CN102060279B - 磷化锗锌多晶体的合成装置与方法 - Google Patents

磷化锗锌多晶体的合成装置与方法 Download PDF

Info

Publication number
CN102060279B
CN102060279B CN2010105648987A CN201010564898A CN102060279B CN 102060279 B CN102060279 B CN 102060279B CN 2010105648987 A CN2010105648987 A CN 2010105648987A CN 201010564898 A CN201010564898 A CN 201010564898A CN 102060279 B CN102060279 B CN 102060279B
Authority
CN
China
Prior art keywords
phosphorus
germanium
multicrystal
slowly
vaporizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105648987A
Other languages
English (en)
Other versions
CN102060279A (zh
Inventor
吴东
王彪
申亮
徐洪远
王云华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN2010105648987A priority Critical patent/CN102060279B/zh
Publication of CN102060279A publication Critical patent/CN102060279A/zh
Application granted granted Critical
Publication of CN102060279B publication Critical patent/CN102060279B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种磷化锗锌多晶体的合成装置与方法。该合成方法包括:将锌、锗按化学计量重量配比为1∶1~1∶11充分混合研磨均匀,置入合成坩埚,将合成坩埚置于反应管的一端,再将反应管放入水平合成炉中,用高纯氩气反复清洗3-5遍,在蒸发器内加入过量的磷并密闭在氩气环境下;持续缓慢通入高纯氩气,使炉腔升温至400-900℃区间的某一恒定温度,同时缓慢加热蒸发器使磷缓慢升华;当磷蒸发器内剩余的磷少于冷凝器内沉积的磷时,撤走磷蒸发器的加热元件,使磷蒸发器的温度冷凝至10℃以下,随后,加热冷凝瓶内的磷,使之缓慢升华,将氩气接入冷凝瓶,如此反复,直至反应完成。本发明具有合成速率高、产物纯度高、反应完全、产出率高、安全防爆等优点。

Description

磷化锗锌多晶体的合成装置与方法
技术领域
本发明涉及一种三元化合物多晶体材料的制备技术领域,特别是涉及一种磷化锗锌多晶体的合成装置与方法。
背景技术
黄铜矿类半导体晶体材料具有非线性光学系数和远红外区透过率很高的突出优点。磷化锗锌(ZnGeP2,ZGP)晶体是黄铜矿类半导体晶体中综合性能最好的,它的优点十分突出,它是所有已知的红外非线性光学晶体中非线性系数最高者之一,是目前实现高功率中、远红外可调谐激光输出的最佳非线性材料,在民用、国防领域有着重要的应用价值。高质量磷化锗锌多晶的合成是制备磷化锗锌单晶的前决条件。
磷化锗锌多晶体的合成目前主要是单温区合成法和双温区合成法,但这些方法合成速率低、单次合成量较小,且由于磷蒸气压较高,合成过程易发生爆炸;同时,由于这两种方法常使用石英管进行真空封装,将多晶取出时要破坏石英管,石英管无法循环再用,大大增加了生产成本,造成极大的物质浪费。
另外,传统的磷化锗锌多晶体的合成方法产出率一般在80%左右,产出率不高,合成的原料不纯,很难满足光学级优质单晶生长的需要。
发明内容
本发明的目的在于,为了解决目前磷化锗锌多晶合成方法存在的合成速率低、易爆炸、产出率不高、产物不纯、真空密封管不能循环利用的问题,而提出一种磷化锗锌多晶体的合成装置与方法。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种磷化锗锌多晶体的合成装置,包括:炉腔;设置在炉腔内的氩气保护室;设置在氩气保护室内的多晶料密闭内反应室;设置在内反应室内的合成坩埚;所述内反应室的一侧底部通过连接管道与冷凝器相连通;所述合成坩埚通过连接管道依次穿过内反应室,氩气保护室及炉腔与蒸发器相连通。
根据本发明实施例的磷化锗锌多晶体的合成装置,所述蒸发器通过一三通管道与装有二硫化碳的废气处理瓶相连通,该三通管道的纵向管道和横向管道上分别设置有气流控制阀,纵向管道上的气流控制阀的一端设计为氩气入口。
根据本发明实施例的磷化锗锌多晶体的合成装置,所述冷凝器通过一三通管道与装有二硫化碳的废气处理瓶相连通,该三通管道的纵向管道和横向管道上分别设置有气流控制阀,纵向管道上的气流控制阀的一端设计为氩气入口。
根据本发明实施例的磷化锗锌多晶体的合成装置,所述炉腔的两端分别设置有保温隔热层,保温隔热层的内部设置有高温密封塞;该炉腔的材料可选择Al2O3陶瓷、石墨、石英中的任意一种。
根据本发明实施例的磷化锗锌多晶体的合成装置,所述合成坩埚的材料可选择使用石墨、石英或PBN坩埚;所述保温隔热层的材质为氧化锆或多孔石墨耐火砖。
另外,本发明还提出了一种磷化锗锌多晶体的合成方法,其采用磷气相循环传输技术,该合成方法包括以下步骤:
第一步:按磷化锗锌化学计量,将过量的磷置于与空气隔绝密闭的蒸发器内,将锌和锗按化学计量比1∶1~1∶11混合均匀,放入合成舟内,将合成舟置于反应管(反应管材料为石英或石墨、Al2O3陶瓷等)的一端,再将反应管放入水平合成炉中,按图示连接整个装置;
第二步:在加热合成前,将反应管整体抽真空,然后用高纯氩气反复洗气3-5遍,以洗去管内残留的空气或内壁吸附杂质等;
第三步:将反应管缓慢加热至400-450℃,然后缓慢加热磷蒸发器使磷升华挥发,同时打开高纯氩气进气口,以高纯氩气作为载气将磷蒸气带入反应管,然后加热反应管至580-660℃并保持24h以上。在这一过程中,如果冷凝瓶内沉积磷的量多于磷蒸发器内磷的质量时,可以选择将冷凝瓶与蒸发器温度置换,接入冷凝瓶一端载气并关闭蒸发器一端的载气,依次反复使反应物磷得以有效利用;
第四步:使反应管升温至960-1010℃,保温至锗与磷锌化合物完全反应生成磷化锗锌;
第五步:将反应管缓缓降温,同时减小载气流量并通过控温减小磷蒸汽流量,降温完成后关闭载气并将磷蒸发器降温至10℃以下;
第六步:将整个反应管降至室温以下,将过量的磷回收,取出多晶合成料。
借由上述技术方案,本发明磷化锗锌多晶体的合成装置与方法至少具有以下优点:本发明具有合成速率高、产物纯度高、反应完全、产出率高、安全防爆等优点;高纯氩气对反应过程的保护,高纯氩气作为载气缓慢把磷蒸气载入高温合成区域,合成过程中,磷蒸发器与冷凝器交换加热或冷却;磷化锗锌多晶的合成速率分别是单温区合成法及双温区合成法的5倍及2倍以上;与现有技术合成工艺不同在于,本发明合成舟及反应管可以循环多次使用,大大节约了实验及生产成本。
附图说明
图1为本发明的磷化锗锌多晶体合成装置示意图。
图2为本发明实施例制备出的磷化锗锌多晶体的X射线粉末衍射图。
图3为本发明另一实施例制备出的磷化锗锌多晶体的X射线粉末衍射图。
图4为本发明又一实施例制备出的磷化锗锌多晶体的X射线粉末衍射图。
11:炉腔                    12:氩气保护室
13:内反应室                14:合成坩埚
15、15’:保温层            16、17:高温密封塞
18:氩气入口                20:蒸发器
30:冷凝器                  40、40’:废气处理瓶
50、50’:气流控制阀        60、60’:氩气入口
具体实施方式
为了更详细的解释本发明所提出的磷化锗锌多晶料合成装置与方法,以下结合附图及较佳实施例,对本发明进行详细阐述。应当理解,此处所描述的实施例仅仅是用以解释本发明的设计,并不用于限定本发明。
如图1所示,本发明的磷化锗锌多晶料合成装置,包括:炉腔11,设置在炉腔11内的氩气保护室12;设置在氩气保护室12内的多晶料密闭内反应室13,设置在内反应室13内的合成坩埚14,内反应室13的一侧底部通过连接管道与冷凝器20相连通;合成坩埚14通过连接管道依次穿过高温密封塞16,氩气保护室12及炉腔11的保温层15’与蒸发器20相连通。该蒸发器20通过一三通管道与装有二硫化碳的废气处理瓶40相连通,该三通管道的纵向管道和横向管道上分别设置有气流控制阀50,纵向管道上的气流控制阀的一端设计为氩气入口60。该冷凝器30通过一三通管道与装有二硫化碳的废气处理瓶40’相连通,该三通管道的纵向管道和横向管道上分别设置有气流控制阀50’,纵向管道上的气流控制阀的一端设计为氩气入口60’。
该炉腔11的两端分别设置有保温隔热层15、15’,保温隔热层15’的内部设置有高温密封塞17。该炉腔11的材料可选择Al2O3陶瓷、石墨、石英中的任意一种。该氩气保护室12的上端一侧通过一管道伸出炉腔11的保温隔热层15’之外,该管道的出口端设计为氩气入口18;内反应室13设计为反应管状,反应管的管口处用高温密封塞16密封。其中,合成坩埚(多晶合成舟)14的材料可选择使用石墨、石英或PBN(氮化硼)坩埚;保温隔热层15、15’的材质为氧化锆或多孔石墨耐火砖;高温密封塞16和17的材质为磨砂石英塞;内反应室13、氩气保护室12及与它们相连接的管道使用高纯石英材料。
以下为磷化锗锌多晶料的制备方法实施例。
实施例1
将锌、锗按化学计量1∶1比例重量配比共50g,在惰性气体保护下混合均匀并充分研磨后置入合成坩埚14内,将装有锌锗混合原料的合成坩埚14置于内反应室13中,按图1连接内反应室13和氩气保护室12后置于炉腔(水平合成炉)11内,将内反应室13及氩气保护室12抽真空后充入高纯氩气。氩气环境下秤取过量的磷加入蒸发器20内,按所使用的锌及锗的化学计量,磷的量为锌或锗的化学计量的1.3~1.5倍。按图1连接管道后,将反应管整体抽真空,用高纯氩气反复将整个气路及反应室清洗3~5次,以洗去管内残留的空气或内壁的吸附杂质等。
将内反应室(反应管)13加热至500~550℃并保持恒温,使冷凝器30冷却至0~5℃,加热蒸发器20至80~160℃,打开高纯氩气接入口60缓慢通入氩气。当蒸发器20内剩余磷的量少于初始量的1/4时,交换加热冷凝器30至80~160℃,冷却磷蒸发器20至0~5℃,如此循环往复,直至反应完成。将内反应室13加热至920~1010℃,同时持续缓慢通入磷与氩气的混合气,反应48-72h后,将内反应室13缓慢降温至400℃,然后关掉磷蒸气,持续通入氩气。继续降温内反应室13至室温,将过量的磷回收,取出多晶料。本发明实施例制备出的磷化锗锌多晶体的XRD(X射线粉末衍射图)结果如图2所示,数据表明所制备的磷化锗锌多晶体单相性及结晶性能较好。
实施例2
将锌、锗按化学计量1∶1.1比例重量配比共150g,在惰性气体保护下混合均匀并充分研磨后置入合成坩埚14内,将装有锌锗混合原料的合成坩埚14置于内反应室13中,按图1连接内反应室13和氩气保护室12后置于炉腔11内,将内反应室13及氩气保护室12抽真空后充入高纯氩气。氩气环境下秤取过量的磷加入蒸发器20内,按所使用的锌及锗的化学计量,磷的量为锌或锗的化学计量的1.3~1.5倍。按图1连接管道后用高纯氩气反复将整个气路及反应室清洗3~5次。
整个装置连接并清洗完成后,使冷凝器30(冷凝瓶)冷却至0~5℃,将内反应室13加热至550~620℃并保持恒温,加热磷蒸发器20至160~220℃,打开高纯氩气接入口60缓慢通入氩气。当磷蒸发器20内剩余磷的量少于初始量的1/4时,交换加热冷凝瓶30至160~220℃,冷却磷蒸发器20至0~5℃;当冷凝瓶内的磷蒸发减少至原来的1/4时,再交换加热磷蒸发器20至160~220℃,冷却冷凝瓶20至0~5℃;如此交换加热3~5次。而后,将内反应室13加热至1010~1015℃,同时持续缓慢通入磷与氩气的混合气(氩气/磷蒸气的流量比控制在10/1左右),反应48-60h后,将内反应室13缓慢降温至400℃,然后关掉磷蒸气,持续通入氩气,继续降温内反应室13至室温,将过量的磷回收,取出多晶料。本发明实施例制备出的磷化锗锌多晶体的XRD(X射线粉末衍射图)结果如图3所示,数据表明所制备的磷化锗锌多晶体单相性及结晶性能较好。
实施例3
将锌、锗按化学计量1∶1.05比例重量配比共300g,在惰性气体保护下混合均匀并充分研磨后置入合成坩埚14内,将装有锌锗混合原料的合成坩埚14置于内反应室13中,按图1连接内反应室13和氩气保护室12后置于炉腔11内,将内反应室13及氩气保护室12抽真空后充入高纯氩气。氩气环境下秤取过量的磷加入蒸发器20内,按所使用的锌及锗的化学计量,磷的量为锌或锗的化学计量的1.3~1.5倍。按图1连接管道后用高纯氩气反复将整个气路及反应室清洗3~5次。
整个装置连接并清洗完成后,使冷凝瓶30冷却至-10~0℃,将内反应室13加热至620~680℃并保持恒温,加热磷蒸发器20至220~400℃,打开高纯氩气接入口60缓慢通入氩气。当磷蒸发器20内剩余磷的量少于初始量的1/5时,交换加热冷凝瓶30至220~400℃,冷却磷蒸发器20至-10~0℃;当冷凝瓶内的磷蒸发减少至原来的1/4时,再交换加热磷蒸发器20至160~220℃,冷却冷凝瓶20至0~5℃;如此交换加热3~5次。而后,将内反应室13加热至1010~1015℃,同时持续缓慢通入磷与氩气的混合气,反应48-60h后,将内反应室13缓慢降温至350℃,然后关掉磷蒸气,持续通入氩气,继续降温内反应室13至室温,将过量的磷回收,取出多晶料。本发明实施例制备出的磷化锗锌多晶体的XRD(X射线粉末衍射图)结果如图4所示,数据表明所制备的磷化锗锌多晶体单相性及结晶性能较好。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,故凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种磷化锗锌多晶体的合成装置,其特征在于其包括:炉腔;设置在炉腔内的氩气保护室;设置在氩气保护室内的多晶料密闭内反应室;设置在内反应室内的合成坩埚;所述内反应室的一侧底部通过连接管道与冷凝器相连通;所述合成坩埚通过连接管道依次穿过内反应室,氩气保护室及炉腔与蒸发器相连通。
2.根据权利要求1所述的磷化锗锌多晶体的合成装置,其特征在于:所述蒸发器通过一三通管道与装有二硫化碳的废气处理瓶相连通,该三通管道的纵向管道和横向管道上分别设置有气流控制阀,纵向管道上的气流控制阀的一端设计为氩气入口。
3.根据权利要求1所述的磷化锗锌多晶体的合成装置,其特征在于:所述冷凝器通过一三通管道与装有二硫化碳的废气处理瓶相连通,该三通管道的纵向管道和横向管道上分别设置有气流控制阀,纵向管道上的气流控制阀的一端设计为氩气入口。
4.根据权利要求1所述的磷化锗锌多晶体的合成装置,其特征在于:所述炉腔的两端分别设置有保温隔热层,保温隔热层的内部设置有高温密封塞;该炉腔的材料选择Al2O3陶瓷、石墨、石英中的任意一种。
5.根据权利要求4所述的磷化锗锌多晶体的合成装置,其特征在于:所述合成坩埚的材料选择使用石墨、石英或PBN坩埚;所述保温隔热层的材质为氧化锆或多孔石墨耐火砖。
6.一种磷化锗锌多晶体的合成方法,其特征在于包括以下步骤:
1)装料与洗气
将锌、锗按化学计量重量配比为1:1~1:1.1充分混合研磨均匀,置入合成坩埚,将权利要求1-5中任一权利要求所述的合成装置用高纯氩气反复清洗3-5遍,在蒸发器内加入过量的磷并密闭在氩气环境下;
2)载气与温控
持续缓慢通入高纯氩气,使炉腔升温至400-900℃区间的某一恒定温度,同时缓慢加热蒸发器使磷缓慢升华;
3)交换加热与冷却
当磷蒸发器内剩余的磷少于冷凝器内沉积的磷时,撤走磷蒸发器的加热元件,使磷蒸发器的温度冷凝至10℃以下,随后,加热冷凝器内的磷,使之缓慢升华,将氩气接入冷凝器,如此反复,直至反应完成。
7.根据权利要求6所述的磷化锗锌多晶体的合成方法,其特征在于:高纯氩气对反应过程的保护,高纯氩气作为载气缓慢把磷蒸气载入高温合成区域,合成过程中,磷蒸发器与冷凝器交换加热或冷却。
8.根据权利要求6所述的磷化锗锌多晶体的合成方法,其特征在于:步骤2)中,将内反应室缓慢加热至400-450℃,同时打开高纯氩气进气口,以高纯氩气作为载气将磷蒸气带入内反应室,磷的量为锌或锗的化学计量的1.3~1.5倍,然后继续加热内反应室至580-660℃,保温直至磷与锌完全反应生成磷锌化合物。
9.根据权利要求6所述的磷化锗锌多晶体的合成方法,其特征在于:步骤3)中,磷与锌反应完全后,使内反应室升温至960-1010℃,保温至锗与磷锌化合物完全反应生成磷化锗锌;将内反应室缓缓降温,同时减小载气流量并通过控温减小磷蒸气流量,降温完成后关闭载气并将磷蒸发器降温至10℃以下;将整个内反应室降至室温以下,将过量的磷回收,取出多晶合成料。
CN2010105648987A 2010-11-29 2010-11-29 磷化锗锌多晶体的合成装置与方法 Expired - Fee Related CN102060279B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105648987A CN102060279B (zh) 2010-11-29 2010-11-29 磷化锗锌多晶体的合成装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105648987A CN102060279B (zh) 2010-11-29 2010-11-29 磷化锗锌多晶体的合成装置与方法

Publications (2)

Publication Number Publication Date
CN102060279A CN102060279A (zh) 2011-05-18
CN102060279B true CN102060279B (zh) 2012-11-14

Family

ID=43995813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105648987A Expired - Fee Related CN102060279B (zh) 2010-11-29 2010-11-29 磷化锗锌多晶体的合成装置与方法

Country Status (1)

Country Link
CN (1) CN102060279B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433590B (zh) * 2011-11-25 2014-04-09 哈尔滨工业大学 降低磷化锗锌晶体吸收系数的方法
CN106498491B (zh) * 2016-11-02 2018-12-14 中国电子科技集团公司第四十六研究所 一种气相法晶体生长用原料的提纯装置及其提纯方法
CN107268070A (zh) * 2017-06-10 2017-10-20 中国科学院合肥物质科学研究院 一种低吸收磷锗锌晶体生长的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050546A (zh) * 2007-05-09 2007-10-10 四川大学 磷锗锌多晶体的合成方法与设备
CN101235542A (zh) * 2007-11-14 2008-08-06 哈尔滨工业大学 磷化锗锌的多晶合成与单晶生长的方法
CN201864565U (zh) * 2010-11-29 2011-06-15 中山大学 磷化锗锌多晶体的合成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050546A (zh) * 2007-05-09 2007-10-10 四川大学 磷锗锌多晶体的合成方法与设备
CN101235542A (zh) * 2007-11-14 2008-08-06 哈尔滨工业大学 磷化锗锌的多晶合成与单晶生长的方法
CN201864565U (zh) * 2010-11-29 2011-06-15 中山大学 磷化锗锌多晶体的合成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林彦霆等.ZnGeP2多晶料合成与晶体生长.《功能材料》.2006,第37卷(第6期),864-866. *

Also Published As

Publication number Publication date
CN102060279A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
US4753783A (en) Process and apparatus for obtaining silicon from fluosilicic acid
CN105603520B (zh) 一种高速单晶生长装置及方法
CN103789830A (zh) 生产多晶硅的装置和方法以及多晶硅的锭和片
CN104357902A (zh) 一种利用温度梯度合成碲锌镉多晶的合成装置和方法
CN101122045A (zh) 多元化合物半导体单晶的制备方法与生长装置
CN102344126B (zh) 一种磷硅镉多晶体的合成方法与合成容器
CN102899714A (zh) 一种磷硅镉单晶体的生长方法与生长容器
CN102060279B (zh) 磷化锗锌多晶体的合成装置与方法
CN101550586B (zh) 一种碲化锌单晶生长技术
KR101366659B1 (ko) 고순도 다결정 실리콘의 제조장치 및 제조방법
CN102191541B (zh) 磷硅镉多晶料的双温区合成方法及装置
CN101239723A (zh) 多晶硅的等离子生产方法及其装置
CN201864565U (zh) 磷化锗锌多晶体的合成装置
CN101348939A (zh) 一种提高砷化镓单晶利用率的生长方法
CN100516319C (zh) 一种无籽晶垂直气相生长溴化铊单晶方法
CN105714375B (zh) 一种Li‑III‑VI2型中远红外多晶的合成方法
CN108069456B (zh) 一种碲化镉的制备方法
CN202090092U (zh) 带控温籽晶装置的单晶铸锭炉
CN101824646A (zh) 真空封闭式坩埚下降法生长掺铊碘化钠单晶体
CN105441697B (zh) 稀土金属的制备装置及制备方法
CN85101849B (zh) 制备高纯度ⅱb-ⅵa族化合物的新方法
CN104014284A (zh) Iib-via族化合物粉末的自由降落高温合成方法及合成装置
CN104562191B (zh) 一种提纯固态半导体多晶材料的设备及方法
CN102485654B (zh) 一种在热硫化条件下制取黄铁矿晶体的方法
CN108069462B (zh) 一种一步法批量合成高纯二硫化钴的装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121114

Termination date: 20141129

EXPY Termination of patent right or utility model