CN102084278A - 光电变换单元 - Google Patents

光电变换单元 Download PDF

Info

Publication number
CN102084278A
CN102084278A CN2009801173912A CN200980117391A CN102084278A CN 102084278 A CN102084278 A CN 102084278A CN 2009801173912 A CN2009801173912 A CN 2009801173912A CN 200980117391 A CN200980117391 A CN 200980117391A CN 102084278 A CN102084278 A CN 102084278A
Authority
CN
China
Prior art keywords
optical density
photoelectric conversion
face
conversion units
inverting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801173912A
Other languages
English (en)
Inventor
屉冈英资
中西哲也
仲前一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN102084278A publication Critical patent/CN102084278A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明得到一种光电变换单元,其提高光学结合的效率、机械结合的稳定性。该光电变换单元具有:光密度变换元件(11),其将入射至入射端面的光在出射端面中使光密度变化后射出;以及光电变换元件(13)。将光电变换元件(13)配置为接近光密度变换元件(11)的光密度较高侧,与该光密度变换元件(11)一体化。光电变换元件(13)可以为太阳能电池或发光介质。优选光密度变换元件(11)在剖面内的径向折射率分布为平方分布。另外,光密度变换元件(11)的基体部件使用石英玻璃,可以通过改变在该玻璃中添加的杂质的添加量而形成折射率分布。

Description

光电变换单元
技术领域
本发明涉及一种具有光密度变换元件和光电变换元件而构成的光电变换单元。
背景技术
在专利文献1中公开了实现高效利用光能的光电变换系统。该光电变换系统由下述部分构成,即:高折射率区域,其折射率比周围高,具有圆锥状形状;导光单元,其一端与以规定数量形成的高折射率区域各自的圆锥顶点部分结合;以及光电变换单元,其设置在导光单元的另一端上。
在专利文献2中公开了一种太阳能发电系统,其由将太阳光进行聚光的光学单元(PARABOLIC MIRROR ARRAY等)、将聚光后的太阳光进行引导的光纤(OPTICAL FIBER)、以及利用该光纤导入太阳光的太阳能变换单元(PHOTOVOLTAIC CELLS)构成。
由于任一个现有技术都是在将太阳光聚光的基础上,向太阳能变换单元(光电变换单元)导光,所以可以减少太阳能电池等的使用量,可以廉价·高效地进行太阳能发电。
专利文献1:日本特开平8-7626号公报
专利文献2:美国专利第5089055号公报
发明内容
但是,上述现有系统最少必须由3个部分构成。即,在专利文献1中为:高折射率区域(第1部分),其折射率比周围高,具有圆锥状形状;导光单元(第2部分),其一端与以规定数量形成的高折射率区域各自的圆锥顶点部分结合;以及光电变换单元(第3部分),其设置在导光单元的另一端上。在专利文献2中为:将太阳光进行聚光的光学单元(第1部分)、将聚光后的太阳光向太阳能变换单元引导的光纤(第2部分)、以及太阳能变换单元(第3部分)。上述3个部分由于各自的功能不同,所以需要由不同材料以不同工序进行制造,部件数量增多,制造工序增加。另外,由于需要彼此进行光学·机械结合,特别地对于光学结合,为了得到大于或等于一定的结合效率,需要高定位精度。其结果,光学结合的效率较差,并且机械结合的稳定性也较低。
本发明就是鉴于上述状况而提出的,其目的在于,提供一种光电变换单元,其可以提高光学结合的效率、机械结合的稳定性。
本发明所涉及的上述目的通过下述结构而实现。
(1)一种光电变换单元,其特征在于,具有:光密度变换元件,其将入射至入射端面的光在出射端面中使光密度变化后射出;以及光电变换元件,其配置为接近所述光密度变换元件中光密度为高密度的端面,与所述光密度变换元件一体化。
根据该光电变换单元,仅光密度变换元件及光电变换元件这两个部件以光学·机械的方式直接结合,不易产生由于存在中间部件而导致的光学损耗、或机械精度降低。
另外,光电变换元件可以与光密度变换元件的光密度较高侧一体化而机械结合,可以利用简单的构造得到较高的结合精度。并且,在光密度变换元件中形成随着朝向光密度较高侧而会聚的光路,如果光密度较高侧为出射端面,则来自入射端面的光可以在光电变换元件中聚光,如果光密度较高侧为入射端面,则来自光电变换元件的光可以从出射端面进行扩散。
(2)如(1)所述的光电变换单元,其特征在于,所述光电变换元件为太阳能电池。
根据该光电变换单元,将入射至入射端面的光变换为随着朝向出射端面而会聚的光,在太阳能电池中聚光。即,可以作为太阳能发电单元使用。光密度变换元件使用细径·较薄的透镜,与不进行聚光而直接接受太阳光的情况相比,可以大幅减少所需的太阳能电池的尺寸。
(3)如(1)所述的光电变换单元,其特征在于,所述光电变换元件为发光介质。
根据该光电变换单元,通过利用发光介质使光从与作为太阳能发电单元使用时相反的方向、即太阳能发电单元中设置有太阳能电池的一侧入射,从而光电变换元件成为使光扩散的元件。由此,光电变换单元可以用作为通常照明或显示装置用的照明(例如平面显示器的背光)。
(4)如(1)至(3)中任一项所述的光电变换单元,其特征在于,所述光密度变换元件为分布折射率型,即,在与入射端面平行的剖面内,折射率分布在径向上是变化的,在与入射端面垂直的方向上实质上是均匀的。
根据该光电变换单元,光密度变换元件中的光线一边以正弦波状振荡一边周期性地传输。在入射光为沿与入射端面垂直的方向传输的平行光的情况下,如果将振荡的1个周期长度设为1个间距(p),则可以以p/4或p/2的传输长度变换为会聚光或扩散光。
(5)如(1)至(3)中任一项所述的光电变换单元,其特征在于,所述光密度变换元件在与入射端面平行的剖面内,折射率大于或等于一定值的高折射率区域的截面积,从入射端面侧至出射端面侧连续变化。
根据该光电变换单元,在光密度变换元件中,高折射率区域的截面积从入射端面侧至出射端面侧连续变化。由此,可以沿高折射区域部分的形状将光向任意方向引导。
(6)如(1)至(5)中任一项所述的光电变换单元,其特征在于,形成所述光密度变换元件的基体部件使用石英玻璃,通过改变在该玻璃中添加的杂质的添加量,而在所述光密度变换元件内形成折射率分布。
根据该光电变换单元,作为基体的材料使用石英玻璃,在该石英玻璃中,添加用于产生折射率分布的杂质(掺杂剂)、例如GeO2,通过改变其添加量,可以得到折射率在径向上变化的光密度变换元件。此外,如上述所示,剖面的周向及长度方向的折射率实质上是均匀的。在形成具有上述折射率分布的光密度变换元件时,可以适当地使用下述制造技术,即,在火焰内使玻璃原料及掺杂剂反应,生成玻璃微粒,将玻璃微粒堆叠在标靶(target)上而合成含有掺杂剂的多孔质玻璃母材,通过将该多孔质玻璃母材烧结而形成所谓的预制件。
(7)如(1)至(5)中任一项所述的光电变换单元,其特征在于,形成所述光密度变换元件的基体部件使用石英玻璃,通过改变在该玻璃中形成的空孔密度,而在所述光密度变换元件内形成折射率分布。
根据该光电变换单元,作为产生折射率分布的方法,使石英玻璃中分布空孔。在此情况下,与添加GeO2的情况的例子相比,最大相对折射率差可以提高大约1个数量级。
(8)如(6)或(7)所述的光电变换单元,其特征在于,作为所述基体部件,取代石英玻璃而使用折射率的绝对值大的物质。
根据该光电变换单元,作为基体的材料,使用折射率的绝对值大于石英玻璃的物质,如果为了形成折射率分布而在该基体材料中分布空孔,则可以进一步使最大相对折射率增加,使分布折射率型平面透镜的厚度进一步变薄。
(9)如(1)所述的光电变换单元,其特征在于,在所述光密度变换元件中,相对于一侧端面,在另一侧端面的光密度为高密度的规定位置处,设置有定位所述光电变换元件的定位单元。
根据该光电变换单元,通过在分布折射率型平面透镜的焦点位置处,形成与所使用的太阳能电池的大小·形状相对应的作为定位单元的例如槽,从而可以在该槽中将太阳能电池嵌合,并高精度且容易地实现光学·机械结合。
(10)一种光电变换单元,其特征在于,配置多个(1)至(9)中任一项所述的光电变换单元而阵列化。
根据该光电变换单元,通过使用多个作为光密度变换元件的例如分布折射率型平面透镜而阵列化,与各个分布折射率型平面透镜相对应地设置太阳能电池,从而可以以优异的量产性,廉价地制造将例如太阳能电池及分布折射率型平面透镜密集地集合而成的高密度·高效率的太阳能发电单元。
发明的效果
根据本发明所涉及的光电变换单元,由于具有下述部件而构成,即:光密度变换元件,其将入射至入射端面的光在出射端面中使光密度变化后射出;以及光电变换元件,其配置为接近光密度变换元件中光密度为高密度的端面,与所述光密度变换元件一体化,因此,仅将两个部件以光学·机械的方式直接结合就可以构成单元,可以提高光学结合的效率、机械结合的稳定性。
附图说明
图1是本发明所涉及的光电变换单元的分解斜视图。
图2是图1所示的平方分布型波导路的作用说明图。
图3是锥状波导路的剖面图。
图4是配置多个而阵列化的光电变换单元的斜视图。
标号的说明
11:光密度变换元件,11L:出射端面(或入射端面),11R:入射端面(或出射端面),13:光电变换元件,19:定位单元,19a:槽,100:光电变换单元,Ax:光轴
具体实施方式
下面,参照附图,说明本发明所涉及的光电变换单元的优选实施方式。
图1是本发明所涉及的光电变换单元的分解斜视图。
本实施方式所涉及的光电变换单元100具有光密度变换元件11和光电变换元件13而构成。光密度变换元件11将入射至入射端面的光在出射端面使光密度变化后射出。
本实施方式中的光密度变换元件11,作为平面状的聚光元件的一个例子而构成分布折射率型平面透镜,其剖面内的径向折射率分布n(r)为(式1)所表示的平方分布。
n2(r)=n0 2(1-a2r2)  …(式1)
其中,n0为波导路中心的折射率,a是折射率分布半径,r是与光轴的距离。
图2是构成分布折射率型平面透镜的平方分布型波导路的说明图。
平方分布型波导路中的光线如图2(a)所示,一边以正弦波状振荡一边周期性地传输。在入射光为向与入射端面垂直的方向传输的平行光的情况下,如果将振荡的一个周期长度设为1个间距(p),则利用图2(b)所示的p/2或图2(c)所示的p/4的传输长度,变换为扩散光或会聚光。在本实施方式中,利用其中形成图2(c)所示的聚光·扩散的光路的折射率分布。即,平方分布型波导路在与入射端面平行的剖面内,折射率分布在径向上是变化的,在与入射端面垂直的方向(长度方向)上,实质上是均匀的。
将P/4作为焦距f的光密度变换元件11,在聚光用途中,将图2(c)所示的平面11L作为入射端面,将平面11R作为出射端面,在扩散用途中,将平面11R作为入射端面,将平面11L作为出射端面。
光密度变换元件11的基体部件使用石英玻璃,可以通过改变在该玻璃中添加的杂质的添加量,而形成折射率分布。在作为基体的材料而使用的石英玻璃中,添加用于形成折射率分布的杂质(掺杂剂)例如GeO2,通过改变其添加量,可以得到折射率沿径向变化的光密度变换元件。此外,在如上述所示的剖面的周向及长度方向上,折射率实质上是均匀的。在形成具有上述折射率分布的光密度变换元件11时,可以适当地使用下述制造技术,即,在火焰内使玻璃原料及掺杂剂反应,生成玻璃微粒,将玻璃微粒堆叠在标靶(target)上而合成含有掺杂剂的光纤用多孔质玻璃母材,通过将该多孔质玻璃母材烧结而形成所谓的预制件。
在设想将石英玻璃
Figure BPA00001255640400061
作为基体材料、为了形成折射率分布而添加GeO2的例子的情况下,如果使最大相对折射率差为3%,则在折射率分布半径a=10cm的情况下,如果平行光与分布折射率型平面透镜(光密度变换元件11)垂直地入射,则在距离入射面大约65cm的点处,入射光会聚在焦点上(即,聚光率最大)。
另一方面,作为形成折射率分布的其他方法,在石英玻璃中分布空孔的方法也是有效的(参照美国专利第7039284号公报的图2B及图3)。在此情况下,与添加GeO2的情况相比,可以使最大相对折射率差提高大约1个数量级。其结果,在折射率分布半径为10cm的情况下,可以使焦距缩短至大约20cm,可以使分布折射率型平面透镜(光密度变换元件11)的厚度变薄。
另外,在分布空孔而形成折射率分布的情况下,由于可以利用单一材料形成透镜,所以如果将廉价的材料用作为基体材料,则可以制造廉价的分布折射率型平面透镜。
作为光密度变换元件11的基体材料,并不限定为石英玻璃。也可以使用折射率的绝对值比石英玻璃大的物质作为基体材料,形成折射率分布,如果在该基体材料中分布空孔,则可以进一步增加最大相对折射率,使分布折射率型平面透镜的厚度进一步变薄。
此外,上述添加GeO2的结构、分布空孔的结构均使用具有正折射率的材料,但如果利用使用所谓超材料(metamaterial)而形成的具有负折射率的材料,则可以使聚光元件比上述例子更薄。
本实施方式所涉及的光电变换单元100,将光电变换元件13配置为接近光密度变换元件11中光密度为高密度的端面(图2(c)的平面11R侧),与光密度变换元件11一体化。光电变换元件13可以与光密度变换元件11中的一对平行平面(入射端面11L或出射端面11R)的光密度较高侧一体化而机械结合,可以以简单的构造得到较高的结合精度。并且,在光密度变换元件11中形成随着朝向光密度较高侧而会聚的光路(芯部15),使来自入射端面的光在光电变换元件13中聚光。
此外,所谓“接近”包括与端面接触、在端面附近、以及与端面的凹部卡合等情况。
该光电变换元件13可以使用太阳能电池。由此,成为将入射至入射端面11L的光变换为随着朝向出射端面11R而会聚的光,在太阳能电池中聚光的太阳能发电单元。由于光密度变换元件11使用细径·较薄的透镜,所以与不进行聚光而直接接受太阳光的情况相比,可以大幅减少所需要的太阳能电池的尺寸。
由此,如果在光密度变换元件11的焦点位置处设置太阳能电池,则在上述例子中,即使考虑到伴随着分布折射率型平面透镜的制造不理想而产生的焦点位置偏移、或者太阳能电池设置位置的定位精度等,也可以通过半径0.5cm左右而充分地与聚光后的光进行耦合。由此,与不进行聚光而直接由太阳能电池接受太阳光的情况相比,可以将所需要的太阳能电池的尺寸降低至1/400{=(0.5/10)2}。
在光电变换单元100中,在光电变换元件11中相对于一侧端面而在另一侧端面的光密度为高密度的规定位置处,设置有用于定位光电变换元件13的定位单元19。作为使光密度变换元件11和光电变换元件13结合的单元,在分布折射率型平面透镜的光密度为高光密度的位置处,形成与光电变换元件13的大小·形状相对应的作为定位单元19的槽19a,通过在该槽19a中设置光电变换元件(太阳能电池等)13,可以实现光学·机械结合。
在这里,所谓“光学结合”是指将光密度变换元件(聚光元件)11和光电变换元件(太阳能电池等)13以形成期望的聚光率的方式在同轴上接近配置这一情况。所谓“机械结合”是指利用粘接或合型等进行一体化这一情况。
通过在分布折射率型平面透镜的焦点位置处,形成与所使用的太阳能电池的大小·形状相对应的槽19a,可以在该槽19a中将太阳能电池嵌合,并高精度且容易地实现光学·机械结合。
此外,对于本发明所涉及的光电变换单元,无论焦距如何,只要将光电变换元件(太阳能电池等)13与光密度变换元件11接近地配置并一体化,以使聚光位置位于适当的位置即可。光密度变换元件11并不限定为平面透镜。例如,也可以利用以锥状变细的波导路进行聚光,变细的波导路部分成为所期望的聚光面积即可。
图3是替代平方分布型波导路的锥状波导路的剖面图。
构成该锥状波导路的光密度变换元件11,在与入射端面平行的剖面内,折射率大于或等于一定值的高折射区域15的截面积从入射端面侧至出射端面侧连续变化。由此,光密度变换元件11可以沿所形成的高折射区域部分的形状将光任意引导。
图4是配置多个而阵列化的光电变换单元的斜视图。
光电变换单元100也可以配置多个而阵列化。通过使用多个作为光密度变换元件11的例如分布折射率型平面透镜而阵列化,将太阳能电池与各个分布折射率型平面透镜相对应地设置,从而可以以优异的量产性,廉价地制造将例如太阳能电池及分布折射率型平面透镜密集地集合而成的高密度·高效率太阳能发电单元200。
另外,对于光电变换单元100,如果使光从与光密度变换元件11被用作为所述太阳能发电单元时相反的方向、即从设置太阳能电池的一侧入射,则该光密度变换元件11变为使光扩散的元件。因此,本光电变换单元100中通过取代太阳能电池,而使用发光介质(LED、EL等)作为光电变换元件13,由此可以用作通常照明或显示装置用的照明(例如平面显示器的背光)。
由此,在光电变换单元100中,仅光密度变换元件11及光电变换单元100这两个部件以光学·机械的方式直接结合,不易产生由于存在中间部件而导致的光学损耗、或机械方面的精度降低。
因此,根据上述结构的光电变换单元100,由于具有下述部件而构成,即:光密度变换元件11,其将入射至入射端面的光在使光密度变化后从出射端面射出;以及光电变换元件13,其在光密度变换元件的光密度较高侧的端面上,与该光密度变换元件一体化,因此,可以仅通过将两个部件以光学·机械的方式直接结合而构成单元,与由多于两个部件的结构部件构成的现有单元相比,可以提高光学结合的效率、机械结合的稳定性。
此外,作为实现更大的太阳光受光面积的方法,具有将单个聚光元件的受光面积扩大的方法。在此情况下,通过使用所述超材料而构成的聚光元件等,可以扩大受光面积。此时,如果同时采用抑制聚光元件的厚度增加的手段,则从聚光元件的设置容易性等方面来说是有用的。另外,作为其他方法,如图4所示,还具有使用多个聚光元件(图中例子为分布折射率型平面透镜)而阵列化的方法。在此情况下,也可以将太阳能电池与各个平面透镜相对应地设置,如果1个不够则使用多个,并将它们阵列化。
详细且参照特定的实施方式对本发明进行了说明,但在不脱离本发明的精神和主旨的范围内可以进行各种变更或修改,这对于本领域技术人员来说是显而易见的。本申请基于2008年5月13日申请的日本专利申请(特愿2008-126195),在此引用其内容作为参照。

Claims (10)

1.一种光电变换单元,其特征在于,具有:
光密度变换元件,其将入射至入射端面的光在出射端面中使光密度变化后射出;以及
光电变换元件,其配置为接近所述光密度变换元件中光密度为高密度的端面,与所述光密度变换元件一体化。
2.根据权利要求1所述的光电变换单元,其特征在于,
所述光电变换元件为太阳能电池。
3.根据权利要求1所述的光电变换单元,其特征在于,
所述光电变换元件为发光介质。
4.根据权利要求1至3中任一项所述的光电变换单元,其特征在于,
所述光密度变换元件为分布折射率型,即,在与入射端面平行的剖面内,折射率分布在径向上是变化的,在与入射端面垂直的方向上实质上是均匀的。
5.根据权利要求1至3中任一项所述的光电变换单元,其特征在于,
所述光密度变换元件在与入射端面平行的剖面内,折射率大于或等于一定值的高折射率区域的截面积,从入射端面侧至出射端面侧连续变化。
6.根据权利要求1至5中任一项所述的光电变换单元,其特征在于,
形成所述光密度变换元件的基体部件使用石英玻璃,通过改变在该玻璃中添加的杂质的添加量,而在所述光密度变换元件内形成折射率分布。
7.根据权利要求1至5中任一项所述的光电变换单元,其特征在于,
形成所述光密度变换元件的基体部件使用石英玻璃,通过改变在该玻璃中形成的空孔密度,而在所述光密度变换元件内形成折射率分布。
8.根据权利要求6或7所述的光电变换单元,其特征在于,
作为所述基体部件,取代石英玻璃而使用折射率的绝对值大的物质。
9.根据权利要求1所述的光电变换单元,其特征在于,
在所述光密度变换元件中,相对于一侧端面,在另一侧端面的光密度为高密度的规定位置处,设置有定位所述光电变换元件的定位单元。
10.一种光电变换单元,其特征在于,
配置多个权利要求1至9中任一项所述的光电变换单元而阵列化。
CN2009801173912A 2008-05-13 2009-05-13 光电变换单元 Pending CN102084278A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008126195 2008-05-13
JP2008-126195 2008-05-13
PCT/JP2009/058919 WO2009139414A1 (ja) 2008-05-13 2009-05-13 光電変換ユニット

Publications (1)

Publication Number Publication Date
CN102084278A true CN102084278A (zh) 2011-06-01

Family

ID=41318780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801173912A Pending CN102084278A (zh) 2008-05-13 2009-05-13 光电变换单元

Country Status (5)

Country Link
US (1) US20110100428A1 (zh)
EP (1) EP2278369A1 (zh)
JP (1) JPWO2009139414A1 (zh)
CN (1) CN102084278A (zh)
WO (1) WO2009139414A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8511006B2 (en) * 2009-07-02 2013-08-20 Owens Corning Intellectual Capital, Llc Building-integrated solar-panel roof element systems
TWI815295B (zh) 2010-04-13 2023-09-11 美商Ge影像壓縮有限公司 樣本區域合併技術
DE102012102647B4 (de) * 2012-03-27 2024-02-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Konverterelement, optoelektronisches Bauelement mit einem derartigen Konverterelement und Verfahren zum Herstellen eines derartigen Konverterelements
JP7317646B2 (ja) 2019-09-18 2023-07-31 株式会社東芝 光学素子、照明装置、及び、太陽電池装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264131A (ja) * 1988-08-31 1990-03-05 Mitsubishi Rayon Co Ltd 透明円柱状組成物
JPH087626A (ja) * 1994-06-22 1996-01-12 Fujitsu Ltd 光入出装置及びその製造方法並びにこれを使用する光電変換システム及びこれに使用されるマイクロレンズの製造方法
JPH10186163A (ja) * 1996-12-27 1998-07-14 Hitachi Cable Ltd 光結合デバイス及びその製造方法
JP2004231478A (ja) * 2003-01-31 2004-08-19 Fujikura Ltd 屈折率分布型レンズ及びその製造方法
JP2005250183A (ja) * 2004-03-05 2005-09-15 Nikon Corp マイクロレンズ、マイクロレンズアレイ及び光学装置。
JP2007214292A (ja) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd 受光モジュール、および光空間伝送装置
CN101162830A (zh) * 2006-10-11 2008-04-16 日本捷科泰亚株式会社 半导体激光器模块

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2089055A (en) * 1934-03-22 1937-08-03 Gen Electric Device for feeding filaments and similar articles
US4883522A (en) * 1987-08-19 1989-11-28 Integrated Solar Technologies Corp. Fabrication of macro-gradient optical density transmissive light concentrators, lenses and compound lenses of large geometry
US5089055A (en) 1989-12-12 1992-02-18 Takashi Nakamura Survivable solar power-generating systems for use with spacecraft
JP2002280595A (ja) * 2001-03-22 2002-09-27 Canon Inc 太陽光集光装置
JP2003069069A (ja) * 2001-08-24 2003-03-07 Daido Steel Co Ltd 集光型太陽光発電装置
JP2003258291A (ja) * 2001-12-27 2003-09-12 Daido Steel Co Ltd 集光式太陽光発電装置
EP1424570A1 (en) * 2002-11-28 2004-06-02 Avanex Corporation Focusing device
JP2008126195A (ja) 2006-11-24 2008-06-05 Seiko Epson Corp 記録装置、ワイピング装置及び描画装置並びに記録方法、ワイピング方法及び描画方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264131A (ja) * 1988-08-31 1990-03-05 Mitsubishi Rayon Co Ltd 透明円柱状組成物
JPH087626A (ja) * 1994-06-22 1996-01-12 Fujitsu Ltd 光入出装置及びその製造方法並びにこれを使用する光電変換システム及びこれに使用されるマイクロレンズの製造方法
JPH10186163A (ja) * 1996-12-27 1998-07-14 Hitachi Cable Ltd 光結合デバイス及びその製造方法
JP2004231478A (ja) * 2003-01-31 2004-08-19 Fujikura Ltd 屈折率分布型レンズ及びその製造方法
JP2005250183A (ja) * 2004-03-05 2005-09-15 Nikon Corp マイクロレンズ、マイクロレンズアレイ及び光学装置。
JP2007214292A (ja) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd 受光モジュール、および光空間伝送装置
CN101162830A (zh) * 2006-10-11 2008-04-16 日本捷科泰亚株式会社 半导体激光器模块

Also Published As

Publication number Publication date
US20110100428A1 (en) 2011-05-05
EP2278369A1 (en) 2011-01-26
JPWO2009139414A1 (ja) 2011-09-22
WO2009139414A1 (ja) 2009-11-19

Similar Documents

Publication Publication Date Title
CN102272537B (zh) 光采集和聚集系统
US20110297229A1 (en) Integrated concentrating photovoltaics
AU2011295603B2 (en) Condensing lens, compound-eye lens condenser, and compound-eye concentrating solar cell assembly
JP2019518236A (ja) 少なくとも1つの収集素子に対して一様でない入射方向を有する入射光を捕捉及び伝送するための光学機械システム並びに対応する方法
CN102084278A (zh) 光电变换单元
Mulyawan et al. A comparative study of optical concentrators for visible light communications
CN101170291A (zh) 一种带平行折光透镜的太阳能装置
CN109031682A (zh) 基于衍射光学元件的长焦深、微小光斑的产生系统和方法
CN104882784A (zh) 一种用于大功率半导体激光器的合束输出耦合装置
Anh et al. Design of a free-form lens for LED light with high efficiency and uniform illumination
Yin et al. A spectral splitting planar solar concentrator with a linear compound parabolic lightguide for optical fiber daylighting
CN101388625A (zh) 一种太阳能聚光发电装置
AU2013317707B2 (en) An improved apparatus for concentrating solar energy
CN111399127A (zh) 光分束器及光学系统
CN101978225A (zh) 太阳辐射的聚集器及其用途
Chiromawa et al. Concept of Bee‐Eyes Array of Fresnel Lenses as a Solar Photovoltaic Concentrator System
CN103208950B (zh) 一种基于离轴菲涅尔反射聚光镜的聚光光伏发电装置
CN202649601U (zh) 激光耦合单元、模块及激光光源模组
Berwal et al. Fresnel lens-based solar concentrators
CN112260053B (zh) 高效率的叠阵型半导体激光器
CN109212687B (zh) 一种光路控制系统及其光模块
CN205656341U (zh) 光模块
CN203039224U (zh) 聚焦进行种子注入的环形增益介质固体激光器
KR102401921B1 (ko) 발전증강형 태양광 패널
Wang et al. Dish spliced concentrator with both uniform and focused performance through a variable focal length

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110601