权利要求1所述的钢结构,其中,通过夏比V型缺口冲击测试在小于或等于0℃下测量到的所述摩擦搅拌焊接件刚度高于75J。
13.根据权利要求12所述的钢结构,其中,通过夏比V型缺口冲击测试在小于或等于0℃下测量到的所述摩擦搅拌焊接件刚度高于150J。
14.根据权利要求1所述的钢结构,其中,所述起始结构钢还包括从5ppm至50ppm的硼。
15.根据权利要求1所述的钢结构,其中,所述起始结构钢包括每平方毫米少于100的平均粒度为0.5微米或更大的非金属内含物。
16.根据权利要求15所述的钢结构,其中,所述起始结构钢包括每平方毫米少于50的平均粒度为0.5微米或更大的非金属内含物。
17.根据权利要求16所述的钢结构,其中,所述起始结构钢包括每平方毫米少于20的平均粒度为0.5微米或更大的非金属内含物。
18.一种用于焊接结构钢的方法,包括:
提供通过传统的熔化或二次精炼技术生产的两个或多个结构钢元件,其中,起始结构钢的化学成分和粒度满足如下的一条或多条标准:
a)0.02wt%<Ti+Nb<0.12wt%,
b)0.7<Ti/N<3.5,
c)0.5wt%<Mo+W+Cr+Cu+Co+Ni<1.75wt%,
d)0.01wt%<TiN+NbC+TiO/MgO<0.1wt%,
e)至少2微米的平均粒度,
在足够形成摩擦搅拌焊接件的条件下对要被焊接的结构钢元件的接合面进行摩擦搅拌焊接,
其中,摩擦搅拌焊接件具有介于5-60微米之间的原始奥氏体粒度以及小于50vol%的马氏体-奥氏体成分,以及
其中,摩擦搅拌焊接件强度高于起始结构钢,并且通过裂尖张开位移测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于或等于0.05mm,或者通过夏比V型缺口冲击测试在小于或等于0℃下测量到的摩擦搅拌焊接件刚度高于40J。
19.根据权利要求18所述的方法,其中,所述起始结构钢包括少于100ppm的硫和少于150ppm的磷。
20.根据权利要求19所述的钢结构,其中,所述起始结构钢包括少于50ppm的硫和少于75ppm的磷。
21.根据权利要求18所述的方法,其中,所述起始结构钢包括少于25vol%的珠光体。
22.根据权利要求21所述的方法,其中,所述起始结构钢包括少于15vol%的珠光体。
23.根据权利要求18所述的方法,其中,所述足够形成摩擦搅拌焊接件的条件选自于下列条件中的至少一个:焊接期间搅拌区域的温度、焊接期间在搅拌区域的温度下花费的时间、摩擦搅拌焊接工具的焊接运行速度、摩擦搅拌焊接工具的转速、施加到摩擦搅拌焊接工具的扭转载荷、摩擦搅拌焊接工具上的向下力载荷或平移载荷、以及焊接件的冷却速率。
24.根据权利要求23所述的方法,其中,摩擦搅拌焊接工具的焊接运行速度的范围是每分钟1-30英寸。
25.根据权利要求24所述的方法,其中,摩擦搅拌焊接工具的焊接运行速度的范围是每分钟10-30英寸。
26.根据权利要求25所述的方法,其中,摩擦搅拌焊接工具的焊接运行速度的范围是每分钟15-30英寸。
27.根据权利要求23所述的方法,其中,摩擦搅拌焊接工具的转速的范围是100-800rpm。
28.根据权利要求27所述的方法,其中,摩擦搅拌焊接工具的转速的范围是100-500rpm。
29.根据权利要求28所述的方法,其中,摩擦搅拌焊接工具的转速的范围是100-200rpm。
30.根据权利要求23所述的方法,其中,摩擦搅拌焊接工具上的向下力载荷或平移载荷大于或等于1000lbf且小于或等于25000lbf。
31.根据权利要求23所述的方法,其中,焊接件的冷却速率的范围是每秒10℃到每秒400℃。
32.根据权利要求18所述的方法,其中,所述摩擦搅拌焊接件具有介于5-20微米之间的原始奥氏体粒度和少于10vol%的马氏体-奥氏体成分。
33.根据权利要求18所述的方法,其中,所述的两个或多个结构钢元件是从X50、X52、X60、X65、X70、X80、X90、X100和X120中选出的API(美国石油学会)5L管规范的管等级。
34.根据权利要求18所述的方法,其中,所述的两个或多个结构钢元件是从AISI等级1010、1020、1040、1080、1095、A36、A516、A440、A633、A656、4063、4340、6150以及ASTM等级A285、A387、A515、A516、A517选出的普通碳钢和合金钢。
35.根据权利要求18所述的方法,其中,通过裂尖张开位移测试在小于或等于0℃下测量到的所述摩擦搅拌焊接件刚度高于或等于0.2mm。
36.根据权利要求18所述的方法,其中,通过夏比V型缺口冲击测试在小于或等于0℃下测量到的所述摩擦搅拌焊接件刚度高于150J。
37.根据权利要求18所述的方法,其中,所述起始结构钢还包括从5ppm至50ppm的硼。
38.根据权利要求18所述的方法,其中,所述起始结构钢包括每平方毫米少于100的平均粒度为0.5微米或更大的非金属内含物。
39.根据权利要求38所述的方法,其中,所述起始结构钢包括每平方毫米少于50的平均粒度为0.5微米或更大的非金属内含物。
40.根据权利要求39所述的方法,其中,所述起始结构钢包括每平方毫米少于20的平均粒度为0.5微米或更大的非金属内含物。
41.根据权利要求23所述的方法,其中,晶粒粗化温差小于或等于400℃。
42.根据权利要求41所述的方法,其中,晶粒粗化温差小于或等于300℃。
43.根据权利要求42所述的方法,其中,晶粒粗化温差小于或等于200℃。
44.根据权利要求43所述的方法,其中,晶粒粗化温差小于或等于100℃。
45.根据权利要求41所述的方法,其中,在晶粒粗化温差下的时间少于或等于10秒。
46.根据权利要求42所述的方法,其中,在晶粒粗化温差下的时间少于或等于8秒。
47.根据权利要求43所述的方法,其中,在晶粒粗化温差下的时间少于或等于6秒。
48.根据权利要求44所述的方法,其中,在晶粒粗化温差下的时间少于或等于2秒。
CN2009801459695A 2008-11-18 2009-11-18 利用摩擦搅拌焊的高强度和刚度的钢结构 Pending CN102216483A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US19955708P 2008-11-18 2008-11-18
US61/199,557 2008-11-18
US12/590,956 2009-11-17
US12/590,956 US20100136369A1 (en) 2008-11-18 2009-11-17 High strength and toughness steel structures by friction stir welding
PCT/US2009/006165 WO2010059201A2 (en) 2008-11-18 2009-11-18 High strength and toughness steel structures by friction stir welding

Publications (1)

Publication Number Publication Date
CN102216483A true CN102216483A (zh) 2011-10-12

Family

ID=42198714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801459695A Pending CN102216483A (zh) 2008-11-18 2009-11-18 利用摩擦搅拌焊的高强度和刚度的钢结构

Country Status (8)

Country Link
US (1) US20100136369A1 (zh)
EP (1) EP2361182A2 (zh)
JP (1) JP2012509178A (zh)
CN (1) CN102216483A (zh)
AU (1) AU2009318145B2 (zh)
BR (1) BRPI0921536A2 (zh)
CA (1) CA2741735A1 (zh)
WO (1) WO2010059201A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204233A (zh) * 2012-03-14 2014-12-10 国立大学法人大阪大学 钢铁材料的制造方法
CN108375515A (zh) * 2018-01-25 2018-08-07 北京工业大学 一种获取铝合金板件搅拌摩擦焊接头疲劳小裂纹萌生及扩展形貌的实验方法
CN114406447A (zh) * 2022-01-25 2022-04-29 东北大学 一种管线钢高强度高韧性搅拌摩擦焊接头的制备方法
CN114850651A (zh) * 2022-06-02 2022-08-05 太仓阿尔法数字科技有限公司 一种在役管道焊接修复方法及装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116469A1 (en) * 2007-03-23 2008-10-02 Nkt Flexibles I/S A method of welding duplex stainless steel strip for the production of an armouring layer of a flexible pipe
US7762447B2 (en) * 2008-03-20 2010-07-27 Ut-Battelle, Llc Multiple pass and multiple layer friction stir welding and material enhancement processes
US10843291B2 (en) * 2008-11-15 2020-11-24 The Boeing Company Welding in preparation for superplastic forming
ES2631979T3 (es) * 2009-12-04 2017-09-07 Nippon Steel & Sumitomo Metal Corporation Junta de soldadura a tope formada usando un haz de electrones
US9802834B2 (en) 2010-02-05 2017-10-31 Battelle Memorial Institute Production of nanocrystalline metal powders via combustion reaction synthesis
US9283637B2 (en) * 2010-02-05 2016-03-15 Battelle Memorial Institute Friction stir weld tools having fine grain structure
JP6016170B2 (ja) * 2011-01-28 2016-10-26 エクソンモービル アップストリーム リサーチ カンパニー 優れた延性引き裂き強度を持つ高靱性溶接金属
JP6302162B2 (ja) * 2012-02-08 2018-03-28 新日鐵住金株式会社 耐溶融亜鉛腐食性および耐亜鉛割れ性に優れた溶融亜鉛浴設備用鋼板
CA2869382C (en) * 2012-04-06 2015-10-20 Jfe Steel Corporation Method for friction-stir welding of steel sheet
US8998067B2 (en) 2013-01-10 2015-04-07 Baker Hughes Incorporated Tubular friction welding joining method without rotation of the tubulars
GB201316829D0 (en) * 2013-09-23 2013-11-06 Rolls Royce Plc Flow Forming method
KR20150135452A (ko) * 2013-09-27 2015-12-02 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 스테인리스강 부재의 접합 방법 및 스테인리스강
KR102194358B1 (ko) * 2013-09-30 2020-12-23 제이에프이 스틸 가부시키가이샤 강판의 마찰 교반 접합 방법 및 접합 이음매의 제조 방법
KR101809388B1 (ko) * 2013-09-30 2017-12-14 제이에프이 스틸 가부시키가이샤 구조용 강의 마찰 교반 접합 방법 및 구조용 강의 접합 조인트의 제조 방법
MX2016003933A (es) * 2013-09-30 2016-06-17 Jfe Steel Corp Metodo de soldadura por friccion-agitacion para laminas de acero y metodo de fabricacion de junta.
JP6066216B2 (ja) * 2014-09-01 2017-01-25 株式会社日本製鋼所 低温靱性に優れた構造体およびその製造方法
CN104281774B (zh) * 2014-09-02 2017-06-13 上海交通大学 Q&p钢在不同应变率单拉后残余奥氏体含量的预测方法
JP6500317B2 (ja) * 2015-07-31 2019-04-17 国立大学法人大阪大学 摩擦接合方法
EP3437781B1 (en) * 2016-03-31 2022-02-09 JFE Steel Corporation Friction stir welding method and apparatus for structural steel
BR102016014426B1 (pt) * 2016-06-20 2021-07-06 Centro Nacional De Pesquisa Em Energia E Materiais processo de solda por fricção e mistura mecânica para união de tubos bimetálicos
WO2018079806A1 (ja) * 2016-10-31 2018-05-03 川崎重工業株式会社 摩擦撹拌点接合装置及び摩擦撹拌点接合方法
CA3081330A1 (en) * 2017-10-31 2019-05-09 MELD Manufacturing Corporation Solid-state additive manufacturing system and material compositions and structures
CA3106263A1 (en) * 2018-02-27 2019-09-06 Somnio Global Holdings, Llc Articles with nitrogen alloy protective layer and methods of making same
KR102188698B1 (ko) * 2018-06-21 2020-12-07 한국조선해양 주식회사 액화가스 저장탱크 및 선박
JP7134858B2 (ja) * 2018-12-20 2022-09-12 株式会社東芝 き裂補修方法及びき裂補修装置
JPWO2020195569A1 (zh) * 2019-03-27 2020-10-01
JP7238983B2 (ja) * 2019-06-17 2023-03-14 日本製鉄株式会社 接合継手、及び自動車用部材
WO2021187473A1 (ja) * 2020-03-18 2021-09-23 国立大学法人大阪大学 固相接合用鋼、固相接合用鋼材、固相接合継手及び固相接合構造物
CN115725896B (zh) * 2021-09-01 2023-11-28 中国科学院金属研究所 一种具有层状构型组织的超高强钢及其制备方法
CN114540599A (zh) * 2022-02-16 2022-05-27 驻马店中集华骏铸造有限公司 提高热疲劳性能的灰铸铁表面改性方法
CN115058571B (zh) * 2022-05-27 2024-04-16 北京科技大学 基于搅拌摩擦加工的具有奥氏体含量梯度高强钢制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181647A1 (en) * 2006-01-27 2007-08-09 Ford Steven J Application of high integrity welding and repair of metal components in oil and gas exploration, production and refining

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273233A (en) * 1964-10-27 1966-09-20 Caterpillar Tractor Co Method of bonding metal workpieces
US3478410A (en) * 1966-10-21 1969-11-18 Caterpillar Tractor Co Friction welding
US7235212B2 (en) * 2001-02-09 2007-06-26 Ques Tek Innovations, Llc Nanocarbide precipitation strengthened ultrahigh strength, corrosion resistant, structural steels and method of making said steels
DE69314438T2 (de) * 1992-11-30 1998-05-14 Sumitomo Electric Industries Niedrig legierter Sinterstahl und Verfahren zu dessen Herstellung
JPH10237583A (ja) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 高張力鋼およびその製造方法
US7005016B2 (en) * 2000-01-07 2006-02-28 Dofasco Inc. Hot rolled steel having improved formability
DE60105929T2 (de) * 2000-02-02 2005-02-03 Jfe Steel Corp. Hochfeste, hochzähe, nahtlose stahlrohre für leitungsrohre
JP2002273579A (ja) * 2001-03-15 2002-09-25 Hitachi Ltd 鉄基材料の接合方法およびその構造物
EP1325967A4 (en) * 2001-07-13 2005-02-23 Jfe Steel Corp STEEL TUBE WITH HIGH RESISTANCE, HIGHER THAN THAT OF API X6 STANDARD
US7105066B2 (en) * 2001-11-16 2006-09-12 Posco Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
EP1473376B1 (en) * 2002-02-07 2015-11-18 JFE Steel Corporation High strength steel plate and method for production thereof
EP1541252B1 (en) * 2002-05-24 2011-05-18 Nippon Steel Corporation Uoe steel pipe with excellent crash resistance, and method of manufacturing the uoe steel pipe
JP4128926B2 (ja) * 2003-09-03 2008-07-30 本田技研工業株式会社 無段変速機用プーリの可動フランジの製造方法
US6913186B2 (en) * 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin
WO2005094541A2 (en) * 2004-03-24 2005-10-13 Smith International, Inc. Solid state processing of materials through friction stir processing and friction stir mixing
JP4696615B2 (ja) * 2005-03-17 2011-06-08 住友金属工業株式会社 高張力鋼板、溶接鋼管及びそれらの製造方法
JP4792778B2 (ja) * 2005-03-29 2011-10-12 住友金属工業株式会社 ラインパイプ用厚肉継目無鋼管の製造方法
US7992759B2 (en) * 2005-06-10 2011-08-09 Megastir Technologies, LLC Two spiral stepped friction stir welding tool
US20070175967A1 (en) * 2006-01-27 2007-08-02 Narasimha-Rao Venkata Bangaru High integrity welding and repair of metal components
WO2007102380A1 (ja) * 2006-03-09 2007-09-13 Furuya Metal Co., Ltd. 摩擦攪拌接合用工具、それを用いた接合法及びそれにより得た加工物
EP2045348B1 (en) * 2006-07-13 2013-03-13 Nippon Steel & Sumitomo Metal Corporation Bend pipe and process for producing the same
US20080032152A1 (en) * 2006-08-04 2008-02-07 Vaughn Glen A Use of laser shock processing in oil & gas and petrochemical applications
JP4867538B2 (ja) * 2006-09-19 2012-02-01 マツダ株式会社 摩擦接合方法
JP5194522B2 (ja) * 2007-03-30 2013-05-08 Jfeスチール株式会社 摩擦撹拌接合法の施工性に優れた高強度高加工性熱延鋼板およびその製造方法
US20080302539A1 (en) * 2007-06-11 2008-12-11 Frank's International, Inc. Method and apparatus for lengthening a pipe string and installing a pipe string in a borehole
US8034199B2 (en) * 2007-09-27 2011-10-11 Nippon Steel Corporation Case-hardening steel excellent in cold forgeability and low carburization distortion property
EP2225067A2 (en) * 2007-11-28 2010-09-08 Frank's International, Inc. Methods and apparatus for forming tubular strings
CA2709560A1 (en) * 2007-12-17 2009-06-25 Exxonmobil Research And Engineering Company High strength nickel alloy welds through strain hardening
CA2730235C (en) * 2008-07-09 2013-10-29 Fluor Technologies Corporation High-speed friction stir welding
US7874471B2 (en) * 2008-12-23 2011-01-25 Exxonmobil Research And Engineering Company Butt weld and method of making using fusion and friction stir welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181647A1 (en) * 2006-01-27 2007-08-09 Ford Steven J Application of high integrity welding and repair of metal components in oil and gas exploration, production and refining

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204233A (zh) * 2012-03-14 2014-12-10 国立大学法人大阪大学 钢铁材料的制造方法
CN104204233B (zh) * 2012-03-14 2016-07-20 国立大学法人大阪大学 钢铁材料的制造方法
CN108375515A (zh) * 2018-01-25 2018-08-07 北京工业大学 一种获取铝合金板件搅拌摩擦焊接头疲劳小裂纹萌生及扩展形貌的实验方法
CN108375515B (zh) * 2018-01-25 2020-04-28 北京工业大学 一种获取铝合金板件搅拌摩擦焊接头疲劳小裂纹萌生及扩展形貌的实验方法
CN114406447A (zh) * 2022-01-25 2022-04-29 东北大学 一种管线钢高强度高韧性搅拌摩擦焊接头的制备方法
CN114406447B (zh) * 2022-01-25 2022-09-20 东北大学 一种管线钢高强度高韧性搅拌摩擦焊接头的制备方法
CN114850651A (zh) * 2022-06-02 2022-08-05 太仓阿尔法数字科技有限公司 一种在役管道焊接修复方法及装置
CN114850651B (zh) * 2022-06-02 2023-09-12 太仓阿尔法数字科技有限公司 一种在役管道焊接修复方法及装置

Also Published As

Publication number Publication date
AU2009318145B2 (en) 2016-01-21
CA2741735A1 (en) 2011-05-27
JP2012509178A (ja) 2012-04-19
WO2010059201A2 (en) 2010-05-27
US20100136369A1 (en) 2010-06-03
EP2361182A2 (en) 2011-08-31
BRPI0921536A2 (pt) 2018-10-23
AU2009318145A1 (en) 2010-05-27
WO2010059201A3 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
CN102216483A (zh) 利用摩擦搅拌焊的高强度和刚度的钢结构
Verma et al. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review
Roncery et al. Welding of twinning-induced plasticity steels
JP6016170B2 (ja) 優れた延性引き裂き強度を持つ高靱性溶接金属
RU2275281C2 (ru) Металл сварного шва для соединения высокопрочных низколегированных сталей
Bailey et al. Welding steels without hydrogen cracking
CA2745709C (en) Butt weld and method of making using fusion and friction stir welding
Taban et al. Laser welding of modified 12% Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties
Pankaj et al. Experimental investigation on CO2 laser butt welding of AISI 304 stainless steel and mild steel thin sheets
CN100595443C (zh) 耐脆性破坏裂纹传播止裂特性优异的t型焊接接头构造
JP4528089B2 (ja) 耐脆性破壊発生特性を有する船体用大入熱突合せ溶接継手
Kitagawa et al. Recent development of high-strength and tough welding consumables for offshore structures
JP2007119811A (ja) 溶接継手及びその製造方法
Giri et al. Joining of titanium and stainless steel by using different welding processes: A review
KR20190042052A (ko) 페라이트계 내열강 용접 구조체의 제조 방법 및 페라이트계 내열강 용접 구조체
JP6323633B1 (ja) フェライト系耐熱鋼溶接構造体の製造方法及びフェライト系耐熱鋼溶接構造体
OSOBA et al. Microstructure and Mechanical properties of Dissimilar Welds of Duplex and API Steel for Offshore Applications
Mohammadijoo Development of a welding process to improve welded microalloyed steel characteristics
Vaish et al. Welding of Steel-Its Mechanism and Applications in Multiple Sectors.
Nathan et al. Effect of Preheating Temperature on Microstructure and Mechanical Properties of Friction Stir Welded DMR249A HSLA Steel Joints
Hamad et al. Effect of GMAW procedure on the heat-affected zone (HAZ) toughness of X80 (grade 550) linepipe
Wang et al. Weldability of high strength and enhanced hardenability steels
Alvarez Girth Welding of Internally Clad API 5L Grade X65 Pipes using Low Alloy Steel Filler Metal
Saini et al. Investigating Failure in Laser-Welded Joints of Microalloyed Steel: A Systematic Review
Nagayama et al. Development of welding procedures for X90-grade seamless pipes for riser applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20151028

C20 Patent right or utility model deemed to be abandoned or is abandoned