CN102066617B - 涂层切削工具和其制造方法 - Google Patents

涂层切削工具和其制造方法 Download PDF

Info

Publication number
CN102066617B
CN102066617B CN200980122939.2A CN200980122939A CN102066617B CN 102066617 B CN102066617 B CN 102066617B CN 200980122939 A CN200980122939 A CN 200980122939A CN 102066617 B CN102066617 B CN 102066617B
Authority
CN
China
Prior art keywords
layer
cutting tool
atomic ratio
trimethyl silane
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980122939.2A
Other languages
English (en)
Other versions
CN102066617A (zh
Inventor
马茨·阿尔格伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik Intellectual Property AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/SE2008/050442 external-priority patent/WO2008130316A1/en
Application filed by Sandvik Intellectual Property AB filed Critical Sandvik Intellectual Property AB
Publication of CN102066617A publication Critical patent/CN102066617A/zh
Application granted granted Critical
Publication of CN102066617B publication Critical patent/CN102066617B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5068Titanium nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1904Composite body of diverse material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/78Tool of specific diverse material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种具有改善耐磨性的用于金属加工的切削工具,其包括硬质合金、金属陶瓷、陶瓷或超硬材料的切削工具基材(a)和耐磨涂层。所述耐磨涂层包括具有组成梯度的PVD Ti-Si-C-N层(b)。本发明还涉及利用一个或更多个Ti靶和包括三甲基硅烷气体流的反应性气体气氛,通过使用电弧蒸镀制造所述切削工具的方法。所述三甲基硅烷气体流在沉积方法期间以连续或逐渐变化的方式改变。

Description

涂层切削工具和其制造方法
技术领域
本发明涉及一种具有耐磨涂层的涂层切削工具,所述耐磨涂层包括通过物理气相沉积而沉积的四元合金Ti-Si-C-N。
背景技术
现代金属的高产量切屑形成加工要求具有高耐磨性、良好的韧性和优异的耐塑性变形的可靠工具。迄今为止通过将合适的涂层施加至工具基材表面实现这一点。结果,可以明显更高切削速度和进料速度使用所述工具。所述涂层优选是坚硬、耐磨和高温稳定的。所述工具基材通常为用于夹在刀架中的刀片的形状,但也可以是整体钻头或铣刀的形式。
通常使切削工具最优化,以用于由对所述工具的特殊要求而限定的特定应用领域,例如高耐月牙洼磨损性能、高耐后刀面磨损性能等。然而,希望通过改善一种或若干种性质,而不损失其它性质,扩大应用范围。
物理气相沉积(PVD)是已知的用于稳定化合物的薄膜生长的技术。金属切削工业中,包括例如TiN、Ti(C,N)和(Ti,Al)N层的PVD涂层是最常见的。在含氮或碳的反应性气体中通过电弧或离子轰击实现金属从靶的蒸发。通常靶的金属组成与最终的层相同。
Ma等人(Thin Solid Films 496(2006),第438-444页)和(Surface &Coatings Technology 200(2005),第382-386页)公开了使用等离子增强化学气相沉积,从TiCl4/SiCl4/H2/N2/CH2/Ar混合物将Ti-Si-C-N涂层沉积到高速钢基材上,其中特别评价了所述沉积涂层的硬度性能。
Jeon等人(Surface and Coatings Technology 188-189(2004),第415-419页)公开了在Ar/N2/CH4气态混合物中使用Ti和Si靶,结合电弧离子镀(AlP)和DC磁控溅射技术,通过混合系统在WC-Co基材上沉积Ti-Si-C-N涂层。
H.Xu等人(Surface & Coatings Technology 201,2006,第4236-4241页)公开了在等离子增强磁控溅射工艺中使用三甲基硅烷,将厚Ti-Si-C-N涂层沉积到不锈钢基材上。制造17μm厚的Ti-Si-C-N涂层并进行销盘磨损试验,以评估具有铝和氧化铝对应物的摩擦性能。
发明内容
本发明目的是提供一种用于切屑形成加工的PVD涂层切削工具,其具有改善的耐月牙洼磨损性能,而不损失耐后刀面磨损性能。
本发明
本发明提供了一种用于金属加工的切削工具,其包括硬质合金、金属陶瓷、陶瓷或超硬材料例如立方氮化硼或金刚石的切削工具基材,以及耐磨涂层,其中所述耐磨涂层包括具有组成梯度的PVD Ti-Si-C-N层。
本发明还提供了一种用于金属加工的切削工具的制造方法,其中所述方法包括利用一个或更多个Ti靶和包括三甲基硅烷气体流的反应性气体气氛,使用电弧蒸镀将具有组成梯度的PVD Ti-Si-C-N层沉积到硬质合金、金属陶瓷、陶瓷或超硬材料的切削工具基材上,以及在沉积期间以连续或逐渐变化的方式改变所述三甲基硅烷气体流。
所述PVD Ti-Si-C-N层的厚度适当地在通常用于金属切削工具PVD功能层的范围内,即1至10μm,优选2至7μm,最优选2至5μm。
所述涂层可以包括其它的层,例如在所述基材和所述PVDTi-Si-C-N层之间的薄粘合层,例如TiN。
所述涂层还可以包括用于磨损检测或着色目的的最外层,例如TiN。
适当的沉积涂层总厚度小于11μm,优选小于8μm,以避免剥落。
当相对于Ti观察Si时,Ti-Si-C-N层的平均组成,即在所述Ti-Si-C-N层总厚度上测量的平均Si/(Si+Ti)原子比适当地为0.03至0.20,优选0.045至0.18,更优选0.05至0.15,最优选0.06至0.14。已经发现降低比例会导致耐后刀面磨损性能的损失,而更高的比例可能导致过于易碎的层,以致耐月牙洼磨损性能的损失。然而所述层可以局部地具有>=0,优选>0,但是优选小于0.25的Si/(Si+Ti)原子比,以避免形成非致密的层。
关于C相对于N的平均组成,即在所述层总厚度上测量的平均C/(C+N)原子比,适当地为0.05至0.20,优选0.10至0.20,更优选为0.10至0.18。已经发现低于这些值可能会降低硬度,产生不能接受的耐后刀面磨损性能。另一方面,过高的C含量可能导致残留的压缩应力水平过高和切削性能较差。然而所述层局部的C/(C+N)原子比可以>=0,优选>0,但是优选小于0.23,以避免形成游离的C。
还优选在(220)-方向上测量的Ti-Si-C-N层的残余应力为-3.0GPa(压缩应力)至最高达+0.5GPa(拉伸应力),优选最高达-1.0GPa(压缩应力)。
所描述的Ti-Si-C-N涂层的硬度范围为20至40GPa。然而已经发现,通过研究涂层硬度而预测在金属加工中的性能是不可能的。结果显示涂层硬度的增加并不会自动导致耐磨性的增加。
在本发明一个具体实施方式中,所述PVD Ti-Si-C-N层具有0.05至0.15的平均Si/(Si+Ti)原子比,在(220)-方向上测得的残余应力为-3.0GPa(压缩应力)至最高达+0.5GPa(拉伸应力),优选-1.0GPa(压缩应力)。
在本发明一个具体实施方式中,所述组成梯度为连续的,在从所述层的内部朝向所述层的外部方向上的Si/(Si+Ti)原子比增加。适当的Si/(Si+Ti)原子比增加至少为0.01/μm,优选至少0.015/μm。
在本发明一个具体实施方式中,所述组成梯度为连续的,从层内部朝向层外部方向上的Si/(Si+Ti)原子比降低。适当的Si/(Si+Ti)原子比降低至少为0.01/μm,优选至少0.015/μm。
本发明一个具体实施方式中,组成梯度是逐渐变化的,其中层中Si/(Si+Ti)原子比逐渐增加或降低,从而具有Ti-Si-C-N层的平均组成的连续变化。每个变化步长中Si/(Si+Ti)原子比的适当的增量变化在>0至最高达0.02范围内,优选>0至最高达0.01。
本发明一个具体实施方式中,组成梯度为逐渐变化的,其中Ti-Si-C-N层包括至少两个具有不同Si/(Si+Ti)原子比的交替亚层。通过连续增加或降低至少一个所述交替亚层的Si/(Si+Ti)原子比而获得所述梯度。所述交替亚层的适当厚度为1至100nm。
本发明一个具体实施方式中,组成梯度为逐渐变化的,其中Ti-Si-C-N层包括具有不同Si/(Si+Ti)原子比的至少两个交替亚层。通过连续增加或降低至少一个所述交替亚层的厚度获得所述梯度。所述交替亚层的适当厚度为1至100nm。
本发明一个具体实施方式中,组成梯度为逐渐变化的,其中Ti-Si-C-N层包括具有不同Si/(Si+Ti)原子比的两个交替亚层c和d。通过连续增加Si/(Si+Ti)原子比或亚层c或d的厚度,或降低Si/(Si+Ti)原子比或亚层c或d的厚度,获得所述梯度。适当的所述亚层c和d的平均Si/(Si+Ti)原子比分别为>0至0.07,和>0.07至0.20。
在优选的具体实施方式中,所述基材是硬质合金的,即具有WC作为主要硬相成分和Co基粘结相的复合材料。
根据本发明,适当的金属切削工具为铣削、车削、钻床或车削螺纹刀片,用于夹在刀架中,但是还可以为整体钻头、铣刀或螺纹丝锥的形式。
制造本发明切削工具的方法包括在有能力将硅含量的引入控制在连续级别上和有能力将所述Ti-Si-C-N层的残余应力控制在连续级别上的情况下,通过PVD电弧蒸镀技术,将PVD Ti-Si-C-N层沉积到硬质合金、金属陶瓷、陶瓷或超硬材料例如立方氮化硼或金刚石的基材上,所述基材优选硬质合金。
电弧蒸镀过程中,为了沉积Ti-Si-C-N层,使用一个或更多个Ti靶,并同时在由质量流量控制器控制的流量下将三甲基硅烷气体(CH3)3SiH加入到反应气体气氛中。该方法所对应的一个重要特征是能够连续控制沉积涂层的材料组成,具体为控制所述Si的浓度,并且还利用了提到的电弧蒸镀方法的益处,并通过在沉积过程中连续或逐渐地改变三甲基硅烷气体的流量而产生组成梯度。
附图说明
图1表示用于制造本发明涂层切削工具的电弧蒸镀设备的示例性靶构造示意图,其中A)钛靶;B)衬底架;C)真空系统,进气口。
图2表示通过本发明示例性涂层切削工具所作的剖面示意图,表示:基材a,所述a涂覆有Ti-Si-C-N层b,所述b包括两个交替亚层c和d,所述c和d具有不同的Si/(Si+Ti)原子比。
图3表示通过本发明示例性涂层切削工具所作的剖面示意图,表示:基材a,所述a涂覆有Ti-Si-C-N层b,所述b包括两个交替亚层c和d,所述c和d具有不同的Si/(Si+Ti)原子比,其中亚层c在从Ti-Si-C-N层内部朝向所述层外部的方向上具有连续增加的Si/(Si+Ti)原子比(c′,c″)。
优选加入的三甲基硅烷气体是沉积过程中Si的惟一来源。
在400至600℃之间的基材温度下,适当地进行沉积过程。沉积之前的底压优选<50μPa,Ar溅射气流适当为0至500sccm。通过共同的入口或通过单独的入口加入反应性气体例如N2和三甲基硅烷。N2流适当地为500至1000sccm。
通过改变沉积期间三甲基硅烷的气体流量,可控制得到的涂层关于Si和C含量的组成。所述方法允许三甲基硅烷的流量为零,即产生其中局部的Si和C含量为零的层。三甲基硅烷流量的上限适当地为N2流量的约25%(sccm)。
所述基材由对沉积室壁的电位差连接,该电位称为基材偏压。所述基材偏压适当地为-50至-150V。可以通过改变基材偏压而控制得到的涂层的残余应力;通过增加基材偏压,增加残余压缩应力。令人惊讶地发现,还可以通过改变Si含量,控制得到的涂层的残余应力;通过降低Si含量而增加残余压缩应力。通过使用本发明方法,从而可获得相对高的Si含量,同时保持残余压缩应力在中等水平上,即避免在所述压力下出现涂层自发剥落的过度残余压缩应力。与使用TiSi靶作为惟一Si源的现有技术体系相比,这是有利的,在使用TiSi靶的情况下,为了获得致密层要求增大的基材偏压,导致残余压缩应力水平增加,使得自发剥落变为问题。
本发明一个具体实施方式中,所述Ti-Si-C-N层中的组成梯度是连续的,Si/(Si+Ti)原子比在从层内部朝向层外部的方向上连续增加,这通过在沉积期间连续增大三甲基硅烷的流量而获得。通过在所述层每沉积μm的情况下增大三甲基硅烷的流量为N2流量(在恒定N2流量下)的至少1%(sccm),优选1.5%(sccm),获得适当的Si/(Si+Ti)原子比增加为至少0.01/μm,优选至少0.015/μm。
本发明一个具体实施方式中,Ti-Si-C-N层中的组成梯度是连续的,Si/(Si+Ti)原子比在从层内部朝向层外部的方向上降低,这通过在沉积期间连续降低三甲基硅烷的流量而获得。适当的Si/(Si+Ti)原子比降低为至少0.01/μm,优选至少0.015/μm,这通过在所述层每沉积μm的情况下降低三甲基硅烷的流量为N2流量(在恒定N2流量下)的至少0.5%(sccm),优选1.5%(sccm)而获得。
本发明一个具体实施方式中,Ti-Si-C-N层中的组成梯度是逐渐变化的,其中沉积期间逐渐地增加或降低三甲基硅烷的流量,产生Ti-Si-C-N层平均组成的连续变化。每个变化步长中适当的三甲基硅烷流量的增量变化为N2流量的>0至2%(sccm),优选0.5至1.5%(sccm)。
本发明一个具体实施方式中,组成梯度为逐渐变化的,其中Ti-Si-C-N层包括一系列具有不同Si/(Si+Ti)原子比的至少两个亚层。通过逐渐地分别增加或降低三甲基硅烷的流量,在从Ti-Si-C-N层内部朝向所述层外部的方向上增加或降低至少一个亚层的Si/(Si+Ti)原子比,获得所述梯度。所述亚层的适当厚度为1至100nm。
本发明一个具体实施方式中,组成梯度为逐渐变化的,其中Ti-Si-C-N层包括具有不同Si/(Si+Ti)原子比的至少两个交替亚层。通过逐渐地分别增加或降低三甲基硅烷的流量,连续地增加或降低至少一个所述交替亚层的Si/(Si+Ti)原子比,而获得所述梯度。所述交替亚层的适当厚度为1至100nm。图3表示根据该具体实施方式的示例性切削工具。
本发明一个具体实施方式中,组成梯度为逐渐变化的,其中Ti-Si-C-N层包括具有不同Si/(Si+Ti)原子比的至少两个交替亚层。通过连续地分别增加或降低所述至少一个亚层的沉积时间,连续地增加或降低至少一个所述交替亚层的厚度,获得所述梯度。所述交替亚层的适当厚度为1至100nm。图2表示根据该具体实施方式的示例性切削工具。
本发明一个具体实施方式中,组成梯度为逐渐变化的,其中Ti-Si-C-N层包括具有不同Si/(Si+Ti)原子比的至少两个交替亚层c和d。通过连续增加Si/(Si+Ti)原子比或亚层c或d的厚度,或降低Si/(Si+Ti)原子比或亚层c或d的厚度,获得所述梯度。所述亚层c的适当的平均Si/(Si+Ti)原子比为>0至0.07,通过使用为N2流量的>0直至10%(sccm)的三甲基硅烷流而获得,所述亚层d的适当的平均Si/(Si+Ti)原子比为>0.07至0.20,通过使用为N2流量的>10%至最高达20%(sccm)的三甲基硅烷流而获得。
具体实施方式
实施例1
样品1-5(对比)
如下清洁用于车削的ISO-型CNMG120408硬质合金刀片,并经PVD涂层工艺处理,其中所述刀片由10wt%Co、0.39wt%Cr和余量的WC构成,硬度为1600HV3。将所述刀片装入反应性电弧蒸镀型PVD设备室中,所述室中包括成两对设置的四个金属蒸镀源。为了对其进行均匀涂覆,进一步使所述刀片进行三重轴旋转。所述蒸镀源具有全部Ti靶。抽空所述室,随后进行加热和等离子蚀刻,以进一步清洁所述工具,并通过从所述刀片表面除去过量粘结剂相而调节它们的表面。通过在金属蒸镀的同时保持涂布机中的氮分压,在450℃的温度下沉积薄TiN粘合层。接下来通过在混合的氩气、氮气和三甲基硅烷气氛中的四个Ti靶的电弧蒸镀而沉积耐磨Ti-Si-C-N层。将氩气引入所述工艺中,以避免对所述Ti靶的毒害。发现约100-400sccm的氩气流是有利的,尽管氩气流为零时的工艺运行也是令人满意的。选择所述基材偏压水平以获得具有低压缩应力的致密涂层。所述耐磨层的沉积温度是450℃。详细情况列于表1。
表1.样品1-5(对比)
Figure BPA00001278027200091
表2中给出了不同涂层的分析结果。
用电子探针显微分析(EPMA)测定所述Si/(Si+Ti)和C/(C+N)比例。通过EPMA,使用配备有波长色散谱仪的JEOL JXA-8900R,以10kV加速电压和10nA探测电流测定平均化学组成。通过分析得到Ti、Si和C含量,同时通过测得的Ti、Si和C含量之和与100%之间的差值估算N含量。在从切削刃2mm内的刀片侧隙进行所述测量。
使用X射线衍射技术,更具体地,使用sin2ψ方法(I.C.Noyan,J.B.Cohen,Residual Stress Measurement by Diffraction andInterpretation,Springer-Verlag,New York,1987(第117-130页))用于测定耐磨层中的残余应力。
使用CSEM纳米硬度测试仪测定所述涂层的硬度。对于所有涂层,基材贡献的50mN载荷被认为是非常小或是没有的。
在两个不同的车削应用中测量耐月牙洼和后刀面磨损性能。
在第一测试中,评估耐月牙洼磨损性。该测试中,工作材料为轴承钢。切削速度为160米/分钟。进料为0.3毫米/转,切削深度为2.0毫米。将寿命定义为直至月牙洼区域变得足够大以至于到达切削刃时的切削时间。
在第二测试中,评估耐后刀面磨损性。该情况下使用球墨铸铁作为工作材料。切削速度为200米/分钟。进料为0.1毫米/转,切削深度为2.0毫米。切削时间为2分钟。之后检查刀片的后表面,并测定磨破的切削刃的比例。
表2.样品1-5的结果(对比)
Figure BPA00001278027200101
样品6-7(本发明)
清洁与样品1-5具有相同组成和ISO-型的刀片,并经如样品1-5中所述的PVD涂覆工艺处理。通过金属蒸镀并同时保持涂布机中的氮气分压,在450℃的温度下沉积薄TiN附着层。然后通过在混合氩气、氮气和三甲基硅烷气氛中的四个Ti靶的电弧蒸镀,沉积耐磨TiSiCN层。耐磨层的沉积温度为450℃。氩气流量为300sccm,氮气流量为700sccm。所述基材偏压为-75V。对于样品6,所述三甲基硅烷流在整个涂层中不是如样品1-5中那样恒定的。而是从33sccm连续增加至100sccm,产生这样的Si和C梯度,所述梯度具有接近附着层的低Si和C含量和在涂层表面较高的Si和C含量。对于样品7,则相反。所述三甲基硅烷流量从100sccm减少至32sccm,产生这样的Si和C梯度,所述梯度具有接近附着层的高Si和C含量和涂层表面上的较低Si和C含量。样品6和7描述在表3中。
表3.样品6-7(本发明)
Figure BPA00001278027200111
对样品6-7进行与样品1-5相同的机械加工测试。
表4概括了样品6-7的厚度和性能测试结果。
表4.得到的样品6-7(发明)
Figure BPA00001278027200112
表4中的样品6-7表明,当根据本发明选择沉积参数时,对于相同涂层可获得优异的耐月牙洼磨损性和耐后刀面磨损性。
样品8-9(现有技术)
清洁与样品1-7具有相同组成和ISO-型的刀片,并在N2+C2H2+Ar气氛中,使用Ti85Si15靶经PVD电弧涂覆工艺处理。
表5中概括了所述沉淀条件。
表5.样品8-9(现有技术)
  样品   时间(分钟)   偏压(V)   氩气(sccm)   氮气(sccm)   C2H2(sccm)
  8   150   -75   300   700   50
  9   120   -75   300   700   20
表6概括了样品8-9的结果。
表6.样品8-9的结果(现有技术)
Figure BPA00001278027200121
*估值。由于自发性剥落过多,不能测定厚度。
**没有评估。
得到的涂层极易碎,并表现出自发剥落,这归因于高压缩残余应力。由于涂层附着性较差,不能进行相关的车削试验以测定月牙洼磨损和后刀面磨损。
样品10-11(现有技术)
根据两个不同的涂覆方案,涂覆与样品1-9具有相同组成和ISO-型的硬质合金刀片。
用具有TiN和Al0.5Ti0.5N交替层的4.1μm PVD薄层涂覆样品10,其为可商购的等级,特别用于要求高耐月牙洼磨损性的应用,例如钢的车削。每个单个的TiN或Al0.5Ti0.5N层的厚度为0.1-20纳米。用SEM-EDS测得所述多层的平均组成为Al0.15Ti0.85N。
用具有通过SEM-EDS测得组成为AI0.67Ti0.33N的3.9μm PVD涂层涂覆样品11,其为可商购等级,特别用于硬加工材料,例如HRSA和Inconel。
如样品1-9对样品10和11进行相同的两个机械加工测试,结果列于表7中。
表7.得到的样品10和11(现有技术)
  样品   月牙洼磨损(分钟)   后刀面磨损(%)
  10   21   100
  11   6   0
样品10和11分别代表特别开发用于需要高耐月牙洼磨损性和高耐后刀面磨损性应用的切削工具刀片,这也通过上述结果得到证实。比较这些结果和根据本发明表4的样品6-7的具体实施方式的结果,清楚地表明,在单个切削工具中结合了高耐月牙洼磨损性和高耐后刀面磨损性的显著效果。

Claims (10)

1.一种制造用于金属加工的切削工具的方法,特征在于该方法包括利用一个或多个Ti靶和包括三甲基硅烷气体流的反应性气体气氛,使用电弧蒸镀向硬质合金、金属陶瓷、陶瓷或超硬材料的切削工具基材上沉积具有组成梯度的PVD Ti-Si-C-N层,以及在沉积过程期间以连续或逐渐变化的方式改变所述三甲基硅烷气体流量,其中所述PVDTi-Si-C-N层的平均Si/(Si+Ti)原子比为0.05至0.15,残余应力为-3.0GPa的压缩应力至最高达+0.5Gpa的拉伸应力,和平均C/(C+N)原子比为0.05至0.20。
2.根据权利要求1所述制造切削工具的方法,其中在沉积过程中所述三甲基硅烷气体是惟一的Si源。
3.根据权利要求1-2任一项所述制造切削工具的方法,其中通过在所述沉积过程期间连续降低所述三甲基硅烷的流量,在所述Ti-Si-C-N层中的组成梯度是连续的,Si/(Si+Ti)原子比在从所述层内部朝向所述Ti-Si-C-N层外部的方向上连续降低。
4.根据权利要求1-2任一项所述制造切削工具的方法,其中通过在沉积期间连续增加所述三甲基硅烷的流量,在所述Ti-Si-C-N层中的组成梯度是连续的,Si/(Si+Ti)原子比在从所述层内部朝向所述层外部方向上连续增加。
5.根据权利要求1-2任一项所述制造切削工具的方法,其中在所述Ti-Si-C-N层中所述组成梯度是逐渐变化的,并且其中在沉积期间逐渐地增加或降低所述三甲基硅烷的流量,导致所述Ti-Si-C-N层的平均组成的连续变化。
6.根据权利要求5所述制造切削工具的方法,其中所述组成梯度是逐渐变化的,所述Ti-Si-C-N层包括至少两个交替的亚层,该交替的亚层具有不同的Si/(Si+Ti)原子比,并且通过分别连续地增加或降低所述至少一个亚层的沉积时间而连续地增加或降低至少一个所述交替亚层的厚度,获得所述梯度。
7.一种用于金属加工的切削工具,其包括硬质合金、金属陶瓷、陶瓷或超硬质材料的切削工具基材和耐磨涂层,特征在于所述耐磨涂层包括具有组成梯度的PVD Ti-Si-C-N层,其中所述PVD Ti-Si-C-N层的平均Si/(Si+Ti)原子比为0.05至0.15,并且残余应力为-3.0GPa的压缩应力至最高达+0.5Gpa的拉伸应力,其中所述PVD Ti-Si-C-N层的平均C/(C+N)原子比为0.05至0.20。
8.根据权利要求7所述的切削工具,其中所述切削工具基材是硬质合金。
9.根据权利要求7-8任一项所述的切削工具,其中所述工具是切削工具刀片。
10.根据权利要求7-8任一项所述的切削工具,其中所述工具是整体钻头、铣刀或螺纹丝锥。
CN200980122939.2A 2008-04-18 2009-04-17 涂层切削工具和其制造方法 Expired - Fee Related CN102066617B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SEPCT/SE2008/050442 2008-04-18
PCT/SE2008/050442 WO2008130316A1 (en) 2007-04-18 2008-04-18 A coated cutting tool and a method of making thereof
SE0802219-6 2008-10-17
SE0802219 2008-10-17
PCT/SE2009/050395 WO2009128782A1 (en) 2008-04-18 2009-04-17 A coated cutting tool and a method of making thereof

Publications (2)

Publication Number Publication Date
CN102066617A CN102066617A (zh) 2011-05-18
CN102066617B true CN102066617B (zh) 2014-04-02

Family

ID=41199339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980122939.2A Expired - Fee Related CN102066617B (zh) 2008-04-18 2009-04-17 涂层切削工具和其制造方法

Country Status (5)

Country Link
US (1) US8507110B2 (zh)
EP (1) EP2276874B1 (zh)
KR (1) KR101643010B1 (zh)
CN (1) CN102066617B (zh)
WO (1) WO2009128782A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336383A1 (en) * 2009-12-04 2011-06-22 Sandvik Intellectual Property AB Multilayered coated cutting tool
US9856556B2 (en) 2010-04-23 2018-01-02 Oerlikon Surface Solutions Ag, Pfaeffikon PVD coating for metal machining
IN2014CN04404A (zh) * 2011-12-15 2015-09-04 Kobe Steel Ltd
KR101628426B1 (ko) * 2012-08-07 2016-06-08 현대자동차주식회사 멀티 코팅층을 갖는 초고장력 강판 성형용 금형
US9045348B2 (en) * 2012-08-29 2015-06-02 HGST Netherlands B.V. Titanium-silicon protective film composition and apparatus
CN104065187B (zh) * 2014-04-11 2018-07-03 江苏长城石油装备制造有限公司 一种梯度涂层螺杆钻具马达
BR112018004350B1 (pt) 2015-09-04 2022-02-01 Osg Corporation Revestimento rígido e membro coberto com revestimento rígido
WO2017111073A1 (ja) * 2015-12-22 2017-06-29 京セラ株式会社 被覆工具
WO2019044714A1 (ja) * 2017-08-29 2019-03-07 京セラ株式会社 被覆工具及びこれを備えた切削工具
WO2019044715A1 (ja) * 2017-08-29 2019-03-07 京セラ株式会社 被覆工具及びこれを備えた切削工具
CN111270202B (zh) * 2020-03-17 2022-03-25 株洲华锐精密工具股份有限公司 一种切削刀具用成分结构双梯度功能涂层及其制备方法
CN117203010B (zh) * 2022-01-25 2024-06-07 住友电气工业株式会社 切削工具及其制造方法
CN114686822B (zh) * 2022-04-07 2023-10-20 株洲华锐精密工具股份有限公司 切削用m(AlTiNbN/AlTiON)+AlTiCON多层复合涂层及制备方法
CN116590662B (zh) * 2023-05-09 2024-01-23 东莞市普拉提纳米科技有限公司 一种切削钛合金用含硼高熵合金刀具涂层及其制备工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470350A (zh) * 2002-07-11 2004-01-28 ס�ѵ�����ҵ��ʽ���� 被覆工具

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480086B2 (ja) * 1994-10-21 2003-12-15 三菱マテリアル株式会社 硬質層被覆切削工具
JP3586216B2 (ja) * 2001-05-11 2004-11-10 日立ツール株式会社 硬質皮膜被覆工具
JP2003251503A (ja) * 2001-12-26 2003-09-09 Sumitomo Electric Ind Ltd 表面被覆切削工具
JP3950385B2 (ja) 2002-08-02 2007-08-01 住友電工ハードメタル株式会社 表面被覆切削工具
JP4018480B2 (ja) * 2002-08-20 2007-12-05 住友電工ハードメタル株式会社 被覆硬質工具
JP4116382B2 (ja) 2002-09-25 2008-07-09 住友電工ハードメタル株式会社 被覆硬質工具
JP4340441B2 (ja) 2003-01-15 2009-10-07 住友電工ハードメタル株式会社 耐摩耗性部材
JP4405835B2 (ja) * 2004-03-18 2010-01-27 住友電工ハードメタル株式会社 表面被覆切削工具
US7527457B2 (en) * 2004-03-18 2009-05-05 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2005271133A (ja) 2004-03-24 2005-10-06 Sumitomo Electric Hardmetal Corp 被覆切削工具
JP4911937B2 (ja) * 2004-12-09 2012-04-04 サンアロイ工業株式会社 高強度超硬合金、その製造方法およびそれを用いる工具
SE0500994L (sv) * 2005-04-29 2006-10-30 Seco Tools Ab Tunt slitstarkt skikt
WO2007136777A2 (en) * 2006-05-17 2007-11-29 G & H Technologies Llc Wear resistant coating
WO2008130316A1 (en) 2007-04-18 2008-10-30 Sandvik Intellectual Property Ab A coated cutting tool and a method of making thereof
SE530944C2 (sv) * 2007-04-27 2008-10-28 Sandvik Intellectual Property Skär

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470350A (zh) * 2002-07-11 2004-01-28 ס�ѵ�����ҵ��ʽ���� 被覆工具

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Coatings Technology》.2006,第201卷4236-4241. *
H.Xu et al.Tribological behavior of a TiSiCN coating tested in air and coolant.《Surface & Coatings Technology》.2006,第201卷4236-4241.
H.Xu et al.Tribological behavior of a TiSiCN coating tested in air and coolant.《Surface &amp *
JP特开2004-114219A 2004.04.15
JP特开2004-66361A 2004.03.04
JP特开2004-74361A 2004.03.11
JP特开2005-262388A 2005.09.29

Also Published As

Publication number Publication date
EP2276874A4 (en) 2012-01-18
KR101643010B1 (ko) 2016-07-26
US8507110B2 (en) 2013-08-13
WO2009128782A1 (en) 2009-10-22
EP2276874A1 (en) 2011-01-26
CN102066617A (zh) 2011-05-18
US20110188950A1 (en) 2011-08-04
EP2276874B1 (en) 2015-03-04
KR20100135917A (ko) 2010-12-27

Similar Documents

Publication Publication Date Title
CN102066617B (zh) 涂层切削工具和其制造方法
US8247092B2 (en) Coated cutting tool and a method of making thereof
EP1988190A2 (en) Coated cutting tool
JP5460790B2 (ja) 表面被覆部材および切削工具
CN100449034C (zh) 纳米涂层刀具及其制造方法
JP4018480B2 (ja) 被覆硬質工具
CN1445037A (zh) Pvd涂覆的切削刀片
Chen et al. Microstructure and mechanical properties of Ti (C, N) and TiN/Ti (C, N) multilayer PVD coatings
JP4408231B2 (ja) 硬質積層皮膜および硬質積層皮膜の形成方法
WO2013156131A1 (en) High performance tools exhibiting reduced crater wear in particular by dry machining operations
RU2405060C1 (ru) ИОННО-ПЛАЗМЕННОЕ ПОКРЫТИЕ ДЛЯ РЕЖУЩИХ ИНСТРУМЕНТОВ НА ОСНОВЕ (TixAlyCrz)N
You et al. Microstructure and properties of CVD coated Ti (C, N)-based cermets with varying WC additions
JP2004100004A (ja) 被覆超硬合金およびその製造方法
CN111893459A (zh) 具有织构取向的涂层切削刀具及其制备方法
CN115351317A (zh) 涂层切削刀具及其制备方法
CN114945708B (zh) 具有改善的涂层粘附力的pvd涂覆硬质合金切削工具
Keunecke et al. Boron containing combination tool coatings—characterization and application tests
JP3950385B2 (ja) 表面被覆切削工具
JP5898051B2 (ja) 被覆工具
Poulon-Quintin et al. Bilayer systems of tantalum or zirconium nitrides and molybdenum for optimized diamond deposition
JP2917312B2 (ja) 切削・耐摩工具用表面被覆超硬部材
Yang et al. Characteristics and performance of Ti (C, N) coatings synthesized by magnetron sputtering technique
CN112805109A (zh) 切削工具及其制造方法
WO2024079889A1 (ja) 切削工具
Yin et al. A comparative study on the structure and properties of TiAlSiN coatings deposited by FCVA and HiPIMS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140402

Termination date: 20210417