CN102130162A - Ldmos及其制造方法 - Google Patents

Ldmos及其制造方法 Download PDF

Info

Publication number
CN102130162A
CN102130162A CN2010100272775A CN201010027277A CN102130162A CN 102130162 A CN102130162 A CN 102130162A CN 2010100272775 A CN2010100272775 A CN 2010100272775A CN 201010027277 A CN201010027277 A CN 201010027277A CN 102130162 A CN102130162 A CN 102130162A
Authority
CN
China
Prior art keywords
trap
injection region
ldmos
heavy doping
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010100272775A
Other languages
English (en)
Other versions
CN102130162B (zh
Inventor
张帅
戚丽娜
胡君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Hua Hong NEC Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hua Hong NEC Electronics Co Ltd filed Critical Shanghai Hua Hong NEC Electronics Co Ltd
Priority to CN2010100272775A priority Critical patent/CN102130162B/zh
Publication of CN102130162A publication Critical patent/CN102130162A/zh
Application granted granted Critical
Publication of CN102130162B publication Critical patent/CN102130162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种LDMOS,与传统的LDMOS相比,本发明的创新之处在于,在n阱(12)中、且仅在源极(181)和漏极(182)之间的隔离结构(13)靠近漏极(182)一侧的侧壁和/或底部处新增p型离子注入区(20)。新增加的p型离子注入区20可改变电荷分布及耗尽区的形貌,提高LDMOS器件的击穿电压,同时保持了LDMOS器件的导通电阻基本不受影响,实现了击穿电压BV与导通电阻Rdson之间的较好平衡。

Description

LDMOS及其制造方法
技术领域
本发明涉及一种半导体集成电路器件,特别是涉及一种LDMOS(laterally diffused MOSFET,横向扩散MOS晶体管)器件。
背景技术
请参阅图1,这是传统的LDMOS器件的剖面示意图。在p型硅衬底10上具有p型外延层11和n阱12。由于n阱12较深,通常也称为深n阱12。在n阱12中具有隔离结构13和低压p阱14。n阱12之上为栅氧化层15和栅极16,栅极16的四周都被介质包围而成为浮栅。栅极16的一端在低压p阱14之上,另一端在隔离结构13之上。低压p阱14中具有n型轻掺杂漏注入区17和n型重掺杂漏注入区181,n型重掺杂漏注入区181作为LDMOS器件的源极。n阱12中也具有一个n型重掺杂漏注入区182,作为LDMOS器件的漏极。
图1所示的LDMOS器件,将各部分掺杂类型相反,也是可行的。
击穿电压对LDMOS器件而言是一个很重要的指标,击穿电压的调整一般都是通过改变漂移区的掺杂浓度、或是调整漂移区的宽度来实现的。这些改变或者对器件的导通电阻Rdson、饱和电流等参数影响比较大,或者会引起器件的面积增大。图1所示的LDMOS器件的漂移区为深n阱12。
发明内容
本发明所要解决的技术问题是提供一种LDMOS器件,可以具有较高的击穿电压。为此,本发明还要提供所述LDMOS器件的制造方法。
为解决上述技术问题,本发明LDMOS器件为:在硅衬底10上具有外延层11和阱12;阱12中具有隔离结构13和阱14;阱12中、且仅在源极和漏极之间的隔离结构13靠近漏极182一侧的侧壁和/或底部处具有离子注入区20;所述离子注入区20与阱12的掺杂类型相反;阱12之上为栅氧化层15和栅极16,栅极16的一端在阱14之上,另一端在隔离结构13之上;阱14中具有轻掺杂漏注入区17和重掺杂漏注入区181,重掺杂漏注入区181作为LDMOS器件的源极;阱12中也具有一个重掺杂漏注入区182,作为LDMOS器件的漏极。
本发明LDMOS器件的制造方法包括如下步骤:
第1步,在硅衬底10上制造外延层11和阱12;
第2步,在阱12的表面刻蚀沟槽,填充所述沟槽形成隔离结构13;
第3步,采用光刻和离子注入工艺,在阱12中,且仅在源极和漏极之间的隔离结构13靠近漏极一侧的侧壁和/或底部处形成与阱12掺杂类型相反的离子注入区20;
第4步,在阱12中形成阱14,在硅片表面制造栅氧化层15和多晶硅栅极16;
第5步,在阱14中形成轻掺杂漏注入区17和重掺杂漏注入区181,所述重掺杂漏注入区181作为LDMOS器件的源极;
在阱12中形成重掺杂漏注入区182,作为LDMOS器件的漏极。
本发明LDMOS器件在源极和漏极之间的隔离结构13靠近漏极一侧的侧壁和/或底部形成了一个与漂移区(即阱12)掺杂类型相反的离子注入区20,改变了LDMOS器件的电荷分布及耗尽区形貌,提高了LDMOS的击穿电压,同时保持了LDMOS器件的导通电阻基本不受影响,实现了击穿电压BV与导通电阻Rdson之间的较好平衡。
附图说明
图1是现有的LDMOS器件的剖面示意图;
图2是本发明LDMOS器件的剖面示意图;
图3是本发明LDMOS器件的制造方法的示意图。
图中附图标记说明:
10为p型衬底;11为p型外延层;12为n阱;13为隔离结构;14为低压p阱;15为栅氧化层;16为多晶硅栅极;17为n型轻掺杂漏注入区;181、182为n型重掺杂漏注入区;20为p型离子注入区;30为光刻胶。
具体实施方式
请参阅图2,本发明LDMOS器件为:在p型硅衬底10上具有p型外延层11和n阱12。由于n阱12较深,通常也称为深n阱12。在n阱12中具有隔离结构13和低压p阱14。n阱12之上为栅氧化层15和栅极16,栅极16的四周都被介质包围而成为浮栅。栅极16的一端在低压p阱14之上,另一端在隔离结构13之上。低压p阱14中具有n型轻掺杂漏注入区17和n型重掺杂漏注入区181,n型重掺杂漏注入区181作为LDMOS器件的源极。n阱12中也具有一个n型重掺杂漏注入区182,作为LDMOS器件的漏极。
与传统的LDMOS器件相比,本发明的创新之处在于,在n阱12中、且仅在源极181和漏极182之间的隔离结构13靠近漏极182一侧的侧壁和/或底部处新增p型离子注入区20(如图2所示)。新增加的p型离子注入区20可改变电荷分布及耗尽区的形貌,提高LDMOS器件的击穿电压。
在n阱12中、且在隔离结构13临近源极181一侧的侧壁和/或底部处没有p型离子注入区。这是由于隔离结构与源端181之间为主要导电通道,若该主要导电通道也增加p型离子注入区,则该主要导电通道会变夹窄,使得导通电阻被明显提高。本发明对p型离子注入区20的位置进行了巧妙地设置,既可以提高击穿电压,同时又尽可能维持导通电阻不变。通过TCAD软件仿真表明,本发明将碰撞电离从LDMOS器件的表面往内部推,增强了LDMOS器件的可靠性,同时可将击穿电压提高至少3V。
图2所示的LDMOS器件,将各部分掺杂类型相反,则为本发明的另一实施例。
本发明LDMOS器件的制造方法包括如下步骤(以n型LDMOS为例进行介绍,p型LDMOS只需将各步骤的离子注入类型相反,各部分结构的掺杂类型相反即可):
第1步,在p型硅衬底10上外延生长一层p型外延层11(即淀积一层p型单晶硅),然后在p型外延层11中进行n型杂质的离子注入,常见的n型杂质如磷、砷、锑等,然后进行退火工艺,在p型外延层11的表面形成n阱12。
第2步,在n阱12的表面刻蚀沟槽,在沟槽的侧壁和底部氧化生长一层衬垫氧化层(未图示),再在硅片表面淀积一层介质,所述介质例如氧化硅、氮化硅、氮氧化硅等。该层介质至少将沟槽完全填充,再将所淀积的介质研磨至与n阱12的上表面齐平,形成隔离结构13。
第3步,请参阅图3,在硅片表面旋涂光刻胶30,曝光、显影后仅暴露出源极和漏极之间的隔离结构13靠近漏极一侧的区域,在该区域进行p型杂质注入,常见的p型杂质如硼等,然后进行退火工艺,从而在n阱12中、且靠近隔离结构13临近漏极一侧的侧壁和/或底部处形成p型离子注入区20,最后去除光刻胶30。
这一步离子注入的能量为80~120KeV,剂量为1×1013~5×1013原子每平方厘米(或离子每平方厘米)。
第4步,在n阱12中进行p型杂质注入形成低压p阱14,在硅片表面生长一层氧化硅,再淀积一层多晶硅,刻蚀该层多晶硅和氧化硅从而形成多晶硅栅极16和栅氧化层15;多晶硅栅极16的一侧在隔离结构13之上,另一侧在低压p阱14之上。
第5步,在多晶硅栅极16靠近源端的一侧进行n型杂质的轻掺杂漏注入(LDD),从而在低压p阱14中形成n型轻掺杂漏注入区17。在栅氧化层15和栅极16的两侧制造侧墙。然后在所述侧墙外侧进行n型杂质的源漏注入,从而在低压p阱14中形成n型重掺杂漏注入区181,作为LDMOS器件的源极。
在n阱12中也进行n型杂质的源漏注入,从而在n阱12中形成n型重掺杂漏注入区182,作为LDMOS器件的漏极。
所述方法第4步和第5步中,离子注入的阻挡层均为光刻胶;即均先用光刻工艺定义离子注入区域。
与传统LDMOS器件的制造方法相比,本发明仅新增了第3步,其余各步骤工艺均为传统LDMOS器件的制造工艺。
上述实施例中的结构、步骤、数值等均为示意,在不违反本发明思想的前提下,本领域的一般技术人员可以进行等同替换,这些都仍属于本发明的保护范围之内。

Claims (5)

1.一种LDMOS,其特征是,所述LDMOS为:在硅衬底(10)上具有外延层(11)和阱(12);阱(12)中具有隔离结构(13)和阱(14);阱(12)中、且仅在源极和漏极之间的隔离结构(13)靠近漏极(182)一侧的侧壁和/或底部处具有离子注入区(20);所述离子注入区(20)与阱(12)的掺杂类型相反;阱(12)之上为栅氧化层(15)和栅极(16),栅极(16)的一端在阱(14)之上,另一端在隔离结构(13)之上;阱(14)中具有轻掺杂漏注入区(17)和重掺杂漏注入区(181),重掺杂漏注入区(181)作为LDMOS器件的源极;阱(12)中也具有一个重掺杂漏注入区(182),作为LDMOS器件的漏极。
2.根据权利要求1所述的LDMOS,其特征是,所述硅衬底(10)、外延层(11)、阱(14)为p型;阱(12)、轻掺杂漏注入区(17)、重掺杂漏注入区(181)、重掺杂漏注入区(182)为n型。
3.根据权利要求1所述的LDMOS,其特征是,所述硅衬底(10)、外延层(11)、阱(14)为n型;阱(12)、轻掺杂漏注入区(17)、重掺杂漏注入区(181)、重掺杂漏注入区(182)为p型。
4.如权利要求1所述的LDMOS的制造方法,其特征是,包括如下步骤:
第1步,在硅衬底(10)上制造外延层(11)和阱(12);
第2步,在阱(12)的表面刻蚀沟槽,填充所述沟槽形成隔离结构(13);
第3步,采用光刻和离子注入工艺,在阱(12)中,且仅在源极和漏极之间的隔离结构(13)靠近漏极一侧的侧壁和/或底部处形成与阱(12)掺杂类型相反的离子注入区(20);
第4步,在阱(12)中形成阱(14),在硅片表面制造栅氧化层(15)和多晶硅栅极(16);
第5步,在阱(14)中形成轻掺杂漏注入区(17)和重掺杂漏注入区(181),所述重掺杂漏注入区(181)作为LDMOS器件的源极;
在阱(12)中形成重掺杂漏注入区(182),作为LDMOS器件的漏极。
5.根据权利要求4所述的LDMOS的制造方法,其特征是,所述方法第3步中,离子注入的能量为80~120KeV,剂量为1×1013~5×1013原子每平方厘米。
CN2010100272775A 2010-01-18 2010-01-18 Ldmos及其制造方法 Active CN102130162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010100272775A CN102130162B (zh) 2010-01-18 2010-01-18 Ldmos及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010100272775A CN102130162B (zh) 2010-01-18 2010-01-18 Ldmos及其制造方法

Publications (2)

Publication Number Publication Date
CN102130162A true CN102130162A (zh) 2011-07-20
CN102130162B CN102130162B (zh) 2012-11-07

Family

ID=44268151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010100272775A Active CN102130162B (zh) 2010-01-18 2010-01-18 Ldmos及其制造方法

Country Status (1)

Country Link
CN (1) CN102130162B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094337A (zh) * 2011-10-27 2013-05-08 中芯国际集成电路制造(上海)有限公司 Ldnmos结构及其制造方法
CN104282563A (zh) * 2013-07-03 2015-01-14 中芯国际集成电路制造(上海)有限公司 Ldmos器件及其形成方法
CN108288645A (zh) * 2017-01-09 2018-07-17 立锜科技股份有限公司 高压元件及其制造方法
CN113764502A (zh) * 2020-06-02 2021-12-07 芯恩(青岛)集成电路有限公司 一种ldmos半导体器件及其制造方法
CN113764502B (zh) * 2020-06-02 2024-05-31 芯恩(青岛)集成电路有限公司 一种ldmos半导体器件及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046823C (zh) * 1995-10-24 1999-11-24 台湾茂矽电子股份有限公司 具有倒t型栅极mos晶体管的低度掺杂漏极的制造方法及其结构
US6903421B1 (en) * 2004-01-16 2005-06-07 System General Corp. Isolated high-voltage LDMOS transistor having a split well structure
KR100840667B1 (ko) * 2007-06-26 2008-06-24 주식회사 동부하이텍 수평형 디모스 소자 및 그 제조방법
KR100877674B1 (ko) * 2007-09-12 2009-01-08 주식회사 동부하이텍 Ldmos 소자

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094337A (zh) * 2011-10-27 2013-05-08 中芯国际集成电路制造(上海)有限公司 Ldnmos结构及其制造方法
CN103094337B (zh) * 2011-10-27 2015-08-19 中芯国际集成电路制造(上海)有限公司 Ldnmos结构及其制造方法
CN104282563A (zh) * 2013-07-03 2015-01-14 中芯国际集成电路制造(上海)有限公司 Ldmos器件及其形成方法
CN108288645A (zh) * 2017-01-09 2018-07-17 立锜科技股份有限公司 高压元件及其制造方法
CN113764502A (zh) * 2020-06-02 2021-12-07 芯恩(青岛)集成电路有限公司 一种ldmos半导体器件及其制造方法
CN113764502B (zh) * 2020-06-02 2024-05-31 芯恩(青岛)集成电路有限公司 一种ldmos半导体器件及其制造方法

Also Published As

Publication number Publication date
CN102130162B (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
US8125023B2 (en) Vertical type power semiconductor device having a super junction structure
US10886160B2 (en) Sinker to buried layer connection region for narrow deep trenches
US7087959B2 (en) Metal-oxide-semiconductor device having an enhanced shielding structure
CN104992977B (zh) Nldmos器件及其制造方法
CN107482061B (zh) 超结器件及其制造方法
CN103151376A (zh) 沟槽-栅极resurf半导体器件及其制造方法
CN101924131B (zh) 横向扩散mos器件及其制备方法
US20140159153A1 (en) Rf ldmos device and method of forming the same
JP2019521529A (ja) パワーデバイス及びその製造方法
US9711642B2 (en) Semiconductor device and manufacturing method thereof
US20110147843A1 (en) Semiconductor Component and Method for Producing a Semiconductor Component
CN102751332A (zh) 耗尽型功率半导体器件及其制造方法
CN102136493A (zh) 高压隔离型ldnmos器件及其制造方法
CN104659090B (zh) Ldmos器件及制造方法
CN101752347B (zh) 一种防静电保护结构及其制作方法
CN106169503A (zh) 具有垂直浮动环的半导体装置及其制造方法
CN104752500B (zh) 射频ldmos器件及工艺方法
CN102130162B (zh) Ldmos及其制造方法
CN108091684B (zh) 超结金属氧化物场效应晶体管
CN110323138B (zh) 一种ldmos器件的制造方法
KR20110078621A (ko) 반도체 소자 및 그 제조 방법
CN104538441B (zh) 射频ldmos器件及其制造方法
CN109119458B (zh) 隔离结构及工艺方法
EP1142014B1 (en) A method of manufacturing a peripheral transistor of a non-volatile memory
CN103050510B (zh) Rfldmos工艺中的esd器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER NAME: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

CP03 Change of name, title or address

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Patentee after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201206, Shanghai, Pudong New Area, Sichuan Road, No. 1188 Bridge

Patentee before: Shanghai Huahong NEC Electronics Co., Ltd.