CN102076435A - 用于超声波清洗的方法和装置 - Google Patents
用于超声波清洗的方法和装置 Download PDFInfo
- Publication number
- CN102076435A CN102076435A CN2009801253739A CN200980125373A CN102076435A CN 102076435 A CN102076435 A CN 102076435A CN 2009801253739 A CN2009801253739 A CN 2009801253739A CN 200980125373 A CN200980125373 A CN 200980125373A CN 102076435 A CN102076435 A CN 102076435A
- Authority
- CN
- China
- Prior art keywords
- ultrasonic energy
- container
- fluid
- propagating
- emitting module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/12—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L15/00—Washing or rinsing machines for crockery or tableware
- A47L15/0002—Washing processes, i.e. machine working principles characterised by phases or operational steps
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L15/00—Washing or rinsing machines for crockery or tableware
- A47L15/02—Washing or rinsing machines for crockery or tableware with circulation and agitation of the cleaning liquid in the cleaning chamber containing a stationary basket
- A47L15/13—Washing or rinsing machines for crockery or tableware with circulation and agitation of the cleaning liquid in the cleaning chamber containing a stationary basket using sonic or ultrasonic waves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/08—Cleaning containers, e.g. tanks
- B08B9/0804—Cleaning containers having tubular shape, e.g. casks, barrels, drums
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2601/00—Washing methods characterised by the use of a particular treatment
- A47L2601/17—Sonic or ultrasonic waves
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Cleaning In General (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明涉及通过将高传播超声波能量应用至一个表面从而清洗该表面的方法,所述方法包括将该表面的至少一部分浸入流体,其中所述流体与高传播超声波能量发射组件相接触;以及从所述组件朝所述流体发射高传播超声波能量,以在所述表面产生空穴作用,从而清洗所述表面。
Description
相关申请的交叉参引
本申请要求享有以下申请的权益:递交于2008年5月8日的第2008902236号澳大利亚临时专利申请、递交于2008年10月24日的第2008905501号澳大利亚临时专利申请以及递交于2008年10月24日的第2008905502号澳大利亚临时专利申请,以上申请以引证方式全部纳入本说明书。
技术领域
本发明涉及超声波清洗和消毒的方法。具体而言,本发明涉及经由将高传播超声波能量应用至待清洗和/或消毒表面而进行超声波清洗和消毒的方法。
背景技术
设备、容器、包装和食品提供了可供碎屑聚集的表面,以及可供微生物定居和生长的表面。所述碎屑聚集和微生物生长会导致淤积,并降低设备的效率,降低使用该设备制造的产品的质量,以及降低设备、容器和包装的寿命。此外,微生物生长导致了产品(尤其是食品)的过早变质,或者微生物交叉污染引发了食物致病。可能在食品、容器或设备——诸如冷凝器、热交换器、阀、管、器皿、空气冷却塔——的表面上,或在暴露于潮湿环境中的任何表面上,形成能抗不充足营养供应、干燥、不利温度、磨损或化学药品的微生物的生物膜。所述污染性淤积或生物膜导致食品的变质,产生致使食物致病的微生物,或者引起容器或设备的淤积。
通常,通过使用包装材料、用于降低腐败菌数量的卫生处理以及冷藏来延缓变质。但是,这些方法并不能有效地清除腐败菌。此外,常规的洗涤处理不能清除表面内的微生物,或充分地清除紧粘至表面的碎屑。
通常通过以下多种方法中的任一种来减少污染微生物、生物膜和/或碎屑:洗涤、化学处理或物理清除。低压或高压(680至2684kPa)下的冷水或热水(60至82℃)的洗涤清除了松软的沉淀物,但无法清除坚硬的沉淀物,并只能提供有限的表面消毒。相对而言,蒸汽清洗更为有效,但其对表面层的消毒仅停留于表层而不能抵达出现微生物生长的整个深度,且不适合用于食品的消毒。碎屑的弱导热性抑制了热传递,因而抑制了微生物的消除。
化学清洗剂可以在清洗中溶解表面碎屑,但是在处理之后需要进行中和性洗涤。然则,所述化学药品在穿过固体碎屑以及进入容器或其他结构(包括水果和蔬菜)的表面层的过程中具有较差的传质效果。因此,这些方法在降低微生物数量方面效果较差。清洗和表面消毒的物理方法诸如刮削、干冰粒子辐射,仅处理了表面,而无法清除深入结构内部的微生物。而粗糙物理方法则无法应用于食品。
常规的超声波清洗装置和方法已被用于清洗各种种类的材料,包括容器。但是,由常规装置产生的超声波能量产生驻波,因此这种清洗模式导致了局部交替地出现在未被驻波限制的区域中的已清洗区域,和在驻波限制的区域中的未清洗区域。此外,常规装置产生的超声波能量无法穿透进入表面,并仅能传播很短的距离。为了清洗物体,所述装置必须相对于驻波移动,因此难以在较大的物体上应用。
因此,本领域存在着对用于表面清洗和/或消毒的装置和方法进行改进的需要。
发明内容
根据本发明的第一方面,提供了一种通过将高传播超声波能量应用至一个表面从而清洗该表面的方法,该方法包括:
将该表面的至少一部分浸入流体中,其中所述流体与高传播超声波能量发射组件接触;以及
从所述组件向所述流体发射高传播超声波能量,在所述表面处产生空穴作用,从而清洗所述表面。
根据本发明的第二方面,提供了一种用于从一个表面清除污染物的方法,该方法包括:
将所述污染物的至少一部分浸入流体中,其中所述流体与高传播超声波能量发射组件接触;以及
从所述组件向所述流体发射高传播超声波能量,在所述表面处产生空穴作用,从而清除所述污染物。
在一个实施方案中,所述污染物可以是生物膜、结垢或酒石酸盐。
根据本发明的第三方面,提供了一种用于对一个表面进行消毒的方法,该方法包括:
将所述表面的至少一部分浸入流体中,其中所述流体与超声波超声探头(sonotrode)接触;以及
从所述超声探头向所述流体发射高传播超声波能量,在所述表面处产生空穴作用,从而对所述表面进行消毒。
根据本发明的第四方面,提供了一种使用高传播超声波能量对第一容器的表面进行超声波清洗的方法,该方法包括:
将流体布置为与第一容器的所述表面的至少一部分接触,其中所述流体容纳在第二容器中,以及
将高传播超声波能量发射组件布置为与第二容器中的流体接触,或与所述第二容器的表面接触;
从所述组件发射高传播超声波能量,以及
应用所述能量以清洗第一容器的所述表面。
在一个实施方案中,本方法进一步包括在所述第一容器的所述表面处产生空穴作用,从而清洗所述表面。
在一个实施方案中,本方法进一步包括通过应用高传播超声波能量对第一容器的所述表面的所述部分进行消毒。
在一个实施方案中,本方法还包括相对于第二容器旋转第一容器,以将所述流体布置为与第一容器的所述表面的另一部分接触。
在一个实施方案中,本方法还包括从第一容器中清除渣滓。
根据本发明的第五方面,提供了一种用于清洗带有碎屑的表面的方法,该方法包括:
将所述表面引入流体;
将高传播超声波能量发射组件引入所述流体;
在旋转所述表面的同时从所述组件发射高传播超声波能量,以将所述表面的内部的表面层暴露在超声波能量中;以及
应用所述能量以从所述表面清除碎屑。
在一个实施方案中,所述表面存在于诸如桶之类的容器中。所述桶可以是木质酒桶。所述碎屑可以是生物膜或食物产品的残渣,包括酒渣,诸如酒石酸盐或结垢。所述碎屑也可以是腐败微生物。
在一个实施方案,流体可以至少部分充满容器。所述发射组件可以穿过容器中的开口(诸如桶的敞开的头部(open head))引入到所述流体中。
在另一个实施方案中,运行所述发射组件在所述流体内产生空穴作用。在另一个实施方案中,所述空穴作用在所述流体中产生热量。
在另一个实施方案中,所述流体可以包括化学消毒剂和/或清洗剂。在另一个实施方案中,所述方法还包括向所述流体施加脉冲电场的步骤。在另一个实施方案中,所述方法还包括机械刷洗所述表面。
在一个实施方案中,热量和空穴作用协同作用,以清洗、清除生物膜和/或对所述表面消毒。在另一个实施方案中,空穴作用和脉冲电场协同作用,以进行消毒、清洗生物膜和/或将生物膜从所述表面上清除。在另一个实施方案中,空穴作用和机械刮擦协同作用,以消毒、清洗生物膜和/或将生物膜从所述表面上清除。
在另一个实施方案中,所述方法还包括将超声波能量发射组件与换能器通信。例如,将所述超声探头与所述换能器连接。
根据本发明的第六方面,提供了一种使用高传播超声波能量清洗一个表面的系统,所述系统包括:
用于将流体布置为与所述表面的至少一部分相接触的装置;
用于将高传播超声波能量发射组件布置为与所述流体接触的装置;以及其中在运行所述发射组件中,所述组件向所述流体发射高传播超声波能量,以在所述表面产生空穴作用,从而清洗所述表面。
在一个实施方案,用于运行所述发射组件的装置包括用于运行所述超声波能量发射组件以在所述流体内产生超声波空穴作用并清洗所述表面的装置。
在另一个实施方案中,所述高传播超声波能量发射组件的运行使得高传播超声波能量被发射进入所述流体,以在所述表面产生空穴作用,从而通过破坏腐败微生物来对所述表面进行消毒。
所述腐败微生物可以从以下项组成的组中选择:酵母、霉菌、细菌、真菌。在一个实施方案中,所述酵母是酒香酵母属的一种。
在另一个实施方案中,该系统还包括用于旋转所述表面以将所述流体布置为与所述表面的另一部分相接触的装置。
在另一实施方案中,所述系统还包括用于清除渣滓的装置。
根据本发明的第七方面,提供了一种用于清洗第一容器的表面的高传播超声波能量装置,所述装置包括:
至少一个浸入式高传播超声波能量换能器组件,其安装至适于布置在第一容器内部的第二容器。
高传播超声波能量发生器,其与所述换能器组件通信。
在一个实施方案中,所述第二容器可以适于穿过开口端(诸如移除了顶板(head stave)的桶的开口端)布置在第一容器之内,
在一个实施方案中,所述第二容器可以是多面柱体。该柱体可以是密封的。
所述第二容器可以具有的体积等于第一容器的内容积的约5%至约95%,不过优选具有所述第一容器的体积的约70%。
根据本发明的第八方面,提供了一种用于清洗第一容器的表面的高传播超声波能量装置,所述装置包括:
安装至第二容器的至少一个高传播超声波能量发射组件,其中所述第二容器适于容纳液体,并接收将在所述液体中清洗的所述表面的至少一部分,以及
高传播超声波能量发生器,其与所述能量发射组件通信。
在一个实施方案中,所述超声波能量发射组件被安装至第二容器的内部表面或外部表面。
在一个实施方案中,所述高传播超声波能量发射组件包括超声探头。在一个实施方案中,所述超声探头径向发射高传播超声波能量。在另一个实施方案中,运行所述高传播超声波能量发射组件使得高传播超声波能量被发射入所述流体,以在所述表面产生空穴作用。所述空穴作用增加了进入所述表面的流体,因此使所述表面能够发生进一步空穴作用。
在一个实施方案中,所述流体是气体或液体(诸如水)。
在一个实施方案中,所述装置还包括适于指示超声波能量的量的超声波能量传感器。
在另一实施方案中,超声波能量发射组件包括多种材料,诸如钛和钛合金。
在一个实施方案中,所述装置可以包括第三容器,该第三容器适于例如穿过开口端(诸如移除了顶板的桶的开口端)布置在第一容器中。
在一个实施方案中,所述第三容器可以是多面柱体。该柱体可以是密封的。
所述第三容器可以具有的体积等于第一容器的内容积的约5%至约95%,不过优选为所述第一容器的体积的约70%。
根据本发明的第九方面,提供了将所述第六方面的系统或者第七或第八方面的装置用于清洗一个表面的用途。
附图说明
图1是现有技术的驻波装置和其产生的效果的视图。
图2是示出了本发明所产生的能量波的穿透效果的桶的俯视截面。
图3是利用本发明所清洗的容器的侧视截面图。
图4示出了酒桶的图示,该酒桶是完整的,或移除了一个或两个顶板,部分或全部充满了水,并部分或全部浸入在水浴中,使得桶的主轴线在水平方向。根据本发明的一个实施方案,在向浴中的水应用超声波能量时,接着将所述桶围绕其主轴线持续旋转。
图5示出了酒桶的图示,其中顶板或改良后的顶板被移除,且密封的多面柱体(其体积为桶的空置容积的5%和95%之间)被置于所述桶的空置容积内部,所述桶被部分或全部充满水,并部分或全部浸入在水浴中,并使得桶的主轴线垂直于水浴中的水的表面平面。
图6示出了酒桶的侧面剖视图,根据本发明的一个实施方案,该酒桶全部或部分充满水,并具有附接至密封多面柱体的示意性的多个浸入式换能器组件,所述组件穿过预先移除的顶板或改良后的顶板所产生的开口端而被插入所述桶中。
图7示出了酒桶的侧面剖视图,根据本发明的一个实施方案,该酒桶被完全或部分地充满水,并容纳了超声波能量发射装置,该装置由多个牢固地附接至密封多面柱体的内表面的换能器组件组成,并穿过预先移除的顶板或改良后的顶板所产生的开口端而被插入所述桶中。
图8示出了在发生感染的1年和3年龄的橡木桶板上的表面下(2-4mm)的布鲁塞尔酒香酵母(Brettanomyces bruxellensis)活细胞(澳大利亚葡萄酒研究学院 菌株1499(AWRI strain 1499))的减少量,并与对比试样相对比;其中实施例与对比例分别为:在60℃使用高传播超声波能量,使用高压热水(60℃,1000psi)。
图9示出了关于家禽肉表面的鼠伤寒沙门氏菌(Salmonella typhimurium)水平,单独的高传播超声波能量或其与氯浴结合的效果,并与单独的氯浴的效果相比较。可以看到高传播超声波能量和氯之间的协同效果。
图10示出了关于单核细胞增生利斯特氏菌(Listeria monocytogenes)的水平,高传播超声波能量与热量(50℃)共同作用的效果与热量(50℃)单独作用的效果之间的比较。
图11示出了关于真菌孢子(fungal spores)水平,在果干表面应用高传播超声波能量的效果。并示出了单独洗涤、消毒剂洗涤、以及将高传播超声波能量与消毒剂洗涤一起应用的效果比较。
图12示出了关于微生物水平,在生菜丝表面应用高传播超声波能量的效果,并示出了单独洗涤、洗涤和高传播超声波能量(US)、30ppm过氧乙酸洗涤、30ppm过氧乙酸洗涤和高传播超声波能量(US)、100ppm过氧乙酸单独洗涤、以及100ppm过氧乙酸洗涤结合高传播超声波能量(US)的应用效果比较。
图13示出了关于微生物水平,在菠菜表面应用高传播超声波能量的效果。并示出了去离子水洗涤、以及各种浓度的消毒剂(过氧乙酸)与高传播超声波能量(HPU)相结合和不结合作用的应用效果比较。
具体实施方式
术语定义
术语“高传播超声波能量”的含义包括基本垂直于超声探头的轴向发射的超声波能量。
术语“包括”意为主要包含,但并不必仅包含。此外,词语“包括”的变体,诸如“包括了”和“包括着”具有相对应的含义。
除非上下文中另有明确指出,在本申请中所使用的单数形式的“一”、“一个”和“该”包含复数指代对象。例如,术语“一个表面”同样包含了多个表面。
如本文中所使用的,术语“协同的”是表示产生大于由两种物质的结合所产生的叠加效应的效应。协同效应超过了将每种物质单独的效应相结合后所实现的效应。
如本文中所使用的,术语“表面”的含义中包括了物体的界限,或者构成或类似该界限的层。也即,如本文中所使用的术语“表面”指代物体的二维表面,以及在该表面层内的,深至约1-20mm,或深至约2-20mm,或深至约5-20mm,或深至约5-15mm,或深至约7-10mm的厚度。
技术方案描述
本领域普通技术人员应理解的是,这里提供的图示和实施例是示例性的,且不用于限制本发明和其各种实施方案。
常规超声波清洗装置(诸如图1中示出的装置)及相关方法被用于清洗各种材料,包括容器和桶板5。当使用常规超声波装置1来清洗桶板5时,通常需要将桶板5a浸入在充满装置1的液体10中。但是,在常规装置1中产生的超声波能量在充满设备1的液体10中产生驻波,使得当将桶板5b从装置取出时,该桶板5b示出如下图案:局部交替地,在未被驻波限制的区域产生已清洗地带15,而在驻波限制的区域产生未清洗地带20。
根据本发明,提供了用于将高传播超声波能量应用于表面的装置和方法。所述装置大体包括超声波发生器,至少一个超声波换能器被布置为使得高传播超声波能量经由流体被应用至所述表面。本发明的方法大体包括将高传播超声波能量应用至表面,用于从该表面上清除固体或半固体的废料,并用于在该表面上或形成该表面的结构内进行杀灭微生物的灭活作用。
例如,所述表面可以是物品的表面,所述物品诸如容器、导管、装置或食品。所述容器可以是酒桶,例如带有酒石酸盐沉淀的酒桶。所述导管可以是管子。所述装置可以是热交换器、阀、塞子、散热器、过滤器、洗涤水槽、加热巴氏灭菌管、搅拌器、均质器、包装线上的滤杯、薄膜过滤器、水箱、漏斗、包装材料、瓶/罐头/纸盒、加油喷嘴、分配器、蒸发器、炊具、倾析器、分离容器、离心机或研磨机。所述食品可以是水果或蔬菜。
常规的超声波清洗浴槽技术/换能器基于的是驻波形成技术。因为能量等级非常低,所以驻波无法穿透固体基底(substrate)。类似地,驻波并不增强液体传质或对流热传递。此外,驻波的形成导致暴露至驻波的区域和未暴露至驻波的区域,通常具有50%的死区。因此,在类似于橡木桶的容器中,所产生的结果是,仅有50%的表面被清洗(即,清除了其上的酒石酸盐)。此外,因为驻波无法穿透表面,因此仅能清除远小于50%的微生物数量。此外,由于较低能量等级,所以能清除的碎屑(诸如酒石酸盐)极少甚至几乎没有(若有的话),酒石酸盐仅在暴露至驻波的区域被清除。
现有的超声探头技术产生的波传播距离十分有限,且不可能穿透进入固体材料中。常规系统产生的能量波随着距离的增长会十分迅速地损耗掉,且无法影响到流体的液体传质性质以及对流热传递的性质。例如,常规的超声探头在距该超声探头1米以外便出现了约95%的能量下降,其穿透进入周围材料的能量可以忽略不计。以所述的所产生的波处理的地带并不能有效地遍及被污染表面区域,即仅在一些区域发生空穴作用,而在另一些区域不发生空穴作用。
高传播超声波能量波的使用相对于现有的超声波清洗技术和超声探头系统提供了改进,这些改进包括,例如:
1.增强了能量波的工作/传播距离;
2.在长距离上维持波的能量;
3.使能量波具有穿透固体多孔材料的能力;
4.增强了液体传质和对流热传递。
高传播超声波能量
通常在陶瓷或压电晶体材料(PZT)两端施加交流电压时,超声探头产生了超声波能量。交流电压以期望的振荡频率施加,以引起PZT的运动。PZT换能器被机械连接至变幅杆(horn)部件,该部件放大了PZT的动作。变幅杆部件包括尖端部分,这里称之为超声探头。包括尖端部分的该PZT变幅杆部件的组件在此也被称为超声探头。高传播超声波能量包括基本垂直于超声探头的轴向发射的超声波能量。所述能量穿过流体介质(通常是水或气体)传播距超声探头很长的距离,且该传播并不限于紧邻超声探头的区域。在传播穿过介质之后,所述高传播超声波能量可以被应用在一表面上,并穿透进入该表面。
高传播超声波能量波能够跨越流体(诸如水)的边界传播远至至少50cm至约300cm,或约100cm至约300cm,或约150cm至约300cm,或约200cm至约300cm的距离,到达被污染表面。高传播超声波能量的传播基本均匀地遍及所述表面区域及所留体积,并能够穿透固体、多孔或被污染表面内的深至约1-20mm,或深至约2-20mm,或深至约5-20mm,或深至约5-15mm,或深至约7-10mm的厚度。
在本发明的一个实施方案中,高功率、低频率、大波长以及超声探头形状/设计的结合使上述效果的产生成为可能。相反,从常规超声波清洗机中发射的超声波能量具有距发射表面有限的传播距离,其中在距离为100cm时能量降低90+%;在它们所覆盖的表面区域并非均匀;且无法穿透进入生物膜或固体多孔或被污染表面。
在另一个实施方案中,超声探头可以被布置为使所产生的高传播超声波能量能够跨越流体(诸如水)的边界传播远至至少50cm至约300cm,或约100cm至约300cm,或约150cm至约300cm,或约200cm至约300cm的距离,到达被污染表面,并基本均匀地遍及整个表面区域和所留体积,没有不被该波能量触及的单一空间/地带。此外,该高传播径向波能够穿透深至约5-20mm,或深至约5-15mm,或深至约7-10mm的厚度,或进入固体多孔或被污染表面内。
在另一实施方案中,高传播超声波能量基本成直角从高能量超声探头的表面发出。在此的上下文中,高能量指代在距发射超声探头约100至约300cm的距离具有小于约20%的能量降低,以及产生由空穴气泡破坏引起的剪力。此外,在这一上下文中,高能量指代高传播超声波能量能够传播进入固体或多孔表面或材料,并在其内深至约1-20mm,或深至约2-20mm,或深至约5-20mm,或深至约5-15mm,或深至约7-10mm的厚度产生空穴作用。
在另一实施方案中,高传播超声波能量增强了到生物膜、被污染材料/表面、诸如多孔橡木桶之类的固体表面、以及通常具有很低的热传导性的微生物的热传导型热传递的动力学。高传播超声波能量将这一过程的效率增加高达约200-300%。在另一实施方案中,所述空穴作用和消毒剂协同作用以进行消毒、清洗和/或清除表面上的生物膜。
尽管不受限于理论,但通常持有如下观点:高传播超声波能量通过产生空穴作用和产生热量,清洗并杀灭微生物。空穴作用包括显微级气泡的重复形成和破裂。气泡破裂产生高压冲击波以及破裂点周围的高温。热量同样可以通过PZT、变幅杆部件、应用超声波能量的表面吸收高传播超声波能量而产生,以及通过能量传播穿过的液体或气体吸收部分高传播超声波能量而产生。
在理论的限定中,所相信的是,高传播超声波能量的应用产生空穴作用并因之产生冲击波,从而促进了流体或液体穿透进入一表面。这些冲击波与所述表面处局部产生的热量相结合,清除了该表面处的沉淀物,且穿透进入该表面以杀灭微生物。超声波能量产生的空穴作用也可以用于激活特定的化学性质(例如,热激活漂白剂),并因此显著地促进了清洗和消毒。此外,高传播超声波能量的应用可以将流体成分——诸如消毒剂——驱动至超声波能量施加的表面。
在一个实施方案中,超声波发射组件或超声波发生器产生以下频率的超声波能量:约10KHz和约2000KHz之间,或约10KHz和约1500KHz之间,或约10KHz和约1000KHz之间,或约10KHz和约750KHz之间,或约10KHz和约400KHz之间,或约10KHz和约250KHz之间,或约10KHz和约125KHz之间,或约10KHz和约100KHz之间,或约10KHz和约60KHz之间,或约10KHz和约40KHz之间,或约10KHz和约30KHz之间,或约16KHz和约30KHz之间,或约16KHz和约22KHz之间,或约19KHz和约20KHz之间。
在一个实施方案中,高传播超声波能量的振幅是约0.001至约500微米之间,优选为约0.01至约40微米之间的振幅,更优选为约1至10微米之间。
在一个实施方案中,高传播超声波能量的能量密度是约0.00001瓦/cm3至1000瓦/cm3之间,约0.0001瓦/cm3至约100瓦/cm3之间。
在另一实施方案中,高传播超声波能量应用至表面的时间长度为,约1秒至约60分钟,或约5秒至约50分钟,或约10秒至约40分钟,或约15秒至约40分钟,或约20秒至约30分钟,或约25秒至约20分钟,或约30秒至约10分钟,或约30秒至约1分钟。
装置
在一个方面,本发明提供了用于通过将高传播超声波能量应用至表面从而清洗所述表面的装置。
参考图2和图3,一种充满了流体30的容器(诸如示意性的酒桶25),其内表面28上带有一层碎屑,诸如酒石酸盐26。超声波探针或换能器32被插入流体30,并能够发射应用遍及至所述内表面28上且穿透进入该内表面28的高传播超声波能量34。
高传播超声波能量34在近似16-30KHz的频率时,增强了酒石酸盐26背后的流体30的传质,并进入木制酒桶25的木材27中的孔内。高传播超声波能量同样增强了穿过酒石酸盐并进入木材27的对流热传递。
如本文所描述的,高传播超声波能量34穿透进入表面28和木材基底27,并在表面28上和内部以及木材基底27的内部产生空穴作用。高传播超声波能量34还穿透进入表面28和木材基底27,并被应用至木材中存在的任何微生物,诸如酒香酵母属(Brettanomyces)29。
参考图4和图5,本发明的实施方案提供了用于将高传播超声波能量应用至表面的浴槽。发射器组件可以被固定至浴槽的外壁或搁置在容纳于所述浴槽内的水中。
图4图示了至少部分充满流体并部分或全部被浸没的容器(诸如酒桶40)的侧剖视图。酒桶40可以被校准,使得其纵轴线基本平行于浴槽流体44的静止表面42的平面。高传播超声波能量通过安装至浴槽46的外表面或搁置在浴槽46之内的多个换能器组件5被引入至桶40的内部。每一换能器组件48被连接至超声波信号发生器50。发生器50产生超声波信号,换能器组件48将该超声波信号作为高传播超声波能量发出。高传播超声波能量传播穿过至少部分充满桶40的流体。在一个实施方案中,桶40可以在应用高传播超声波能量的过程中持续性地或间断性地旋转。
图5阐释了诸如所示的酒桶40的容器的侧剖视图,该酒桶40至少移除了一块顶板;且体积为桶1的空置容积的5%至95%的密封多面柱体3位于所述桶40的空置容积内。桶40至少部分充满了流体(诸如水),并至少部分浸没在浴槽46内,因此桶的主轴线基本垂直于浴槽46中的流体44的静止表面42的平面。高传播超声波能量通过安装至浴槽6的外表面或搁置在浴槽46的流体之内的多个换能器组件48被引入至桶40的内部。每一换能器组件48被连接至超声波信号发生器50。发生器50产生超声波信号,换能器组件48将该超声波信号作为高传播超声波能量发出。高传播超声波能量传播穿过至少部分充满桶40的流体。在一个实施方案中,桶40可以在应用高传播超声波能量的过程中持续性地或间断性地围绕其主轴线旋转。
参考图6和图7,本发明的实施方案提供了将高传播超声波能量应用至表面的装置,其中图6中的发射器组件52或图7中的发射器组件54被插入至容器(诸如所示的酒桶40)的敞开的头部。
图7示出了酒桶40的侧剖视图,该酒桶40全部或部分充满水,并具有监控酒桶40的空腔内的超声波活动的附接传感器56。监控超声波活动使得操作者能够在需要的时候对操作过程进行改变,因此加强了清洗的效率。所述改变可以包括:增加桶板的特定部分暴露至超声波能量的暴露时间。
在另一方面,本发明提供了使用高传播超声波能量清洗表面(诸如酒桶表面)的装置,其中超声波能量发射组件通过所述容器的开口引入。在一个实施方案中,所述装置允许了原地清洗所述桶,而不需将桶搬离其所在位置。
图6示出了与悬在桶40的敞开的头部中的多面柱体58相联接的发射器组件52。桶40通常至少部分充满流体30,诸如水。多面柱体58被连接至超声波信号发生器50。发生器50产生超声波信号,发射器组件52将该超声波信号作为高传播超声波能量发出。高传播超声波能量传播穿过至少部分充满桶40的流体,并被应用至桶40的表面。在一个优选实施方案中,发射器组件52包括不锈钢,不过本领域普通技术人员将理解,发射器组件52并不局限于包括不锈钢或由不锈钢构成的组件。
如图7所示,超声波能量发射装置由安装至密封多面柱体54的内表面的多个换能器组件48组成。通过将所述装置从所述桶的开口端(其中至少一个顶板已预先从该桶移除)插入,将所述装置布置在容器(如所示的桶40)中。通常地,桶40至少部分充满流体30,诸如水。超声波发生器50被连接至容纳在密封多面柱体54中的多个换能器组件。发生器50产生超声波信号,换能器48的发射器组件将该超声波信号作为高传播超声波能量发出。高传播超声波能量传播穿过至少部分充满该被填充的桶40的流体30,并被应用至桶40的表面。在一个实施方案中,桶40可以被搅动。
在一个替代性实施方案中,可以或者通过使用泵(未示出)或者通过在桶40内转动或枢轴转动该密封的多面柱体54,来搅动该桶40内的流体。
图7还示出了酒桶40的侧剖面图,该酒桶40至少部分充满流体30,以及所述装置包括带有附接传感器56的超声波发射器54。在一个实施方案中,附接传感器56可以半独立于发射器54而移动。传感器56监控酒桶40中的高传播超声波能量。
普通技术人员将理解的是,与本发明的装置相关联的电线和导管具有足够的长度,以使得当容器或桶远离电源或水源时,能够在它们的原地进行高传播超声波能量应用。
在本发明的另一实施方案中,泵(未示出)可以被用于通过过滤器再循环或回收流体,从而限制了所需的流体的量。在另一个实施方案中,流体(诸如水)可以持续地流经所述容器。
普通技术人员将理解,本发明并不局限于酒桶,而可以被用于清洗任何容器。具体而言,本发明对于清洗具有有限对外通道的以下容器都是有用的:诸如,贮液桶、木桶、食物容器、瓶。此外,本发明的装置可以被用于将高传播超声波能量应用至例如,食物处理设备、热交换器、管道、阀、以及诸如水果和蔬菜之类的食品。
使用本发明的装置的方法
本发明提供了一种通过将高传播超声波能量应用至容器的表面,从而清洗和/或消毒该表面的方法。虽然并不受限于特定理论,但所相信的是,该方法通过显微空穴破坏并释放冲击波的现象起作用,该过程被称为空穴作用。通过将高传播超声波能量传送至与待清洗和/或消毒的表面接触的流体,形成了显微空穴。所述显微空穴可以形成在表面上。由空穴破坏产生的冲击波使得表面上的污染物松开,所述污染物诸如酒石酸盐、生物膜、食物残渣和微生物等。接着,这些碎屑或渣滓可以通过使用泵来排出,或通过倒转容器使得渣滓被排出。
在一个方面,本发明提供了通过将高传播超声波能量应用至表面,从而清洗所述表面,去除表面污染物,以及对该表面消毒的方法。
本文阐释了将本发明的装置用于本发明的方法。例如,参考图2和图3,在桶25充满流体30后,将能够传播波34的超声探头插入。超声探头32在16-30KHz的频率之间被激活。所产生的高传播超声波能量34在流体中产生空穴作用。开始时,由空穴作用产生的能量撞击碎屑(诸如酒石酸盐26),但此外,令人惊讶的是,如在此所述,通过使用在约16-30KHz(在一个实施方案中)的频率之间的高传播超声波能量,在酒石酸盐26背后的流体发生传质,并进入木制酒桶25的木材27的孔中。所述高传播超声波能量还引起穿过酒石酸盐并进入木材27的增强的对流热传递。
通过驱使液体流进桶25的孔,高传播超声波能量34可以接着被传递入木材基底27,从而在桶25的木材内部产生空穴作用。同样,由木材结构内部的空穴作用产生的能量对于木材表面处或附近的生物体具有更大的影响,诸如木桶25的内表面28之下深至约20mm处的任何酒香酵母属(Brettanomyces)29。所述空穴作用也与所述增强的热传递协同作用以根除腐败微生物,诸如酒香酵母属(Brettanomyces),其效率和有效性均大于单独加热或单独传播径向能量波。
将高传播超声波能量应用至表面,较之先前,使得在木材结构27内的生物体上发生空穴作用成为可能。这较之先前,提供了结合清洗进行更高水平的消毒或降低微生物数量的能力。
流体
在一些实施方案中,流体30可以是气体或液体(诸如水)。在另一个实施方案中,所述液体是反渗透净化液,例如水。
所述流体可以是以下温度:在约1℃至约99℃之间,或在约2℃至约90℃之间,或在约3℃至约80℃之间,或在约4℃至约70℃之间,或在约4℃至约60℃之间,或在约4℃至约50℃之间,或在约4℃至约40℃之间,或在约4℃至约30℃之间,或在约4℃至约20℃之间。
在一个优选实施方案中,流体30的温度为近似≥30℃并<80℃,更优选的是,流体30的温度为近似约40℃至近似约60℃。这些温度范围是相对较易获得的,且相较需要蒸汽的技术(例如,温度>90℃)而言,危险性得到了显著的降低。
此外,使用反渗透液体(诸如水)作为所述流体,在传播距离、进入多孔或固体材料的渗透距离、爆裂能量的强度、以及空穴气泡的形成和坍塌所释放的剪力的强度的方面,提高了高传播超声波能量的有效性。所述反渗透水还增加了污染表面上每平方厘米形成的空穴气泡的数量,以及多孔或固体结构中每立方厘米所形成的空穴气泡的数量。反渗透水的使用还增加了液体到固体多孔结构(诸如木材27)的传质效率(如图2和图3所示),并增加了到固体结构的对流热传递,从而增加了所降低的微生物(诸如酒香酵母属(Brettanomyces))的数量。
此外,本发明的实施方案中,当所述流体是液体诸如水时,该液体可以包括以下液体中的一种或多种可选成分:消毒剂、除垢剂、除臭剂、芳香剂、漂白剂、防沫剂、酸、碱、腐蚀剂、PH稳定剂、研磨剂、表面活性剂、酶、漂白活化剂、抗微生物剂、抗菌剂、漂白催化剂、漂白辅助剂、漂白剂、碱源、着色剂、香精、肥皂、晶体生长抑制剂、光致漂白剂、金属离子多价螯合剂(metal ion sequestrate)、防退色剂、抗氧化剂、抗再沉淀离子剂、电解液、PH调节剂、增稠剂、研磨剂、金属离子盐、酶稳定剂、防腐剂、软化剂、溶剂、处理酸(process acid)、香水、光学增亮剂及其混合物。
污染物清除
如参考酒桶所阐释的,将高传播超声波能量应用至表面,尤其是应用至酒桶的内表面,清除所述表面上的诸如酒石酸盐晶体或生物膜之类的污染物以及桶底的其他碎屑(其被称为“渣滓”),并将其悬浮。因此,在一个实施方案中,渣滓的清除促进了在回收的橡木酒桶中将橡木气味传递至酒。将本说明书描述的方法应用至酒桶时,提供了基本不带有污染物和微生物(其会损害酒的质量)的橡木桶内表面。
在一些实施方案中,本发明的方法避免了将液体加热至高温以及使用化学物质。此外,当将本发明的方法用于清洗酒桶时,与高压的热水或冷水喷淋相比,木材气味化合物损失得更少。因此,桶的寿命可以被延长,从而降低更换桶的成本。
在一些实施方案中,将高传播超声波能量应用至表面可以和将脉冲电场应用至与所述表面相接触的流体同时进行。可替代地,高传播超声波能量和脉冲电场的应用可以相续地进行。在一个实施方案中,高传播超声波能量和脉冲电场的应用可以间歇性地进行。
在一些实施方案中,将高传播超声波能量应用至表面可以与对该表面的机械刷洗同时进行。可替代地,高传播超声波能量和表面机械刷洗的应用可以相续地进行。在一个实施方案中,高传播超声波能量和表面机械刷洗的应用可以间歇性地进行。
在一个实施方案中,具有约1至10微米之间的振幅的高传播超声波能量可以被应用至容器(诸如桶)的表面约3至约10分钟。
本发明的装置和方法避免了由污染物导致的酒变质;通过降低桶内的酒石酸盐沉淀改进了橡木气味到酒的传递;避免了现有洗涤方法造成的橡木气味的损失;通过避免更换由污染物引起变质的酒桶,降低桶的成本;通过延长桶的可用寿命降低了桶的成本;降低了清洗操作的劳动力成本;降低了水成本;避免了化学物的使用;以及降低了加热水的成本。
在另一实施方案中,本发明的方法避免了由污染物引起的酒变质;通过降低桶内的酒石酸盐沉淀改进了橡木气味到酒的传递;避免了现有洗涤方法造成的橡木气味的损失;通过避免更换由污染物引起变质的酒桶,降低了桶的成本;通过延长桶的可用寿命降低了桶的成本;降低了清洗操作的劳动力成本;降低了水成本;避免了化学物的使用;以及降低了加热水的成本。
在本发明的一个方面,公开了消毒容器(诸如桶)的内表面,以及消灭栖居在桶的表面上的腐败微生物(包括酒香酵母属(Brettanomyces))的方法。
通过清洗来回收酒桶的实践广泛用于酿酒工业。但是,由于清洗不完全导致的细菌和酵母菌污染增加了酒的变质,从而增加了酿酒商的成本。酒桶、储液桶以及其他食物和饮料容器的问题在于,容器的开口是受限的。因此清洗此类容器时,显得非常困难。在现有技术中,桶被拆散并刮削,或者使用高压水或蒸汽以清洗此类容器。但是,这产生了其他的问题,尤其是在酿酒商所能获得的水源有限的干旱地区,此外,这类方法仅清除表面沉淀,而无法穿透进入表面以将隐藏在表面以下的微生物杀死或灭活。本发明提供了将高传播超声波能量应用至表面以清洗和消毒该表面,诸如酒桶和类似容器的内表面。
清洗和/或排除污染
在一个实施方案中,例如所阐释的使用如图4或5所示的装置的实施方案中,一种超声波清洗的方法通过从外部产生超声波,将超声波能量引入至少部分充满诸如水的液体的容器或导管(在此示为桶)的内部。超声波能量被应用至浴槽的水,并穿过桶板传输进入桶内容纳的水,其中由超声波能量产生的空穴气泡的破坏所释放的能量清除了残渣,并消灭了栖居的微生物。
在一个方面,本发明的方法可以用于原地清洗和/或消毒导管或容器。例如,被生物膜的生长所淤塞的导管可以至少部分充满流体,诸如水。本发明的装置可以被引入导管,因此当使用本方法时,高传播超声波能量能穿过液体传播,并由此被应用至导管或容器的内表面,以清洗和/或消毒该表面。通过本方法产生的渣滓在流体被排出容器时被清除。容器或导管中的液体可以通过过滤器进行再循环或回收,从而限制了清洗过程所需的水量。在另一个实施方案中,液体(诸如水)可以持续地流经导管或容器,从而提供了将渣滓从已清洗或消毒的表面上清除的方法。
在本发明的一个实施方案中,将发射高传播超声波能量的超声探头浸入开口的水槽、管道、器皿、流通器皿(flow through vessel)中,上述容器容纳了诸如水之类的液体、消毒剂(各种浓度)以及水果或蔬菜产品。所述水果/蔬菜经过一个或多个发射高传播超声波能量的超声探头。所述高传播超声波能量在液体中、水果和蔬菜的表面、以及水果和蔬菜表面以内的组织中产生空穴作用。水果和蔬菜在超声场中的停留时间可以从0.1秒到1000秒变化。水和水果或蔬菜的流动速率可以从0.1升/分钟至10,000升/分钟变化。所述的波和破坏的空穴气泡产生以下作用:
1.清除表面细菌和污染物,使其成为液相,从而使得消毒剂或清洗剂可以更好地进入以对微生物消毒。在液相中,超声波和空穴作用相协同,更快和更有效地驱使消毒剂穿过微生物的外膜,从而更有效地将其杀灭。
2.超声波和空穴作用驱使消毒剂更快和更深地穿透进入微生物栖居的水果和蔬菜的表面结构。内部的空穴作用使得消毒剂更有效地穿透微生物的外膜,并进入水果或蔬菜的组织表面的内部。
在一个实施方案中,振幅为约1至约10微米的高传播超声波能量可以在选择性存在消毒剂的情况下被应用至蔬菜或水果的表面约30秒至约1分钟,所述消毒剂诸如氯、过氧乙酸、臭氧或其结合。
例如,所述蔬菜可以选自:苋菜、甜菜叶、花椰菜、苦叶菜(bitterleaf)、小白菜、球芽甘蓝、卷心菜、豚菜、芹菜、莴笋、锡兰菠菜、驱虫苋、菊苣、冬寒菜、菊花叶、野苣、西洋菜、青豆、蒲公英、苣菜、土荆芥、白花藜、蕨菜、槽南瓜、金色海蓬子、好国王亨利藜、水蓊(Jambu)、芥兰、羽衣甘蓝、小松菜、库卡菜(kuka)、拉各斯波洛基菜(Lagos bologi)、陆生水芹、蜥尾草(Lizard′s tail)、莴苣、埃及菠菜、日本芜菁(mizuna green)、芥菜、纳帕白菜/大白菜、新西兰菠菜、法国菠菜、豌豆苗/叶、波尔克(polk)、红菊苣、芝麻菜、海蓬子、海甜菜、海甘蓝、野茼蒿(Sierra Leone bologi)、青葙(soko)、酸模(Sorrel)、马齿苋、唐莴苣、白菜心(tatsoi)、芜菁叶、豆瓣菜、空心菜、冬季马齿苋、油菜、小青南瓜、亚美尼亚黄瓜、茄子、青椒、苦瓜、菜瓜、灯笼果、辣椒、佛手瓜、红辣椒、黄瓜、丝瓜、黑子南瓜(Malabar gourd)、帕瓦(Parwal)、西红柿、红瓜(perennial cucumber)、南瓜、扁圆南瓜、蛇瓜、美国南瓜(西葫芦)、甜玉米、甜椒、蕃茄(Tinda)、绿番茄、冬瓜、西印度黄瓜、小西葫芦/胡瓜、朝鲜蓟、节瓜花、青花菜、菜花、美洲花生、红小豆、黑眼豆、鹰嘴豆、辣木(Drumstick)、扁豆、蚕豆、法国豆、瓜儿豆(Guar)、马豆(Horse gram)、印第安豌豆、小扁豆、豇豆(Moth bean)、绿豆、秋葵、豌豆、花生、树豆、米豆、米、红花菜豆、大豆、佛手瓜(Tarwi)、宽叶菜豆、黑吉豆(Urad bean)、藜豆、翼豆、长豇豆、芦笋、刺菜蓟、块根芹菜、西芹、象蒜、球茎茴香、大蒜、大头菜、类韭葱(Kurrat)、韭葱、藕、仙人掌、洋葱、普鲁士芦笋、青葱、威尔士葱、野韭菜、安第斯山豆薯(ahipa)、秘鲁胡萝卜、竹笋、甜菜根、黑种草、牛蒡、茨菇、百合、美人蕉、胡萝卜、木薯、宝塔菜、白萝卜、花生、魔芋(Elephant Foot yam)、象腿蕉、姜、牛蒡根、芜菁根欧芹、洋姜、沙葛、防风草、山胡桃、香茶菜、土豆、草原萝卜、小红萝卜、芜菁甘蓝、婆罗门参、鸦葱、泽芹、甘薯、芋头、朱蕉(Ti)、油莎豆、芜菁、美洲落葵(Ulluco)、生山葵、荸荠、雪莲果以及山药。
例如,所述水果可以是新鲜的或干的,并可以选自:苹果、花楸果、枇杷、枸杞、梨、木瓜、野玫瑰果、欧洲花楸、苹果梨、花楸果实或唐棣植物(Saskatoon)、杏、樱桃、美国稠李、青梅、桃、李,以及前述种类的杂交种,覆盆子、黑莓(及其杂交种)、云莓、罗甘莓、树莓、美莓、糙莓、葡萄酒树莓、熊果、欧洲越橘、蓝莓、岩高兰、蔓越橘、越橘属莓(Falberry)、美洲越橘、越橘、巴西莓(Acaí)、伏牛花子、醋栗、接骨木果、鹅莓、朴树果、桑葚、盾叶鬼臼、南尼山羊果(Nannyberry)、俄勒冈葡萄、沙棘、海葡萄、罗汉果(Arhat)、巴图尔果(Batuan)、木苹果、芒果、印度鹅莓、柠檬山竹、纽扣山竹(Cherapu)、椰子、柘(Che)、中国桑葚、桑柘(Cudrang)、中国瓜果(Mandarin Melon Berry)、柘木、柘(Zhe)、榴莲、藤黄果(Gambooge)、胡颓子浆果(Goumi)、耐寒猕猴桃(hardy kiwi)、奇异果、蛇莓或印度蛇莓、藤黄木(Garcinia dulcis)、榔色木(Lanzones)、南酸枣(Lapsi)、龙眼、荔枝、山竹、桄榔(Nungu)、葡萄(葡萄干、苏丹葡萄,或无核葡萄干)、橄榄、石榴、无花果、柑橘类水果,包括柠檬、橙、香橼、柚子、金橘、酸橙、中国柑橘以及柑橘。
使用高传播超声波能量和其他清洗和消毒剂
如本文所公开的,将高传播超声波能量应用至表面能够清除表面上和表面内的碎屑和/或微生物。令人惊讶的是,如这里所公开的,将高传播超声波能量与清洗和/或消毒表面的常规方法一起应用至表面,较之所预想的高传播超声波能量和常规清洗和/或消毒的单纯叠加效果,提供了对表面的更加改进的清洗和/或消毒。也就是说,在对表面应用高传播超声波能量和使用常规清洗和/或消毒方法之间存在着协同的清洗和/或消毒效果。
如这里所示例的,结合氯浴将高传播超声波能量应用至禽肉,较之单独应用高传播超声波能量或氯浴产生了鼠伤寒沙门氏菌(Salmonella typhimurium)水平的更大的降低(图9)。类似的,结合高传播超声波能量的应用使用30ppm或100ppm的过氧乙酸对生菜丝消毒,较之单独应用两种处理方式提供了对总微生物水平的更大减少(图12)。
如以上所述,尽管并不局限于理论,但通常认为:高传播超声波能量通过产生空穴作用和产生热量来清洗表面并杀灭微生物。空穴作用包括显微气泡的反复的形成和破裂。破裂作用在破裂点附近产生高压冲击波和高温。冲击波可以驱使流体成分——诸如消毒剂——进入应用超声波能量的表面,从而增加表面上的清洗和/或消毒效果,而并非如所预想的,仅产生单独进行高传播超声波能量或常规清洗和/或消毒的叠加效果。
所述消毒剂可以是下述至少一种:臭氧、氯、过氧醋酸、二氧化氯、过氧化氢、氢氧化钠、氢氧化钾、叠氮化钠或其他商业上可获取的消毒配方或其结合。所述消毒配方可以是以下至少一种:除垢剂、表面活性剂、肥皂、漂白剂、或诸如氨基磺酸、蚁酸之类的反应化合物、其他有机或无机酸等。
此外,一并使用反渗透流体(诸如水)和高传播超声波能量极大地增加了清洗和/或清除污染物的动力学,增加了清除污染物的百分比,以及增强了在表面和固体结构内杀灭微生物的百分比。使用反渗透液体是相对于常规液体、含有化学添加剂的液体或脱气液体的改进。反渗透水的清洗效率较之标准饮用水通常增加30%。此外,反渗透水的清洗时间通常将降低40%。
在一些实施方案中,液体可以包括化学消毒剂诸如臭氧、氯、过氧乙酸、叠氮化钠。可替代地或附加地,液体可以包含:清洗剂(诸如除垢剂)、酶(诸如脂肪酶)、表面活性剂、肥皂或漂白剂。其他的清洗和/或消毒剂包括:苛性钠、氢氧化钾、氨基磺酸、蚁酸、重铬酸、盐酸、硝酸以及硫酸。这些制剂的适合浓度是本领域普通技术人员广泛知晓的,并可以通过常规试验确定。不过,虽然更高的浓度也可以使用,但通常浓度可以在约1ppm至约500ppm的范围内。
生物体
高功率超声波杀灭包括腐败酵母在内的腐败微生物,诸如酒香酵母属(Brettanomyces)。所述生物体和其他腐败酵母细菌以及霉菌可以在酒桶的橡木中找到,尤其在桶的内部的内表面周围。高功率超声波能量加热和消毒液体和固体物质,从而杀灭深至至少8mm的桶的橡木内的生物体,而不需要使用化学物质,诸如二氧化硫和臭氧。
本发明的方法可以用于降低微生物的数量,诸如酒香酵母属种(Brettanomyces sp.)的酵母数量。
在另一些实施方案中,本方法用于降低酒香酵母属种(Brettanomyces sp.)的酵母的数量,以及降低其他酒类腐败微生物,包括霉菌、酵母和细菌的数量。例如,酒类腐败酵母可以包括:异形德克氏酵母(Dekkera anomala)、布鲁塞尔德克氏酵母(Dekkera bruxellensis)、中间型德克氏酵母(Dekkera intermedia)、Brettanomyce abstinens、异酒香酵母(Brettanomyces anomalus)、布鲁塞尔酒香酵母(Brettanomyces bruxellensis)、克劳氏酒香酵母(Brettanomyces claussenii)、班图酒香酵母(Brettanomyces custersianus)、中间型酒香酵母(Brettanomyces intermedins)、蓝姆啤可酒香酵母(Brettanomyces lambicus)、Brettanomyce naardensis、季也蒙氏毕赤氏酵母(Pichia guilliermondii)、膜醭毕赤氏酵母(Piciai membranefaciens)、发酵性毕赤氏酵母(Pichia fermentans)、路克氏类糖酵母(Sachharomycodes ludwidii)、裂殖糖酵母属种(Schizosaccharomyces sp.)、接合糖酵母属种(Zygosachharomyces sp.)(包括拜列氏接合糖酵母(Z.bailii)、双孢接合糖酵母(Z.bisporus))、有孢汉逊氏酵母属种(Hanseniaspora sp.)、克勒克氏酵母属种(Kloeckera sp.)、汉逊氏酵母属种(Hansenula sp.)、梅奇酵母属种(Metschnikowia sp.)、有孢圆酵母属种(Torulaspora sp.),或德巴利氏酵母属种(Debaryomyces sp.)。在其他实施方案中,酵母可以是产膜酵母,诸如酒性假丝酵母(Candida vini)、糙醭假丝酵母(Candida mycoderma)、克鲁斯氏假丝酵母(Candida krusei)。酒类腐败霉菌可以包括曲霉属种(Aspergillus sp.)或青霉属种(Penicillium sp.)。
例如,酒类腐败细菌可以包括醋杆菌属种(Acetobacter sp.),诸如巴斯德氏醋杆菌(Acetobacter pasteurianus)、Acetobacter liquefasciens、醋酸化醋杆菌(Acetobacter aceti)、恶臭醋杆菌(Acetobacter rancens);葡糖杆菌属种(Gluconacetobacter sp.),诸如氧化葡糖杆菌(Gluconobacter oxydans);乳芽孢杆菌属种(Lactobacillus sp.),诸如植物乳芽孢杆菌(Lactobacillu plantarum)、短小乳芽孢杆菌(Lactobacillus brevis)、蚀果乳芽孢杆菌(Lactobacillus fructivorans)(旧称毛样枝乳芽孢杆菌(Lactobacillus trichoides))、赫加迪氏乳芽孢杆菌(Lactobacillus hilgardii)、Lactobacillus Kunkeei、布启里氏乳芽孢杆菌(Lactobacillus buchneri)、发酵乳芽孢杆菌(Lactobacillus fermentatum)、纤维二糖乳芽孢杆菌(Lactobacillus cellobiosis)、Lactobacillus collonoides、植物乳芽孢杆菌(Lactobacillus plantarum);明串珠菌属种(Leuconostoc sp.),诸如酒明串珠菌(Leuconostoc oeno);片球菌属种(Pediococcus sp.),诸如有害片球菌(Pediococcus damnosus)、戊糖片球菌(Pediococcus pentosaceus)、微小片球菌(Pediococcus parvulis)以及酒酒球菌(Oenococcus oeni)。
本发明的方法可以用于降低食品尤其是新鲜水果和蔬菜上的微生物(诸如霉菌、酵母和细菌)的数量。食物腐败微生物可以包括酵母、霉菌和细菌。例如,腐败酵母可以包括糖酵母属种(Saccharomyces sp.)、接合糖酵母属种(Zygosaccharomyces sp.)、红酵母属种(Rhodotorula sp.)。真菌腐败菌可以包括灰色葡萄孢(Botrytis cinerea)、青霉属种(Penicilliumi sp.)(诸如指状青霉(P.digitatum))、镰孢属种(Fusarium sp.)、皮委里氏球座菌(Guignardia bidwellii)、油菜核盘菌(Sclerotinia sclerotiorum)、黑色曲霉(Aspergillus niger)。腐败细菌可以是鼠伤寒沙门氏菌(Salmonella typhimurium)、大肠杆菌(Escherichia coli)、肉毒梭状芽孢杆菌(Clostridium botulinum)、金黄色葡萄球菌(Staphylococcus aureus)、单核细胞增生利斯特氏菌(Listeria monocytogenes)、欧文氏杆菌属种(Erwinia sp.)(诸如胡萝卜欧文氏杆菌(E.carotovora))、枯草芽孢杆菌(Bacillus subtili)、醋杆菌属(sAcetobacte)、产气肠杆菌(Enterobacter aerogenes)、微球菌属种(Micrococcus sp.)(诸如玫瑰色微球菌(M.roseus))、根霉属种(Rhizopus sp.)(诸如变黑色根霉(R.nigricans))、产碱杆菌属(Alcaligenes)、梭状芽孢杆菌(Clostridium)、普通变形菌(Proteus vulgaris)、荧光假单胞菌(Pseudomonas fluorescens)、乳芽孢杆菌(Lactobacillus)、明串珠菌(Leuconostoc)、黄杆菌属(Flavobacterium)。
本发明的方法可以被用于从表面减少或清除生物膜。生物膜可以由包括细菌、原始细菌、原生动物、真菌和藻类在内的大量微生物的生长产生。生物膜的细菌成份可以包括,例如,奇异变形菌(Proteus mirabilis)、铜绿假单胞菌(Pseudomonas aeruginosa)、变异链球菌(Streptococcus mutans)、血链球菌(Streptococcus sanguis)或军团菌属种(Legionella sp.)。
实施例
实施例1在橡木酒桶中清除酒石酸盐和减少酒香酵母属。
与本发明的方法和装置对比,对于被同样数量的酒石酸盐和酒香酵母属生物体污染的橡木桶板,常规超声波技术对于清除酒石酸盐和减少酒香酵母属是低效的。2英寸的橡木试样在2mm深度处被已知量/浓度的酒香酵母属微生物污染,并在40°下置于10升的水浴中。所述被污染的试样通过下表中示出的三种不同的方法超声波处理1分钟。接着将试样取出并进行培养皿培养。
表1:清除酒石酸盐和减少酒香酵母属
表1清晰地示出了将本发明的方法用于杀灭嵌入在容器的结构内的微生物的有效性的增强。这使得从容器中清除感染生物体的能力增强了,因此极大地降低了容器中自身再次生长生物体的可能性。
如现在本领域普通技术人员将清楚的是,上述发明可以被用于需要在表面上和表面下消毒的任意多孔材料或有机材料。所述方法可以用于例如能够承受所大体列举的条件的多孔材料,诸如水果或蔬菜。
实施例2清除生物膜
将本发明的装置用于处理700mm口径的管道。奇异变形菌(Proteus mirabilis)生物膜存在于该管道的内表面,以及该管道的生物膜中已知含有利斯特氏菌属种(Listeria sp.)成分。所述管道充满了水,本发明的装置被引入水中,使得装置运行时,高传播超声波能量传播穿过液体,并被应用至管道的内表面。
表2:生物膜清除
超声波频率 | 生物膜清除率% |
350kHz | 33% |
150kHz | 56% |
33kHz | 68% |
20kHz | 100% |
如表2所示,测试了波长为350kHz、150kHz、33kHz和20kHz的高传播超声波能量,且可以看出,20kHz的超声波能量100%地清除了生物膜。高传播超声波能量被应用至生物膜1分钟。
使用含有腐蚀剂的85°的热水,通常对于生物膜的减少小于90%,这使得生物膜会在清洗后重新定殖在管道表面。但是,使用含有腐蚀剂的85°热水(50ppm NaOH)和应用20kHz的高传播超声波能量相结合,实现了100%的生物膜生物体的清除。也就是说,在处理之后,没有变形菌属(Proteus)或利斯特氏菌属(Listeria)可以从管道的处理后的区域上被检测到。
实施例3橡木表面中的酒香酵母属减少
使用进行实验室感染的附接到桶板上的橡木块允许了在对照条件下进行试验,并使得相对于对照条件对处理进行比较。所述的木块从新的美国橡木桶板上截下,以及从预先经过高压热水清洗的未感染和无酒石酸盐的使用过的一年和三年的美国橡木桶上截下。所述的无菌木块通过悬挂在布鲁塞尔德克氏酵母(澳大利亚葡萄酒研究学院菌种1499(AWRI strain 1499))(酒香酵母属)的活性生长液体培养基中而被感染。
市售的标准静电喷雾头被用于将高压热水(HPHW)(1000psi/60℃)或中压热水(MPHW)(70psi/60℃)穿过桶的封塞孔输送。选择60℃的水温作为基准是因为这是酿酒工业中最经常使用的温度。高传播超声波能量装置被用于将高传播超声波能量应用至充满了60℃的反渗透水的桶中的受感染的橡木块表面。
“切片木块(Sliced block)”方法
开发了一种方法,用于进行以下研究:实现高传播超声波能量、HPHW和MPHW对存在于桶板表面及2mm深度处的酒香酵母属/德克氏酵母属(Brettanomyces/Dekkera)细胞的灭活功效。全新的美国橡木桶板(27mm厚,中温+烘烤)被截为约60mm长的木块,并在它们的中心钻出4mm的孔,以允许在HPHW和MPHW处理期间,将“切片木块”固定至桶。接着在与烘烤表面相同的平面上将每块木块锯开,以产生两块木块:包括烘烤表面的2mm厚的切片,以及25mm厚的切片。使用记号笔在每个2mm切片和其对应的25mm切片的靠近钻孔处作标记,这些木块一起被铝箔紧密包裹,并接着通过高压灭菌消毒。切片被留置过夜(其允许了任何在第一次高压灭菌中存活的孢子的萌发)之后,进行第二次高压灭菌。接着将无菌的2mm切片12个一组穿到进行过表面消毒(70%v/v乙醇浸蘸)的尼龙鱼线上,并浸没至酒香酵母属/布鲁塞尔德克氏酵母(Brettanomyces/Dekkera bruxellensis)生长旺盛的肉汤培养基中12天。
将消毒的不锈钢垫圈固定至2mm的每组切片以确保它们均匀地浸没在培养基中。从感染培养基中取出之后,在盛放消毒盐水的2×10L器皿中轻微振荡2mm切片,以清除“游离的(unbound)”细胞。接着使用单个消毒钉沿一侧的木质纹理将所述2mm切片与它们所对应的经过预先消毒的25mm切片重新组装。以30mm宽的消毒橡胶带包裹每个组装好的单元,以防止在处理中高传播超声波能量穿透以及从木块的切面侧进入的热水。最后,将一张进行过表面消毒的石蜡膜绕组装好的切片木块的侧面包裹,以保持所有部分的定位。每个组装好的切片木块被存储在500mL的消毒袋中待用。
以高传播超声波能量和HPHW对受感染的切片木块进行处理
对于高传播超声波能量处理,将每个组装好的切片木块无菌地转移至表面消毒后的钢支架,2mm的切片朝外,接着将其浸没在充满水的桶的桶腹深度。对于HPHW处理,在移除顶板后,组装好的切片木块以消毒不锈钢螺钉无菌固定至所述桶的桶腹区域。在移除所述顶板之后,以标准市售静电喷雾头应用HPHW。
在处理后,所有的组装好的切片木块被无菌地转移至独立的500mL消毒袋。所述切片木块在60℃下以高传播超声波能量处理5、8或12分钟,或以HPHW处理3、5或8分钟。在处理后,将所述2mm切片与其对应的25mm切片分离,并擦洗(Quich Swabs,3MTM)其前部(顶面)和后部(代表2mm深处的次表面)。擦洗面积(面积为3.46cm2)由切片表面上的两个消毒不锈钢垫圈(21mm ID)的随机位置限定。每次擦洗液(swab)在消毒盐水中的稀释液在添加上2mg/L的环己酰亚胺后,被放置在沃勒斯坦实验室营养琼脂(Wallerstein’s Laboratory Nutrinet Agar)中进行培养皿培养。
所有的擦洗液培养皿在25℃下培育12天,然后进行计数。2mm切片表面上的初始细胞数量在每平方厘米的橡木表面上产生了平均7000±4000的每毫升菌落形成单位(cfu)。此项研究发现,在所有时间点上进行的高传播超声波能量和HPHW处理后,表面上及2mm深度处的100%的细胞被灭活。
受感染的切片木块用HPHW和MPHW处理。
进行该项研究用于确定HPHW和MPHW对于存在于桶的不同部分的酒香酵母属/德克氏酵母属(Brettanomyces/Dekkera)细胞是否具有相同的影响。所述切片木块以消毒不锈钢螺钉被无菌地固定至桶的内侧的四个位置。一个切片木块被固定至顶板,以及另一个切片木块被固定至与封塞孔直接相对的板。在重置桶板后,借助标准市售的静电喷头应用HPHW或MPHW。以HPHW和MPHW对所述切片木块处理三、五和八分钟。在所述处理后,仅使用3M Quick Swabs擦洗2mm切片的表面(顶部)。2mm切片表面上的初始细胞数量在每平方厘米产生了平均2700±400的每毫升菌落形成单位(cfu)。
虽然在MPHW和HPHW的三分钟处理之后,灭活率百分比分别仅为11.5%和48.8%,但在顶板和与封塞孔直接相对的位置实现了细胞数量的最大减少。在经历更长的处理时间后,这些位置检测到更少的酒香酵母属/德克氏酵母属(Brettanomyces/Dekkera)活细胞。与高传播超声波能量(如上述)相比较,其中与封塞孔相对的切片木块的表面上和2mm深度处100%的酒香酵母属/德克氏酵母属细胞被HPHW处理灭活。然而,在本项研究中,在八分钟后,仅有99.8%被杀灭。位于顶板和位于与封塞孔相对位置的切片木块的HPHW和MPHW处理显示出显著不同的结果。在该中间位置的灭活百分比的范围是82%-100%和0-99%。HPHW和MPHW杀灭桶中的酒香酵母属/德克氏酵母属活细胞的能力,高度依赖于这些细胞所处的位置。桶顶和桶腹(与封塞孔相对)区域存在的活细胞显得最为脆弱,而存在于桶的其他区域的活细胞则具有更大的存活几率。
以高传播超声波能量和HPHW(1000psi/60℃)对受感染的一年和三年龄桶板进行处理
桶板片(10×5cm)从无酒石酸盐的一年和三年龄桶板(美国橡树,中温烘烤)上截取,通过高压灭菌消毒,并接着浸入包含0.01%(w/v)环己酰亚胺的YPD培养基(300mL)中。布鲁塞尔德克氏酵母(Dekkera bruxellensis)(5×107细胞/mL)被直接接种在这一培养基中,并在30℃下培育五天。接着将所述桶板片从培养基中取出,并立即用于相应的试验。在处理之后,所述样本被冷冻过夜(4℃)并在接下来的一天中处理。从每个处理后的对照桶板中取得三份核心样本,并且取出4mm深度处的2mm切片。
使用之前示出的不会影响细胞存活性(数据未示出)的方法在50ml的0.9%盐水中研磨(IKA All磨具,Crown Scientific)所述切片。所述悬浮液被离心分离,移除上层清液,并将颗粒物重新悬浮在0.9%的盐水(1mL)中。10μL的等分试样在YPD琼脂上进行培养皿培养,并被培育以确定细胞数量。在此项研究中,在一年龄的受感染桶板上,在装盛60℃水的法国大酒桶中暴露在高传播超声波能量在五、八、十二分钟之后,存在于受感染的桶板的表面(2mm切片)和次表面(4mm切片)的布鲁塞尔德克氏酵母活细胞的数量被确定,并与HPHW处理三、五和八分钟的效果相比。用于高传播超声波能量处理的受感染桶板片在桶腹区域被附接至桶板。细胞数量以2mm核心样本切片(约142mm3)的单位体积菌落形成单位表示。
使用高传播超声波能量和HPHW对受感染的一年和三年龄橡木桶板的表面切片(0-2mm)和次表面切片(2-4mm)的布鲁塞尔德克氏酵母活细胞(AWRI strain 1499)的减少和其对照样本的对比汇总在图8中。通过高传播超声波能量处理的表面切片中的初始细胞数量对于一年和三年龄桶板分别是5974和4512cfu/cm3。在60℃下,在任何时间均未检测到活细胞,显示了高传播超声波能量处理有效地灭活了一年和三年龄受感染木材中的所有活细胞。
一年和三年龄的受感染桶板的对照桶板的表面下2-4mm处检测到的细胞数量分别是18.5和84.0cfu/cm3,60℃的高传播超声波能量杀灭了所有的细胞。一年龄的受感染桶板的表面和次表面的切片被暴露至HPHW三、五和八分钟。所述对照桶板的表面和次表面分别包含8129和20cfu/cm3。
与60℃的高传播超声波能量试验中发生的情况不同,虽然在经历了全部处理时间后,在表面切片上发生了显著的细胞数量降低,但任何时间均未实现全部细胞的消灭。此外,并不存在活细胞数量随着HPHW暴露时间的增加而稳定降低的趋势。虽然在次表面(2-4mm深度)中实现了细胞数量的一些减少,但并未实现全部的消灭,这也与高传播超声波能量处理的情况不同。不过,所述数据确实显示了随着暴露至热水的时间增加,活细胞的数量是减少的。
讨论和结论
本项研究中阐释了高传播超声波能量处理在减少桶木材的表面和次表面的布鲁塞尔德克氏酵母细胞的数量的有效性。受感染的新的、一年和三年龄的桶板被用于与当前酿酒厂中应用的桶消毒技术作比较(高压和主压力下的热水冲洗)。在所研究的所有年限的桶板的表面上的活细胞显著地减少(>1000×减少量),其中完全灭活最成功地发生在60℃的高传播超声波能量暴露五分钟的情况下。虽然在对照桶板中次表面感染数量更加低,但这些样本的高传播超声波能量暴露同样显示了所有年限的木材上细胞数量的减少。高传播超声波能量和60℃温度结合处理五分钟,产生了大于1000倍的减少。这些研究同样清晰地确定了,目前最广泛采用的将高压或主压力热水喷射至桶的内部的清洗技术并不能完全灭活酒香酵母属/德克氏酵母属细胞。此外,活细胞在弧形酒桶内的位置确定了它们的生存几率,其中位于顶板和桶腹的弧形内的种群具有最大的存活和繁殖的几率。
实施例4:通过将高传播超声波能量应用至食物产品的表面,对食物产品进行协同清洗和消毒
包括菠菜、球芽甘蓝、橙、瓜、苹果和番茄的食物产品在处理前被取样,并且进行培养皿培养,以确定未处理样本上的已知总细菌数量,如表3所示。
在水中准备表3所示的浓度的消毒剂诸如过氧乙酸或氯。所述溶液接着被冷却至4℃。本实施例使用的消毒剂/水溶液的体积是2.0L。将500g的定量食物产品添加至水/消毒剂的冷却溶液,然后使用慢速机械搅拌器搅拌60秒。接着从食物产品的表面取样并进行培养皿培养。
将高传播超声波能量应用至悬浮在水/消毒剂溶液中的食物产品的表面,并重复该步骤。从插入水/消毒剂和食物产品的悬浮液的超声探头以60秒的时间段发射高传播超声波能量。使用的功率设定为400瓦特。
表3清晰地表示了当高传播超声波能量与化学消毒剂结合使用时的协同作用,其使食物产品表面的总细菌培养数量发生了更大的对数减少量。使用所有浓度和种类的消毒剂时,使用超声波/消毒剂时的总细菌水平的对数减少量大于单独使用消毒剂的情形。
表3:清洗消毒食物产品的结果
Claims (61)
1.一种通过将高传播超声波能量应用至一个表面从而清洗该表面的方法,该方法包括:
将该表面的至少一部分浸入流体中,其中所述流体与高传播超声波能量发射组件接触;以及
从所述组件向所述流体发射高传播超声波能量,在所述表面处产生空穴作用,从而清洗所述表面。
2.一种用于从一个表面清除污染物的方法,该方法包括:
将所述污染物的至少一部分浸入流体中,其中所述流体与高传播超声波能量发射组件接触;以及
从所述组件向所述流体发射高传播超声波能量,在所述表面处产生空穴作用,从而清除所述污染物。
3.根据权利要求2所述的方法,其中所述污染物是生物膜、结垢或酒石酸盐。
4.一种对一个表面进行消毒的方法,该方法包括:
将该表面的至少一部分浸入流体中,其中所述流体与超声波超声探头接触;以及
从所述超声探头向所述流体发射高传播超声波能量,在所述表面处产生空穴作用,从而对所述表面进行消毒。
5.一种使用高传播超声波能量对第一容器的表面进行超声波清洗的方法,该方法包括:
将流体布置为与该第一容器的所述表面的至少一部分接触,其中所述流体容纳在第二容器中,以及
将高传播超声波能量发射组件布置为与所述第二容器中的流体接触,或与所述第二容器的表面接触;
从所述组件发射高传播超声波能量,以及
应用所述能量以清洗所述第一容器的所述表面。
6.根据权利要求5所述的方法,其中还包括通过应用高传播超声波能量对所述第一容器的所述表面的所述部分进行消毒。
7.根据权利要求5或6所述的方法,其中还包括相对于所述第二容器旋转所述第一容器,以将所述流体布置为与所述第一容器的所述表面的另一部分接触。
8.根据权利要求5-7任一项所述的方法,其中还包括从所述第一容器清除渣滓。
9.一种用于清洗带有碎屑的表面的方法,该方法包括:
将所述表面引入流体;
将高传播超声波能量发射组件引入所述流体;
在旋转所述表面的同时从所述组件发射高传播超声波能量,以将所述表面的内部的表面层暴露在超声波能量中;以及
应用所述能量以从所述表面清除碎屑。
10.根据权利要求9所述的方法,其中所述表面存在于容器中。
11.根据权利要求10所述的方法,其中所述容器是桶。
12.根据权利要求11所述的方法,其中所述桶是木质酒桶。
13.根据权利要求9至13中任一项所述的方法,其中所述碎屑是生物膜、食物产品的残渣、酒渣、酒石酸盐、结垢或其任何结合。
14.根据权利要求9至14中任一项所述的方法,其中所述碎屑是腐败微生物。
15.根据权利要求5至14中任一项所述的方法,其中所述流体至少部分充满所述容器。
16.根据权利要求5至14中任一项所述的方法,其中所述发射组件穿过容器中的开口引入到所述流体中。
17.根据权利要求17所述的方法,其中所述开口是桶的敞开的头部。
18.根据前述任一权利要求所述的方法,其中所述发射组件在所述流体内产生空穴作用。
19.根据权利要求18所述的方法,其中所述空穴作用在所述流体中产生热量。
20.根据权利要求19所述的方法,其中所述流体可以包括化学消毒剂和/或清洗剂。
21.根据前述任一项权利要求所述的方法,其中所述方法还包括向所述流体施加脉冲电场的步骤。
22.根据前述任一项权利要求所述的方法,其中所述方法还包括机械刷洗所述表面的步骤。
23.根据权利要求19所述的方法,其中所述热量和所述空穴作用协同作用,以清洗、清除生物膜和/或对所述表面消毒。
24.根据前述任一项权利要求所述的方法,其中所述高传播超声波能量增强了进入生物膜、被污染材料/表面、固体表面、微生物或其任意结合的热传导式热传递的动力学。
25.根据权利要求24所述的方法,其中超声波能量将热传导式热传递的速率增加了约200%至约300%。
26.根据权利要求20所述的方法,其中所述空穴作用和所述消毒剂协同作用,以进行消毒、清洗生物膜和/或将生物膜从表面清除。
27.根据权利要求21所述的方法,其中所述空穴作用和所述脉冲电场协同作用,以进行消毒、清洗生物膜和/或将生物膜从表面清除。
28.根据权利要求22所述的方法,其中所述空穴作用和机械刮擦协同作用,以进行消毒、清洗生物膜和/或将生物膜从表面清除。
29.根据前述任一项权利要求所述的方法,其中所述方法还包括将超声波能量发射组件安置为与换能器通信。
30.根据权利要求29所述的方法,其中所述超声探头与所述换能器连接。
31.一种使用高传播超声波能量清洗一个表面的系统,所述系统包括:
用于将流体布置为与所述表面的至少一部分相接触的装置;
用于将高传播超声波能量发射组件布置为与所述流体接触的装置;以及其中在运行所述发射组件中,所述组件向所述流体发射高传播超声波能量,以在所述表面产生空穴作用,从而清洗所述表面。
32.根据权利要求31所述的系统,其中用于运行所述发射组件的装置包括用于运行超声波能量发射组件以在所述流体内产生超声波空穴作用并清洗所述表面的装置。
33.根据权利要求31或32所述的系统,其中所述高传播超声波能量发射组件的运行使得高传播超声波能量被发射进入所述流体,以在所述表面产生空穴作用,从而通过破坏存在于所述表面上的腐败微生物来对该表面进行消毒。
34.根据权利要求33所述的系统,其中所述腐败微生物从以下项组成的组中选择:酵母、霉菌、细菌、真菌。
35.根据权利要求34所述的系统,其中所述酵母是酒香酵母属中的一种。
36.根据权利要求31至35中任一项所述的系统,其中还包括用于旋转所述表面以将所述流体布置为与所述表面的另一部分相接触的装置。
37.根据权利要求31至36中任一项所述的系统,其中还包括用于清除渣滓的装置。
38.一种用于清洗第一容器的表面的高传播超声波能量装置,所述装置包括:
至少一个浸入式高传播超声波能量换能器组件,其安装至适于布置在第一容器内部的第二容器;
高传播超声波能量发生器,其与所述换能器组件通信。
39.根据权利要求38所述的装置,其中所述第二容器适于穿过所述第一容器的开口端布置在所述第一容器之内。
40.根据权利要求38或39所述的装置,其中所述第二容器是多面柱体。
41.根据权利要求40所述的装置,其中所述柱体可以是密封的。
42.根据权利要求38至41中任一项所述的装置,其中所述第二容器具有的体积等于所述第一容器的内容积的约5%至约95%。
43.根据权利要求42所述的装置,其中所述第二容器具有的体积等于所述第一容器的体积的约70%。
44.一种用于清洗第一容器的表面的高传播超声波能量装置,所述装置包括:
安装至第二容器的至少一个高传播超声波能量发射组件,其中所述第二容器适于容纳液体,并接收将在所述液体中清洗的所述表面的至少一部分,以及
高传播超声波能量发生器,其与所述能量发射组件通信。
45.根据权利要求44所述的装置,其中所述超声波能量发射组件被安装至所述第二容器的内部表面或外部表面。
46.根据权利要求44或45所述的装置,其中所述高传播超声波能量发射组件包括超声探头。
47.根据权利要求44至46中任一项所述的装置,其中所述超声探头径向发射高传播超声波能量。
48.根据权利要求44至47中任一项所述的装置,其中运行所述高传播超声波能量发射组件使得高传播超声波能量被发射入所述流体,以在所述表面产生空穴作用。
49.根据权利要求48所述的装置,其中所述空穴作用增加了进入所述表面的流体,因此使所述表面中能够发生进一步空穴作用。
50.根据权利要求44至49中任一项所述的装置,其中所述流体是气体或液体。
51.根据权利要求44至50中任一项所述的装置,其中所述装置还包括适于指示超声波能量的量的超声波能量传感器。
52.根据权利要求44至51中任一项所述的装置,其中所述超声波能量发射组件包括多种材料。
53.根据权利要求52所述的装置,其中所述多种材料包括钛和钛合金。
54.根据权利要求44至53中任一项所述的装置,其中所述装置还包括第三容器,该第三容器适于布置在所述第一容器中。
55.根据权利要求55所述的装置,其中所述第三容器适于被布置为穿过所述第一容器的开口端布置在所述第一容器中。
56.根据权利要求54或55所述的装置,其中所述第三容器是多面柱体。
57.根据权利要求56所述的装置,其中所述柱体是密封的。
58.根据权利要求54至57中任一项所述的装置,其中所述第三容器具有的体积等于所述第一容器的内容积的约5%至约95%。
59.根据权利要求58所述的装置,其中所述第三容器具有的体积等于所述第一容器的体积的约70%。
60.一种将权利要求31至37中任一项所述的系统用于清洗一个表面的用途。
61.一种将权利要求38至59中任一项所述的装置用于清洗一个表面的用途。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008902236 | 2008-05-08 | ||
AU2008902236A AU2008902236A0 (en) | 2008-05-08 | A method of ultrasonic cleaning | |
AU2008905501 | 2008-10-24 | ||
AU2008905501A AU2008905501A0 (en) | 2008-10-24 | Ultrasonic cleaning device | |
AU2008905502 | 2008-10-24 | ||
AU2008905502A AU2008905502A0 (en) | 2008-10-24 | Improved barrel cleaner bath | |
PCT/AU2009/000584 WO2009135273A1 (en) | 2008-05-08 | 2009-05-08 | Methods and apparatus for ultrasonic cleaning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102076435A true CN102076435A (zh) | 2011-05-25 |
CN102076435B CN102076435B (zh) | 2015-07-22 |
Family
ID=41264350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980125373.9A Expired - Fee Related CN102076435B (zh) | 2008-05-08 | 2009-05-08 | 用于超声波清洗的方法和装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8709338B2 (zh) |
EP (1) | EP2285504A4 (zh) |
JP (1) | JP2011522683A (zh) |
CN (1) | CN102076435B (zh) |
AU (1) | AU2009243936B2 (zh) |
BR (1) | BRPI0912529A2 (zh) |
NZ (1) | NZ589668A (zh) |
WO (1) | WO2009135273A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104560588A (zh) * | 2014-12-31 | 2015-04-29 | 江苏大学 | 一种基于超声波技术防止葡萄酒酒石结晶的方法 |
CN104790166A (zh) * | 2014-01-22 | 2015-07-22 | 三星电子株式会社 | 洗衣机和洗涤方法 |
CN106659206A (zh) * | 2014-04-14 | 2017-05-10 | 永洁科技有限公司 | 利用悬浮的纳米颗粒的超声清洁方法 |
CN107412797A (zh) * | 2017-06-02 | 2017-12-01 | 广东惠利普智能科技股份有限公司 | 一种用于茶台的消毒装置 |
CN107529913A (zh) * | 2015-02-24 | 2018-01-02 | 阿尔布雷克特控股有限责任公司 | 经翻新或注入的流体容器及相关方法 |
CN107529934A (zh) * | 2015-04-29 | 2018-01-02 | 雷克特本克斯尔(品牌)有限公司 | 家用餐具洗涤机和餐具洗涤方法 |
CN107570486A (zh) * | 2017-10-13 | 2018-01-12 | 德淮半导体有限公司 | 清洗箱及清洗箱内壁的清洗方法 |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8372461B2 (en) | 2009-10-23 | 2013-02-12 | Zeco, Inc. | Process for the reduction in microbial activity in protein product chilled water cooling tanks for increased tank water utility and conservation |
PL2516074T3 (pl) | 2009-12-22 | 2020-10-19 | Tech Sonic Limited Partnership | Urządzenie do czyszczenia elementów przemysłowych |
US8677892B2 (en) | 2010-03-23 | 2014-03-25 | University Of Miyazaki | Method and apparatus for controlling microorganisms in food materials by vacuum and resonant ultrasonication |
EP2611741A4 (en) * | 2010-09-02 | 2016-10-05 | Fujifilm Planar Solutions Llc | CLEANING PROCESS AND SYSTEM |
WO2013106071A1 (en) * | 2011-06-17 | 2013-07-18 | Bryan Richard Tudhope | Treatment of wooden equipment used in the food and beverage processing industry |
GEP20146018B (en) * | 2012-03-27 | 2014-01-27 | Aleksadre Kvernadze | Method of cleaning qvevri (georgian wine-jar) |
CA2890149A1 (en) * | 2012-11-20 | 2014-05-30 | Devis Technologies Inc. | Sterilization method comprising sterilization fluid and ultrasonically generated cavitation microbubbles |
US10688536B2 (en) | 2014-02-24 | 2020-06-23 | The Boeing Company | System and method for surface cleaning |
WO2016016873A1 (en) * | 2014-08-01 | 2016-02-04 | Indian Products Limited | A method for removing contaminants from agricultural products and an apparatus thereof |
US9414609B1 (en) | 2014-11-19 | 2016-08-16 | Zeco, Inc. | Method for reduction in microbial activity in poultry processing |
DE102015101299A1 (de) * | 2015-01-29 | 2016-08-04 | Vorwerk & Co. Interholding Gmbh | Elektrisches Küchengerät |
US10076123B1 (en) | 2015-02-19 | 2018-09-18 | Zeco, Inc. | Method for reduction in microbial activity in red meat |
US9750265B1 (en) | 2015-07-30 | 2017-09-05 | Zee Company, Inc. | Carcass finish cabinet with spray arbors and methods thereof |
US11433435B2 (en) | 2015-10-19 | 2022-09-06 | The Trustees Of The University Of Pennsylvania | Apparatus and methods for improving catheter function |
US11350640B1 (en) | 2016-08-12 | 2022-06-07 | Zee Company I, Llc | Methods and related apparatus for increasing antimicrobial efficacy in a poultry chiller tank |
US10974211B1 (en) | 2016-02-17 | 2021-04-13 | Zee Company, Inc. | Peracetic acid concentration and monitoring and concentration-based dosing system |
US12064732B2 (en) | 2016-02-17 | 2024-08-20 | Zeco, Llc | Methods and related apparatus for providing a processing solution for a food processing application |
ITUA20163690A1 (it) * | 2016-05-23 | 2017-11-23 | I M A Industria Macch Automatiche S P A In Sigla Ima S P A | Apparato di dosaggio per prodotti in polvere. |
RU175916U1 (ru) * | 2017-02-27 | 2017-12-22 | Артем Анатольевич Миронов | Устройство очистки и предупреждения образования отложений |
DE102017104238A1 (de) | 2017-03-01 | 2018-09-06 | Ika-Werke Gmbh & Co. Kg | Reinigungsvorrichtung |
CN107803150A (zh) * | 2017-10-09 | 2018-03-16 | 宁波欧琳厨具有限公司 | 一种搅拌设备以及具有该设备的水槽 |
WO2019099345A1 (en) * | 2017-11-16 | 2019-05-23 | Sf Investments, Inc. | Ultrasonic cleaning method and system |
KR101913606B1 (ko) * | 2017-12-05 | 2018-10-31 | 한양대학교 산학협력단 | 살균 방법 |
JP6588185B1 (ja) * | 2018-05-28 | 2019-10-09 | 長瀬フィルター株式会社 | フィルター洗浄方法およびフィルター洗浄装置 |
US11350653B2 (en) | 2019-04-09 | 2022-06-07 | Zee Company I, Llc | Spray cabinet for poultry processing and methods thereof |
CN111299244B (zh) * | 2020-03-26 | 2024-10-18 | 四川中自科技有限公司 | 一种多相混流清洗装置及其清洗工艺 |
CN112642796B (zh) * | 2020-12-01 | 2022-12-06 | 中建三局绿色产业投资有限公司 | 一种具有废水处理的超声波清洗机 |
CN113475957B (zh) * | 2021-07-08 | 2022-08-16 | 新疆农业科学院农业机械化研究所 | 一种电磁果蔬清洗机及使用方法 |
DE102021121611B3 (de) * | 2021-08-20 | 2022-12-22 | HASYTEC D&P GmbH | Verfahren zum Freihalten einer für anorganische oder organische Ablagerungen anfälligen Oberfläche |
KR102474255B1 (ko) * | 2022-04-19 | 2022-12-02 | 이상윤 | 세척대상물에 대한 세척이 용이한 이동식 청소 장치 |
CN116571504B (zh) * | 2023-07-11 | 2023-10-20 | 太原理工大学 | 一种原材料处理的超声空化自反馈调控系统和方法 |
CN117859926B (zh) * | 2024-03-12 | 2024-05-28 | 福州众拓光电有限公司 | 果蔬清洗除杂装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4710233A (en) * | 1984-08-20 | 1987-12-01 | Siemens Aktiengesellschaft | Method and apparatus for cleaning, disinfecting and sterilizing medical instruments |
JPH11179305A (ja) * | 1997-12-18 | 1999-07-06 | Sony Corp | 超音波洗浄方法 |
US5994818A (en) * | 1995-10-20 | 1999-11-30 | Tech Sonic Gesellschaft Fur Ultraschall-Technologie M.B.H. | Device for transferring ultrasonic energy into a liquid or pasty medium |
US6178974B1 (en) * | 1997-07-22 | 2001-01-30 | Tdk Corporation | Cleaning apparatus and method |
US20060191424A1 (en) * | 2005-02-08 | 2006-08-31 | Mcloughlin Arthur R | Apparatus and method of ultrasonic cleaning and disinfection |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4236510A (en) * | 1979-02-21 | 1980-12-02 | Hatter Edward E | Ultrasonic tooth cleaning apparatus |
DE3027533C2 (de) * | 1980-07-21 | 1986-05-15 | Telsonic Aktiengesellschaft für elektronische Entwicklung und Fabrikation, Bronschhofen | Verfahren zur Erzeugung und Abstrahlung von Ultraschallenergie in Flüssigkeiten sowie Ultraschallresonator zur Ausführung des Verfahrens |
DE3340509A1 (de) * | 1983-09-07 | 1985-03-21 | Heinz 65719 Hofheim Till | Verfahren und vorrichtung zum reinigen eines fasses |
EP0291202A1 (en) * | 1987-05-01 | 1988-11-17 | Mcg Techno Pack Limited | Cleaning apparatus |
IL90740A0 (en) * | 1989-06-25 | 1990-01-18 | Erel D | Utensil for cleaning and disinfecting fruit and vegetables |
DK89192A (da) * | 1992-07-07 | 1994-01-08 | Reson System As | Integreret afrensningssystem for især samtidig roterende og bearbejdende trommelvolumer |
DE4439142C2 (de) * | 1994-11-03 | 2002-02-21 | Messer Griesheim Gmbh | Verfahren zur Innenreinigung von Gasflaschen |
DE19602917C2 (de) | 1996-01-20 | 1998-10-08 | Hielscher Gmbh | Verfahren und Vorrichtung zum Reinigen von fadenförmigen Erzeugnissen, insbesondere von Draht |
DE19706007C1 (de) | 1997-02-10 | 1998-07-09 | Hielscher Gmbh | Verfahren zum Reinigen von fadenförmigen Erzeugnissen, insbesondere von Drähten und Profilen |
DE19724189C2 (de) | 1997-06-02 | 2001-07-05 | Bandelin Electronic Gmbh & Co | Rohrförmige elektroakustische Vorrichtung zur Erzeugung von Ultraschallenergie |
US6799729B1 (en) | 1998-09-11 | 2004-10-05 | Misonix Incorporated | Ultrasonic cleaning and atomizing probe |
US20040158150A1 (en) * | 1999-10-05 | 2004-08-12 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device for tissue remodeling |
JP2002263593A (ja) * | 2001-03-13 | 2002-09-17 | Ngk Insulators Ltd | 超音波洗浄方法 |
DE10153701C1 (de) * | 2001-10-31 | 2003-05-15 | Hielscher Systems Gmbh | Anordnung zum Reinigen von Erzeugnissen mit im wesentlichen kreisförmigem Querschnitt wie Drähte, Profile, Rohre |
US6585826B2 (en) * | 2001-11-02 | 2003-07-01 | Taiwan Semiconductor Manufacturing Co., Ltd | Semiconductor wafer cleaning method to remove residual contamination including metal nitride particles |
DE10319569A1 (de) * | 2002-05-02 | 2004-11-18 | Simmoteit, Robert, Dr. | Transportabler Einsatz und Verfahren |
AU2003903659A0 (en) * | 2003-07-16 | 2003-07-31 | Soniclean Pty Ltd | An apparatus and method of ultrasonic cleaning |
-
2009
- 2009-05-08 WO PCT/AU2009/000584 patent/WO2009135273A1/en active Application Filing
- 2009-05-08 NZ NZ589668A patent/NZ589668A/en not_active IP Right Cessation
- 2009-05-08 EP EP20090741602 patent/EP2285504A4/en not_active Withdrawn
- 2009-05-08 CN CN200980125373.9A patent/CN102076435B/zh not_active Expired - Fee Related
- 2009-05-08 JP JP2011507761A patent/JP2011522683A/ja active Pending
- 2009-05-08 AU AU2009243936A patent/AU2009243936B2/en not_active Ceased
- 2009-05-08 BR BRPI0912529A patent/BRPI0912529A2/pt not_active Application Discontinuation
- 2009-05-08 US US12/991,250 patent/US8709338B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4710233A (en) * | 1984-08-20 | 1987-12-01 | Siemens Aktiengesellschaft | Method and apparatus for cleaning, disinfecting and sterilizing medical instruments |
US5994818A (en) * | 1995-10-20 | 1999-11-30 | Tech Sonic Gesellschaft Fur Ultraschall-Technologie M.B.H. | Device for transferring ultrasonic energy into a liquid or pasty medium |
US6178974B1 (en) * | 1997-07-22 | 2001-01-30 | Tdk Corporation | Cleaning apparatus and method |
JPH11179305A (ja) * | 1997-12-18 | 1999-07-06 | Sony Corp | 超音波洗浄方法 |
US20060191424A1 (en) * | 2005-02-08 | 2006-08-31 | Mcloughlin Arthur R | Apparatus and method of ultrasonic cleaning and disinfection |
Non-Patent Citations (1)
Title |
---|
VLADIMIR JIRANEK等: "High power ultrasonics as a novel tool offering new opportunities for managing wine microbiology", 《BIOTECHNOLOGY LETTERS》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104790166A (zh) * | 2014-01-22 | 2015-07-22 | 三星电子株式会社 | 洗衣机和洗涤方法 |
US10480111B2 (en) | 2014-01-22 | 2019-11-19 | Samsung Electronics Co., Ltd. | Washing machine |
CN106659206A (zh) * | 2014-04-14 | 2017-05-10 | 永洁科技有限公司 | 利用悬浮的纳米颗粒的超声清洁方法 |
US10881116B2 (en) | 2014-04-14 | 2021-01-05 | Ever Clean And Clear Technologies Ltd | Ultrasound cleaning method with suspended nanoparticles |
CN106659206B (zh) * | 2014-04-14 | 2021-11-26 | 永洁科技有限公司 | 利用悬浮的纳米颗粒的超声清洁方法 |
CN104560588A (zh) * | 2014-12-31 | 2015-04-29 | 江苏大学 | 一种基于超声波技术防止葡萄酒酒石结晶的方法 |
CN104560588B (zh) * | 2014-12-31 | 2017-01-04 | 江苏大学 | 一种基于超声波技术防止葡萄酒酒石结晶的方法 |
CN107529913A (zh) * | 2015-02-24 | 2018-01-02 | 阿尔布雷克特控股有限责任公司 | 经翻新或注入的流体容器及相关方法 |
CN107529913B (zh) * | 2015-02-24 | 2020-07-21 | 阿尔布雷克特控股有限责任公司 | 经翻新或注入的流体容器及相关方法 |
CN107529934A (zh) * | 2015-04-29 | 2018-01-02 | 雷克特本克斯尔(品牌)有限公司 | 家用餐具洗涤机和餐具洗涤方法 |
CN107412797A (zh) * | 2017-06-02 | 2017-12-01 | 广东惠利普智能科技股份有限公司 | 一种用于茶台的消毒装置 |
CN107570486A (zh) * | 2017-10-13 | 2018-01-12 | 德淮半导体有限公司 | 清洗箱及清洗箱内壁的清洗方法 |
Also Published As
Publication number | Publication date |
---|---|
BRPI0912529A2 (pt) | 2019-07-09 |
AU2009243936B2 (en) | 2012-07-05 |
US8709338B2 (en) | 2014-04-29 |
EP2285504A1 (en) | 2011-02-23 |
EP2285504A4 (en) | 2013-07-31 |
WO2009135273A1 (en) | 2009-11-12 |
CN102076435B (zh) | 2015-07-22 |
JP2011522683A (ja) | 2011-08-04 |
AU2009243936A1 (en) | 2009-11-12 |
NZ589668A (en) | 2012-07-27 |
US20110135534A1 (en) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102076435B (zh) | 用于超声波清洗的方法和装置 | |
Mendoza et al. | Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables | |
AU2021218006B2 (en) | Methods for forming peroxyformic acid and uses thereof | |
Bilek et al. | Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review | |
Sun et al. | Recent trends and applications of electrolyzed oxidizing water in fresh foodstuff preservation and safety control | |
Barth et al. | Microbiological spoilage of fruits and vegetables | |
Gérard et al. | Inactivation of parasite transmission stages: Efficacy of treatments on foods of non-animal origin | |
de São José et al. | Removal of Salmonella enterica Enteritidis and Escherichia coli from green peppers and melons by ultrasound and organic acids | |
Yuting et al. | Power ultrasound for the preservation of postharvest fruits and vegetables | |
Saranraj et al. | Microbial spoilage of vegetables and its control measures: a review | |
KR20110033981A (ko) | 과산 및 2-히드록시 유기 산 조성물 및 농산물을 처리하는 방법 | |
CN101390532A (zh) | 一种速冻竹笋的生产方法 | |
Cheng et al. | Electrolyzed oxidizing water for microbial decontamination of food | |
Pao et al. | Produce washers | |
Yu et al. | Multimode ultrasonic-assisted decontamination of fruits and vegetables: A review | |
KR101085458B1 (ko) | 염소계 살균소독제를 이용한 과채류의 복합살균소독방법 | |
Erickson et al. | Role of brushes and peelers in removal of Escherichia coli O157: H7 and Salmonella from produce in domestic kitchens | |
Wang et al. | Electrolyzed oxidizing water for food and equipment decontamination | |
WO2018096764A1 (ja) | 農産物洗浄システム、及び農産物洗浄方法 | |
Dallagi et al. | Novel cleaning methods | |
Xu YuTing et al. | Power ultrasound for the preservation of postharvest fruits and vegetables. | |
de São José et al. | Ultrasound and organic acids in removal of Salmonella enterica Enteritidis and Escherichia coli from pears surfaces | |
Fernandes et al. | Ultrasound applications in minimal processing | |
Buchanan | Microbiological Safety of Fresh and Fresh-Cut Melons: A Bibliography | |
Troy | Sanitation Control in the Food Processing Industry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150722 Termination date: 20160508 |
|
CF01 | Termination of patent right due to non-payment of annual fee |