CN102112266A - 焊接由耐高温的超级合金构成的工件的方法和装置 - Google Patents

焊接由耐高温的超级合金构成的工件的方法和装置 Download PDF

Info

Publication number
CN102112266A
CN102112266A CN2008801305917A CN200880130591A CN102112266A CN 102112266 A CN102112266 A CN 102112266A CN 2008801305917 A CN2008801305917 A CN 2008801305917A CN 200880130591 A CN200880130591 A CN 200880130591A CN 102112266 A CN102112266 A CN 102112266A
Authority
CN
China
Prior art keywords
welding
heat
district
layer
scolder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801305917A
Other languages
English (en)
Other versions
CN102112266B (zh
Inventor
N·阿尔贾金
G·博斯坦约格洛
B·布尔鲍姆
A·加泽
T·贾姆博尔
S·林嫩布林克
T·梅策-约基施
M·奥特
N·皮尔希
R·威尔肯赫纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Siemens Energy Global GmbH and Co KG
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Siemens AG filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of CN102112266A publication Critical patent/CN102112266A/zh
Application granted granted Critical
Publication of CN102112266B publication Critical patent/CN102112266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/007Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of copper or another noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Arc Welding In General (AREA)

Abstract

提供了一种焊接由耐高温的超级合金构成的工件(9)的焊接装置。此焊接装置包括:-热源(3),用于在工件表面(10)上产生热引入区(11);-输入装置(5),用于将焊料(13)输入到热引入区(11);-输送装置(15),用于在一方面热源(3)和输入装置(5)与另一方面工件表面(10)之间产生相对运动。此焊接装置还包括控制单元(17),此控制单元(17)具有控制程序,它这样来实施相对运动,即这样来设定焊接功率和热引入区(11)的直径,即冷却率在材料凝固时达到至少每秒8000开氏温度。

Description

焊接由耐高温的超级合金构成的工件的方法和装置
技术领域
本发明涉及一种方法和一种装置,用于对工件、尤其是燃气轮机工件(例如燃气轮机叶片)进行焊接。
背景技术
燃气轮机的转子叶片在运转时会遭受高温和很强的机械负载。因此对于这种零件,优选使用镍基超级合金,它可通过γ’相沉淀来制造。但是,随着时间的推移可能会上转子叶片上出现裂纹,这些裂纹会随时间继续扩大。可能由于极端的机械负载,在燃气轮机运转时也可能会出现这种裂纹,但它们也可能在制造过程中就已经出现了。因为由这种超级合金制造燃气轮机叶片和其它工件很费力且成本很高,所以人们在制造时努力产生尽可能少的废品,并确保生产出来的产品具有很长的使用寿命。
如果由于运转引起的载荷,不能再绝对地保证无问题的正常工作,则需要定期地保养处于运转中的燃气轮机叶片,必要时还要更换。为了使更换的涡轮机叶片能继续使用,一般可对它们进行再加工。然后,它们可重新应用在燃气轮机中。在这种再次修复的框架中,在损坏的地方进行堆焊是必要的,以便再次建立原有的壁厚。
例如借助堆焊,可使在制造过程中就已经包括裂纹的涡轮机叶片变得耐用,因此可减少的制造过程中的废品。
但是借助常规的焊接方法,γ′增强的镍基超级合金与同种的焊料目前很难焊接在一起。原因在于,必须避免熔融物的微偏析(即微分离)。此外在后继的热处理过程中,焊接过程自身也可能在焊接部位产生裂纹。原因是焊接固有应力,此焊接固有应力是在焊接时在引入热的过程中由于塑性变形而引起的。
为了避开γ′硬化的镍基超级合金的困难的焊接性,通常用可延展的焊料(例如无γ′硬化的镍基合金)来焊接。这种无γ′硬化的镍基合金的典型代表是例如IN625。这种无γ′硬化的焊料的可延展性允许,在焊接之后在第一热处理过程中通过塑性变形来消除焊接应力。与γ′硬化的镍基超级合金相比,这种未硬化的合金当然具有更小的耐高温性(抗拉强度和蠕变强度也更小)。因此,优选使用不带可延展的焊料的焊接方法。这种方法可划分为两个类型,其一是使基本材料过时效,以便借助γ’相粗化来提高可延展性,另一是在预热的基底上实施焊接工艺。在预热的基底上实施焊接工艺,这通过在焊接过程中的回复减小焊接固定应力。例如在US 6,120,624中描述了一种事先过时效的焊接工艺,例如在US 5,319,179中描述了一种在预热工件上实施的焊接工艺。
但是,上述两种不带可延展的焊料的焊接方法也同样具有缺点。例如,在焊接工艺之前实施过时效时,在焊接之前需对γ’硬化的镍基超级合金进行相应的热处理,以便使γ’相实现过时效。在此,明显提高了基本材料的可延展性。可延展性的提高使材料可在室温下焊接。此外,它还可冷矫直。此外,这种热处理还可把镍基超级合金(例如Rene41或Haynes282)当作焊料来用。它们虽然在组织中形成γ’相,但它的体积百分含量明显小于典型的含γ′的镍基超级合金,后者如今用于燃气轮机-热气部件例如燃气轮机叶片(例如IN738LC、IN939、Rene80、IN6203DS、PWA1483SX、合金247等)。因此,即便在焊接工艺之前实施过时效,也不能进行全结构的焊接。
如果涡轮机叶片进行预热,则可减少焊点和涡轮机叶片其余部位之间的温度差以及由此出现的应力梯度,从而可在由镍基超级合金构成的零件中避免产生焊接裂纹。但是,这样的方法必须在保护气体的作用下实施,这会使焊接工艺更加复杂和昂贵,在此方法中借助感应线圈把涡轮机叶片的温度预热到900℃至1000℃之间。此外,由于位于保护气体容器中的工件很难接触得到,所以这种方法无法在工件的所有部位上实施。
发明内容
因此需要一种备选的焊接方法,用于实施堆焊,此堆焊尤其适用于γ’硬化的镍基超级合金,并且没有上述的缺点或程度很小。本发明的另一目的是,提供一种焊接装置,适合用于实施按本发明的方法。
第一目的通过按权利要求1所述的、用于实施堆焊的方法得以实现,第二目的通过按权利要求10所述的焊接装置得以实现。从属权利要求包括本发明的有利的构造方案。
在按本发明的方法中,此方法用于焊接由耐高温的超级合金构成的工件,借助热引入区和输入区将焊料安放在工件表面上,此输入区用于将焊料输入到热引入区中。此热引入区和输入区在焊接过程中在工件表面上运动。此运动是沿着焊接方向进行的,例如在直线的路径上,或在围绕着焊接方向进行振荡的路径上。在按本发明的方法中,焊接参数是这样选择的,即冷却率在材料凝固时至少为8000K/s。
在材料凝固时,为了设定到最低8000K/s的冷却率而提供的主要参数是有关焊接功率、热引入区直径(形式例如是激光功率和激光射束的直径)、进给(工艺速度)以及输入的焊料流这些方法参数。根据所用激光源的种类,通过适当地匹配这些参数,可设定到所需的冷却率,用于待焊接的材料。此工艺速度在此可至少为250mm/分钟,尤其高于500mm/分钟。例如当工艺速度高于500mm/分钟时,有关焊接功率和热引入区直径的方法参数这样进行设定,即冷却率在材料凝固时达到至少8000K/s。
通过高的冷却率和高的凝固速度,可提高分布系数,从而尽可能避免熔融物的微偏析,即微分离。焊接物中的熔融物凝固成枝状(即树形结构),其中枝晶的生长方向沿着焊迹变化,因为枝晶的可能的生长方向的取向相对于温度梯度在凝固前沿上变化。具有最小温度梯度斜度或具有最小生长速度的生长方向得以表现。此外,在凝固前沿前形成晶核,它在凝固过程中被凝固前沿获取。此晶核初始化随机分布的枝晶生长方向。
按本发明的方法例如适合借助焊料对由含γ′的镍基超级合金构成的工件进行焊接,此焊料是形成γ′的镍基超级合金。由于使用了同类的焊料,可在焊接物中达到很高的强度,并可实现可接受的焊接质量,即裂纹数量非常少且平均的裂纹长度非常短。
由于可在室温下借助局部位于熔池中的保护气体气氛实施焊接过程,所以按本发明的焊接方法可实现很高的经济性。
此方法尤其作为堆焊法,在此方法中逐层地安放焊料。在此,顺序叠置的层的焊接方向相对旋转,尤其旋转90°。尤其在热引入区和输入区还沿着焊接方向在围绕着焊接方向振荡的路径上在工件表面上运动时,通过转动不同层的焊接方向,可避免层与层之间的连接错误。
不均匀分布的枝状取向主要出现在焊迹的上半部分。因此在按本发明的方法中,有利的是,在前涂覆的层在小于其层厚度一半时再次熔化。在此,在凝固时呈现再熔部位的晶体结构。因此,由于再熔深度较小,可以确保凝固前沿处在具有不均匀分布的枝晶取向的区域上。在多层焊接时,这一点的效果是,生成具有晶粒的多晶体,它的直径平均非常小。晶界通常是在出现短暂应力时在焊接工艺或后继热处理过程中裂纹形成的薄弱部位。由于在借助本发明的方法焊接的焊接物中晶界在平面中较小延展及其不均匀的取向,所以焊接物对于裂纹形成是不敏感的,因此焊接过程可在室温下进行。
按本发明的方法既可在多晶体中应用,也可在定向凝固或单晶基底中应用。在所有所述的情况下,含γ′的镍基超级合金可当作焊料来用。
在按本发明的焊接方法的框架中,在安放焊料之后可进行热处理。借助与焊接物相匹配的热处理,可设定到期望的γ′形态。这可进一步改善焊接物的强度。
按本发明的、用于焊接耐高温的超级合金的焊接装置(它适合用于实施按本发明的方法)包括:热源,用于在工件表面上产生热引入区;输入装置,用于将焊料输入到热引入区;输送装置,用于在热引入区和输入装置(一方面)与工件表面(另一方面)之间产生相对运动。有利的是,此输送装置与热源及用于焊料的输入装置相连,以便移动热源和输入装置,从而引起相对运动。这通常比移动工件更省事。在按本发明的焊接装置中,尤其使用激光作为热源。按本发明的焊接装置还包括具有控制程序的控制单元,此控制程序这样来设定焊接参数,即冷却率在材料凝固时达至少每秒8000开氏温度。控制单元尤其这样设定有关焊接功率和热引入区直径的焊接参数,即冷却率在材料凝固时达至少每秒8000开氏温度。在此,以每分种最小150mm的工艺速度进行焊接,尤其以每分钟超过500mm的工艺速度进行焊接。
此相对运动可尤其这样控制,即热引入区和输入区沿着焊接方向在围绕着焊接方向振荡的路径上在工件表面上运动。此外,控制单元可有振荡或无振荡地执行相对运动,使得焊接方向在顺序叠置的层中相对旋转,例如以90°。
按本发明的焊接装置可通过使用控制程序来实施按本发明的焊接方法,此控制程序包括在本发明的框架中描述的用于焊接工艺的焊接参数,例如热源和输入装置(一方面)与工件(另一方面)之间的相对运动的路径、工艺速度、激光功率、射束直径等。在本方法的框架中描述的方法参数和机构可帮助抑制在基本材料和熔融物中形成裂纹(例如凝固裂纹和再熔裂纹)。当基本材料和焊料都是形成γ′的镍基超级合金时,则尤其是这样。由此实现了借助按本发明的方法和按本发明的装置可达到的焊接质量,此焊接质量对于结构性焊接是可接受的,例如用于修复或连接涡轮机叶片或其它工件的高负载区域。
附图说明
参照附图,从实施例的以下描述中得出了本发明的其它优点、特征和优点。
图1在纵向局部剖面图中示例性地示出了燃气轮机;
图2在透视图中示出了涡轮机叶片;
图3在局部剖开的透视图中示出了燃气轮机的燃烧腔;
图4在示意图中示出了按本发明的焊接装置;
图5在焊料上用于第一层的焊接路径;
图6在焊料上用于第一层的焊接路径。
具体实施方式
图1在纵向局部剖面图中示例性地示出了燃气轮机100。
燃气轮机100在内部具有围绕着旋转轴线102旋转支承的转子103,此转子103具有轴101,此转子103也被称为涡轮机动子。
沿着转子103,依次设有进气壳体104、压缩机105、例如花托状的燃烧室110(尤其是环形燃烧室,具有多个同轴设置的燃烧器107)、涡轮机108和排气壳体109。
环形燃烧室110与例如环形的热气通道111相通。例如四个串联的涡轮级112在该处形成涡轮机108。
每个涡轮级112例如都由两个叶片环构成。在工作介质113的流动方向上看,在热气通道111中,由转子叶片120构成列125跟随着导向叶片列115。
导向叶片130在此固定在定子143的内壳体138上,相反,列125的转子叶片120则例如借助涡轮机盘133安装在转子103上。
在所述转子103上连接着发电机或工作机器(未示出)。
在燃气轮机100的运转过程中,空气135由压缩机105通过进气壳体104吸入,并对其进行压缩。在压缩机105的涡轮机侧的端部上提供的压缩空气被输送给燃烧器107,并在该处与燃烧剂混合。然后这种混合物在形成工作介质113的情况下在燃烧室110中燃烧。工作介质113从那里沿着热气通道111从导向叶片130及转子叶片120的旁边流过。在转子叶片120上,工作介质113在传递动力的情况下膨胀,使得转子叶片120驱动转子103,并且该转子103驱动连接到它上面的工作机器。
在燃气轮机100的运转过程中,暴露在热的工作介质113下的零件遭受热负荷。在工作介质113的流动方向上看的第一个涡轮级112的导向叶片130和转子叶片120,除了给环形燃烧室110加衬的挡热元件之外,遭受最大的热负荷。
为了经受住那里的温度,它们可借助冷却剂进行冷却。
同样,所述零件的基底可以具有定向的结构,即它们是单晶的结构(SX结构),或只具有纵向定向的晶粒(DS结构)。
作为用于零件的材料,尤其用于涡轮机叶片120、130和燃烧室110的零件,例如使用铁基的、镍基的或钴基的超级合金。
这样的超级合金例如从EP 1 204 776 B1、EP 1 306 454、EP 1 319 729 A1、WO 99/67435或WO 00/44949中已知;这些公开文献在合金的化学成份方面是本公开文件的一部分。
同样,叶片120、130具有防止腐蚀的涂层(MCrAIX;M是铁(Fe)、钴(Co)、镍(Ni)族中的至少一种元素,X是活性元素并且代表钇(Y)和/或硅、钪(Sc)和/或至少一种稀土元素或者铪(Hf)。这样的合金从EP 0 486 489 B1、EP 0 786 017 B1、EP 0 412 397 B1或EP 1 306 454 A1已知,它们在化学成份方面应该是本公开文件的一部分。
在所述MCrAIX上还可以具有隔热层,并例如由ZrO2,Y2O3-ZrO2构成,也就是说它不是部分或全部地通过氧化钇和/或氧化钙和/或氧化镁来稳定。
通过合适的涂装方法,例如电子束物理气相沉积(EB-PVD),在隔热层中产生柱状的晶粒。
导向叶片130具有朝向涡轮机108的内壳体138的导向叶片根(这里未示出),还具有与所述导向叶片根相对而置的导向叶片头。此导向叶片头面向转子103,并固定在定子143的固定环140上。
图2在透视图中示出了沿纵轴线121延伸的流体机械的转子叶片120或导向叶片130。
所述流体机械可以是飞机或用于发电的发电站的燃气轮机、蒸气轮机或压缩机。
叶片120、130沿着纵轴线121顺序具有的固定区域400、与该固定区域400邻接的叶片平台403以及叶身406和叶片尖415。
作为导向叶片130,叶片130在其叶片尖415上可具有另外的平台(未示出)。
叶根183在固定区域140中构成,此叶根183的作用是,把转子叶片120、130固定在轴或盘上(未示出)。
此叶根183例如构成为锤头状。另外也可以将其构造成枞树形叶根或燕尾形叶根。
叶片120、130具有迎流棱边409和排流棱边412,用于从叶身406旁边流过的介质。
在传统的叶片120、130中,在叶片120、130的所有区域400、403、406中例如使用实心的金属材料(尤其是超级合金)。
这样的超级合金例如从EP 1 204 776 B1、EP 1 306 454、EP 1 319 729 A1、WO 99/67435或WO 00/44949已知;这些文献在合金的化学成份方面是本公开文件的一部分。
所述叶片120、130在此可以通过也借助于定向凝固的铸造方法、通过锻造方法、通过铣削方法或者这些方法的组合来制造。
具有单晶结构的工件当作零件用在机器中,这些零件在运转时经受高的机械负荷、热负荷和/或化学负荷。
这种单晶工件的制造例如由熔液通过定向凝固来进行。在此涉及铸造方法,在此方法中液态的金属合金定向地凝固成单晶结构,即凝固成单晶工件。
在此,枝状的晶体沿着热流定向,并且要么形成柱状的晶粒结构(柱晶,即在工件的整个长度上延伸的晶粒,并在这里按一般的语言习惯被称为定向凝固),要么形成单晶结构,即整个工件由唯一一个晶体构成。在这些方法中,必须避免转换成球状的(多晶的)凝固,因为通过非定向的生长必形会形成横向的和纵向的晶界,这样的晶界使定向凝固的或单晶的零件的良好性能丧失殆尽。
如果通常谈及定向凝固的组织,那么以此不仅是指没有晶界或者最多具有小角度晶界的单晶体,而且也指柱状晶体结构,它们可能具有在纵向方向上延伸的晶界、但没有横向的晶界。对于两种提到的晶体结构,也称为定向凝固的组织(directionally solidified structures)。
这样的方法从US-PS 6,024,792和EP 0 892 090 A1已知;这些文献在凝固方法方面是本公开文件的一部分。
同样,叶片120、130具有防止腐蚀或氧化的涂层,例如(MCrAIX;M是铁(Fe)、钴(Co)、镍(Ni)族中的至少一种元素,X是活性元素并且代表钇(Y)和/或硅和/或至少一种稀土元素或者铪(Hf)。这样的合金从EP 0 486 489 B1、EP 0 786 017 B1、EP 0 412 397 B1或EP 1 306 454 A1已知,它们在合金的化学成份方面应该是本公开文件的一部分。
密度优选为理论密度的大约95%。
在此MCrAIX层(作为中间层或最外面的层)上,形成保护性的氧化铝层(TGO-热生长氧化层)。
此涂层成份优选具有Co-30Ni-28Cr-8Al-0,6Y-0,7Si或者Co-28Ni-24Cr-10Al-0,6Y。除了这种钴基保护层之外,还可优选应用镍基保护层,例如Ni-10Cr-12Al-0,6Y-3Re或者Ni-12Co-21Cr-11Al-0,4Y-2Re或者Ni-25Co-17Cr-10Al-0,4Y-1,5Re。
在所述MCrAIX上还可以具有隔热层,它优选是最外层,并例如由ZrO2,Y2O3-ZrO2构成,也就是说它不是部分或全部地通过氧化钇和/或氧化钙和/或氧化镁来稳定。隔热层覆盖整个MCrAIX层。
通过合适的涂装方法,例如电子束物理气相沉积(EB-PVD),在隔热层中产生柱状的晶粒。
可以设想其它的涂装方法,例如大气等离子喷涂(APS)、LPPS、VPS或CVD。隔热层可以具有多孔的、带有微观或宏观裂纹的晶粒,用于实现更好的耐温度突变性。此隔热层因此优选比MCrAIX层更加多孔。
再加工(重整)意味着,零件120、130在使用后必要时必须去除保护层(例如通过喷砂处理)。然后,去除腐蚀和/或氧化层或产物。必要时还可修复零件120、130中的裂纹,然后再次给零件120、130加上涂层,并重新使用零件120、130。
叶片120、130可构成为中空或实心的。如果叶片120、130应该要冷却,则它是中空的,必要时还具有薄膜冷却孔418(用虚线表示)。
图3示出了燃气轮机的燃烧室110。此燃烧室110例如设计成所谓的环形燃烧室,其中多个在圆周方向上围绕着旋转轴线102设置的燃烧器107通到共同的燃烧室腔154中,并产生火焰156。为此,燃烧室110在其整体上设计成环形结构,它定位在旋转轴引102的周围。
为了实现相对较高的效率,燃烧室110构造成用于工件介质M的大约1000℃至1600℃的相对较高温度。为了在存在对材料不利的工作参数时也能实现较长的使用寿命,燃烧室壁153在其面向工作介质M的一侧设置有由挡热元件155构成的内衬。
每个由合金制成的挡热元件155在工作介质侧设有特别耐热的保护层(MCrAIX层和/或陶瓷层)或者由耐高温的材料(实心的陶瓷石)制成。
这些保护层可以类似于涡轮叶片,即例如意味着MCrAIX:M是铁(Fe)、钴(Co)、镍(Ni)族中的至少一种元素,X是活性元素并且代表钇(Y)和/或硅和/或至少一种稀土元素或者铪(Hf)。这样的合金从EP 0 486 489 B1、EP 0 786 017 B1、EP 0 412 397 B1或EP 1 306 454 A1已知,它们在合金的化学成份方面应该是本公开文件的一部分。
在所述MCrAIX上还可以具有例如陶瓷隔热层,并例如由ZrO2,Y2O3-ZrO2构成,也就是说它不是部分或全部地通过氧化钇和/或氧化钙和/或氧化镁来稳定。
通过合适的涂装方法,例如电子束物理气相沉积(EB-PVD),在隔热层中产生柱状的晶粒。
可以设想其它的涂装方法,例如大气等离子喷涂(APS)、LPPS、VPS或CVD。隔热层可以具有多孔的、带有微观或宏观裂纹的晶粒,用于实现更好的耐温度突变性。
再加工(重整)意味着,挡热元件155在使用后必要时必须去除保护层(例如通过喷砂处理)。然后,去除腐蚀和/或氧化层或产物。必要时还可修复挡热元件155中的裂纹,然后再次给挡热元件155加上涂层,并重新使用挡热元件155。
此外,由于燃烧室110内部的高温,可为挡热元件155或者为其保持元件设置冷却系统。然后,所述挡热元件155例如是空心的,必要时还具有通到燃烧室腔154中的冷却孔(未示出)。
图4在示意视图中示出了按本发明的焊接装置1。它包括激光器3和粉末输入装置5,粉末状的焊料借助它可涂覆在工件9的待焊接的部位上。借助激光射束,在工件表面上构成热引入区11,粉末13也被粉末输入装置5涂覆在此处。
激光器3和粉末输入装置5设置在扫描装置15上,此扫描装置15使激光器3和粉末输入装置5在两维空间内沿着零件表面(图4中的方向X和方向Y)与待焊接的部位7一起移动。此外,本实施例的扫描装置15可使激光器3和粉末输入装置5垂直于零件表面(图4中的方向Z)进行移动。因此借助扫描装置15,热引入区和粉末抵达区可沿着预定的路径进行移动。例如可把机械手来当作扫描装置来用。
由扫描装置15实现的运动通过控制单元17来控制,此控制单元17也控制焊接工艺的其它参数。与本实施例不同的是,也可通过其它的控制装置来控制焊接工艺的其它参数,即与运动进程的控制分开来。此外,与所示实施例不同的是,为移动激光器3和粉末输入装置5也可使用可运动的零件支架,来代替扫描装置15。在本发明的框架中,只有激光器3和粉末输入装置5(一方面)与工件9之间的相对运动是重要的。
按本发明的、用于对工件表面进行堆焊的方法可在零件9的待焊接部位7上使用,用于涂覆材料,尤其是用于涂覆多层材料。零件9在此既不需要预热,也不需要借助热处理来过时效。
下面对涡轮机叶片9(作为零件)的表面10进行堆焊,由此来描述本发明。本实施例的涡轮机叶片由γ′增强的镍基超级合金构成,例如由IN738LC,IN939,ReneδO,IN6203DS,PWA1483SX,合金247等构成。涡轮机叶片9的表面10上的待焊接区域7被逐层地堆焊,其中热引入区与粉末13的抵达区一起沿着焊接方向在涡轮机叶片9的待焊接部位7上运动。此粉末13在这种情况下是由含γ′的镍基超级合金构成,例如由IN 738LC、IN 939、Rene 80、IN 6203DS、PWA 1483、合金247等构成。
图5示意性地示出了路径P1,热引入区11以及粉末13的抵达区在待焊接部位7上堆焊第一层时经过此路径P1。此图示出了涡轮机叶片9,它具有待焊接部位7以及在堆焊第一层19时的焊接方向。但热引入区11(它同时也是粉末13的抵达区)不是直线地沿着焊接方向S1进行移动,而是在沿着焊接方向的移动过程中同时在垂直于焊接方向的方向上进行振荡。因此,热引入区11和粉末13的抵达区跟随一条在待焊接部位7上的曲折路径P1。
为了对第二层21(图4)进行堆焊,激光器3和粉末输入装置5稍微沿着扫描装置15的方向Z进行移动。此外,在本实施例中焊接方向S2相对于第一层的焊接方向S1扭转90°。在图6中示出了在堆焊第二层21时热引入区11和粉末13的抵达区的路径P2。在对第二层21进行堆焊时,热引入区11和粉末13的抵达区一起在垂直于焊接方向S2的方向上振荡。因此,热引入区11和粉末13的抵达区总体上在待焊接部位7上产生曲折路径P2。
在本实施例的框架中描述的路径只是可行变化方案中的一个。原则上,具有多个焊接可行方案:1.单向的或2.双向(例如曲折的)堆焊。在各个方案中,第二层的径迹(路径)与第一层的径迹(路径)平行偏置地焊接或垂直地焊接。在按本发明的方法的框架中,可应用所有的这些方案。
在移动激光器和粉末输入装置时,此震荡可这样进行选择,即借助唯一的沿着焊接方向的路径经过整个待焊接部位7(如同在图5中所示的一样),或这样进行选择,即只经过待焊接部位7的一部分,并为了对整个部位进行堆焊,多个并排延伸的路径P2在焊接方向S2上出发,如图6所示的一样。
在本实施例中,热引入区11和粉末13的抵达区以至少500mm/分钟的工艺速度沿着路径P1或P2进行移动。激光功率、射束直径和粉末流在此这样进行选择,即已经过部位的冷却率在凝固时大于8000K/s。此外在涂装第二层21时,有关激光功率和射束直径的工艺参数在此这样选择,即再熔深度(第一层19再次熔化到此深度中)少于第一层19的径迹高度的50%。此再熔深度在图4中用虚线表示。原则上,其它与在本实施例中说明的工艺参数不同的参数也是可能的,那么其余的参数必须与激光功率、射束直径和粉末流相匹配。
通过高的冷却率和高的凝固速度,可提高分布系数,从而尽可能避免微偏析。通过热引入区11造成的熔融物凝固成枝状,其中此晶体结构呈现在再熔部位中存在的晶体结构。枝晶的生长方向沿着路径P1、P2变化。原因在于,枝晶的可能的生长方向的取向相对温度梯度变化,具有最小温度梯度斜度或具有最小生长速度的生长方向得以表现。此外,在凝固前沿前形成晶核,它在凝固过程中被凝固前沿获取,此晶核初始化随机分布的枝晶生长方向。不均匀分布的枝晶取向主要在层19的上半部分中出现。因此,借助较小的再熔深度可确保,凝固前沿处在具有不均匀分布的枝晶取向的区域上,这在多层堆焊时会生成具有晶粒的多晶体,它的直径平均非常小。因此,涡轮机叶片9的已焊接部位相对于裂纹形成是不敏感的。
在涂抹了所需数量的层19、21之后,涡轮机叶片9可经受热处理,从而产生所需的γ′形态。这进一步改善了涡轮机叶片9的焊接部位的强度。
借助按本发明的方法,可在室温下实施堆焊,并且无需之前过时效待焊接零件,其中可抑制凝固裂纹和再熔裂纹的产生。这在效果方面达到了焊接的质量,此焊接质量对于燃气轮机叶片(亦或其它零件)的高负载部位的结构性焊接是可接受的。同时,可对基本材料的影响非常小,因为热引入区很小(不会进行预热),并由于在热引入区抑制了再熔裂纹,所以只在基底上引入非少的热量。

Claims (15)

1.一种焊接由耐高温的超级合金构成的工件(9)的方法,在此方法中,借助热引入区(11)和用于将焊料输入到热引入区(11)中的输入区将焊料(13)安放在工件表面(10)上,其中一方面热引入区(11)和输入区与另一方面工件表面(10)相对运动,其特征在于,焊接参数这样进行选择,即冷却率在材料凝固时达至少每秒8000开氏温度。
2.按权利要求1所述的方法,其特征在于,有关焊接功率和热引入区直径的焊接参数这样进行设定,使得冷却率在材料凝固时达到至少每秒8000开氏温度。
3.按权利要求1或权利要求2所述的方法,其特征在于,工艺速度至少为每分种250mm。
4.按权利要求1至3之任一项所述的方法,其特征在于,逐层地安放焊料(13)。
5.按权利要求4所述的方法,其特征在于,在前涂覆的层(19)在小于其层厚度一半时再次熔化。
6.按权利要求2或权利要求5所述的方法,其特征在于,对于每个层(19、21),热引入区(11)和输入区沿着焊接方向(S1、S2)相对于工件表面(10)运动,并且顺序叠置的层(19、21)的焊接方向(S1,S2)相对旋转。
7.按权利要求1至5之任一项所述的方法,其特征在于,热引入区(11)和输入区沿着焊接方向(S1、S2)在围绕着焊接方向振荡的路径(P1、P2)上相对于工件表面(10)运动。
8.按权利要求1至7之任一项所述的方法,其特征在于,工件(9)由含γ′的镍基超级合金构成,此焊料(13)是形成γ′的镍基超级合金。
9.按权利要求1至8之任一项所述的方法,其特征在于,在安放焊料(13)之后进行热处理。
10.一种焊接由耐高温的超级合金构成的工件(9)的焊接装置,其包括:
-热源(3),用于在工件表面(10)上产生热引入区(11);
-输入装置(5),用于将焊料(13)输入到热引入区(11);
-输送装置(15),用于在一方面热源(3)和输入装置(5)与另一方面工件表面(10)之间产生相对运动,
其特征在于,设有控制单元(17),它这样这样来设定焊接参数,使得冷却率在材料凝固时达至少每秒8000开氏温度。
11.按权利要求10所述的焊接装置,其特征在于,控制单元(17)可这样来设定有关焊接功率和热引入区(11)的直径的焊接参数,即冷却率在材料凝固时达到至少每秒8000开氏温度。
12.按权利要求10或权利要求11所述的焊接装置,其特征在于,控制装置(17)以至少每分种250mm的工艺速度来实施相对运动。
13.按权利要求10至12之任一项所述的焊接装置,其特征在于,控制程序使热引入区(11)和输入区沿着焊接方向(S1、S2)在围绕着焊接方向(S1、S2)振荡的路径(P1、P2)上在工件表面(10)上运动。
14.按权利要求10至13之任一项所述的焊接装置,其特征在于,热源(3)是激光器。
15.按权利要求10至14之任一项所述的焊接装置,其特征在于,控制程序在逐层焊接将顺序叠置的层(19、21)的焊接方向(S1、S2)相对旋转。
CN200880130591.7A 2008-05-29 2008-11-25 焊接由耐高温的超级合金构成的工件的方法 Active CN102112266B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08009767 2008-05-29
EP08009767.8 2008-05-29
PCT/EP2008/066129 WO2009143909A1 (de) 2008-05-29 2008-11-25 Verfahren und vorrichtung zum schweissen von werkstücken aus hochwarmfesten superlegierungen

Publications (2)

Publication Number Publication Date
CN102112266A true CN102112266A (zh) 2011-06-29
CN102112266B CN102112266B (zh) 2017-03-01

Family

ID=40451228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880130591.7A Active CN102112266B (zh) 2008-05-29 2008-11-25 焊接由耐高温的超级合金构成的工件的方法

Country Status (6)

Country Link
US (1) US9347318B2 (zh)
EP (1) EP2280801B1 (zh)
JP (1) JP5465239B2 (zh)
CN (1) CN102112266B (zh)
RU (1) RU2466841C2 (zh)
WO (1) WO2009143909A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245221A (zh) * 2012-03-12 2014-12-24 西门子能量股份有限公司 先进的堆焊焊道累进方法
CN104364045A (zh) * 2012-05-11 2015-02-18 西门子能量股份有限公司 镍基超级合金构件的激光添加剂修复
CN105283264A (zh) * 2013-01-31 2016-01-27 西门子能源公司 通过光透射的熔渣的材料加工
CN105917078A (zh) * 2014-01-17 2016-08-31 西门子公司 摆动焊接法
CN108188508A (zh) * 2017-11-29 2018-06-22 重庆运城制版有限公司 一种修版方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016260A1 (de) * 2009-04-03 2010-10-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren beim Schweißen und Bauteil
DE102009049518A1 (de) * 2009-10-15 2011-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Schweißen von Werkstücken aus hochwarmfesten Superlegierungen
US20120160443A1 (en) * 2010-12-28 2012-06-28 Quinlan Yee Shuck Gas turbine engine component material addition process
EP2686153A1 (en) * 2011-03-15 2014-01-22 Cryovac, Inc. Partially crystallized polyester containers
US8921730B2 (en) * 2011-06-22 2014-12-30 General Electric Company Method of fabricating a component and a manufactured component
CH705662A1 (de) * 2011-11-04 2013-05-15 Alstom Technology Ltd Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
US20130115867A1 (en) * 2011-11-08 2013-05-09 General Electric Company Enclosure system and method for applying coating
EP2591872A1 (de) * 2011-11-11 2013-05-15 Siemens Aktiengesellschaft Umschmelzverfahren und anschließendes Auffüllen und Bauteil
DE102013008396B4 (de) 2013-05-17 2015-04-02 G. Rau Gmbh & Co. Kg Verfahren und Vorrichtung zum Umschmelzen und/oder Umschmelzlegieren metallischer Werkstoffe, insbesondere von Nitinol
DE102013215421A1 (de) * 2013-08-06 2015-03-05 Robert Bosch Gmbh Verfahren zur Erzeugung einer Schweißnaht und Bauteil
US20170167277A1 (en) * 2015-12-10 2017-06-15 General Electric Company Methods for modifying components
CN106239031A (zh) * 2016-08-29 2016-12-21 中航动力股份有限公司 一种预防气膜冷却孔焊接堵塞的方法
DE102017206843A1 (de) * 2017-04-24 2018-10-25 Siemens Aktiengesellschaft Veränderung der Leistung beim Wobbeln
RU2752822C1 (ru) * 2020-10-07 2021-08-06 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Способ сварки деталей из жаропрочных сплавов на никелевой основе с использованием лазерного излучения
KR102527964B1 (ko) * 2022-11-25 2023-05-02 터보파워텍(주) 3d프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024792A (en) * 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
US6872912B1 (en) * 2004-07-12 2005-03-29 Chromalloy Gas Turbine Corporation Welding single crystal articles

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU414066A1 (zh) * 1971-04-23 1974-02-05
SU1362583A1 (ru) * 1986-02-13 1987-12-30 Институт Электросварки Им.Е.О.Патона Способ дуговой сварки в среде защитных газов
JPH0698506B2 (ja) * 1986-12-08 1994-12-07 トヨタ自動車株式会社 金属基体上への分散合金層の形成方法
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
WO1991002108A1 (de) 1989-08-10 1991-02-21 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
US5160822A (en) * 1991-05-14 1992-11-03 General Electric Company Method for depositing material on the tip of a gas turbine engine airfoil using linear translational welding
JP2657437B2 (ja) 1991-09-10 1997-09-24 株式会社日立製作所 耐応力腐食割れ性オーステナイト系材料及びその製造方法
DE4141927C2 (de) 1991-12-19 1995-06-14 Mtu Maintenance Gmbh Verfahren und Vorrichtung zum Schweißen von Werkstücken
JP3301825B2 (ja) * 1993-08-18 2002-07-15 いすゞ自動車株式会社 アルミ系母材への異種材質の肉盛り溶接方法
JPH0775893A (ja) * 1993-09-03 1995-03-20 Hitachi Ltd 構造物の補修方法および予防保全方法
JP3428175B2 (ja) * 1994-10-05 2003-07-22 株式会社日立製作所 表面処理層を有する構造物および表面処理層の形成方法
JP3370676B2 (ja) 1994-10-14 2003-01-27 シーメンス アクチエンゲゼルシヤフト 腐食・酸化及び熱的過負荷に対して部材を保護するための保護層並びにその製造方法
US5900170A (en) * 1995-05-01 1999-05-04 United Technologies Corporation Containerless method of producing crack free metallic articles by energy beam deposition with reduced power density
DE19533960C2 (de) 1995-09-13 1997-08-28 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Herstellung von metallischen Werkstücken
EP0892090B1 (de) 1997-02-24 2008-04-23 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6120624A (en) 1998-06-30 2000-09-19 Howmet Research Corporation Nickel base superalloy preweld heat treatment
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
JP3954752B2 (ja) * 1999-04-21 2007-08-08 内田工機株式会社 金属プレス等の金型耐圧面の現場溶接肉盛補修方法
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
JP4201954B2 (ja) * 2000-03-28 2008-12-24 株式会社東芝 Ni基単結晶超合金からなるガスタービン翼の補修方法およびその装置
DE50104022D1 (de) 2001-10-24 2004-11-11 Siemens Ag Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1340583A1 (en) 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
US6916387B2 (en) * 2002-05-06 2005-07-12 Howmet Corporation Weld repair of superalloy castings
EP1464791B1 (de) * 2003-03-25 2008-12-10 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung einer Turbinenkomponente
US6994920B2 (en) * 2003-10-31 2006-02-07 General Electric Company Fusion welding method and welded article
JP4551082B2 (ja) * 2003-11-21 2010-09-22 三菱重工業株式会社 溶接方法
GB0420578D0 (en) 2004-09-16 2004-10-20 Rolls Royce Plc Forming structures by laser deposition
DE102005031584A1 (de) * 2005-07-06 2007-01-11 Mtu Aero Engines Gmbh Verfahren zum Herstellen eines Verbundbauteils
JP4928916B2 (ja) * 2006-11-22 2012-05-09 株式会社東芝 ガスタービン高温部品の補修方法およびガスタービン高温部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024792A (en) * 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
US6872912B1 (en) * 2004-07-12 2005-03-29 Chromalloy Gas Turbine Corporation Welding single crystal articles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245221A (zh) * 2012-03-12 2014-12-24 西门子能量股份有限公司 先进的堆焊焊道累进方法
CN104245221B (zh) * 2012-03-12 2017-04-12 西门子能量股份有限公司 先进的堆焊焊道累进方法
CN104364045A (zh) * 2012-05-11 2015-02-18 西门子能量股份有限公司 镍基超级合金构件的激光添加剂修复
CN104364045B (zh) * 2012-05-11 2016-10-12 西门子能量股份有限公司 镍基超级合金构件的激光添加剂修复
CN105283264A (zh) * 2013-01-31 2016-01-27 西门子能源公司 通过光透射的熔渣的材料加工
US9770781B2 (en) 2013-01-31 2017-09-26 Siemens Energy, Inc. Material processing through optically transmissive slag
CN105917078A (zh) * 2014-01-17 2016-08-31 西门子公司 摆动焊接法
US10286490B2 (en) 2014-01-17 2019-05-14 Siemens Aktiengesellschaft Oscillating welding method
CN108188508A (zh) * 2017-11-29 2018-06-22 重庆运城制版有限公司 一种修版方法

Also Published As

Publication number Publication date
US9347318B2 (en) 2016-05-24
JP2011530409A (ja) 2011-12-22
EP2280801B1 (de) 2015-02-25
RU2010152578A (ru) 2012-07-10
WO2009143909A1 (de) 2009-12-03
JP5465239B2 (ja) 2014-04-09
US20110073636A1 (en) 2011-03-31
CN102112266B (zh) 2017-03-01
RU2466841C2 (ru) 2012-11-20
EP2280801A1 (de) 2011-02-09

Similar Documents

Publication Publication Date Title
CN102112266A (zh) 焊接由耐高温的超级合金构成的工件的方法和装置
CN102639283B (zh) 具有焊接添加材料的特殊质量输送率的、用于焊接由耐高温超合金制成的工件的方法
CN102039494B (zh) 用于焊接由耐高温的超合金制成的工件的方法和装置
US8324526B2 (en) Welded repair of defects lying on the inside of components
US8141769B2 (en) Process for repairing a component comprising a directional microstructure by setting a temperature gradient during the laser heat action, and a component produced by such a process
CN101990477B (zh) 具有受调节的温度分布的焊接方法以及用于此的装置
US20060231535A1 (en) Method of welding a gamma-prime precipitate strengthened material
US9044825B2 (en) Method for welding depending on a preferred direction of the substrate
JP2013510000A (ja) 方向性凝固された材料の単結晶溶接
CN105358289A (zh) 超合金部件的局部修复
CN112135705B (zh) 通过就地制造并馈送烧结线增材制造或修复的方法和系统
JP2010517779A (ja) ろう材および超合金における硬ろう付け法
CN102006965B (zh) 具有焊缝的部件以及用于形成焊缝的方法
US20110020127A1 (en) Component Comprising Overlapping Weld Seams and Method for the Production Thereof
CN102612421B (zh) 定向结晶材料的单晶焊接
CN102029451A (zh) 移除钎焊板材的方法
US20100224600A1 (en) Two-step welding process
US20110056919A1 (en) Method for Fusing Curved Surfaces, and a Device
US20110062120A1 (en) Device for welding using a process chamber and welding method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230731

Address after: Munich, Germany

Patentee after: Siemens energy global Corp.

Patentee after: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

Address before: Munich, Germany

Patentee before: SIEMENS AG

Patentee before: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.