CN102201571A - 一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用 - Google Patents

一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用 Download PDF

Info

Publication number
CN102201571A
CN102201571A CN2011100846276A CN201110084627A CN102201571A CN 102201571 A CN102201571 A CN 102201571A CN 2011100846276 A CN2011100846276 A CN 2011100846276A CN 201110084627 A CN201110084627 A CN 201110084627A CN 102201571 A CN102201571 A CN 102201571A
Authority
CN
China
Prior art keywords
mcmb
micro
composite material
nano
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100846276A
Other languages
English (en)
Other versions
CN102201571B (zh
Inventor
李春生
孙嬿
宋明阳
王莉娜
姚维学
张志佳
马雪刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANGSHAN BAOTIE COAL CHEMICAL INDUSTRY CO LTD
Hebei United University
Original Assignee
TANGSHAN BAOTIE COAL CHEMICAL INDUSTRY CO LTD
Hebei United University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANGSHAN BAOTIE COAL CHEMICAL INDUSTRY CO LTD, Hebei United University filed Critical TANGSHAN BAOTIE COAL CHEMICAL INDUSTRY CO LTD
Priority to CN2011100846276A priority Critical patent/CN102201571B/zh
Publication of CN102201571A publication Critical patent/CN102201571A/zh
Application granted granted Critical
Publication of CN102201571B publication Critical patent/CN102201571B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用。本发明专利围绕中间相炭微球在储能领域应用的科学问题开展研究,在微波辐射反应体系下设计合成多种微纳米复合材料,成功将氧化锰、金属钒酸盐、金属钼酸盐材料原位生长在中间相炭微球表面,且通过实验关键参数的调整可控制材料的组成及微观结构。该材料复合方法具有无温度滞后效应、反应温和、工艺简单、节约能源、产率高等特点;由这种方法制备出的材料可为能量储存与转化、发光功能器件、生物医药等领域的研究提供必要的理论基础和实践经验。

Description

一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用
技术领域
本发明专利属于微纳米复合材料的制备技术领域,尤其是涉及功能储能器件中关键电极材料的合成技术,特别是一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用;通过调控实验参数,可选择性地在炭微球表面均匀复合零维/一维/二维/三维微纳米功能材料。
技术背景
近年来,锂离子电池、超级电容器和金属空气电池的电化学体系成为高能化学储能器件的发展重点。但上述体系的实际放电能量密度较理论能量密度还有较大的差距,其可通过优化正负极关键材料、电解液组成、电池结构等因素进一步提高能量储存与转化的效率。值得关注的是,高活性中间相炭微球(MCMB)是碳基材料的重要组成部分,也是上述电化学储能器件的共用材料,更是进一步提升电化学综合性能的重要突破口之一。
对于锂离子二次电池的负极材料而言,中间相炭微球使锂离子电池在安全性和循环性能上有了大幅度的提高,为正极材料容量的有效释放保驾护航,是非常具有发展潜力的新型材料,其在电池中表现出较低的不可逆容量和良好的安全性,成为碳基材料的研究重点之一。对材料改型而言,已有文献对贵金属Ag纳米颗粒/MCMB、Sn纳米颗粒/MCMB、LiCoO2/MCBM和石墨薄膜/MCMB的复合材料也相继得以研究,均展现出了较好的电化学活性,具有较稳定的循环容量(如:R.H.Y.Subban,A.K.Arof.J.Power Sources,2004,134,211-221;G.X.Wang,J.Yao,H.K.Liu,S.X.Dou,J.H.Ahn.Electrochim.Acta,2004,50,517-522;C.Y.Wan,H.Li,M.C.Wu,C.J.Zhao.J.Appl.Electrochem.,2009,39,1081-1086.)。总体来看,锂离子电池用MCMB复合材料的表面催化成核和可控生长方面仍有待深入研究。
对于超级电容器的关键电极材料而言,中间相炭微球微纳米复合材料具有特定微观形貌和发达的孔隙结构特征,已证明其在超级电容器中可发挥重要积极作用(H.Q.Wang,Z.S.Li,Y.G.Huang,Q.Y.Li,X.Y.Wang.J.Mater Chem.,2010,20,3883-3889;H.Q.Wang,Z.S.Li,J.H.Yang,Q.Y.Li,X.X.Zhong.J.PowerSources,2009,194,1218-1221.)。但是,超级电容器用MCMB复合材料研究的复合物种类还比较单一,对于其他功能化合物的高效复合及电化学作用机理还有待进一步研究。
金属空气电池具备蓄电池和燃料电池的双重优点。但是,正极电流密度低且极化大、电解质碳酸化和水蒸发流失等问题一直制约着金属空气电池的蓬勃发展,因此科研工作者对于正极氧化还原催化剂的研究成为解决上述问题的焦点。据文献报道,中间相炭微球在表面吸附固定超细铂颗粒而成为催化剂,处理后的材料在分子吸附性能方面有显著提高(许斌,陈鹏.新型碳材料,1996,11,4-8.)。但是,开展以MCMB为分散介质的非贵重金属微纳米分子级复合技术应用于金属空气电池中的文献报道还比较少,这种优化后的功能材料便于电子传导,从而展现良好的极限扩散电流、有效减小电极极化、具有较多的催化转移电子数,最终大幅提高空气电池性能。
综上所述,国内外的科研工作者就中间相炭微球在锂离子电池、超级电容器和金属空气电池领域的研究取得了丰硕的成果,但还存在某些科学难题;主要体现在:复合到中间相炭微球的材料种类还比较有限;自组装的微观结构相对较少,尤其对于复杂化合物的组成、微观结构与储能性能研究较少。另外,本课题组在前期的实验中已经成功制备出了金属钼酸盐和钒酸锌微纳米材料的可控制备工作(中国发明专利申请号:201110038566.X;201110038570.6;201110038576.3)。本发明专利特色和创新点是在课题组前期的工作基础上开展炭球材料高效复合微纳米材料制备及应用基础研究。
基于以上考虑,本发明专利围绕中间相炭微球在储能领域应用的科学问题开展研究,采用微波辐射法设计合成中间相炭微球微纳米复合材料,成功制备出了氧化锰、金属钒酸盐、金属钼酸盐材料原位生长在中间相炭微球表面,这种复合结构在锂离子电池、超级电容器和金属空气电池均可展现优异的电化学性能和光明的发展前景。
发明内容
本发明的目的在于为上述储能器件中存在的问题提供行之有效的解决方案,提供一种采用微波辐射法合成中间相炭微球复合微纳米材料的方法,这种技术路线适合多种材料在炭微球表面实现分子级自组装,且通过实验参数调整可选择性地在炭微球表面均匀复合零维/一维/二维/三维微纳米功能材料。该方法具有反应无温度滞后效应、工艺条件可控制性强、反应过程便于监控、形貌可控、产率高和成本低等优点。
本发明的技术方案
本发明专利围绕中间相炭微球在离子电池、超级电容器和金属空气电池中关键材料的应用需求特点,在保证总体技术路线相同的前提下,设计合成了炭微球表面复合氧化锰、金属钒酸盐及金属钼酸盐材料。根据复合物质的不同,本发明专利拟采取相同的技术方案,但使用不同的复合原料种类,具体说明如下:
A.二氧化锰/MCMB微纳米复合材料的合成
以醋酸锰和高锰酸钾为原料,以蒸馏水为溶剂;并添加MCMB材料,利用微波辐射法将二氧化锰在炭球表面自组装成复合微纳米材料;包括以下步骤:
第一、在室温下,准确称量醋酸锰Mn(AC)2固体粉末,加入一定体积的蒸馏水,强烈搅拌10分钟至固体完全溶解,制得溶液a;
第二、称量一定质量的MCMB粉末加入到溶液a中,加入10wt%无水乙醇,搅拌10分钟至炭球表面完全润湿,再称量一定质量高锰酸钾固体加入到此溶液中搅拌5分钟,制得溶液b;
第三、将溶液b完全转移到圆底烧瓶中,微波辐射反应30分钟,自然冷区后便制备出超细粉体二氧化锰/MCMB微纳米复合材料。
B.钒酸盐/MCMB复合材料的合成
以硝酸锌、硝酸镁或硝酸钙中的任意一种盐为金属阳离子源,以偏钒酸铵为钒源,以蒸馏水为溶剂;并添加MCMB粉体材料到上述原料中,利用微波辐射法使对应金属钒酸盐在炭球表面自组装成复合功能材料;包括以下步骤:
第一、在室温下,准确称量硝酸锌、硝酸镁或硝酸钙固体粉末中的任意一种,加入一定体积的蒸馏水,强烈搅拌10分钟至固体完全溶解,制得溶液a;
第二、称量偏钒酸铵固体粉末,使其摩尔数是硝酸盐的摩尔数2倍,加入一定量60~75℃的热蒸馏水,搅拌10分钟至偏钒酸铵完全溶解,加入10wt%的无水乙醇,再加入一定质量的MCMB粉体,搅拌15分钟至混合均匀;逐滴加入到溶液a中,然后将混合溶液强烈搅拌15分钟,制得溶液b;
第三、将溶液b完全转移到圆底烧瓶中,微波辐射反应30分钟,经后处理后制备出超细粉体钒酸盐/MCMB微纳米复合材料;在MCMB复合材料中,钒酸锌中锌阳离子和钒的摩尔比为1∶1;钒酸镁和钒酸钙中金属阳离子与钒的摩尔比为1∶2、分子式通式为MV2O6
C.钼酸盐/MCMB微纳米复合材料的合成
以Ca(NO3)2·6H2O和钼酸铵为原料,使用蒸馏水作溶剂;并添加MCMB粉末,利用微波辐射法使钼酸盐在中间相炭微球表面自组装成复合微纳米材料;包括以下步骤:
第一、在室温下,准确称量Ca(NO3)2·6H2O固体,加入一定体积的蒸馏水,搅拌至固体完全溶解,制得溶液a;
第二、称量钼酸铵固体,加入蒸馏水和10wt%无水乙醇,搅拌至固体完全溶解,加入适量MCMB并搅拌混匀,将硝酸钙水溶液全部转移到钼酸铵和MCMB混合溶液中,强烈搅拌10分钟,制得溶液b;
第三、将溶液b全部转移到圆底烧瓶中,微波辐射反应30分钟,制备出超细钼酸钙CaMoO4/MCMB微纳米复合材料。
所述的复合材料中,其特征在于以中间相炭微球为主体材料,在其表面原位嫁接氧化锰、金属钒酸盐、金属钼酸盐材料,从而得到中间相炭微球微纳米复合材料。
所述的MnO2/中间相炭微球微纳米复合材料中MnO2的形貌为纳米颗粒、纳米线或纳米片;所述的钒酸盐/中间相炭微球微纳米复合材料中钒酸盐的形貌为纳米颗粒、纳米花、纳米线;所述的钼酸盐/中间相炭微球微纳米复合材料中钼酸盐的形貌为由纳米片构成纳米盘的多级结构。
所述的微波辐射法合成中间相炭微球微纳米复合材料的方法中,其特征在于硝酸锌、硝酸镁或硝酸钙与MBMC的摩尔比为10∶1~10;硝酸锌、硝酸镁或硝酸钙固体溶解到水中的摩尔浓度为0.00125~0.4000mol/L;在金属钒酸盐合成方法中,硝酸锌、硝酸镁或硝酸钙与偏钒酸铵的摩尔数比为1∶2。
所述的中间相炭微球微纳米组合材料能应用于离子电池、超级电容器和金属空气电池等高效储能器件中。
本发明的优点及效果
本发明专利采用微波辐射法合成中间相炭微球微纳米复合材料,其优点是可有效调控简单氧化物、金属钒酸盐和金属钼酸盐复合物的物相和微观形貌,最终得到结构规整、性能优越的复合材料。此微波辐射反应体系中,金属盐、偏钒酸铵或钼酸铵的摩尔数对产物的微观结构起着决定性的作用。该材料复合方法具有无温度滞后效应、反应温和、工艺简单、产率高等特点;这种方法制备出的材料可为能量储存与转化、发光功能器件、生物医药等领域的研究提供必要的理论基础和实践经验。
附图说明
图1为MnO2纳米球/MCMB微纳米复合材料的低倍SEM扫描电镜图
图2为MnO2纳米球/MCMB微纳米复合材料的高倍SEM扫描电镜图
图3微MnO2超长纳米线/MCMB微纳米复合材料的低倍SEM扫描电镜图
图4微MnO2超长纳米线/MCMB微纳米复合材料的高倍SEM扫描电镜图
图5为钒酸锌纳米颗粒/MCMB微纳米复合材料的SEM扫描电镜图
图6为钒酸锌纳米花/MCMB微纳米复合材料的SEM扫描电镜图
图7为钒酸钙纳米颗粒与微米线共存结构/MCMB微纳米复合材料的SEM扫描电镜图
图8为钒酸钙纳米线/MCMB微纳米复合材料的低倍SEM扫描电镜图
图9为钒酸钙纳米线/MCMB微纳米复合材料的高倍SEM扫描电镜图
图10为钒酸镁纳米颗粒/MCMB微纳米复合材料的SEM扫描电镜图
图11为钒酸镁纳米片/MCMB微纳米复合材料的SEM扫描电镜图
图12为钼酸钙多级结构纳米盘/MCMB微纳米复合材料的低倍SEM扫描电镜图
图13为钼酸钙多级结构纳米盘/MCMB微纳米复合材料的高倍SEM扫描电镜图
具体实施方式
实施例1:MnO2纳米球/MCMB复合材料的制备
在室温下,将1.5克MCMB,分散于质量比为10%的乙醇水溶液中,并在此溶液中加入0.2克高锰酸钾固体,在磁力搅拌器下混合15分钟,使高锰酸钾溶液充分吸附到MCMB球体表面;再加入1.25mL 50%的Mn(NO3)2浓溶液,强烈搅拌10分钟,在微波辐射反应器中反应30分钟,反应结束后将所得产物进行离心分离、蒸馏水洗涤和无水乙醇洗涤数次。产物即为MnO2纳米片/MCMB微纳米复合材料。经扫描电子显微镜(SEM)测试表明(图1,图2):产物主体形貌是炭球表面为分散均匀、直径均一的超细纳米颗粒;如图4中高倍率电镜图表明纳米球的直径30~80nm。
实施例2:MnO2超长纳米线/MCMB微纳米复合材料的制备
在室温下,将1.5克MCMB粉末,分散于质量比为10%的乙醇水溶液中,加入0.4克高锰酸钾固体,在磁力搅拌下混合15分钟,使高锰酸钾溶液充分吸附到MCMB球体表面;再加入2.5mL 50%的Mn(NO3)2浓溶液,强烈搅拌10分钟,在微波辐射反应器中反应30分钟,反应结束后将所得产物进行离心分离、蒸馏水洗涤和无水乙醇洗涤数次。产物即为MnO2超长纳米线/MCMB微纳米复合材料。经SEM测试表明(图3,图4):产物主体形貌为直径20μm的中间相炭微球表面均匀生长着阵列MnO2纳米针;由图6的高倍率扫描电镜图表明一维纳米结构的直径仅为30~100纳米。
实施例3:钒酸锌纳米颗粒/MCMB复合微纳米材料的制备
在室温下,准确称量硝酸锌固体,以蒸馏水为溶剂,配置摩尔浓度为0.00125mol/L的溶液;称量一定质量的偏钒酸铵固体,使其摩尔数与硝酸锌的摩尔数的比值为1∶2,在偏钒酸铵中加入60~75℃的热蒸馏水,搅拌至完全溶解,得均一溶液,加入10wt%的无水乙醇,再向上述溶液中加入1.5克MCMB粉末,搅拌15分钟至悬浊液分散均匀,再将硝酸锌溶液转移到偏钒酸铵与MCMB粉末混合悬浊液中,强烈搅拌10分钟;将此混合物转移至圆底烧瓶中,并置于微波辐射反应器中反应30分钟,反应结束后产物即为钒酸锌/MCMB微纳米复合材料。经SEM(图5)检测表明:在中间相炭微球的表面均匀分散着大量纳米颗粒,其直径为30~80nm、形貌近似于球形。
实施例4:钒酸锌纳米花/MCMB复合微纳米材料的制备
在室温下,配置摩尔浓度为0.00125mol/L的硝酸锌水溶液;称量偏钒酸铵固体,使其摩尔数是硝酸锌摩尔数的2倍,加入60~75℃的热蒸馏水并搅拌至偏钒酸铵完全溶解,得均一溶液,加入10wt%的无水乙醇,再向上述溶液中加入0.5克MCMB粉末,搅拌15分钟至悬浊液均一混合,再将硝酸锌水溶液转移到偏钒酸铵和MCMB混合悬浊液中,强烈搅拌10分钟;将此混合溶液倒入圆底烧瓶中,并置于微波辐射反应器中反应30分钟,反应结束后产物即为钒酸锌/MCMB微纳米复合材料。经SEM(图6)测试表明:中间相炭微球的表面复合着团状纳米花,构成纳米花的纳米片向多个方向辐射呈花瓣状,表明材料在后期生长过程中可向不同空间方向伸展,构成纳米花的纳米片的尺寸为200~700nm、厚度为50~100nm。
实施例5:钒酸钙纳米颗粒与微米线共存结构/MCMB复合微纳米材料的制备
在室温下,准确称量硝酸钙固体,以蒸馏水为溶剂,配置摩尔浓度为0.001mol/L的溶液;称量一定质量的偏钒酸铵粉末,使其摩尔数与硝酸钙的摩尔数的比值为1∶2,在偏钒酸铵中加入60~75℃的热蒸馏水,搅拌至完全溶解,得均一澄清溶液,加入10wt%的无水乙醇,再向上述溶液中加入1.5克MCMB粉末,搅拌15分钟至悬浊液混合均匀,再将硝酸钙溶液全部转移到偏钒酸铵和MCMB混合溶液中,强烈搅拌10分钟;将制得的反应原料混合物全部转移到圆底烧瓶中,并置于微波辐射反应器中反应30分钟,反应结束后经后处理产物即为钒酸钙/MCMB复合微纳米材料。经SEM(图7)检测表明:中间相炭微球的表面复合着大量纳米颗粒和微米线的混合结构;其中,纳米颗粒的直径为100~450nm,多个纳米线捆绑在一起的直径600~900nm。
实施例6:钒酸钙纳米线/MCMB复合微纳米材料的制备
在室温下,准确称量硝酸钙固体,以蒸馏水为溶剂,配置摩尔浓度为0.001mol/L的溶液;称量偏钒酸铵固体,使其摩尔数与硝酸钙的摩尔数的比值为1∶2,在偏钒酸铵中加入60~75℃的热蒸馏水,搅拌至完全溶解,得均一澄清溶液,加入10wt%的无水乙醇,再向上述溶液中加入0.5克MCMB粉末,搅拌15分钟至悬浊液混合均匀,再将硝酸钙水溶液转移到钒酸铵和MCMB混合溶液中,强烈搅拌10分钟;将制得的混合物转移到圆底烧瓶中,并置于微波辐射反应器中反应30分钟,反应结束后经后处理产物即为钒酸钙/MCMB微纳米复合材料。经SEM(图8,9)检测表明:中间相炭微球表面均匀分散着直径均匀的超长纳米线,纳米线直径为90~100nm、长度为500~850nm。
实施例7:钒酸镁纳米颗粒/MCMB复合微纳米材料的制备
在室温下,准确称量硝酸镁固体,以蒸馏水为溶剂,配置摩尔浓度为0.0075mol/L的溶液;称量偏钒酸铵固体,使其摩尔数与硝酸镁的摩尔数的比值为1∶2,在偏钒酸铵中加入60~75℃的热蒸馏水,搅拌至完全溶解,得均一澄清溶液,加入10wt%的无水乙醇,再向上述溶液中加入1.5克MCMB,搅拌15分钟至悬浊液混合均匀,再将硝酸镁水溶液全部转移到偏钒酸铵和MCMB混合悬浊液中,强烈搅拌10分钟;将制得的反应原料混合物全部转移到圆底烧瓶中,并置于微波辐射反应器中反应30分钟,反应结束后经后处理产物即为钒酸镁/MCMB复合微纳米材料。经SEM(图10)检测表明:中间相炭微球的表面均匀分散着大量纳米颗粒;其中,纳米颗粒的直径为300~750nm。
实施例8:钒酸镁纳米片/MCMB微纳米复合材料的制备
在室温下,准确称量硝酸镁固体,以蒸馏水为溶剂,配置摩尔浓度为0.0075mol/L的溶液;称量偏钒酸铵固体,使其摩尔数与硝酸镁的摩尔数的比值为1∶2,在偏钒酸铵中加入60~75℃的热蒸馏水,搅拌至完全溶解,得均一澄清溶液,加入10wt%的无水乙醇,再向上述溶液中加入0.5克MCMB粉末,搅拌15分钟至悬浊液混合均匀,再将硝酸镁水溶液全部转移到钒酸铵和MCMB混合悬浊液中,强烈搅拌10分钟;将制得的混合物全部转移到圆底烧瓶中,并置于微波辐射反应器中反应30分钟,反应结束后经后处理产物即为钒酸镁/MCMB微纳米复合材料。经SEM(图11)检测表明:中间相炭微球上均匀分散着纳米片,其厚度为30~80nm、直径为200~700nm。
实施例9:钼酸钙多级结构纳米盘/MCMB复合微纳米材料的制备
在室温下,准确称量Ca(NO3)2·6H2O,加入蒸馏水,配置0.4mol/L的溶液;称量钼酸铵固体,使得钼与金属盐的摩尔比为1∶1,加入蒸馏水并搅拌10分钟至固体完全溶解,得均一澄清溶液,加入10wt%的无水乙醇,再向钼酸铵溶液中加入0.5克MCMB,继续搅拌15分钟至悬浊液混合均匀;再将硝酸钙水溶液全部转移到钼酸铵和MCMB混合悬浊液中,强烈搅拌10分钟;将制得的混合物全部转移到圆底烧瓶中,并置于微波辐射反应器中反应30分钟,反应结束后产物即为钼酸钙CaMoO4/MCMB复合微纳米材料。经SEM(图12,13)测试表明:中间相炭微球表面分散纳米片构成的纳米盘超级结构,从高倍率扫描电镜图片可看出纳米盘的断面可与炭球的表面紧密生长在一起,说明这种纳米盘的纳米片间距与炭球的石墨层间距相似,进而可构成分子级组装的超级结构。
实施例10:中间相炭微球微纳米复合材料的应用研究
本发明专利所制备的中间相炭微球微纳米复合材料可应用于锂离子电池、超级电容器和金属空气电池:由90wt%中间相炭微球微纳米复合材料、5wt%炭黑、5wt%聚偏氟乙烯粘合剂经过混合、制膏、干燥等工序得到电极片,可用于组装锂离子电池和超级电容器;由65wt%中间相炭微球微纳米复合材料、25wt%炭黑、10wt%聚四氟乙烯乳液粘合剂经过混合、制膏、压片、干燥等工序得到空气电池中用电池催化膜,并完成空气中的氧气的高效催化。

Claims (7)

1.一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用,其特征在根据复合物质的不同,本发明专利拟采取相同的技术方案,但使用不同的复合原料种类,具体说明如下:
A.二氧化锰/MCMB微纳米复合材料的合成
以醋酸锰和高锰酸钾为原料,以蒸馏水为溶剂;并添加MCMB材料,利用微波辐射法将二氧化锰在炭球表面自组装成复合微纳米材料;包括以下步骤:
第一、在室温下,准确称量醋酸锰Mn(AC)2固体粉末,加入一定体积的蒸馏水,强烈搅拌10分钟至固体完全溶解,制得溶液a;
第二、称量一定质量的MCMB粉末加入到溶液a中,加入10wt%无水乙醇,搅拌10分钟至炭球表面完全润湿,再称量一定质量高锰酸钾固体加入到此溶液中搅拌5分钟,制得溶液b;
第三、将溶液b完全转移到圆底烧瓶中,微波辐射反应30分钟,自然冷区后便制备出超细粉体二氧化锰/MCMB微纳米复合材料;
B.钒酸盐/MCMB复合材料的合成
以硝酸锌、硝酸镁或硝酸钙中的任意一种盐为金属阳离子源,以偏钒酸铵为钒源,以蒸馏水为溶剂;并添加MCMB粉体材料到上述原料中,利用微波辐射法使对应金属钒酸盐在炭球表面自组装成复合功能材料;包括以下步骤:
第一、在室温下,准确称量硝酸锌、硝酸镁或硝酸钙固体粉末中的任意一种,加入一定体积的蒸馏水,强烈搅拌10分钟至固体完全溶解,制得溶液a;
第二、称量偏钒酸铵固体粉末,使其摩尔数是硝酸盐的摩尔数2倍,加入一定量60~75℃的热蒸馏水,搅拌10分钟至偏钒酸铵完全溶解,加入10wt%的无水乙醇,再加入一定质量的MCMB粉体,搅拌15分钟至混合均匀;逐滴加入到溶液a中,然后将混合溶液强烈搅拌15分钟,制得溶液b;
第三、将溶液b完全转移到圆底烧瓶中,微波辐射反应30分钟,经后处理后制备出超细粉体钒酸盐/MCMB微纳米复合材料;在MCMB复合材料中,钒酸锌中锌阳离子和钒的摩尔比为1∶1;钒酸镁和钒酸钙中金属阳离子与钒的摩尔比为1∶2、分子式通式为MV2O6
C.钼酸盐/MCMB微纳米复合材料的合成
以Ca(NO3)2·6H2O和钼酸铵为原料,使用蒸馏水作溶剂;并添加MCMB粉末,利用微波辐射法使钼酸盐在中间相炭微球表面自组装成复合微纳米材料;包括以下步骤:
第一、在室温下,准确称量Ca(NO3)2·6H2O固体,加入一定体积的蒸馏水,搅拌至固体完全溶解,制得溶液a;
第二、称量钼酸铵固体,加入蒸馏水和10wt%无水乙醇,搅拌至固体完全溶解,加入适量MCMB并搅拌混匀,将硝酸钙水溶液全部转移到钼酸铵和MCMB混合溶液中,强烈搅拌10分钟,制得溶液b;
第三、将溶液b全部转移到圆底烧瓶中,微波辐射反应30分钟,制备出超细钼酸钙CaMoO4/MCMB微纳米复合材料。
2.根据权利要求1所述的一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用,其特征在于以中间相炭微球为主体材料,在其表面原位嫁接氧化锰、金属钒酸盐、金属钼酸盐材料,从而得到中间相炭微球微纳米复合材料。
3.根据权利要求1所述的一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用,其特征在于:所述的MnO2/中间相炭微球微纳米复合材料中MnO2的形貌为纳米颗粒、纳米线或纳米片;所述的钒酸盐/中间相炭微球微纳米复合材料中钒酸盐的形貌为纳米颗粒、纳米花、纳米线;所述的钼酸盐/中间相炭微球微纳米复合材料中钼酸盐的形貌为由纳米片构成纳米盘的多级结构。
4.根据权利要求1一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用,其特征在于:硝酸锌、硝酸镁或硝酸钙与MBMC的摩尔比为10∶1~10。
5.根据权利要求1所述的一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用,其特征在于:硝酸锌、硝酸镁或硝酸钙固体溶解到水中的摩尔浓度为0.00125~0.4000mol/L。
6.根据权利要求1所述的一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用,其特征在于:硝酸锌、硝酸镁或硝酸钙与偏钒酸铵的摩尔数比为1∶2。
7.权利要求1所述一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用,其特征在于所述的中间相炭微球微纳米组合材料能应用于离子电池、超级电容器和金属空气电池等高效储能器件中。
CN2011100846276A 2011-03-29 2011-03-29 一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用 Expired - Fee Related CN102201571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100846276A CN102201571B (zh) 2011-03-29 2011-03-29 一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100846276A CN102201571B (zh) 2011-03-29 2011-03-29 一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用

Publications (2)

Publication Number Publication Date
CN102201571A true CN102201571A (zh) 2011-09-28
CN102201571B CN102201571B (zh) 2013-06-19

Family

ID=44662075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100846276A Expired - Fee Related CN102201571B (zh) 2011-03-29 2011-03-29 一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用

Country Status (1)

Country Link
CN (1) CN102201571B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386380A (zh) * 2011-10-21 2012-03-21 福州大学 高性能ZnV2O4/介孔碳复合材料的制备方法和应用
CN106941158A (zh) * 2017-03-21 2017-07-11 成都新柯力化工科技有限公司 一种钒酸锌‑三氧化钼纳米片锂电池电极材料及制备方法
CN110305539A (zh) * 2019-07-30 2019-10-08 南京工业大学 一种日夜双效能辐射降温器及其制备方法
CN111592737A (zh) * 2020-05-27 2020-08-28 北京化工大学 一种碳基增强体/树脂复合材料高强度界面的微波辅助高效构筑方法
CN111864220A (zh) * 2020-07-09 2020-10-30 合肥国轩高科动力能源有限公司 一种Pt@MnO2/C催化剂及其制备方法、应用
CN112093821A (zh) * 2020-09-16 2020-12-18 黑龙江大学 一种尖晶石钒酸镁微球的制备方法
CN112374537A (zh) * 2020-11-02 2021-02-19 四川大学 一种金属钒酸盐纳米复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393800A (zh) * 2008-10-11 2009-03-25 广西师范大学 超级电容器用电极材料及该电极材料的制备方法
CN101546651A (zh) * 2009-05-07 2009-09-30 哈尔滨工程大学 一种纳米石墨片/掺杂二氧化锰复合材料及其制备方法
CN101599370A (zh) * 2009-04-23 2009-12-09 哈尔滨工程大学 一种快速制备导电碳/二氧化锰复合电极材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393800A (zh) * 2008-10-11 2009-03-25 广西师范大学 超级电容器用电极材料及该电极材料的制备方法
CN101599370A (zh) * 2009-04-23 2009-12-09 哈尔滨工程大学 一种快速制备导电碳/二氧化锰复合电极材料的方法
CN101546651A (zh) * 2009-05-07 2009-09-30 哈尔滨工程大学 一种纳米石墨片/掺杂二氧化锰复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭永兴等: "超级电容器新型复合电极材料MnO2/活性MCMB的研究", 《电子元件与材料》, vol. 29, no. 5, 31 May 2010 (2010-05-31), pages 41 - 44 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386380A (zh) * 2011-10-21 2012-03-21 福州大学 高性能ZnV2O4/介孔碳复合材料的制备方法和应用
CN102386380B (zh) * 2011-10-21 2013-02-27 福州大学 高性能ZnV2O4/介孔碳复合材料的制备方法和应用
CN106941158A (zh) * 2017-03-21 2017-07-11 成都新柯力化工科技有限公司 一种钒酸锌‑三氧化钼纳米片锂电池电极材料及制备方法
CN106941158B (zh) * 2017-03-21 2018-06-01 成都新柯力化工科技有限公司 一种钒酸锌-三氧化钼纳米片锂电池电极材料及制备方法
CN110305539A (zh) * 2019-07-30 2019-10-08 南京工业大学 一种日夜双效能辐射降温器及其制备方法
CN111592737A (zh) * 2020-05-27 2020-08-28 北京化工大学 一种碳基增强体/树脂复合材料高强度界面的微波辅助高效构筑方法
CN111592737B (zh) * 2020-05-27 2021-03-26 北京化工大学 一种碳基增强体/树脂复合材料的制备方法
CN111864220A (zh) * 2020-07-09 2020-10-30 合肥国轩高科动力能源有限公司 一种Pt@MnO2/C催化剂及其制备方法、应用
CN112093821A (zh) * 2020-09-16 2020-12-18 黑龙江大学 一种尖晶石钒酸镁微球的制备方法
CN112374537A (zh) * 2020-11-02 2021-02-19 四川大学 一种金属钒酸盐纳米复合材料的制备方法

Also Published As

Publication number Publication date
CN102201571B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
CN102201571B (zh) 一种微波辐射法合成中间相炭微球微纳米复合材料的方法及应用
Liu et al. Understanding the dual-phase synergy mechanism in Mn2O3–Mn3O4 catalyst for efficient Li–CO2 batteries
Xie et al. Template-free synthesis of amorphous double-shelled zinc–cobalt citrate hollow microspheres and their transformation to crystalline ZnCo2O4 microspheres
CN102437321B (zh) 石墨烯-TiO2(B)纳米管复合材料及其制备方法
CN104681823A (zh) 一种氮掺杂石墨烯与Co3O4空心纳米球复合材料及其制备方法和应用
CN103956483B (zh) 钴酸锌/氧化镍核壳纳米线阵列的制备方法和应用
CN103151508B (zh) 掺镧钛酸锂的锂离子电池复合负极材料及其制备方法
Kim et al. Toward the understanding of the reaction mechanism of Zn/MnO2 batteries using non-alkaline aqueous electrolytes
CN103979610B (zh) 一种多孔三氧化二锰立方块及其制备方法和应用
CN104201363A (zh) 一种碳包覆 Li3VO4锂离子电池负极材料及其制备方法
CN106732613A (zh) 一种新型纳米碳材料的制备方法及其电催化制氢应用
CN106784896A (zh) 锌空气电池用过渡金属氧化物高分散掺杂多孔碳催化剂
CN109546162A (zh) 一种微孔化铁-氮掺杂碳催化剂材料的可循环制备方法
Ding et al. Bimetallic Selenide Decorated Nanoreactor Synergizing Confinement and Electrocatalysis of Se Species for 3D-Printed High-Loading K–Se Batteries
CN108360090A (zh) 一种金属硒化物多孔框架/石墨烯复合纤维的制备方法及其应用
Miao et al. Synthesis and application of single-atom catalysts in sulfur cathode for high-performance lithium–sulfur batteries
CN103151506A (zh) 纳米级掺锆钛酸锂材料的制备方法
Diao et al. Low-valence bicomponent (FeO) x (MnO) 1− x nanocrystals embedded in amorphous carbon as high-performance anode materials for lithium storage
CN104987715A (zh) 一种三维石墨烯/聚苯胺/四氧化三钴复合材料及制备方法和应用
CN105680042A (zh) 钒酸钙介孔纳米线及其制备方法和应用
CN104752074A (zh) 一种氧化钼/碳小球复合材料的制备方法
CN106848219A (zh) 一种锂离子电池负极复合材料及其制备方法
CN101058440A (zh) 锂离子电池正极材料Li1+xV3O8的制备和掺杂方法
CN110634688A (zh) CoZn-S纳米颗粒穿插在石墨烯中的复合薄膜电极制备方法及其应用
Zhang et al. Hollow Fe 2 O 3 nanotubes derived from metal-organic framework for enhanced lithium storage and dye adsorption

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130619

Termination date: 20190329

CF01 Termination of patent right due to non-payment of annual fee