CN102132538B - 数据通信电路、发送设备、接收设备、收发系统 - Google Patents

数据通信电路、发送设备、接收设备、收发系统 Download PDF

Info

Publication number
CN102132538B
CN102132538B CN201080002392.5A CN201080002392A CN102132538B CN 102132538 B CN102132538 B CN 102132538B CN 201080002392 A CN201080002392 A CN 201080002392A CN 102132538 B CN102132538 B CN 102132538B
Authority
CN
China
Prior art keywords
voltage
signal
node
transistor
relaxes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080002392.5A
Other languages
English (en)
Other versions
CN102132538A (zh
Inventor
千叶智子
杉本浩一
岩田彻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN102132538A publication Critical patent/CN102132538A/zh
Application granted granted Critical
Publication of CN102132538B publication Critical patent/CN102132538B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/028Arrangements specific to the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • H03K19/017518Interface arrangements using a combination of bipolar and field effect transistors [BIFET]
    • H03K19/017527Interface arrangements using a combination of bipolar and field effect transistors [BIFET] with at least one differential stage

Abstract

本发明提供一种数据通信电路、发送设备、接收设备、收发系统。驱动器(101)经由供给节点(N101)来供给数据信号。电压缓和晶体管(102)具有:与驱动器的供给节点(N101)连接的源极、与和信号线连接的信号节点(N1)连接的漏极、以及被赋予信号节点(N1)的电压(V1)的栅极。

Description

数据通信电路、发送设备、接收设备、收发系统
技术领域
本发明涉及通过信号线来发送或者接收信号的数据通信电路,尤其涉及一种对数据通信电路的耐压破坏进行抑制的技术。
背景技术
近年来,伴随着数据通信电路的高集成化,数据通信电路的低耐压化得以发展。因此,要求对数据通信电路进行保护而不受耐压破坏。专利文献1中公开了一种由第一及第二nMOS晶体管构成的开放(open)漏极型输出电路。第一nMOS晶体管的源电极与接地节点连接,第一nMOS晶体管的栅电极被赋予来自驱动电路的信号。第二nMOS晶体管的源电极与第一nMOS晶体管的漏电极连接,第二nMOS晶体管的漏电极与输出端子(电流路的一端)连接,第二nMOS晶体管的栅电极与电源端子连接。通过如此构成,即使对输出端子赋予了比电源电压高的电压,也能够对第一及第二nMOS晶体管进行保护而不受耐压破坏。
专利文献1:日本特开平5-218312号公报
但是,在专利文献1的电路中,当第二nMOS晶体管的栅极未被赋予电源电压时,会导致第二nMOS晶体管的端子间电压(尤其是栅极—漏极间电压及源极—漏极间电压)与输出端子的电压不相等。因此,存在第二nMOS晶体管的端子间电压超过第二nMOS晶体管的耐压电压的可能性,结果,第二nMOS晶体管有可能被破坏。这样,难以抑制数据通信电路(尤其是第二nMOS晶体管)的耐压破坏。
发明内容
鉴于此,本发明的目的在于,提供一种能够抑制电压缓和晶体管的耐压破坏的数据通信电路。
根据本发明的1个方式,数据通信电路是通过信号线对来发送由互补变化的第一及第二数据信号构成的数据信号对的电路,具备:驱动器,其经由第一及第二供给节点所构成的供给节点对来供给上述数据信号对;第一电压缓和晶体管,其具有:与上述驱动器的第一供给节点连接的源极、与和上述信号线对中的一条信号线连接的第一信号节点连接的漏极、以及被赋予与上述信号线对中的另一条信号线连接的第二信号节点的电压的栅极;和第二电压缓和晶体管,其具有:与上述驱动器的第二供给节点连接的源极、与上述第二信号节点连接的漏极、以及被赋予上述第一信号节点的电压的栅极。通过如此构成,由于可以利用第一及第二电压缓和晶体管来缓和第一及第二供给节点的电压,所以能够抑制驱动器的耐压破坏。并且,由于可以使第一及第二电压缓和晶体管的端子间电压比以往低,所以还能够抑制第一及第二电压缓和晶体管的耐压破坏。
而且,上述数据通信电路还可以具备:第一辅助晶体管,其夹设在上述驱动器的第一供给节点与上述第一电压缓和晶体管的源极之间,具有与上述驱动器的第一供给节点连接的源极、与上述第一电压缓和晶体管的源极连接的漏极、以及被赋予第一偏置电压的栅极;和第二辅助晶体管,其夹设在上述驱动器的第二供给节点与上述第二电压缓和晶体管的源极之间,具有与上述驱动器的第二供给节点连接的源极、与上述第二电压缓和晶体管的源极连接的漏极、以及被赋予第二偏置电压的栅极。通过如此构成,可防止驱动器的耐压破坏。而且,基于第一及第二电压缓和晶体管的电压缓和效果,能够抑制第一及第二辅助晶体管的耐压破坏。
并且,上述数据通信电路可以还具备夹设在上述第一及第二电压缓和晶体管的漏极与栅极之间,将与上述第一及第二信号节点的电压的中间电压对应的控制电压向上述第一及第二电压缓和晶体管的栅极供给的电压调整部。通过如此构成,能够任意设定第一及第二电压缓和晶体管的电压缓和效果。
其中,上述第一电压缓和晶体管的阈值电压在上述第一电压缓和晶体管的栅极电压、与和上述第一电压缓和晶体管的源极连接的元件的耐压电压之间的最大电压差以上,上述第二电压缓和晶体管的阈值电压在上述第二电压缓和晶体管的栅极电压、与和上述第二电压缓和晶体管的源极连接的元件的耐压电压之间的最大电压差以上。通过如此构成,能够可靠地防止与第一及第二电压缓和晶体管的源极连接的元件的耐压破坏。
根据本发明的另一方式,数据通信电路是通过多个信号线对来分别发送由互补变化的第一及第二数据信号构成的多个数据信号对的电路,具备:多个驱动器,分别经由第一及第二供给节点所构成的供给节点对来供给上述数据信号对;多个第一电压缓和晶体管,分别与上述多个信号线对及上述多个驱动器对应,分别具有与自己所对应的驱动器的第一供给节点连接的源极、与和自己所对应的信号线对中的一条信号线连接的第一信号节点连接的漏极;多个第二电压缓和晶体管,分别与上述多个信号线对及上述多个驱动器对应,分别具有与自己所对应的驱动器的第二供给节点连接的源极、与和自己所对应的信号线对中的另一条信号线连接的第二信号节点连接的漏极;以及电压调整部,其将与多个信号线对中任意一个信号线对分别连接的上述第一及第二信号节点的电压的中间电压所对应的控制电压,向上述多个第一电压缓和晶体管及上述多个第二电压缓和晶体管的栅极供给。通过如此构成,与按每个信号线对个别地设置电压调整部的情况相比,可以抑制因电压调整部的特性偏差而引起的第一及第二电压缓和晶体管的响应速度的偏差。
根据本发明的另一方式,数据通信电路是通过信号线来发送数据信号的电路,具备:经由供给节点来供给上述数据信号的驱动器;和电压缓和晶体管,其具有与上述驱动器的供给节点连接的源极、与和上述信号线连接的信号节点连接的漏极、以及被赋予上述信号节点的电压的栅极。通过如此构成,不仅能够抑制驱动器的耐压破坏,而且还可以抑制电压缓和晶体管的耐压破坏。
根据本发明的又一方式,数据通信电路是通过信号线来接收数据信号的电路,具备:经由输入节点输入上述数据信号的接收器;电压缓和晶体管,其具有与上述接收器的输入节点连接的源极、与和上述信号线连接的信号节点连接的漏极、被赋予上述信号节点的电压的栅极;以及与上述信号节点连接的终端电阻。通过如此构成,不仅可以抑制接收器的耐压破坏,而且还能够抑制电压缓和晶体管的耐压破坏。
(发明效果)
如上所述,不仅可以抑制驱动器(或者接收器)的耐压破坏,而且还能够抑制电压缓和晶体管的耐压破坏。
附图说明
图1是表示实施方式1涉及的收发系统的构成例的图。
图2是用于对图1所示的收发系统的变形例1进行说明的图。
图3是用于对图1所示的收发系统的变形例2进行说明的图。
图4是用于对图3所示的电压调整部的变形例进行说明的图。
图5是表示实施方式2涉及的收发系统的构成例的图。
图6是用于对图5所示的收发系统的变形例1进行说明的图。
图7是用于对图5所示的收发系统的变形例2进行说明的图。
图8是用于对图7所示的电压调整部的变形例进行说明的图。
图9是表示实施方式3涉及的收发系统的构成例的图。
具体实施方式
下面,参照附图对实施方式详细进行说明。其中,对于图中同一或者相当的部分赋予同一符号,并省略其重复说明。
(实施方式1)
图1表示实施方式1涉及的收发系统的构成例。该收发系统具备:包括发送处理电路100及数据通信电路11的发送设备、和包括数据通信电路12及接收处理电路110的接收设备。数据通信电路11具备驱动器101和电压缓和晶体管102。数据通信电路12具备接收器(receiver)103、电压缓和晶体管104和终端电阻RRR。数据通信电路11的信号节点N1及数据通信电路12的信号节点N2与信号线连接,终端电阻RRR连接在被赋予终端电源电压VTT的电源节点与信号节点N2之间。
发送处理电路100用于供给发送数据DD。驱动器101将发送数据DD转换成数据信号,并经由供给节点N101对数据信号进行供给。例如,驱动器101包括电流源晶体管TC和驱动晶体管TD。为了使电流源晶体管TC产生规定电流,电流源晶体管TC的栅极被赋予规定电压VC。驱动晶体管TD对应于发送数据DD来切换导通/截止。例如,在发送数据DD为高电平的情况下,驱动晶体管TD成为导通状态。该情况下,由于从终端电阻RRR经由信号节点N2、N1、电压缓和晶体管102及驱动器101向接地节点引入规定电流,所以终端电阻RRR中产生电压降。例如,当将终端电阻RRR的电压降设为“Vα”时,信号电压V1(信号线的电压)变为“VTT-Vα”。另外,在发送数据DD为低电平的情况下,驱动晶体管TD成为截止状态。该情况下,由于在终端电阻RRR中没有产生电压降,所以信号电压V1为“VTT”。信号电压V1的变动经由电压缓和晶体管104传递到接收器103。这样,接收器103经由输入节点N103输入从数据通信电路11发送来的数据信号。接收器103将数据信号转换成接收数据RD并向接收处理电路110供给。接收处理电路110对接收数据RD进行处理。
电压缓和晶体管102具有:与驱动器101的供给节点N101连接的源极、与信号节点N1连接的漏极、和被赋予信号节点N1的电压(信号电压V1)的栅极。电压缓和晶体管104具有:与接收器103的输入节点N103连接的源极、与信号节点N2连接的漏极、和被赋予信号节点N2的电压(信号电压V1)的栅极。
(电压缓和)
接着,对由图1所示的电压缓和晶体管102、104实现的电压缓和进行说明。这里,为了简化说明,将电压缓和晶体管102、104的阈值电压设为“Vth”。
在信号电压V1为“VTT”的情况下,供给节点N101的电压(电压缓和晶体管102的源极电压)被设定为“VTT-Vth”。这样,可以使供给节点N101的电压比“VTT(信号电压V1的最大值)”低。而且,该情况下,由于电压缓和晶体管102的漏极电压及栅极电压为“VTT”,所以可以使电压缓和晶体管102的端子间电压(栅极—漏极间电压、栅极—源极间电压以及源极—漏极间电压)比“VTT”低。同样,能够使输入节点N103的电压(电压缓和晶体管104的源极电压)比“VTT”低。并且,可以使电压缓和晶体管104的端子间电压比“VTT”低。
如上所述,由于可以通过电压缓和晶体管102来缓和供给节点N101的电压,所以能够抑制驱动器101的耐压破坏。并且,由于可以使电压缓和晶体管102的端子间电压比信号电压V1(信号线的电压)低,所以还能够抑制电压缓和晶体管102的耐压破坏。例如,可以使电压缓和晶体管102的端子间电压比电压缓和晶体管102的耐压电压低。同样,可以通过电压缓和晶体管104抑制接收器103的耐压破坏,并且还可以抑制电压缓和晶体管104的耐压破坏。
(电压缓和晶体管的阈值电压)
其中,优选电压缓和晶体管102的阈值电压在和电压缓和晶体管102的源极连接的元件的耐压电压、与电压缓和晶体管102的栅极电压之间的最大电压差以上。例如,在图1的情况下,当驱动器101的耐压电压为“2.5V”、终端电源电压VTT为“3.3V”时,优选电压缓和晶体管102的阈值电压在“0.8V”以上。通过如此构成,能够防止与电压缓和晶体管102的源极连接的元件(图1中为驱动器101)的耐压破坏。而且,对于电压缓和晶体管104的阈值电压也同样。
(实施方式1的变形例1)
如图2所示,数据通信电路11可以还具备辅助晶体管105。辅助晶体管105夹设在驱动器101的供给节点N101与电压缓和晶体管102的源极之间,具有:与驱动器101的供给节点N101连接的源极;与电压缓和晶体管102的源极连接的漏极;和被赋予规定的偏置电压(这里为电源电压VDD)的栅极。通过如此构成,可以按照供给节点N101的电压不超过辅助晶体管105的栅极电压的方式来限制供给节点N101的电压。例如,在驱动器101的耐压电压为“2.5V”时,辅助晶体管105的栅极被赋予“2.5V”的电源电压VDD。由此,能够可靠地防止驱动器101的耐压破坏。
并且,由于能够通过电压缓和晶体管102来缓和辅助晶体管105的漏极电压(辅助晶体管105的漏极电压比“VTT”低),所以即使在未被赋予电源电压VDD的情况下(电源电压VDD为“0V”的情况下),也能够使辅助晶体管105的端子间电压比“VTT”低。例如,辅助晶体管105的栅极—漏极间电压成为比“VTT”低的“VTT-Vth”。由此,可以抑制辅助晶体管105的耐压破坏。例如,能够使辅助晶体管105的端子间电压比辅助晶体管105的耐压电压低。
同样,数据通信电路12也可以具备辅助晶体管106。辅助晶体管106夹设在接收器103的输入节点N103与电压缓和晶体管104的源极之间,具有:与接收器103的输入节点N103连接的源极;与电压缓和晶体管104的源极连接的漏极;和被赋予规定的偏置电压(这里为电源电压VDD)的栅极。通过如此构成,可以按照输入节点N103的电压不超过辅助晶体管105的栅极电压的方式来限制输入节点N103的电压,因此能够可靠地防止接收器103的耐压破坏。而且,基于电压缓和晶体管104的电压缓和效果,能够抑制辅助晶体管106的耐压破坏。
(实施方式1的变形例2)
如图3所示,数据通信电路11可以还具备电压调整部107。电压调整部107夹设在电压缓和晶体管102的漏极与栅极之间,根据信号节点N1的电压生成控制电压V11(这里是比信号电压V1低的电压),并将控制电压V11向电压缓和晶体管102的栅极供给。例如,电压调整部107由在信号节点N1与被赋予电源电压VDD的电源节点之间串联连接的电阻R1、R2构成。通过如此构成,由于能够利用电压调整部107调整控制电压V11,所以可以任意设定电压缓和晶体管102的电压缓和效果。例如,可以越降低控制电压V11,越减小电压缓和晶体管102的源极电压,由此能够提高电压缓和晶体管102的电压缓和效果。而且,在如图3那样构成的情况下,由于电压缓和晶体管102的栅极经由电阻R1与信号节点N1连接,所以可以抑制因电压缓和晶体管102的栅极电容而引起的噪声产生。
另外,图3所示的数据通信电路11可以还具备图2所示的辅助晶体管105。而且,图3所示的数据通信电路11可以替代电压调整部107而具备图4A所示的电压调整部107a、或图4B所示的电压调整部107b。图4A所示的电压调整部107a包括:在信号节点N1与被赋予电源电压VDD的电源节点之间串联连接的nMOS晶体管T1及电阻R2。这样,可以利用nMOS晶体管T1的导通电阻来生成控制电压V11。另外,图4B所示的电压调整部107b包括:在信号节点N1与接地节点之间串联连接的nMOS晶体管T1及电阻R1、R2。这样,可以通过对信号电压V1和电源电压VDD进行电阻分割来生成控制电压V11,通过对信号电压V1和接地电压进行电阻分割来生成控制电压V11。
同样,数据通信电路12可以还具备电压调整部108。通过如此构成,能够任意设定电压缓和晶体管104的电压缓和效果。另外,图3所示的数据通信电路12可以还具备图2所示的辅助晶体管106。另外,图3所示的数据通信电路12可以取代电压调整部108而具备图4A所示的电压调整部107a、或图4所示的电压调整部107b。
(实施方式2)
图5表示实施方式2涉及的收发系统的构成例。该收发系统具备:包括发送处理电路100及数据通信电路21的发送设备、和包括数据通信电路22及接收处理电路110的接收设备。数据通信电路21具备驱动器201和电压缓和晶体管202p、202n。数据通信电路22具备:接收器203、电压缓和晶体管204p、204n、和终端电阻RRP、RRN。数据通信电路21的信号节点NP1及数据通信电路22的信号节点NP2与信号线对中的一条信号线连接,数据通信电路21的信号节点NN1及数据通信电路22的信号节点NN2与信号线对中的另一条信号线连接。终端电阻RRP连接在被赋予终端电源电压VTT的电源节点与信号节点NP2之间,终端电阻RRN连接在被赋予终端电源电压VTT的电源节点与信号节点NN2之间。
发送处理电路100向驱动器201供给互补变化的发送数据DP、DN。驱动器201将发送数据DP、DN转换成数据信号对,并借助供给节点N201p、N201n供给数据信号对。例如,驱动器201包括驱动晶体管TDP、TDN、和电流源晶体管TC。驱动晶体管TDP、TDN对应于发送数据DP、DN互补地切换导通/截止。例如,如果将终端电阻RRP、RRN的电压降设为“Vα”,则在发送数据DP为高电平、发送数据DN为低电平的情况下,信号电压VP1为“VTT-Vα”,信号电压VN1为“VTT”。相反,在发送数据DP为低电平、发送数据DN为高电平的情况下,信号电压VP1为“VTT”,信号电压VN1为“VTT-Vα”。信号电压VP1、VN1的互补变动经由电压缓和晶体管204p、204n被传递给接收器203。由此,接收器203经由输入节点N203p、N203n输入从数据通信电路21发送来的数据信号对(互补变化的数据信号)。接收器203将数据信号对转换成接收数据RD并向接收处理电路110供给。
电压缓和晶体管202p具有:与驱动器201的供给节点N201p连接的源极、与信号节点NP1连接的漏极、和被赋予信号节点NN1的电压(信号电压VN1)的栅极。而且,电压缓和晶体管202n具有:与驱动器201的供给节点N201n连接的源极、与信号节点NN1连接的漏极、和被赋予信号节点NP1的电压(信号电压VP1)的栅极。
电压缓和晶体管204p具有:与接收器203的输入节点N203p连接的源极、与信号节点NP2连接的漏极、和被赋予信号节点NP2的电压(信号电压VP1)的栅极。同样,电压缓和晶体管204n具有:与接收器203的输入节点N203n连接的源极、与信号节点NN2连接的漏极、和被赋予信号节点NN2的电压(信号电压VN1)的栅极。由于可以通过电压缓和晶体管204p、204n来缓和输入节点N203p、N203n的电压,所以可抑制接收器203的耐压破坏。而且,由于可以使电压缓和晶体管204p、204n的端子间电压比信号电压VP1、VN1低,所以还能够抑制电压缓和晶体管204p、204n的耐压破坏。
(电压缓和)
接着,对通过图5所示的电压缓和晶体管202p、202n实现的电压缓和进行说明。这里,为了简化说明,将电压缓和晶体管202p、202n的阈值电压设为“Vth”,将终端电阻RRP、RRN的电压降设为“Vα”。
在信号电压VP1为“VTT-Vα”、信号电压VN1为“VTT”的情况下,供给节点N201p的电压(电压缓和晶体管202p的源极电压)被设定为“VTT-Vth”,供给节点N201n的电压(电压缓和晶体管202n的源极电压)被设定为“VTT-Vα-Vth”。而且,由于电压缓和晶体管202p的漏极电压及栅极电压分别为“VTT-Vα”、“VTT”,所以可以使电压缓和晶体管202p的端子间电压比“VTT”低。同样,由于电压缓和晶体管202n的漏极电压及栅极电压分别为“VTT”、“VTT-Vα”,所以可以使电压缓和晶体管202n的端子间电压比“VTT”低。另外,信号电压VP1为“VTT”、信号电压VN1为“VTT-Vα”的情况下也同样。
在发送数据DP、DN双方都为低电平的情况下(例如,数据通信电路21的电源为截止状态的情况下),信号电压VP1、VN1为“VTT”。该情况下,供给节点N201p、N201n的电压(电压缓和晶体管202p、202n的源极电压)被设定为“VTT-Vth”。而且,由于电压缓和晶体管202p、202n的漏极电压及栅极电压为“VTT”,所以可以使电压缓和晶体管202p、202n的端子间电压比“VTT”低。
如上所述,由于可以通过电压缓和晶体管202p、202n来缓和供给节点N201p、N201n的电压,所以能够抑制驱动器201的耐压破坏。并且,由于可以使电压缓和晶体管202p、202n的端子间电压比信号电压VP1、VN1低,所以还能够抑制电压缓和晶体管202p、202n的耐压破坏。
另外,由于能够对应于信号电压VP1、VN1的互补变动而使电压缓和晶体管202p、202n的电导互补地变化,所以可减轻信号电压VP1、VN1的变动速度的劣化。例如,在信号电压VP1从“VTT”降低为“VTT-Vα”、信号电压VN1从“VTT-Vα”上升为“VTT”的情况下,由于伴随着信号电压VN1的上升,电压缓和晶体管202p的电导增加,所以可以加快信号电压VP1的降低速度。
(电压缓和晶体管的阈值电压)
其中,优选电压缓和晶体管202p的阈值电压在和电压缓和晶体管202p的源极连接的元件的耐压电压、与电压缓和晶体管202p的栅极电压之间的最大电压差以上。例如,在图5的情况下,当驱动器201的耐压电压为“2.5V”、终端电源电压VTT为“3.3V”时,优选电压缓和晶体管202p的阈值电压在“0.8V”以上。通过如此构成,可以防止与电压缓和晶体管202p的源极连接的元件(图5中为驱动器201)的耐压破坏。而且,对于电压缓和晶体管202n、204p、204n的阈值电压也同样。
(实施方式2的变形例1)
如图6所示,数据通信电路21可以还具备辅助晶体管205p、205n。辅助晶体管205p、205n分别夹设在驱动器201的供给节点N201p、N201n与电压缓和晶体管202p、202n的源极之间。而且,辅助晶体管205p、205n的栅极被赋予规定的偏置电压(这里为电源电压VDD)。通过如此构成,可以按照供给节点N201p、N201n的电压不超过辅助晶体管205p、205n的栅极电压的方式来限制供给节点N201p、N201n的电压。而且,通过电压缓和晶体管202p、202n的电压缓和效果,能够抑制辅助晶体管205p、205n的耐压破坏。
同样,数据通信电路22也可以还具备辅助晶体管206p、206n。辅助晶体管206p、206n分别夹设在接收器203的输入节点N203p、N203n与电压缓和晶体管204p、204n的源极之间。而且,辅助晶体管206p、206n的栅极被赋予规定的偏置电压(这里为电源电压VDD)。
(实施方式2的变形例2)
如图7所示,数据通信电路21可以还具备电压调整部207。电压调整部207夹设在电压缓和晶体管202p、202n的漏极与栅极之间,向电压缓和晶体管202p、202n的栅极供给与信号节点NP1、NN1的电压(信号电压VP1、VN1)的中间电压对应的控制电压VM。例如,电压调整部207由串联连接在信号节点NP1、NN1之间的电阻RP、RN构成。通过如此构成,由于和将信号电压VP1、VN1向电压缓和晶体管202p、202n的栅极供给的情况相比,可以降低电压缓和晶体管202p、202n的源极电压,所以能够提高电压缓和晶体管202p、202n的电压缓和效果。
另外,图7所示的数据通信电路21可以还具备图6所示的辅助晶体管205p、205n。并且,图7所示的数据通信电路21可以取代电压调整部207而包含图8A所示的电压调整部207a、或图8B所示的电压调整部207b。图8A所示的电压调整部207a包括:电阻RP、RN;和使在电阻RP、RN的连接节点产生的中间电压平滑化,将其作为控制电压VM输出的滤波器FLT。通过如此构成,能够使控制电压VM的电压值稳定。另外,图8B所示的电压调整部207b包括:电阻RP、RN;和在电阻RP、RN的连接节点与被赋予电源电压VDD的电源节点之间串联连接的nMOS晶体管T 2及电阻RM。通过如此构成,由于可以调整控制电压VM,所以能够任意设定电压缓和晶体管202p、202n的电压缓和效果。
(实施方式3)
图9表示实施方式3涉及的收发系统的构成例。该收发系统具备:包括n个发送处理电路100、100、…及数据通信电路31的发送设备、和n个接收设备。n个接收设备分别包含数据通信电路321、322、…、32n及接收处理电路110、110、…。数据通信电路31的n个信号节点对(由信号节点NP1、NN1构成的信号节点对)与n个信号线对分别连接。数据通信电路321、322、…、32n与n个信号线对分别对应,该数据通信电路的信号节点NP2、NN2与和该数据通信电路对应的信号线对分别连接。
数据通信电路31具备:n个驱动器201、201、…、n个电压缓和晶体管202p、202p、…、n个电压缓和晶体管202n、202n、…、和电压调整部207。数据通信电路321、322、…、32n分别具有与图5所示的数据通信电路22同样的构成。在数据通信电路31中,驱动器201、电压缓和晶体管202p、202n以及信号节点NP1、NN1的连接关系与图5所示的连接关系同样。电压调整部207对应于多个信号线对中的任意一个,将与该对应的信号线对分别连接的信号节点NP1、NN1的电压(信号电压VP1、VN1)的中间电压作为控制电压VM,向电压缓和晶体管202p、202p、…的栅极及电压缓和晶体管202n、202n、…的栅极供给。
如上所述,通过将电压调整部207共用化,与按每个信号线对个别地设置电压调整部207的情况相比,可以抑制因电压调整部207的特性偏差而引起的电压缓和晶体管202p、202n的响应速度的偏差。
另外,数据通信电路31可以还具备与n个驱动器201、201分别对应的n个辅助晶体管205p、205p、…及n个辅助晶体管205n、205n、…。而且,数据通信电路321、322、…、32n也可以还具备图6所示的辅助晶体管206p、206n。并且,数据通信电路31可以取代电压调整部207而具备图8A所示的电压调整部207a、或图8B所示的电压调整部207b。
另外,在向n个信号线对传输的n个数据信号对具有分别不同的频率的情况下,由于向信号线对传输的数据信号对的频率越低,将电压调整部207与该信号线对连接时越不易发生脉动(ripple),所以优选电压调整部207与n个信号线对中对具有最低频率的数据信号对进行传输的信号线对连接。例如,在数据通信电路31遵照LVDS(Low Voltage DifferentialSignal)标准来发送1个时钟信号和4个数据信号的情况下,由于时钟信号的频率比数据信号的频率低,所以优选电压调整部207与传输时钟信号的信号线对连接。
(产业上的可利用性)
如以上说明那样,上述的数据通信电路由于能够抑制电压缓和晶体管的耐压破坏,所以适合在发送设备、接收设备等中使用。
符号说明:
11、21、31    数据通信电路(发送侧)
12、22、321、322、…、32n    数据通信电路(接收侧)
100    发送处理电路
110    接收处理电路
101、201    驱动器
102、202p、202n    电压缓和晶体管
103、203    接收器
104、204p、204n    电压缓和晶体管
RRR、RRP、RRN    终端电阻
105、106、205p、205n、206p、206n    辅助晶体管
107、108、207    电压调整部

Claims (15)

1.一种数据通信电路,是通过信号线对来发送由互补变化的第一及第二数据信号构成的数据信号对的电路,其具备:
驱动器,其经由第一及第二供给节点所构成的供给节点对来供给所述数据信号对;
第一电压缓和晶体管,其具有:与所述驱动器的第一供给节点连接的源极、与和所述信号线对中的一条信号线连接的第一信号节点连接的漏极、以及被赋予与所述信号线对中的另一条信号线连接的第二信号节点的电压的栅极;和
第二电压缓和晶体管,其具有:与所述驱动器的第二供给节点连接的源极、与所述第二信号节点连接的漏极、以及被赋予所述第一信号节点的电压的栅极。
2.根据权利要求1所述的数据通信电路,其特征在于,还具备:
第一辅助晶体管,其夹设在所述驱动器的第一供给节点与所述第一电压缓和晶体管的源极之间,具有与所述驱动器的第一供给节点连接的源极、与所述第一电压缓和晶体管的源极连接的漏极、以及被赋予第一偏置电压的栅极;和
第二辅助晶体管,其夹设在所述驱动器的第二供给节点与所述第二电压缓和晶体管的源极之间,具有与所述驱动器的第二供给节点连接的源极、与所述第二电压缓和晶体管的源极连接的漏极、以及被赋予第二偏置电压的栅极。
3.根据权利要求1所述的数据通信电路,其特征在于,
还具备电压调整部,其夹设在所述第一及第二电压缓和晶体管的漏极与栅极之间,将与所述第一及第二信号节点的电压的中间电压对应的控制电压向所述第一及第二电压缓和晶体管的栅极供给。
4.根据权利要求1~3中任意一项所述的数据通信电路,其特征在于,
所述第一电压缓和晶体管的阈值电压在和所述第一电压缓和晶体管的源极连接的元件的耐压电压、与所述第一电压缓和晶体管的栅极电压之间的最大电压差以上,
所述第二电压缓和晶体管的阈值电压在和所述第二电压缓和晶体管的源极连接的元件的耐压电压、与所述第二电压缓和晶体管的栅极电压之间的最大电压差以上。
5.一种发送设备,其具备:
权利要求1所述的数据通信电路;和
将发送数据向所述驱动器供给的发送处理电路;
所述驱动器将所述发送数据转换成所述数据信号对。
6.一种收发系统,其具备:
权利要求5所述的发送设备;和
经由所述信号线对来接收所述数据信号对的接收设备。
7.一种数据通信电路,是通过多个信号线对来分别发送由互补变化的第一及第二数据信号构成的多个数据信号对的电路,其具备:
多个驱动器,分别经由第一及第二供给节点所构成的供给节点对来供给所述数据信号对;
多个第一电压缓和晶体管,分别与所述多个信号线对及所述多个驱动器对应,分别具有与自己所对应的驱动器的第一供给节点连接的源极、与和自己所对应的信号线对中的一条信号线连接的第一信号节点连接的漏极;
多个第二电压缓和晶体管,分别与所述多个信号线对及所述多个驱动器对应,分别具有与自己所对应的驱动器的第二供给节点连接的源极、与和自己所对应的信号线对中的另一条信号线连接的第二信号节点连接的漏极;以及
电压调整部,其将与多个信号线对中任意一个信号线对分别连接的所述第一及第二信号节点的电压的中间电压所对应的控制电压,向所述多个第一电压缓和晶体管及所述多个第二电压缓和晶体管的栅极供给。
8.一种发送设备,其具备:
权利要求7所述的数据通信电路;和
与所述多个驱动器分别对应,分别将发送数据向与自己对应的驱动器供给的多个发送处理电路;
所述多个驱动器分别将所述发送数据转换成所述数据信号对。
9.一种收发系统,其具备:
权利要求8所述的发送设备;和
与所述多个信号线对分别对应,分别经由与自己对应的信号线对来接收所述数据信号对的多个接收设备。
10.一种数据通信电路,是通过信号线来发送数据信号的电路,其具备:
经由供给节点来供给所述数据信号的驱动器;
电压缓和晶体管,其具有与所述驱动器的供给节点连接的源极、与和所述信号线连接的信号节点连接的漏极、以及被赋予所述信号节点的电压的栅极;和
辅助晶体管,其夹设在所述驱动器的供给节点与所述电压缓和晶体管的源极之间,具有与所述驱动器的供给节点连接的源极、与所述电压缓和晶体管的源极连接的漏极、和被赋予偏置电压的栅极。
11.根据权利要求10所述的数据通信电路,其特征在于,
所述电压缓和晶体管的阈值电压在和所述电压缓和晶体管的源极连接的元件的耐压电压、与所述电压缓和晶体管的栅极电压之间的最大电压差以上。
12.一种发送设备,其具备:
权利要求10所述的数据通信电路;和
将发送数据向所述驱动器供给的发送处理电路;
所述驱动器将所述发送数据转换成所述数据信号。
13.一种收发系统,其具备:
权利要求12所述的发送设备;和
经由所述信号线来接收所述数据信号的接收设备。
14.一种数据通信电路,是通过信号线来接收数据信号的电路,其具备:
接收器,其经由输入节点输入所述数据信号;
电压缓和晶体管,其具有与所述接收器的输入节点连接的源极、与和所述信号线连接的信号节点连接的漏极、被赋予所述信号节点的电压的栅极;
终端电阻,其与所述信号节点连接;和
辅助晶体管,其夹设在所述接收器的输入节点与所述电压缓和晶体管的源极之间,具有与所述接收器的输入节点连接的源极、与所述电压缓和晶体管的源极连接的漏极、和被赋予偏置电压的栅极。
15.一种接收设备,其具备:
权利要求14所述的数据通信电路;和
接收处理电路;
所述接收器将所述数据信号转换成接收数据并向所述接收处理电路供给。
CN201080002392.5A 2009-07-09 2010-03-01 数据通信电路、发送设备、接收设备、收发系统 Expired - Fee Related CN102132538B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-162871 2009-07-09
JP2009162871A JP5385711B2 (ja) 2009-07-09 2009-07-09 データ通信回路、送信機器、受信機器、送受信システム
PCT/JP2010/001378 WO2011004513A1 (ja) 2009-07-09 2010-03-01 データ通信回路、送信機器、受信機器、送受信システム

Publications (2)

Publication Number Publication Date
CN102132538A CN102132538A (zh) 2011-07-20
CN102132538B true CN102132538B (zh) 2014-04-09

Family

ID=43428947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080002392.5A Expired - Fee Related CN102132538B (zh) 2009-07-09 2010-03-01 数据通信电路、发送设备、接收设备、收发系统

Country Status (4)

Country Link
US (1) US8228093B2 (zh)
JP (1) JP5385711B2 (zh)
CN (1) CN102132538B (zh)
WO (1) WO2011004513A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185716A1 (ja) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 差動出力回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122089A (ja) * 1997-10-16 1999-04-30 Fujitsu Ltd 出力駆動回路
CN101132167A (zh) * 2006-08-25 2008-02-27 松下电器产业株式会社 环形振荡器、包括它的半导体集成电路及电子器械
CN101179258A (zh) * 2006-11-10 2008-05-14 恩益禧电子股份有限公司 数据接收电路、数据驱动器及显示装置
CN101388663A (zh) * 2007-09-10 2009-03-18 松下电器产业株式会社 电平移动电路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906867A (en) * 1988-11-09 1990-03-06 Ncr Corporation Buffer circuit with load sensitive transition control
JP3093410B2 (ja) * 1992-01-31 2000-10-03 日本電気株式会社 オープンドレイン型出力回路
US6775328B1 (en) * 1999-08-11 2004-08-10 Rambus Inc. High-speed communication system with a feedback synchronization loop
US6411146B1 (en) * 2000-12-20 2002-06-25 National Semiconductor Corporation Power-off protection circuit for an LVDS driver
JP2004525552A (ja) * 2001-01-19 2004-08-19 コングドン,ジェームズ,エス. 3端子非反転トランジスタスイッチ
US20040013003A1 (en) * 2002-07-19 2004-01-22 Micron Technology, Inc. First bit data eye compensation for open drain output driver
US7471107B1 (en) * 2004-05-12 2008-12-30 Pmc-Sierra, Inc. Active biasing in metal oxide semiconductor (MOS) differential pairs
US7164292B2 (en) * 2004-06-12 2007-01-16 Rambus Inc. Reducing electrical noise during bus turnaround in signal transfer systems
US7088163B1 (en) * 2004-09-24 2006-08-08 National Semiconductor Corporation Circuit for multiplexing a tapped differential delay line to a single output
US7512183B2 (en) * 2005-03-22 2009-03-31 International Business Machines Corporation Differential transmitter circuit
JP4817372B2 (ja) * 2006-03-28 2011-11-16 富士通セミコンダクター株式会社 オープンドレイン出力回路
US7750666B2 (en) * 2008-09-15 2010-07-06 Integrated Device Technology, Inc. Reduced power differential type termination circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122089A (ja) * 1997-10-16 1999-04-30 Fujitsu Ltd 出力駆動回路
CN101132167A (zh) * 2006-08-25 2008-02-27 松下电器产业株式会社 环形振荡器、包括它的半导体集成电路及电子器械
CN101179258A (zh) * 2006-11-10 2008-05-14 恩益禧电子股份有限公司 数据接收电路、数据驱动器及显示装置
CN101388663A (zh) * 2007-09-10 2009-03-18 松下电器产业株式会社 电平移动电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平5-218312A 1993.08.27

Also Published As

Publication number Publication date
JP5385711B2 (ja) 2014-01-08
US8228093B2 (en) 2012-07-24
WO2011004513A1 (ja) 2011-01-13
JP2011019117A (ja) 2011-01-27
CN102132538A (zh) 2011-07-20
US20110074465A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US10033412B2 (en) Impedance and swing control for voltage-mode driver
EP3001564B1 (en) Controller area network bus transmitter with complementary source follower driver
KR101980321B1 (ko) 이퀄라이저 회로 및 이를 포함하는 수신 회로
TWI411231B (zh) 限制輸出高電壓之混合型晶片上調節器
US7893720B2 (en) Bus low voltage differential signaling (BLVDS) circuit
US20070013411A1 (en) Apparatus and methods for programmable slew rate control in transmitter circuits
US20070124518A1 (en) Transmitter driver circuit in high-speed serial communications system
JP6337110B2 (ja) バスシステムの加入者局、及び、バスシステム内の導線に関係する放射量を低減する方法
CN107438986B (zh) 可编程高速均衡器及相关方法
MXPA98000634A (en) Univer issuing device
US20140176197A1 (en) Semiconductor device and operating method thereof
CN102132538B (zh) 数据通信电路、发送设备、接收设备、收发系统
JP2009171403A (ja) 差動トランスミッタ
US8212758B2 (en) Source driver and display utilizing the source driver
CN109644165B (zh) 驱动器电路及其控制方法、以及发送/接收系统
US20100253300A1 (en) Voltage mode push-pull driver output stage
US9515699B2 (en) Dual mode serial transmission apparatus and method for switching mode thereof
KR20150128036A (ko) 저전압 차동 신호 전송기
WO2015198804A1 (ja) 送信装置および通信システム
JP2004241930A (ja) 出力回路
US9847777B2 (en) Signal potential converter
KR100695064B1 (ko) 수동 공통 모드 피드백 회로를 가지는 차동 신호 회로
US20230231476A1 (en) Driver circuit for low voltage differential signaling, lvds, line driver arrangement for lvds and method for operating an lvds driver circuit
CN107465397B (zh) 一种lvpecl信号交流耦合电路及其选择控制方法
US20130135037A1 (en) Voltage multiplying circuit, signal switch chip and impedance adjusting method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140409

Termination date: 20160301

CF01 Termination of patent right due to non-payment of annual fee