CN102170953B - 吸附剂材料和含烃气体脱硫的方法 - Google Patents

吸附剂材料和含烃气体脱硫的方法 Download PDF

Info

Publication number
CN102170953B
CN102170953B CN200980138899.0A CN200980138899A CN102170953B CN 102170953 B CN102170953 B CN 102170953B CN 200980138899 A CN200980138899 A CN 200980138899A CN 102170953 B CN102170953 B CN 102170953B
Authority
CN
China
Prior art keywords
sulfur
sorbent material
hydrocarbon mixture
gas containing
containing hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980138899.0A
Other languages
English (en)
Other versions
CN102170953A (zh
Inventor
A·沙弗尔
J·施泰纳
E·施瓦布
A·E·文廷克
H·博斯
P·阿姆赖因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN102170953A publication Critical patent/CN102170953A/zh
Application granted granted Critical
Publication of CN102170953B publication Critical patent/CN102170953B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Gas Separation By Absorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种从含烃气体混合物中除去含硫化合物的方法,其中使含烃气体混合物与包含在硅酸镁作为载体材料上的氧化铜的吸附剂材料接触。

Description

吸附剂材料和含烃气体脱硫的方法
本发明涉及一种吸附剂材料以及使含烃气体脱硫的方法,尤其是用于燃料电池体系。
除了包含通常天然存在的含硫化合物外,含烃气体例如天然气或液化气,还包含为安全原因加入这些气体中的含硫化合物。
在工业规模上,天然气主要通过加入氢气催化氢化而脱硫。然而,此脱硫方法不适用于少量和极少量应用,尤其是国内领域中的燃料电池,因此在此情况下主要使用提纯气流的吸附方法。
燃料电池中操作所需的氢气通常通过转化天然气得到。尤其是在高度工业化国家,因为存在精细供应网,天然气具有大规模可用性的优点。此外,天然气具有有利于产生氢气的高氢/碳比。
术语“天然气”描述了大量取决于场所可大为不同的可能的气体组合物。天然气可以基本上仅包含甲烷(CH4),但也可以包含显著量的高级烃。术语“高级烃”在这里意指来自乙烷(C2H6)的所有烃,而不考虑线性饱和或不饱和,环状或芳族烃。通常高级烃在天然气中的比例随着摩尔质量和蒸气压力的升高而减少。例如通常发现乙烷和丙烷的百分数范围低,而具有超过10个碳原子的烃通常仅以少量ppm存在于天然气中。在高级烃中还有环状化合物,例如致癌的苯、甲苯和二甲苯。这些化合物各自可以>100ppm的浓度存在。
除了高级烃外,可以包含杂原子的其它少量气体组分和杂质在天然气中存在。
在本文中,尤其是可以提及可在低浓度下存在的天然来源的含硫化合物。其实例为硫化氢(H2S)、羰基硫(COS)、二硫化碳(CS2)和光有机含硫化合物如MeSH。取决于气体的来源,难以除去的COS尤其可能在使复杂提纯工序成为必须的高浓度下存在。
除了在天然气中天然存在的含硫化合物尤其是如H2S和COS外,为安全原因将称为臭剂的其它含硫化合物加入天然气中。甲烷和天然气本身为无毒性的非臭气体,但是与空气组合可以产生爆炸混合物。为了能够迅速检测到天然气的泄露,在低浓度下将天然气与强臭物质混合,被称为臭剂的强臭物质给予天然气臭味特征。天然气的臭化在大多数国家由法律规定(与待使用的臭剂一起)。在某些国家,例如美国,硫醇(R-S-H,R=烷基结构部分)如叔丁基硫醇或乙基硫醇用作臭剂,而在欧盟成员国,通常使用环状含硫化合物如四氢噻吩(THT)。由于可能进行的化学反应,硫化物(R-S-R)和/或二硫化物(R-S-S-R)可以由这些硫醇(R-S-H)形成,其同样必须除去。因此与天然存在的含硫化合物一起,天然气中得到多种不同的含硫化合物。天然气组成的不同调节允许天然气中至多100ppm硫。作为原料的液化气(LPG)情况类似。包含丙烷和丁烷作为主要组分的液化气就像天然气一样必须与作为臭剂标记的含硫分子混合。
天然气或LPG中的含硫组分可以导致燃料电池或转化炉中催化剂强烈和不可逆的毒化。因此供入燃料电池中的气体必须提纯以脱除所有含硫组分。因此,燃料电池总是包含天然气或LPG所用的脱硫单元。若燃料电池在液化烃如加热油下操作,则脱硫同样是必要的。
优选其中含烃气体在室温下以直通流通过基本上完全除去所有含硫组分的吸附剂的工序,吸附剂应优选在燃料电池的操作温度和操作压力下操作。为安全原因,吸附剂容器通常位于燃料的外壳中。那里可以达到至多70℃的温度。此外,在终端使用者气体管道网中的压力通常高于环境压力至多几百毫巴。
由于吸附剂意欲适合操作不同组成的天然气,故重要的是仅含硫组分从天然气中吸附而高级烃的共吸附抑制在可忽略的程度上。
此外天然气中高级烃(尤其是苯)的共吸附可以具有这样的后果:吸附剂中苯含量超过法定限制值且因此必须标记吸附剂单元。该苯饱和的吸附剂例如在吸附剂介质的更换过程中或在吸附剂再循环的运输过程中,额外产生显著增加的复杂性和成本。
在现有技术中,天然气的脱硫仅经由特别用于除去天然含硫组分和臭剂的不同吸附剂的两段设置而进行。
US-A 2002/0159939公开了一种两段催化剂床,其包含用于从用于燃料电池的天然气中除去臭剂的X-沸石和紧随其后的用于除去含硫组分的镍基催化剂。此方法的缺点是COS不能直接消除,但仅在先水解成H2S之后消除。此外,苯和高级烃被沸石吸收。此外,镍已知致癌。
为了除去天然存在的含硫化合物,US-A-5,763,350提出了用元素周期表第IB、IIB、VIB和VIIIB族元素的氧化物混合物,优选Cu、Fe、Mo和Zn的氧化物混合物浸渍的无机载体,优选氧化铝。这时,含硫化合物也首先水解成H2S。
根据DE-A 3525871,在气体混合物中存在的天然存在有机含硫化合物如COS和CS2在催化剂存在下用硫氧化物或氮氧化物定量消除,其中所用催化剂为例如在氧化铝上的Sc、Y、镧系元素、锕系元素的化合物或其混合物。催化剂在其生产过程中在100-1000℃下干燥并烧结。
根据US-A 6,024,933,含硫组分在负载的铜催化剂上直接氧化成元素硫或硫酸盐,该负载的铜催化剂负载在氧化铝上且具有至少一种选自Fe、Mo、Ti、Ni、Co、Sn、Ge、Ga、Ru、Sb、Nb、Mn、V、Mg、Ca和Cr的其它催化活性元素。
WO 2007/021084描述了铜-锌-铝复合物作为脱硫剂,该复合物在200-500℃下煅烧。
EP-A 121977公开了通过在室温下用掺银沸石从天然气中吸附含硫臭剂如硫化物、硫醇和噻吩而去除。
除了银含量高外,沸石基体系的其它重要缺点有沸石易于在其孔体系中吸附所有在气流中存在的高级烃。尤其是环状烃如苯被完全吸附并可以在沸石中聚集高达某百分点。
现有技术的方法未解决催化剂孔体系中不需要的尤其是气流中存在的环状烃(例如苯)的共吸附问题。其它缺点是在一些情况下高级烃的吸附导致吸附剂自燃,因此在点火源存在下,在用过的催化剂取出过程中它们会着火。其它缺点是COS通常可以仅借助上游水解段除去。
因此本发明的目的是提供一种吸附手段,其不仅对天然含硫化合物如COS和H2S,而且对有机硫化物(硫醇如乙基硫醇)、二硫化物和环状臭剂,尤其是四氢噻吩(THT)具有高吸收容量同时具有非常低的苯共吸附。
该目的由从含烃气体混合物中除去含硫化合物的方法实现,该方法包括含使含烃气体混合物与包含在硅酸镁作为载体材料上的氧化铜的吸附剂材料接触。
本发明所用吸附剂材料通常包含30-70重量%,优选40-60重量%,特别优选46-54重量%,尤其是48-52重量%的氧化铜。它基本上(优选完全)以氧化铜(II)CuO存在。此外,本发明所用吸附剂材料可以包含至多5重量%的元素周期表第2族和第4-12族金属和过渡金属的一种或多种其它氧化物作为次要组分。次要组分的含量通常最大为2重量%。次要组分的实例为铬的氧化物(Cr2O3)、钡的氧化物和锌的氧化物。因此整个金属氧化物含量通常为硅酸镁载体和金属氧化物总和的30-75重量%,优选40-62重量%。
硅酸镁的SiO2含量通常为32-38重量%,且MgO含量为12-18重量%;化学计算量的硅酸镁的经验式为Mg2SiO4
本发明所用吸附剂材料可以如下文所述生产。
在此方法中碱性硅酸钠水溶液与镁盐水溶液尤其是硝酸镁结合。然后将铜盐溶液(优选硝酸铜,其可以包含其它金属盐)和苏打溶液同时加入所得硅酸镁溶液中。合适的话,其它金属的金属盐溶液也可以分开加入(但同时加入铜盐和苏打溶液)。沉积物过滤、干燥并合适的话煅烧。
吸附剂材料尤其可以如下生产:强碱性钠水玻璃溶液(pH约13)在沉淀容器中与硝酸镁溶液结合,均化并加热至最大40℃。SiO2、Na2O和MgO所用物质的量(以kg)为2.0∶1.25∶1.0的关系。在沉淀中产生的硅酸镁溶液随后加热至最大70℃。
金属盐溶液单独配制。金属盐溶液的量和组成取决于在硅酸镁上负载的金属氧化物的所需最终组成。金属氧化物比例通常为30-70重量%(基于总重)并可以由第2族金属和/或一种或多种第4-12族过渡金属构成。金属以易于溶解的盐形式加入酸化水溶液中。
金属盐溶液同样加热至最大70℃并加入硅酸镁溶液中。通过加入苏打溶液,沉淀的pH保持在约7左右不变。取决于沉淀物质晶体大小的要求,可以进行沉淀的老化,即延长在沉淀容器中于升高温度下的停留时间。
在沉淀或沉淀与老化完成之后,悬浮液转移到压滤器中,过滤并用去离子水洗涤至电导率值<100μS/cm。滤出物质随后干燥并在旋转炉中煅烧至所需灼烧损失。生成物粉末可以在随后步骤中进一步加工以形成片、挤出物或其它常见的成型体。
需要的话可以进行再煅烧以设置孔半径分布和表面积,其中再煅烧优选在400-700℃下进行1-3h。不煅烧,吸附剂材料具有较高比例半径为小于6nm的孔。此范围内孔体积通常>10%总孔体积,使用压汞仪测定。通过煅烧,孔半径小于6nm的孔比例明显减少。因此,在所述温度范围内进行煅烧之后,孔体积比例通常<5%总孔体积。因此,材料共吸附烃的趋势明显减少。
本发明所用吸附剂材料从含烃气体尤其是天然气中吸附含硫组分,其中高级烃的共吸附减少至可忽略的程度。吸附剂材料的特征在于对含硫化合物的高吸附容量并因此足够长的使用时间,所以吸附剂材料的频繁更换可以避免。吸附剂材料适于使不同组成的含烃气体混合物脱硫。
待提纯的含烃气体混合物尤其为天然气。此主要包含甲烷,但可以包含至多10体积%高级烃。进一步优选LPG(液态石油气体)。此通常包含至少90体积%的丙烷和丁烷。
待提纯的含烃气体混合物通常总共包含1-500ppm,优选5-250ppm的一种或多种含硫组分。含硫组分通常以下列量存在:
H2S             0.5-50ppm;
COS             0.5-100ppm;
硫醇            0-100ppm,优选1-100ppm;
硫化物          0-100ppm,优选1-100ppm;
四氢噻吩        0-20ppm,优选0.5-20ppm。
可以在待提纯的含烃气体中见到的常用硫醇为乙基硫醇,常用硫化物为甲硫醚。
被含硫化合物污染的含烃气体可以在-50℃至150℃,优选-20℃至80℃,特别优选0-80℃,尤其是15-60℃的温度下,和0.1-10巴,优选0.5-4.5巴,特别优选0.8-2.0巴的压力下在本发明所用吸附剂材料上通过。
含烃气体有利地以直通流通过此吸附剂材料。该方法特别优选在室温下和环境压力下操作。
吸附剂材料对含硫组分的吸收容量由在测试气体中此含硫组分的平均浓度和在线GC上检测第一含硫化合物之后的时间而计算。通常有效公式如下:容量[g/l]=(浓度[mg/m3]×气体体积[m3/h]×运行时间[h])/(催化剂体积[m3]×1000000)。运行时间意指直到在GC上检测不到含硫化合物的时间。在标准条件下气体体积对应于测试气流。
尤其因为吸附剂材料的THT容量因物理吸附的相互作用而取决于浓度,故对于测试仅使用对应于气体网实际臭化的THT浓度。因此所用测试气体为具有平均3体积ppm THT和60体积ppm苯的气流。
使用本发明脱硫方法完全除去含硫组分。在本发明上下文中完全意指借助GC测量除至目前可能的检测限0.04ppm以下。因此本发明方法以及催化剂尤其非常适用于燃料电池领域中。
从气流中吸附的不仅有H2S、COS和CS2,而且还有硫醇、硫化物、二硫化物和环状含硫化合物如THT。
结合燃料电池体系,本发明方法可以在重整段的上游连接。在这种情况下用于在本发明提纯下游得到氢气的含烃气体可以直接供入重整炉中或直接供入燃料电池中。在这种情况下本发明方法适于所有已知的燃料电池类型,例如低温和高温PEM燃料电池、磷酸燃料电池(PAFC)、MCFC燃料电池(熔体碳酸盐)和高温燃料电池(SOFC)。
当本发明方法与燃料电池结合使用时,它不使体系中用过的催化剂直接再生,而是可以有利地分别使其更换并在取出后再生。这尤其应用于低功耗的燃料电池中。
本发明方法尤其适用于稳定和移动设备。优选用于稳定领域的例如为用于同时发电和加热如结合热电单元(CHP单元)的燃料电池体系,优选用于国内能量供应。此外,该体系适于燃气发动机的脱硫天然气的气流提纯。对于移动领域应用,该方法可以提纯用于轿车、卡车、公共汽车或机车,优选轿车和卡车,特别优选轿车中燃料电池的烃。燃料电池是仅用于国外发电还是用于驱动在这里是无关紧要的。
在本发明的一个实施方案中,吸附剂材料在可更换脱硫套筒中存在。可更换脱硫套筒可以容易并灵活地整合到上述稳定和移动设备中。合适的套筒例如为具有气密式速动偶联器可以拧入的旋入式螺纹接头的圆柱形容器。气密式速动偶联器还可以直接安装在容器上。合适的套筒设计在图1a和1b中给出。
图1a显示包含容器1、滤布2a、2b、旋入式螺纹接头3a、3b和气密式速动偶联器4a、4b的可更换套筒的可能实施方案。
图1b显示包含容器5、滤布6a、6b和气密式速动偶联器7a、7b的可更换套筒的另一实施方案。
通过使用快速作用偶联器,脱硫套筒可以在使用寿命结束时无问题地更换,例如所用吸附剂材料的化学吸附和/或物理吸附容量耗尽时,在所述使用时不需要进行结构上的改变。因此套筒可以由具有新鲜或再生的吸附剂材料的新套筒更换。而且可以无问题并快速地向套筒中加入吸附剂材料。
优选给定套筒体积V的套筒长度与直径之比以使得在套筒整个长度L上确定的压降ΔP小于待提纯含烃气体混合物加入处管线压力的方式选择,其中套筒体积V又由吸附剂材料的密度、吸附剂材料的比容量以及所需总容量(=待结合的含硫组分的总量)给出。因此套筒最大可能长度L为吸附剂材料的比压降与给定吸附剂材料的所需总吸附容量的函数。此长度L和所需总体积V给出套筒的直径D。
可更换脱硫套筒的优选套筒设计还可以通过下式描述:
i = ΔP * · V L · D · c
其中
ΔP=比压降[kPa/m]
V=套筒体积[l]
L=套筒长度[m]
D=套筒的当量直径[m]
c=平均比例容量
在这种情况下当量直径D为对应于套筒横截面积的圆形横截面积的直径。平均比例容量通过下式给出:
c=x1·c1+x2·c2+...+xn·cn
其中xn=Vn/V且cn=吸附剂n的容量。
L/D比优选为1.0-25。参数i值优选为0-100。
该脱硫套筒的不同之处在于最小压降因其尺寸允许有效利用吸附剂体积。此导致伴随最大可能使用寿命的所用吸附剂材料的最好可能使用。
当然,可以使用任何所需合适的吸附材料操作可更换脱硫套筒。例如还可以使用WO 2004/056949中所述吸附剂材料操作它们,该吸附剂材料包含1-99.8重量%,尤其是5-70重量%的铜、银、锌、钼、铁、钴、镍或其混合物和0.2-99重量%,尤其是30-95重量%的元素周期表第IIB、IIIB、IVB、VIII、VIIIA和IVA族元素的氧化物,例如镁、钙、钪、钇、镧、钛、锆、铬、钨、硼、铝、镓、硅、锗和锡的氧化物。其它高度合适的吸附剂材料包含在载体材料,优选氧化铝,尤其是纯γ-氧化铝上的银和额外优选的铜,如不早于本申请优先权日出版的EP 07114114.7中所述。
在本发明方法的另一优选实施方案中,负载含硫化合物的吸附剂材料通过使其与热的含氮气流接触而再生。该气流优选包含至少75体积%氮气。为了加速再生,待再生的吸附剂材料额外可以加热。在本发明的另一实施方案中,将吸附剂材料加热并与气流接触。
负载含硫化合物的吸附剂材料可以在套筒中再生。为此,向套筒中加入热的再生气流并优选额外外部加热。
当吸附剂材料对仅通过物理吸附结合的含硫化合物(例如THT、甲硫醚)的容量耗尽,但吸附剂仍能够吸收通过化学吸附结合的含硫化合物(例如H2S、乙基硫醇)时,吸附剂材料在套筒中的再生是尤其有利的。在经济上有利的是以前述方式从吸附剂材料中解吸仅通过物理吸附结合的含硫化合物,并再利用因此再生的吸附剂材料直到其对通过化学吸附结合的含硫组分的吸收容量耗尽。仅在此时所用吸附剂材料被所需新鲜的吸附剂材料更换,因为针对通过化学吸附结合(通常不可逆)的含硫组分的吸附剂材料不能容易地再生。
因此,在本发明方法的另一实施方案中,吸附剂材料在脱硫套筒中对通过物理吸附结合的含硫化合物再生至少一次,但优选多次并再利用直到基本上达到、达到或超过材料对通过化学吸附结合的组分的吸收容量。优选再生在150-250℃的温度下使氮气流在吸附剂材料上通过而实现,其中可仅加热氮气流、仅加热吸附剂材料(通过外部加热套筒)或氮气流和吸附剂材料都加热。再生时间例如可以为3-12小时。当在脱硫套筒中存在至少两种不同吸附剂材料的混合物时,所述再生方法也是合适的,其中第一吸附剂材料(吸附剂类型1)主要通过化学吸附结合含硫化合物且第二吸附剂材料(吸附剂类型2)主要通过物理吸附结合含硫化合物。
主要通过化学吸附结合含硫化合物(例如H2S)的材料例如为包含金属Cu、Zn、Fe、Ni、Mn、Pb、Mg、Ca和Na氧化物的那些。吸附剂类型1的合适材料例如包含40重量%CuO、40重量%ZnO和20重量Al2O3。除了H2S外,所述材料还可以通过化学吸附结合COS、硫醇、硫醚、二硫化物和THT。
主要通过物理吸附结合含硫化合物的材料例如为包含一种或多种以氧化物或硫化物形式的金属Ag、Cu、Mo、Mn或Zn的那些。它们尤其是结合二硫化物、硫醚和THT。
优选使用包含在硅酸镁作为载体材料上的氧化铜的吸附剂材料进行上述再生方法,其中针对通过物理吸附结合含硫化合物的吸附剂材料在套筒中再生多次。此吸附剂材料的特征在于其通过物理吸附结合某种含硫化合物并通过化学吸附结合其它含硫化合物,其中对通过化学吸附结合含硫化合物的吸收容量大于对通过物理吸附结合含硫化合物的吸收容量。
还可以仅用物理吸附材料填充套筒并使其再生。
本发明将基于下文示范性实施方案更详细描述。
实施例
实施例1
吸附剂材料的生产
钠水玻璃溶液(27%浓度,1.7g SiO2)与NaOH溶液(25%浓度,1.0kgNa2O)和5kg去离子水(溶液1)混合。在储罐中将7kg去离子水加热至约45℃。溶液1和硝酸镁溶液(8%浓度,0.8kg MgO)同时加入此加热的储罐中。在加料完成之后,混合物在55℃下再搅拌30分钟。同时将硝酸铜(20%浓度,2.4kg CuO)和苏打溶液(20%浓度,5kg Na2CO3)两种溶液在55℃下于数小时内加入此沉淀溶液中。
将固体生成物过滤、洗掉硝酸盐并在120℃下干燥48h直到获得在900℃下约20%的灼烧损失。
得到干燥质量并在220℃下保持3h,随后与约4%石墨混合并压片以得到成型体(1.5×1.5mm和3×5mm)。
物理性能:
实施例2:
实施例1的吸附剂在575℃下再煅烧2h。
对比例1
使用如常规天然气脱硫解决方案中所用的基于CuO/ZnO/Al2O3的市售吸附剂。在这里金属氧化物总重量基于吸附剂总重量为超过75重量%。
所有吸附剂材料作为3×3mm片剂的相同碎片使用。所用反应器为流体从上至下通过的可加热不锈钢管。每个实验使用40或50ml催化剂。使用市售天然气(来自Linde)。
为了分析反应器下游的气体,使用配有两个柱开关和两个检测器的商用气相色谱。第一检测器,火焰离子化检测器(FID),用于检测天然气中各种烃,尤其是苯。第二检测器,火焰光度检测器(FPD)对含硫化合物敏感并允许检测低于实际检测限0.04ppm的此类化合物。
吸附剂对于各组分的容量由气体总量(直到第一含硫化合物穿透)和进料气体中各组分的浓度测定。不必预处理催化剂(例如还原)。
通常在所有达到吸收容量的所述耗尽值的试验中,实现低于检测限的各含硫组分的消除。
各组分测试:
甲硫醚:
使用测试气体钢瓶,将甲硫醚(DMS,天然气中)计量加入天然气的定容气流中并因此在总共170升(S.T.P.)中以每小时20体积ppm的平均浓度在催化剂(68ml,对应于2500h-1GHSV)上通过。
在DMS穿透时,本发明吸附剂(实施例1)的容量达到6.6g DMS/l催化剂。对比吸附剂(对比例1)在相同条件下仅吸附0.4g DMS/l催化剂。
四氢噻吩:
选择四氢噻吩(THT)作为“有机”含硫化合物的典型物质是因为通常已知与硫封端化合物相比,环状含硫化合物仅可以非常困难地通过吸附除去。此外,THT在德国是最广泛应用的臭剂。
用平均3体积ppm THT和60体积ppm苯在饱和器中富集气体并在催化剂(40ml,对应于6250h-1GHSV)上以250升(S.T.P.)/小时的体积流速通过。在标准压力(1013毫巴)和室温下进行测量。
在THT穿透时,本发明吸附剂(实施例1)的容量达到8.8g THT/l催化剂。对比吸附剂(对比例1)在相同条件下仅吸附4.0g THT/l催化剂。
根据实施例2的材料显示,在相同测量中,THT的容量为9.7g/l催化剂,在THT穿透之后,苯含量小于0.1重量%。
乙基硫醇:
其它臭剂为在天然气中(但尤其是在LPG中)作为臭剂使用的乙基硫醇(EtSH)。通常已知当使用含铜催化剂时,可以产生硫醇的氧化二聚化以形成二硫化物(这里为乙硫醚)。因此吸附剂的总容量由首先穿透的含硫组分(这里为EtSH或DEDS)测定。
用平均15体积ppm EtSH在饱和器中富集气体并在催化剂(80ml,对应于2500h-1GHSV)上以200升(S.T.P.)/小时的体积流速通过。在标准压力(1013毫巴)和室温下进行测量。
在DEDS穿透时,本发明吸附剂(实施例1)的容量超过45g EtSH/l催化剂而没有观察到含硫组分穿透。对比吸附剂(对比例1)在相同条件下在DEDS穿透时仅吸附24.0g EtSH/l催化剂。
在天然气中2体积%CO2存在下的COS和H2S:
COS和H2S的除去对吸附剂来说是一种挑战,尤其是在气体中CO2的存在下。在此试验中,50体积ppm COS和150体积ppm H2S在催化剂(70ml,对应于2500h-1GHSV)上通入167升(S.T.P)/小时天然气和3.4升(S.T.P)/小时CO2的气流中。在标准压力(1013毫巴)和室温下进行测量。
不仅在本发明吸附剂(实施例1)的情况下而且在对比吸附剂(对比例1)的情况下,首先进行COS的穿透。因此容量报告为COS的穿透时间点。在此时间点本发明吸附剂(实施例1)的容量超过60g H2S/l催化剂和16gCOS/l催化剂。在相同条件下,对比吸附剂(对比例1)吸附58g H2S/l催化剂和仅3g COS/l催化剂。
与对比材料相比,容量显著超过天然气中所有常用的含硫组分。总之,在德国作为最重要的天然气次要组分存在的COS非常有效地从本发明所用吸附剂中除去。
由于对THT的高容量和吸附剂对硫醇的低二聚化活性,吸附剂适于天然气、LPG和其它(气态)烃的一步脱硫。与使用现有技术结构化床的两步吸附相比,从中得到应用的重要优点。

Claims (17)

1.一种从含烃气体混合物中除去含硫化合物的方法,其包括使含烃气体混合物与包含在硅酸镁作为载体材料上的氧化铜的吸附剂材料接触,其中含硫化合物选自硫醇、有机硫化物、二硫化物和环状含硫化合物,其中含烃气体混合物为天然气或液态石油气体(LPG),其中所述吸附剂材料包含30-70重量%CuO。
2.根据权利要求1的方法,其中所述吸附剂材料将含硫化合物除至包括0.04ppm的检测限以下。
3.根据权利要求1的方法,其中所述吸附剂材料包含40-60重量%CuO。
4.根据权利要求1的方法,其中所述吸附剂材料包含至多2重量%元素周期表第2族和第4-12族金属的一种或多种其它金属氧化物,其中整个金属氧化物含量为40-62重量%。
5.根据权利要求1的方法,其中所述硅酸镁的SiO2含量为32-38重量%,且MgO含量为12-18重量%。
6.根据权利要求1的方法,其中所述含烃气体混合物包含1-500ppm含硫化合物。
7.根据权利要求1的方法,其中所述含烃气体混合物包含0.5-50ppmH2S。
8.根据权利要求1的方法,其中所述含烃气体混合物包含1-100ppmCOS。
9.根据权利要求1的方法,其中所述含烃气体混合物包含0.5-20ppm四氢噻吩。
10.根据权利要求1的方法,其中所述含烃气体混合物包含1-100ppm甲硫醚。
11.根据权利要求1的方法,其中所述含烃气体混合物包含1-100ppm乙基硫醇。
12.根据权利要求1的方法,其中所述吸附剂材料部分通过化学吸附和部分通过物理吸附而与含硫化合物结合,且所述吸附剂材料存在于可更换容器中。
13.根据权利要求12的方法,其中所述可更换容器配有气密式速动偶联器并因此可以容易地更换。
14.根据权利要求12的方法,其中所述吸附剂材料在所述容器中再生。
15.根据权利要求14的方法,其中所述吸附剂材料通过使其与含氮气流在150-250℃的温度下接触而再生。
16.根据权利要求15的方法,其中将所述含氮气流和/或所述容器加热。
17.根据权利要求14的方法,其中将所述吸附剂材料再生一次或多次直到对通过化学吸附结合的含硫组分的吸收容量基本耗尽。
CN200980138899.0A 2008-09-01 2009-08-27 吸附剂材料和含烃气体脱硫的方法 Expired - Fee Related CN102170953B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP08163363.8 2008-09-01
EP08163363 2008-09-01
EP08173009.5 2008-12-29
EP08173009 2008-12-29
PCT/EP2009/061086 WO2010023249A1 (de) 2008-09-01 2009-08-27 Adsorbermaterial und verfahren zur entschwefelung von kohlenwasserstoffhaltigen gasen

Publications (2)

Publication Number Publication Date
CN102170953A CN102170953A (zh) 2011-08-31
CN102170953B true CN102170953B (zh) 2015-02-04

Family

ID=41319457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980138899.0A Expired - Fee Related CN102170953B (zh) 2008-09-01 2009-08-27 吸附剂材料和含烃气体脱硫的方法

Country Status (8)

Country Link
US (1) US8349037B2 (zh)
EP (1) EP2337621B1 (zh)
JP (1) JP5469169B2 (zh)
KR (1) KR101710735B1 (zh)
CN (1) CN102170953B (zh)
CA (1) CA2735082C (zh)
DK (1) DK2337621T3 (zh)
WO (1) WO2010023249A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009086407A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US8652222B2 (en) * 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
DE102009029567A1 (de) 2008-10-02 2010-04-08 Basf Se Verfahren zur Abreicherung von Schwefel und/oder schwefelhaltigen Verbindungen aus einer biochemisch hergestellten organischen Verbindung
US8734547B2 (en) * 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
EP2370549A1 (en) * 2008-12-30 2011-10-05 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US9051519B2 (en) * 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
US8733459B2 (en) * 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
WO2011106285A1 (en) * 2010-02-23 2011-09-01 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) * 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
DE102010014890A1 (de) 2010-04-14 2011-10-20 Süd-Chemie AG Vorrichtung zur Adsorptionsbehandlung eines Fluids oder Fluidstroms, Verfahren zum Regenerieren und/oder Entsorgen, Befüllen und/oder Installieren einer Vorrichtung zur Adsorptionsbehandlung eines Fluids oder Fluidstroms und Verfahren zur Adsorptionsbehandlung eines Fluids oder Fluidstroms
DE202010016522U1 (de) 2010-04-14 2011-02-17 Süd-Chemie AG Vorrichtung zur Adsorptionsbehandlung eines Fluids oder Fluidstroms
KR101613575B1 (ko) * 2010-04-14 2016-04-19 클라리안트 프로두크테 (도이칠란트) 게엠베하 유체 또는 유체 스트림의 흡착 처리용 장치
AU2011258204B2 (en) 2010-05-28 2013-11-07 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
JP6124795B2 (ja) 2010-11-01 2017-05-10 グレイトポイント・エナジー・インコーポレイテッド 炭素質フィードストックの水添メタン化
JP2012140525A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 脱硫システム、水素製造システム、燃料電池システム、燃料の脱硫方法及び水素の製造方法
CN103582693A (zh) 2011-06-03 2014-02-12 格雷特波因特能源公司 碳质原料的加氢甲烷化
WO2013052553A1 (en) 2011-10-06 2013-04-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013064974A1 (de) * 2011-11-03 2013-05-10 Basf Se Verfahren zur entfernung von schwefelhaltigen verbindungen aus einem kohlenwasserstoffhaltigen gasgemisch
US9097678B2 (en) 2011-11-03 2015-08-04 Basf Se Method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture
KR102151651B1 (ko) * 2012-07-26 2020-09-04 에피션트 퓨얼 솔루션즈, 엘엘씨 분자 크기의 연료 첨가체
WO2014055365A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
KR101534461B1 (ko) 2012-10-01 2015-07-06 그레이트포인트 에너지, 인크. 응집된 미립자 저등급 석탄 공급원료 및 그의 용도
WO2014055349A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
ES2737149T3 (es) * 2014-10-09 2020-01-10 Basf Se Proceso de regeneración de un adsorbente usado para adsorber oxígeno y/o azufre a partir de composiciones orgánicas
KR102375462B1 (ko) * 2014-10-09 2022-03-18 바스프 에스이 유기 조성물의 정제 방법
WO2016054789A1 (en) * 2014-10-09 2016-04-14 Basf Se Process for adsorber regeneration
FR3032625A1 (fr) * 2015-02-13 2016-08-19 Air Liquide Procede de controle de l'efficacite d'une unite de desulfuration
CN110980750B (zh) * 2019-12-24 2022-10-21 福州大学 一种介孔硅酸镁的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251495A (en) * 1978-08-08 1981-02-17 Institut Francais Du Petrole Process for purifying a hydrogen sulfide containing gas
US4419273A (en) * 1981-11-04 1983-12-06 Chevron Research Company Clay-based sulfur sorbent
EP1245268A2 (de) * 2001-03-28 2002-10-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Entfernen von Schwefelverbindungen aus einem Gasstrom
CN1653164A (zh) * 2002-05-08 2005-08-10 荷兰能源建设基金中心 天然气脱硫的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB203354A (en) 1922-03-04 1923-09-04 Harry Mackenzie Ridge Improvements in the purification of oils
US3942957A (en) * 1973-05-14 1976-03-09 British Gas Corporation Production of combustible gases
DE3525241A1 (de) * 1985-07-15 1987-01-15 Peter Siegfried Verfahren zur entfernung von organischen schwefelverbindungen oder schwefeloxiden und stickoxiden aus solche enthaltenden gasen
DE3525871A1 (de) 1985-07-19 1987-01-22 Peter Siegfried Verfahren zur entfernung von schwefel- und/oder stickoxiden aus sie enthaltenden gasen
JP2717717B2 (ja) * 1989-11-14 1998-02-25 株式会社豊田中央研究所 吸臭性粘土鉱物とその製造方法
JP2895153B2 (ja) * 1990-03-26 1999-05-24 ダイセル化学工業株式会社 抗菌消臭性セピオライト
DE4104202A1 (de) * 1991-02-12 1992-08-13 Bayer Ag Katalysatoren zur entfernung von schwefelverbindungen aus technischen gasen, verfahren zu deren herstelllung sowie deren verwendung
DE4213642A1 (de) 1992-04-25 1993-10-28 Hoechst Ag Verfahren zur Reinigung und Stabilisierung von Perfluorpolyethern
JP3358382B2 (ja) * 1995-04-10 2002-12-16 株式会社豊田中央研究所 脱臭剤
US5614000A (en) * 1995-10-04 1997-03-25 Air Products And Chemicals, Inc. Purification of gases using solid adsorbents
FR2747053B1 (fr) * 1996-04-03 1998-10-02 Rhone Poulenc Chimie Utilisation pour l'oxydation directe des composes soufres en soufre et/ou sulfates a basse temperature d'un catalyseur a base de cuivre
DE19838282A1 (de) * 1998-08-24 2000-03-02 Degussa Stickoxid-Speichermaterial und daraus hergestellter Stickoxid-Speicherkatalysator
DK1121977T3 (da) 2000-02-01 2007-09-10 Tokyo Gas Co Ltd Fremgangmåde til fjernelse af svovlforbindelser fra brændbare gasser
US20020103078A1 (en) * 2001-01-26 2002-08-01 Zhicheng Hu SOx trap for enhancing NOx trap performance and methods of making and using the same
US20020159939A1 (en) * 2001-04-27 2002-10-31 Plug Power Inc. Gas purification system
US7837964B2 (en) 2002-12-19 2010-11-23 Basf Aktiengesellschaft Method for removing sulfur compounds from gases containing hydrocarbons
WO2004069367A2 (en) 2003-01-28 2004-08-19 Donaldson Company, Inc. Filter assembly with spin-on filters and methods using the filter assembly
US7419060B2 (en) 2003-03-05 2008-09-02 Hewlett-Packard Development Company, L.P. Integrated fuel container and impurity removal cartridge
JP2007002022A (ja) * 2005-06-21 2007-01-11 Catalysts & Chem Ind Co Ltd 新規な燃料処理剤
KR20070019428A (ko) * 2005-08-12 2007-02-15 에스케이 주식회사 유기황화합물 제거용 탈황제, 이의 제조방법 및 이를이용한 유기황화합물의 제거방법
KR101352973B1 (ko) * 2005-10-26 2014-01-22 삼성에스디아이 주식회사 연료전지용 탈황흡착제 및 이를 이용한 탈황방법
CA2694776A1 (en) * 2007-08-09 2009-02-12 Basf Se Catalyst and process for the desulfurization hydrocarbon-comprising gases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251495A (en) * 1978-08-08 1981-02-17 Institut Francais Du Petrole Process for purifying a hydrogen sulfide containing gas
US4419273A (en) * 1981-11-04 1983-12-06 Chevron Research Company Clay-based sulfur sorbent
EP1245268A2 (de) * 2001-03-28 2002-10-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Entfernen von Schwefelverbindungen aus einem Gasstrom
CN1653164A (zh) * 2002-05-08 2005-08-10 荷兰能源建设基金中心 天然气脱硫的方法

Also Published As

Publication number Publication date
EP2337621B1 (de) 2016-10-12
JP2012501362A (ja) 2012-01-19
WO2010023249A1 (de) 2010-03-04
KR20110088500A (ko) 2011-08-03
CA2735082C (en) 2017-03-14
CN102170953A (zh) 2011-08-31
EP2337621A1 (de) 2011-06-29
DK2337621T3 (en) 2017-01-30
JP5469169B2 (ja) 2014-04-09
US8349037B2 (en) 2013-01-08
KR101710735B1 (ko) 2017-03-08
CA2735082A1 (en) 2010-03-04
US20110200507A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
CN102170953B (zh) 吸附剂材料和含烃气体脱硫的方法
US7820037B2 (en) Desulfurizing agent manufacturing method and hydrocarbon desulfurization method
DK2438145T3 (en) METHOD OF SULFURING A FUEL FLOW
US7780846B2 (en) Sulfur adsorbent, desulfurization system and method for desulfurizing
Dang et al. Co-Cu-CaO catalysts for high-purity hydrogen from sorption-enhanced steam reforming of glycerol
WO2007021554A2 (en) A desulfurization system and method for desulfurizing a fuel stream
EP2804692B1 (en) Method for removing sulfur containing compounds from fluid fuel streams
WO2008044707A1 (fr) Catalyseur pour la conversion de monoxyde de carbone et procédé de modification du monoxyde de carbone au moyen de ce dernier
US9097678B2 (en) Method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture
Lu et al. The identification of active chromium species to enhance catalytic behaviors of alumina-based catalysts for sulfur-containing VOC abatement
KR20050071561A (ko) 황 화합물이 제거된 수소 발생기 및 그의 방법
JP4990529B2 (ja) 炭化水素ガスからのイオウ化合物の除去
Wang et al. Selective adsorption of CH3SH on cobalt-modified activated carbon with low oxygen concentration
US20100233054A1 (en) Catalyst and process for the desulfurization of hydrocarbon-comprising gases
CA2854463A1 (en) Method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture
JP2001279256A (ja) 燃料電池用脱硫装置及びその運転方法
EP0871537B1 (en) Method and system for heat transfer using a material for the unmixed combustion of fuel and air
Gao et al. Mechanics of COS removal by adsorption and catalytic hydrolysis: Recent developments
WO2004099351A1 (en) Method for desulphurising fuel gas streams

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150204

Termination date: 20210827