CN102052256A - 超临界空气储能系统 - Google Patents
超临界空气储能系统 Download PDFInfo
- Publication number
- CN102052256A CN102052256A CN2009102252523A CN200910225252A CN102052256A CN 102052256 A CN102052256 A CN 102052256A CN 2009102252523 A CN2009102252523 A CN 2009102252523A CN 200910225252 A CN200910225252 A CN 200910225252A CN 102052256 A CN102052256 A CN 102052256A
- Authority
- CN
- China
- Prior art keywords
- heat
- air
- energy
- storage
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 129
- 239000007788 liquid Substances 0.000 claims abstract description 30
- 238000007906 compression Methods 0.000 claims abstract description 26
- 230000006835 compression Effects 0.000 claims abstract description 25
- 239000002918 waste heat Substances 0.000 claims abstract description 18
- 230000005611 electricity Effects 0.000 claims abstract description 10
- 238000009825 accumulation Methods 0.000 claims description 72
- 239000007789 gas Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000000926 separation method Methods 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000007791 liquid phase Substances 0.000 claims description 6
- 238000010248 power generation Methods 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 238000005338 heat storage Methods 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 238000004887 air purification Methods 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000004567 concrete Substances 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 238000004378 air conditioning Methods 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000004568 cement Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000005057 refrigeration Methods 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims description 3
- 239000011435 rock Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 2
- 235000011613 Pinus brutia Nutrition 0.000 claims description 2
- 241000018646 Pinus brutia Species 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000012075 bio-oil Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000012188 paraffin wax Substances 0.000 claims description 2
- 238000010926 purge Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- 238000009834 vaporization Methods 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 238000010792 warming Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 6
- 239000002803 fossil fuel Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/004—Accumulation in the liquid branch of the circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K5/00—Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type
- F01K5/02—Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type used in regenerative installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0251—Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04018—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04563—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
- F25J3/04575—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
- F25J3/04581—Hot gas expansion of indirect heated nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04842—Intermittent process, so-called batch process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/24—Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/04—Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/02—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/90—Hot gas waste turbine of an indirect heated gas for power generation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/90—Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
本发明公开了一种超临界空气储能系统,为新型储能系统,涉及能量储存技术,它采用电站低谷(低价)电将空气压缩至超临界状态(同时存储压缩热),并利用已存储的冷能将超临界空气冷却、液化并存储(储能);在用电高峰,液态空气加压、吸热至超临界状态(同时冷能回收),并在进一步吸收压缩热后通过膨胀机驱动发电机发电(释能)。本发明的系统具有能量密度高、效率高、不受储能周期和地理条件限制、适用于各种电站(包括风能等可再生能源电站)、对环境友好、可回收中低温(热值)废热等优点。
Description
技术领域
本发明涉及能量储存技术领域,特别是一种基于超临界过程的空气储能系统。
背景技术
长期以来,为了满足电力负荷的要求,电力部门不得不根据最大负荷要求建设发电能力。这一方面造成了大量发电能力的过剩和浪费,另一方面,电力部门又不得不常常在用电高峰时段限制用电。特别是近年来,我国电力电网中的大型机组不断增多,电力系统的自身功率调节能力受到限制,而系统负荷的峰谷比却不断增大,因此迫切需要经济、可靠、高效的电力储能系统与之相配套。特别对于核能电站等仅能高位运行的电力系统,电力储能系统的需求就更为迫切。
更为重要的是,电力储能系统是目前制约可再生能源大规模利用的最重要瓶颈之一。当前世界各国纷纷将发展可再生能源作为国家能源发展的重要战略,但目前主要的可再生能源,如风能、太阳能、潮汐能等,均是间歇式能源,如何利用储能技术将这些间歇式能源“拼接”起来,是提高可再生能源比例必须解决的问题。
同时,电力储能系统还是分布式能源系统的关键技术。分布式能源系统采用大量小型分布式电力系统代替常规大型集中式电力系统,具有能源综合利用、热效率高、低污染等优点。但同时由于线路、运行等原因造成的系统故障率会高于常规大型集中式电力系统。并且,由于系统的容量较小,系统负荷的波动也将大幅增加。因此,采用电力储能系统作为负荷平衡装置和备用电源是分布式能源系统必须考虑的措施。
目前已有电力储能技术包括抽水电站(Pumped Hydro)、压缩空气(Compressed Air Energy Storage,CAES)、蓄电池(Secondary Battery)、超导磁能(Superconducting Magnetic Energy Storage System,SMES)、飞轮(Flywheel)和电容(Capacitor)等。但由于容量、储能周期、能量密度、充放电效率、寿命、运行费用、环保等原因,目前已在大型商业系统中运行的只有抽水电站和压缩空气两种。
抽水电站储能系统在用电低谷通过水泵将水从低位水库送到高位水库,从而将电能转化为水的势能存储起来,在用电高峰,水从高位水库排放至低位水库驱动水轮机发电。抽水电站储能系统具有技术成熟、效率高(~70%)、容量大、储能周期不受限制等优点,是目前广泛使用的电力储能系统。但是,抽水电站储能系统需要特殊的地理条件建造两个水库和水坝,建设周期很长(一般约7~15年),初期投资巨大。更为棘手的是,建造大型水库会大面积淹没植被甚至城市,造成生态和移民问题,因此建造抽水电站储能系统受到了越来越大的限制。
传统压缩空气储能系统是基于燃气轮机技术开发的一种储能系统。在用电低谷,将空气压缩并存于储气室中,使电能转化为空气的内能存储起来;在用电高峰,高压空气从储气室释放,进入燃气轮机燃烧室同燃料一起燃烧,然后驱动透平发电。压缩空气储能系统具有储能容量较大、储能周期长、效率高(50%~70%)和单位投资相对较小等优点,但是,传统压缩空气储能系统不是一项独立的技术,它必须同燃气轮机电站配套使用,不能适合其他类型,如燃煤电站、核电站、风能和太阳能等电站,特别不适合我国以燃煤发电为主,不提倡燃气燃油发电的能源战略。而且,压缩空气储能系统仍然依赖燃烧化石燃料提供热源,一方面面临化石燃料逐渐枯竭和价格上涨的威胁,另一方面其燃烧仍然产生氮化物、硫化物和二氧化碳等污染物,不符合绿色(零排放)、可再生的能源发展要求。更为致命的是,由于储能密度低,压缩空气储能系统也需要特定的地理条件建造大型储气室,如岩石洞穴、盐洞、废弃矿井等,从而大大限制了压缩空气储能系统的应用范围。
为解决传统压缩空气储能系统面临的主要问题,特别是对燃气轮机的依赖问题,最近几年国内外学者分别开展了地面压缩空气储能系统(SVCAES)、带回热的压缩空气储能系统(AACAES)和空气蒸汽联合循环压缩空气储能系统(CASH)等,使压缩空气储能系统基本可以脱离化石燃料燃烧热源。但同时,由于不采用化石燃料热源,压缩空气储能系统的能量密度更低,更加凸显了对大型储气室依赖。必须找到合理的解决办法,才能使压缩空气储能系统得到更广泛而又有效地利用。
发明内容
本发明的目的是公开一种超临界空气储能系统,是新型空气储能系统,利用超临界状态下空气的特殊性质,解决压缩空气储能系统面临的主要问题,可以适合各种类型的电站配套使用。
为达到上述目的,本发明的技术解决方案是:
一种超临界空气储能系统,压缩机组、蓄热/换热器、蓄冷/换热器、节流阀、低温储罐、阀门、低温泵、膨胀机组、发电机、驱动单元及多根管线;其中:
压缩机组包括至少一台低压压缩机、至少一台高压压缩机,相互串联或集成为整体多级压缩机,每一台低压压缩机入口接空气源;膨胀机组包括至少一台低压膨胀机、至少一台高压膨胀机,相互串联或集成为整体多级膨胀机,每一台低压膨胀机的气体出口通大气;
驱动单元与压缩机组的传动轴固接,发电机与两膨胀机组的传动轴固接;
低压压缩机经管线(13)、高压压缩机经管线(14、15)分别与蓄热/换热器(2)相通连;蓄热/换热器(2)、蓄冷/换热器、低温储罐经管线(16、17、18、19、30)顺序相通连;
在管线(30)中设有节流阀,在管线(31)中设有阀门、至少一台低温泵,阀门位于低温泵上游;
蓄热/换热器经管线(20、21、22)分别与高压膨胀机、低压膨胀机相通连;
蓄冷/换热器底端设有排渣管线(24);
其流程为:
储能时,利用驱动单元驱动由低压压缩机与高压压缩机组成的压缩机组,将一定量的空气压缩至超临界状态,压缩热被回收并存储在蓄热/换热器(2)中;超临界空气进入蓄冷/换热器中冷却,绝大部分低温压缩空气通过节流阀后液化,液态空气进入低温储罐存储;释能时,低温泵对液态空气加压,高压液态空气在蓄冷/换热器中升温至超临界状态并回收冷能,在蓄热/换热器(2)中吸收压缩热将超临界空气进一步升温,然后进入高压膨胀机与低压膨胀机组成的膨胀机组膨胀做功,带动发电机发电。
所述的超临界空气储能系统,其所述驱动单元,为驱动电机或风力机;为驱动电机时,是以常规电站低谷电、核电、风电、太阳能发电、水电或潮汐发电其中的一种或多种为电源。
所述的超临界空气储能系统,其储能过程在电力低谷、可再生能源限电或电能质量不符合上网要求时启用;释能过程在用电高峰、电力事故、可再生能源发电大幅波动时启用。
所述的超临界空气储能系统,其所述蓄热/换热器(2)还设有管线(23),该管线与外界热源相通连。
所述的超临界空气储能系统,其空气压缩、冷却过程中还包括空气净化与纯化,除去空气中的固体物及杂质气体;空气净化与纯化设备集成在压缩机组及蓄冷/换热器中,不单独表示。
所述的超临界空气储能系统,其所述空气纯化设备,在原料空气中的CO2,水蒸气,氩对空气压缩、冷却、液化设备的正常工作和液态空气的产量影响小时,为过滤装置。
所述的超临界空气储能系统,其所述压缩机组,总压比在38~340之间;当为多台压缩机时,多台压缩机为共轴串联形式、或分轴并联形式;并联形式中,各分轴与主驱动轴动连接;各级压缩机的排气均经过蓄热/换热器(2)。
所述的超临界空气储能系统,其所述膨胀机组,总膨胀比在38~340之间,末级膨胀机排气接近常压;当为多台膨胀机时,多台膨胀机为共轴串联形式、或分轴并联形式;并联形式中,各分轴与主驱动轴动连接;各级膨胀机的进气均先经过蓄热/换热器加热升温。
所述的超临界空气储能系统,其所述压缩机,是活塞式、轴流式、离心式、螺杆式或混合式。
所述的超临界空气储能系统,其所述膨胀机,是活塞式、轴流式、向心式、螺杆式或混合式。
所述的超临界空气储能系统,其所述在多台压缩机、多台膨胀机时,多台压缩机、多台膨胀机分布在一根驱动轴或多根驱动轴上。
所述的超临界空气储能系统,其压缩空气的流量大于工作空气的流量,其多出的量低于工作空气流量的10%。
所述的超临界空气储能系统,其还包括蓄热/换热器(25),蓄热/换热器(25)通过管线(26、27)与太阳能集热器相通连,形成载热循环回路;
蓄热/换热器(2)、蓄热/换热器(25)、低压膨胀机、高压膨胀机经管线(20、21、22)顺序连接,形成做功回路;
其流程为:
而出蓄热/换热器(2)的超临界空气在蓄热/换热器(25)中被加热至高温,然后经过管线(20)进入高压膨胀机膨胀做功,高压膨胀机出口空气再依次经过管线(21)、蓄热/换热器(2)、蓄热/换热器(25)、管线(22)完成级间加热升温后,进入低压膨胀机膨胀做功。
所述的超临界空气储能系统,其所述蓄热/换热器,其蓄热形式是显热、潜热或化学反应热中的一种或几种;
采用的蓄热介质是水、石蜡、生物质油、无机类结晶水合盐、熔融盐、金属及其合金、有机类脂肪酸、石头、岩石或混凝土,蓄热介质储存在绝热容器中;
其中,蓄热/换热器(2),储能时,回收并储存压缩机产生的压缩热,释能时,加热进各级膨胀机前的压缩空气;
同时,释能时,经管线(23)输进余热、废热为蓄热/换热器(2)补充热量。
所述的超临界空气储能系统,其所述蓄冷/换热器,将超临界空气冷却至81K-150K(K为开氏温度单位),是显热蓄冷或固液相变蓄冷中的一种或组合;
采用的显热蓄冷介质,是密封冰球、沙石子、混凝土、铝带盘或其它金属物质中的一种或几种;固液相变蓄冷介质,是固液相变温度在81K~273K之间的氨及其水溶液、盐类水溶液、烷烃类、烯烃类物质及其化合物,醇类及其水溶液中的一种或几种,蓄冷介质存储在绝热容器中;
超临界空气或液态空气在蓄冷/换热器中与蓄冷介质直接接触换热或非直接接触换热;
储能时,蓄冷/换热器对超临界空气进行冷却,释能时,蓄冷/换热器回收并储存高压液态空气升温过程中的冷量。
所述的超临界空气储能系统,其所述蓄冷/换热器,在低温冷量不足时,加装有低温透平膨胀机或节流装置,提供冷量补充;同时,低温压缩空气经节流阀后大部分液化,未液化的一小部分低温空气提供冷量补偿。
所述的超临界空气储能系统,其所述低温储罐,为杜瓦储罐或低温储槽,液态空气在常压或带压力状况下储存。
所述的超临界空气储能系统,其所述低温泵,为往复式,离心式或混合式,将液态空气增压至3.8MPa-34MPa;当多台时,是多级串联或并联。
所述的超临界空气储能系统,生产空分产品时,在蓄冷/换热器与低温储罐之间的管线(32、33)上设置空气分离设备,空气分离设备底部设有管线(29);
其流程为:
在蓄冷/换热器中冷却至一定温度的低温流体进入空气分离设备后,分离出的气体产品从管线(29)引出,提纯的液态产品通过管线(33)送至低温储罐中储存。
所述的超临界空气储能系统,将低压膨胀机排气用于空调、制冷时,通过调节低压膨胀机的进口温度与膨胀比,控制低压膨胀机出口气体B的温度。
所述的超临界空气储能系统,其储能时,通过控制第一级压缩机进气量来调节储能能力。
所述的超临界空气储能系统,其所述控制第一级压缩机进气量,是通过调节压缩机负载、开停部分压缩机或调节压比来实现进气量的控制。
所述的超临界空气储能系统,其释能时,通过控制液态空气气化量来调节发电能力。
所述的超临界空气储能系统,将余热、废热或太阳能集热储存在蓄热/换热器(2、25)中用于加热超临界空气,或通过余热/废热换热器直接加热超临界空气,来提高进膨胀机前超临界空气的温度。
所述的超临界空气储能系统,其所述余热、废热,为电厂、水泥行业、钢铁冶金行业、化工行业的余热、废热;余热、废热储存在蓄热/换热器(2)中,太阳能集热储存在蓄热/换热器(25)中。
本发明的优点在于:能量密度高、储能效率高、储能周期不受限制,适用于各种类型电站,具有广阔的使用前景。不需要大的储存装置,对环境友好、废热回收,提高了土地和资源使用效率。
附图说明
图1为本发明的超临界空气储能系统实施例1结构示意图;
图2为本发明的超临界空气储能系统实施例2结构示意图;
图3为本发明的超临界空气储能系统实施例3结构示意图;
图4为本发明的超临界空气储能系统实施例4结构示意图。
具体实施方式
本发明的超临界空气储能系统,采用电站低谷(低价)电能将空气压缩至超临界状态(同时存储压缩热),并利用存储的冷能将超临界空气冷却液化储存(储能);在用电高峰,液态空气加压吸热至超临界状态(同时液态空气中的冷能被回收存储),并进一步吸收存储的压缩热后通过膨胀机驱动发电机发电(释能),在此过程中电厂中的一些废热可以被回收以提高系统效率。由于空气在超临界条件下的特殊性质,本发明提出的超临界空气储能系统有以下潜在优点:
能量密度高:超临界空气和液态空气具有很高的密度(常压下液态空气和气态空气的密度比约为800∶1),因而相同条件下的能量密度可比压缩空气储能系统高1个数量级以上,比抽水电站(以500米落差计)高2个数量级以上。
不需要大的储存装置:由于能量密度高,空气储罐的体积大大缩小,可以大幅节省投资,缩短建设周期。更重要是可以不受地理条件限制,解决传统压缩空气储能系统的主要缺点。
储能效率高:由于采用必要的储热、储冷设备,系统的效率可比传统压缩空气储能系统更高,初步估算可达65%以上。
储能周期不受限制:目前常规工业用真空低温储罐(杜瓦罐)可大规模长期保存液态空气,其每天的损耗散率可小于0.005。
适用各种类型电站:由于该储能系统同电站系统仅仅交换电能,不涉及电站内部流程,因此可以适合各种类型的电站。
对环境友好:该储能系统不涉及化石燃料的燃烧,不排放任何有害物质;不仅如此,超临界空气在冷却过程中,很容易去除其中的有害物质如CO2、SOx、NOx等,从而改善大气质量。
废热回收:可以和电厂及其他工业部门结合,既可储能又可有效回收各种废热,如水泥行业、钢铁冶金行业、化工行业等。
实施例:
如图1所示,为本发明的超临界空气储能系统实施例1。其中,低压压缩机1,蓄热/换热器2,高压压缩机3,蓄冷/换热器4,节流阀5,低温储罐6,阀门7,低温泵8,高压膨胀机9,低压膨胀机10,发电机11,驱动电机12,管线13、14、15、16、17、18、19、20、21、122、23、24、30、31,空气A。
驱动电机12与压缩机1、3的共有传动轴固接,发电机11与膨胀机9、10的共有传动轴固接。低压压缩机1经管线13、高压压缩机3经管线14、15分别与蓄热/换热器2相通连。低压压缩机1入口接空气A。蓄热/换热器2、蓄冷/换热器4、低温储罐6经管线16、17、18、19、30顺序相通连。在管线30中设有节流阀5,在管线31中设有阀门7、低温泵8,阀门7位于低温泵8上游。蓄热/换热器2经管线20、21、22分别与高压膨胀机9、低压膨胀机10相通连。低压膨胀机10的气体出口通大气。
蓄热/换热器2经管线23与外界热源相通连。蓄冷/换热器4底端设有排渣管线24。
储能时,低谷(低价)电驱动电机12带动压缩机组,净化(图中未表示)后的空气A进入低压压缩机1压缩,出口空气通过管线13进入蓄热/换热器2,与蓄热介质换热存储压缩热,冷却后的空气经过管线14进入高压压缩机3被压缩至超临界状态,经管线15将超临界空气再输送到蓄热/换热器2存储压缩热,冷却至一定温度的超临界空气经过管线16进入蓄冷/换热器4被蓄冷介质进一步冷却至低温。出蓄冷/换热器4的低温高压空气流经过节流阀5后绝大部分液化,液态空气经管线30储存在低温储罐6中,少部分未液化低温空气通过管线17回流至蓄冷/换热器4回收冷量。释能时,打开阀门7,低温泵8将来自低温储罐6的液态空气增压到一定压力后,由管线18输送至蓄冷/换热器4与蓄冷介质换热并气化,同时回收冷量,出蓄冷/换热器4的超临界空气再经由管线19进入蓄热/换热器2进一步升温,温度升高后的超临界空气通过管线20注入高压膨胀机9膨胀做功,出口空气再依次经过管线21、蓄热/换热器2、管线22完成级间加热升温后再进入低压膨胀机10膨胀做功。
一般情况下,储能与释能过程不同时运行,储能时,压缩机组工作,膨胀机组、低温泵8关停,阀门7关闭,蓄热/换热器2回收、储存压缩热,同时冷却工作气体,蓄冷/换热器4释放冷量,将超临界空气冷却至低温。释能时则相反,压缩机组关停,膨胀机组、低温泵8工作,阀门7开启,蓄冷/换热器4回收、储存冷量,同时高压液态空气升温至超临界状态,蓄热/换热器2则释放压缩热,进一步提升超临界空气温度。另外,外界热量则可以随时经由管线23进入蓄热/换热器2进行储存;超临界空气进入蓄冷/换热器4冷却,这一过程中分离出的杂质和污染物通过管线24排出。
图2是本发明的超临界空气储能系统与太阳能热发电相结合的实施例2,其主体结构与实施例1相同,另增加了与太阳能集热器的连接部分。其中,低压压缩机1,蓄热/换热器2,高压压缩机3,蓄冷/换热器4,节流阀5,低温储罐6,阀门7,低温泵8,高压膨胀机9,低压膨胀机10,发电机11,驱动电机12,管线13、14、15、16、17、18、19、20、21、22、24、26、27、30、31,高温蓄热/换热器25,空气A。
来自太阳能集热器的高温流体通过管线26进入高温蓄热/换热器25,高温流体放热降温后经管线27流回太阳能集热器吸热,从而完成载热循环。而出蓄热/换热器2的超临界空气在高温蓄热/换热器25中被加热至高温,然后经过管线20进入高压膨胀机9膨胀做功,高压膨胀机9出口空气再依次经过管线21、蓄热/换热器2、高温蓄热/换热器25、管线22完成级间加热升温后进入低压膨胀机10膨胀做功。
图3是图1的改进型实施例3,其主体结构与实施例1相同,另增加了空气分离设备(节流阀5集成在空气分离设备中)。其中,低压压缩机1,蓄热/换热器2,高压压缩机3,蓄冷/换热器4,低温储罐6,阀门7,低温泵8,高压膨胀机9,低压膨胀机10,发电机11,驱动电机12,空气分离设备28,管线13、14、15、16、17、18、19、20、21、22、23、24、29、31、32、33,空气A,出口气体B。
在蓄冷/换热器4中冷却至一定温度的低温流体进入空气分离设备28,气体产品氧气(O2)、氩气(Ar)等从管线29引出,提纯的液氮通过管线33送至低温储罐6中储存。另外,通过调节低压膨胀机10的进口温度与膨胀比从而控制低压膨胀机10出口气体B的温度,使其可用于空调、制冷等不同用途。
图4是本发明的超临界空气储能系统与风电场结合的改进型实施例4,其主体结构与实施例1相同,但精简掉了驱动电机。其中,低压压缩机1,蓄热/换热器2,高压压缩机3,蓄冷/换热器4,节流阀5,低温储罐6,阀门7,低温泵8,高压膨胀机9,低压膨胀机10,发电机11,管线13、14、15、16、17、18、19、20、21、22、23、24、30、31,空气A,低谷电C,压缩功D。
不先将风能转换成电能后再驱动压缩机压缩空气,而是利用来自风力涡轮机的压缩功D直接带动压缩机自身工作。各部分压缩空气通过各自输气管线输送至蓄热/换热器2存储压缩热。由于压缩过程分散,压缩热在输气过程中部分散失,可以利用管线23加入废热、余热等外界热量,或通过低谷电C加热为蓄热/换热器2提供热量补充。
Claims (25)
1.一种超临界空气储能系统,压缩机组、蓄热/换热器、蓄冷/换热器、节流阀、低温储罐、阀门、低温泵、膨胀机组、发电机、驱动单元及多根管线;其特征在于:
压缩机组包括至少一台低压压缩机、至少一台高压压缩机,相互串联或集成为整体多级压缩机,每一台低压压缩机入口接空气源;膨胀机组包括至少一台低压膨胀机、至少一台高压膨胀机,相互串联或集成为整体多级膨胀机,每一台低压膨胀机的气体出口通大气;
驱动单元与压缩机组的传动轴固接,发电机与两膨胀机组的传动轴固接;
低压压缩机经管线(13)、高压压缩机经管线(14、15)分别与蓄热/换热器(2)相通连;蓄热/换热器(2)、蓄冷/换热器、低温储罐经管线(16、17、18、19、30)顺序相通连;
在管线(30)中设有节流阀,在管线(31)中设有阀门、至少一台低温泵,阀门位于低温泵上游;
蓄热/换热器经管线(20、21、22)分别与高压膨胀机、低压膨胀机相通连;
蓄冷/换热器底端设有排渣管线(24);
其流程为:
储能时,利用驱动单元驱动由低压压缩机与高压压缩机组成的压缩机组,将一定量的空气压缩至超临界状态,压缩热被回收并存储在蓄热/换热器(2)中;超临界空气进入蓄冷/换热器中冷却,绝大部分低温压缩空气通过节流阀后液化,液态空气进入低温储罐存储;释能时,低温泵对液态空气加压,高压液态空气在蓄冷/换热器中升温至超临界状态并回收冷能,在蓄热/换热器(2)中吸收压缩热将超临界空气进一步升温,然后进入高压膨胀机与低压膨胀机组成的膨胀机组膨胀做功,带动发电机发电。
2.根据权利要求1所述的超临界空气储能系统,其特征在于:所述驱动单元,为驱动电机或风力机;为驱动电机时,是以常规电站低谷电、核电、风电、太阳能发电、水电或潮汐发电其中的一种或多种为电源。
3.根据权利要求1所述的超临界空气储能系统,其特征在于:储能过程在电力低谷、可再生能源限电或电能质量不符合上网要求时启用;释能过程在用电高峰、电力事故、可再生能源发电大幅波动时启用。
4.根据权利要求1所述的超临界空气储能系统,其特征在于:所述蓄热/换热器(2)还设有管线(23),该管线与外界热源相通连。
5.根据权利要求1所述的超临界空气储能系统,其特征在于:空气压缩、冷却过程中还包括空气净化与纯化,除去空气中的固体物及杂质气体;空气净化与纯化设备集成在压缩机组及蓄冷/换热器中。
6.根据权利要求5所述的超临界空气储能系统,其特征在于:所述空气纯化设备,在原料空气中的CO2,水蒸气,氩对空气压缩、冷却、液化设备的正常工作和液态空气的产量影响小时,为过滤装置。
7.根据权利要求1所述的超临界空气储能系统,其特征在于:所述压缩机组,总压比在38~340之间;当为多台压缩机时,多台压缩机为共轴串联形式、或分轴并联形式;并联形式中,各分轴与主驱动轴动连接;各级压缩机的排气均经过蓄热/换热器(2)。
8.根据权利要求1所述的超临界空气储能系统,其特征在于:所述膨胀机组,总膨胀比在38~340之间,末级膨胀机排气接近常压;当为多台膨胀机时,多台膨胀机为共轴串联形式、或分轴并联形式;并联形式中,各分轴与主驱动轴动连接;各级膨胀机的进气均先经过蓄热/换热器加热升温。
9.根据权利要求1或7所述的超临界空气储能系统,其特征在于:所述压缩机,是活塞式、轴流式、离心式、螺杆式或混合式。
10.根据权利要求1或8所述的超临界空气储能系统,其特征在于:所述膨胀机,是活塞式、轴流式、向心式、螺杆式或混合式。
11.根据权利要求7或8所述的超临界空气储能系统,其特征在于:所述在多台压缩机、多台膨胀机时,多台压缩机、多台膨胀机分布在一根驱动轴或多根驱动轴上。
12.根据权利要求1所述的超临界空气储能系统,其特征在于:压缩空气的流量大于工作空气的流量,其多出的量低于工作空气流量的10%。
13.根据权利要求1所述的超临界空气储能系统,其特征在于:还包括蓄热/换热器(25),蓄热/换热器(25)通过管线(26、27)与太阳能集热器相通连,形成载热循环回路;
蓄热/换热器(2)、蓄热/换热器(25)、低压膨胀机、高压膨胀机经管线(20、21、22)顺序连接,形成做功回路;
其流程为:
而出蓄热/换热器(2)的超临界空气在蓄热/换热器(25)中被加热至高温,然后经过管线(20)进入高压膨胀机膨胀做功,高压膨胀机出口空气再依次经过管线(21)、蓄热/换热器(2)、蓄热/换热器(25)、管线(22)完成级间加热升温后,进入低压膨胀机膨胀做功。
14.根据权利要求1、4或13所述的超临界空气储能系统,其特征在于:所述蓄热/换热器,其蓄热形式是显热、潜热或化学反应热中的一种或几种;
采用的蓄热介质是水、石蜡、生物质油、无机类结晶水合盐、熔融盐、金属及其合金、有机类脂肪酸、石头、岩石或混凝土,蓄热介质储存在绝热容器中;
其中,蓄热/换热器(2),储能时,回收并储存压缩机产生的压缩热,释能时,加热进各级膨胀机前的压缩空气;
同时,释能时,经管线(23)输进余热、废热为蓄热/换热器(2)补充热量。
15.根据权利要求1所述的超临界空气储能系统,其特征在于:所述蓄冷/换热器,将超临界空气冷却至81K-150K,是显热蓄冷或固液相变蓄冷中的一种或组合;
采用的显热蓄冷介质,是密封冰球、沙石子、混凝土、铝带盘或其它金属物质中的一种或几种;固液相变蓄冷介质,是固液相变温度在81K~273K之间的氨及其水溶液、盐类水溶液、烷烃类、烯烃类物质及其化合物,醇类及其水溶液中的一种或几种,蓄冷介质存储在绝热容器中;
超临界空气或液态空气在蓄冷/换热器中与蓄冷介质直接接触换热或非直接接触换热;
储能时,蓄冷/换热器对超临界空气进行冷却,释能时,蓄冷/换热器回收并储存高压液态空气升温过程中释放的冷量。
16.根据权利要求1或15所述的超临界空气储能系统,其特征在于:所述蓄冷/换热器,在低温冷量不足时,加装低温透平膨胀机或节流装置,提供冷量补充;同时,低温压缩空气经节流阀后大部分液化,未液化的一小部分低温空气提供冷量补偿。
17.根据权利要求1所述的超临界空气储能系统,其特征在于:所述低温储罐,为杜瓦储罐或低温储槽,液态空气在常压或带压力状况下储存。
18.根据权利要求1所述的超临界空气储能系统,其特征在于:所述低温泵,为往复式,离心式或混合式,将液态空气增压至3.8MPa-34MPa;当多台时,是多级串联或并联。
19.根据权利要求1所述的超临界空气储能系统,其特征在于:生产空分产品时,在蓄冷/换热器与低温储罐之间的管线(32、33)上设置空气分离设备,空气分离设备底部设有管线(29);
其流程为:
在蓄冷/换热器中冷却至一定温度的低温流体进入空气分离设备后,分离出的气体产品从管线(29)引出,提纯的液态产品通过管线(33)送至低温储罐中储存。
20.根据权利要求1或19所述的超临界空气储能系统,其特征在于:将低压膨胀机排气用于空调、制冷时,通过调节低压膨胀机的进口温度与膨胀比,控制低压膨胀机出口气体B的温度。
21.根据权利要求1所述的超临界空气储能系统,其特征在于:储能时,通过控制第一级压缩机进气量来调节储能能力。
22.根据权利要求21所述的超临界空气储能系统,其特征在于:所述控制第一级压缩机进气量,是通过调节压缩机负载、开停部分压缩机或调节压比来实现进气量的控制。
23.根据权利要求1所述的超临界空气储能系统,其特征在于:释能时,通过控制液态空气气化量来调节发电能力。
24.根据权利要求1所述的超临界空气储能系统,其特征在于:将余热、废热或太阳能集热储存在蓄热/换热器(2、25)中用于加热超临界空气,或通过余热/废热换热器直接加热超临界空气,来提高进膨胀机前超临界空气的温度。
25.根据权利要求24所述的超临界空气储能系统,其特征在于:所述余热、废热,为电厂、水泥行业、钢铁冶金行业、化工行业的余热、废热;余热、废热储存在蓄热/换热器(2)中,太阳能集热储存在蓄热/换热器(25)中。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102252523A CN102052256B (zh) | 2009-11-09 | 2009-11-18 | 超临界空气储能系统 |
PCT/CN2010/001325 WO2011054169A1 (zh) | 2009-11-09 | 2010-08-31 | 超临界空气储能系统 |
ES10827783.1T ES2572657T3 (es) | 2009-11-09 | 2010-08-31 | Sistema de almacenamiento de energía con aire supercrítico |
US13/508,019 US9217423B2 (en) | 2009-11-09 | 2010-08-31 | Energy storage system using supercritical air |
JP2012537281A JP5508540B2 (ja) | 2009-11-09 | 2010-08-31 | 超臨界空気蓄エネルギーシステム |
EP10827783.1A EP2500565B1 (en) | 2009-11-09 | 2010-08-31 | Supercritical air energy storage system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910237029 | 2009-11-09 | ||
CN200910237029.0 | 2009-11-09 | ||
CN2009102252523A CN102052256B (zh) | 2009-11-09 | 2009-11-18 | 超临界空气储能系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102052256A true CN102052256A (zh) | 2011-05-11 |
CN102052256B CN102052256B (zh) | 2013-12-18 |
Family
ID=43956921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102252523A Active CN102052256B (zh) | 2009-11-09 | 2009-11-18 | 超临界空气储能系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9217423B2 (zh) |
EP (1) | EP2500565B1 (zh) |
JP (1) | JP5508540B2 (zh) |
CN (1) | CN102052256B (zh) |
ES (1) | ES2572657T3 (zh) |
WO (1) | WO2011054169A1 (zh) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102213113A (zh) * | 2011-06-12 | 2011-10-12 | 中国科学院工程热物理研究所 | 一种压缩空气储能系统 |
CN102758748A (zh) * | 2012-07-29 | 2012-10-31 | 中国科学院工程热物理研究所 | 高压液态空气储能/释能系统 |
CN102758689A (zh) * | 2012-07-29 | 2012-10-31 | 中国科学院工程热物理研究所 | 超超临界空气储能/释能系统 |
CN102758690A (zh) * | 2012-07-29 | 2012-10-31 | 中国科学院工程热物理研究所 | 高效高压液态空气储能/释能系统 |
CN102954050A (zh) * | 2011-08-22 | 2013-03-06 | 中国科学院工程热物理研究所 | 一种液压-气压结合的活塞式储能系统 |
CN102996359A (zh) * | 2011-09-14 | 2013-03-27 | 周登荣 | 自然能源蓄能发电方法及其发电系统 |
CN103016152A (zh) * | 2012-12-06 | 2013-04-03 | 中国科学院工程热物理研究所 | 一种新型流程的超临界空气储能系统 |
CN103114971A (zh) * | 2013-02-06 | 2013-05-22 | 西安交通大学 | 用于平抑集群化风电场功率输出波动的混合储能系统 |
CN103266952A (zh) * | 2013-05-22 | 2013-08-28 | 南京飓能电控自动化设备制造有限公司 | 基于超临界空气的能源综合利用系统 |
CN103452612A (zh) * | 2013-08-28 | 2013-12-18 | 中国科学院工程热物理研究所 | 一种以二氧化碳为工质的压缩气体储能系统 |
CN103225598B (zh) * | 2013-04-27 | 2015-11-18 | 清华大学 | 一种压缩空气与储热介质同时储能的方法及系统 |
CN105179033A (zh) * | 2015-08-12 | 2015-12-23 | 中国科学院工程热物理研究所 | 一种利用低温冷能存储电能的系统及其运行方法 |
CN105201555A (zh) * | 2015-10-20 | 2015-12-30 | 彭学军 | 一种应用于高压气体发电的联合膨胀动力系统 |
WO2016000133A1 (en) * | 2014-06-30 | 2016-01-07 | Tsinghua University | Method and system of efficiency evaluation of rcaes system |
CN105370408A (zh) * | 2015-12-16 | 2016-03-02 | 中国科学院工程热物理研究所 | 一种新型蓄热式压缩空气储能系统 |
CN105546934A (zh) * | 2016-03-09 | 2016-05-04 | 成都深冷液化设备股份有限公司 | 一种空气液化装置及其能量转换贮存和利用方法 |
CN105697066A (zh) * | 2016-02-03 | 2016-06-22 | 中国科学院理化技术研究所 | 低温液态空气储能系统 |
CN105756727A (zh) * | 2016-04-26 | 2016-07-13 | 中科合肥微小型燃气轮机研究院有限责任公司 | 一种用于燃气轮机试验台的综合气源系统 |
CN105927303A (zh) * | 2016-06-16 | 2016-09-07 | 全球能源互联网研究院 | 一种储罐增压型的深冷液态空气储能系统 |
CN106121749A (zh) * | 2015-05-04 | 2016-11-16 | 熵零股份有限公司 | 蓄能方法及其发动机 |
CN107893735A (zh) * | 2017-11-07 | 2018-04-10 | 西安交通大学 | 一种利用波浪能/风能的递进式水下压缩空气储能系统 |
CN108050026A (zh) * | 2017-12-06 | 2018-05-18 | 华北电力大学 | 一种太阳能热电站与压缩空气储能单元联合运行装置及其控制方法 |
CN108151364A (zh) * | 2017-12-22 | 2018-06-12 | 中国科学院上海应用物理研究所 | 热泵式储能供电供热方法及装置 |
CN108235534A (zh) * | 2017-12-17 | 2018-06-29 | 江西烈日之光新能源有限公司 | 一种高速公路太阳能路灯系统 |
CN108224323A (zh) * | 2017-12-17 | 2018-06-29 | 江西烈日之光新能源有限公司 | 一种太阳能路灯系统 |
CN108240241A (zh) * | 2017-03-20 | 2018-07-03 | 华北电力大学(保定) | 一种利用新能源液化空气的储能发电系统 |
CN108240235A (zh) * | 2017-05-26 | 2018-07-03 | 华北电力大学(保定) | 一种非补燃式液化空气储能发电系统 |
CN108252869A (zh) * | 2018-02-09 | 2018-07-06 | 四川中投亿星新能源科技有限公司 | 一种风力驱动单螺杆压缩机 |
CN108533476A (zh) * | 2018-05-21 | 2018-09-14 | 中国科学院工程热物理研究所 | 一种热泵超临界空气储能系统 |
CN108592518A (zh) * | 2018-04-09 | 2018-09-28 | 华北电力科学研究院有限责任公司 | 深冷液化空气储能发电系统及其启停控制方法 |
CN108645116A (zh) * | 2018-04-10 | 2018-10-12 | 杭州杭氧化医工程有限公司 | 一种带盘管蓄冷器的液化空气储能系统 |
CN106091574B (zh) * | 2016-06-02 | 2018-10-30 | 成都深冷液化设备股份有限公司 | 一种带压缩热回收的气体液化装置及其液化方法 |
WO2018218617A1 (zh) * | 2017-06-01 | 2018-12-06 | 中国科学院工程热物理研究所 | 分级蓄冷式超临界压缩空气储能系统及方法 |
CN109026241A (zh) * | 2018-08-30 | 2018-12-18 | 中国科学院工程热物理研究所 | 一种热泵压缩空气储能系统 |
CN109412183A (zh) * | 2018-11-22 | 2019-03-01 | 西安热工研究院有限公司 | 一种联合富氧燃烧和液态氧储能的集成发电系统及方法 |
CN110691894A (zh) * | 2017-03-01 | 2020-01-14 | 埃皮卡姆有限公司 | 液态空气发动机和液态空气发动机操作方法,以及发动机操作方法及空气液化方法和系统 |
CN111141056A (zh) * | 2019-12-24 | 2020-05-12 | 中国科学院工程热物理研究所 | 一种基于间接储冷储热的热泵储能系统 |
CN111305917A (zh) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | 一种蒸汽补热空气储能调峰系统及方法 |
CN111305919A (zh) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | 一种发电厂空气储能灵活性调峰系统及方法 |
CN112178961A (zh) * | 2020-09-16 | 2021-01-05 | 西安交通大学 | 基于化学储热的产电供热制冷取水结合的系统及方法 |
CN112234634A (zh) * | 2020-10-19 | 2021-01-15 | 中国科学院理化技术研究所 | 混合储能发电系统及方法 |
CN113036932A (zh) * | 2021-02-26 | 2021-06-25 | 中国科学院力学研究所 | 一种co2跨临界热力循环储电系统和方法 |
CN113098037A (zh) * | 2021-03-29 | 2021-07-09 | 广东电网有限责任公司 | 一种热电混合储能系统的控制方法及其系统 |
CN113175426A (zh) * | 2021-04-16 | 2021-07-27 | 西安热工研究院有限公司 | 一种先进液化压缩空气储能调峰系统及方法 |
CN113202584A (zh) * | 2021-05-21 | 2021-08-03 | 中盐华能储能科技有限公司 | 燃气-空气-蒸汽三工质联合循环发电系统及方法 |
CN113454313A (zh) * | 2019-02-19 | 2021-09-28 | 能源穹顶公司 | 能量存储设备以及方法 |
CN113890087A (zh) * | 2021-09-13 | 2022-01-04 | 中国华能集团有限公司河北雄安分公司 | 供能系统 |
CN113899162A (zh) * | 2021-10-15 | 2022-01-07 | 华能(天津)煤气化发电有限公司 | 一种igcc电站用快速变负荷的空分装置及其控制方法 |
CN114279107A (zh) * | 2021-12-24 | 2022-04-05 | 中国科学院工程热物理研究所 | 一种开式热泵储电系统及方法 |
CN114645832A (zh) * | 2022-03-24 | 2022-06-21 | 中国科学院工程热物理研究所 | 空气制冷存储与发电方法及其系统 |
CN114810238A (zh) * | 2022-06-23 | 2022-07-29 | 西安热工研究院有限公司 | 一种自压增强式重力压缩空气储能系统和储能方法 |
CN115218608A (zh) * | 2022-07-21 | 2022-10-21 | 北京中科富海低温科技有限公司 | 一种液空储气的工艺方法 |
WO2022237792A1 (zh) * | 2021-05-12 | 2022-11-17 | 王全龄 | 一种光伏蓄能电站 |
CN117266944A (zh) * | 2023-11-22 | 2023-12-22 | 泉州装备制造研究所 | 一种基于储气罐温度控制的绝热压缩空气储能系统 |
CN117578744A (zh) * | 2024-01-16 | 2024-02-20 | 合肥通用机械研究院有限公司 | 一种耦合冷量回收的压缩空气储能发电系统及方法 |
WO2024207582A1 (zh) * | 2023-04-07 | 2024-10-10 | 中国长江三峡集团有限公司 | 压缩空气联储共热系统、电力系统及压缩空气储能方法 |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120255312A1 (en) * | 2010-09-27 | 2012-10-11 | Air Products And Chemicals, Inc. | Method and System to Produce Electric Power |
CN102392793B (zh) * | 2011-07-29 | 2013-11-27 | 周天清 | 一种以空气为介质的能量存储、释放的风力发电系统 |
DE102012204081A1 (de) * | 2012-03-15 | 2013-09-19 | Siemens Aktiengesellschaft | Energiespeicherkraftwerk |
DE102012006746A1 (de) * | 2012-04-03 | 2013-10-10 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Erzeugung elektrischer Energie |
KR20140042516A (ko) * | 2012-09-28 | 2014-04-07 | 한국전력공사 | 액화냉매를 이용한 압축에너지 저장 장치 |
US10443603B2 (en) * | 2012-10-03 | 2019-10-15 | Praxair Technology, Inc. | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
US10385861B2 (en) * | 2012-10-03 | 2019-08-20 | Praxair Technology, Inc. | Method for compressing an incoming feed air stream in a cryogenic air separation plant |
KR102054128B1 (ko) * | 2013-09-30 | 2019-12-12 | 한국전력공사 | 열에너지 저장장치 |
FR3015555A1 (fr) * | 2013-12-20 | 2015-06-26 | Air Liquide | Procede et appareil de generation d’electricite utilisant une centrale thermique ou nucleaire |
WO2015123613A1 (en) * | 2014-02-14 | 2015-08-20 | Mada Energie Llc | Thermally charged liquid air energy storage systems, methods, and devices |
WO2015138817A1 (en) | 2014-03-12 | 2015-09-17 | Mada Energie Llc | Liquid air energy storage systems, devices, and methods |
US20150300209A1 (en) * | 2014-03-24 | 2015-10-22 | Mada Energie Llc | Systems, methods, and devices for power storage, recovery, and balancing |
EP2930322A1 (de) * | 2014-04-11 | 2015-10-14 | Linde Aktiengesellschaft | Verfahren und Anlage zum Speichern und Rückgewinnen von Energie |
CN105329089B (zh) * | 2014-08-06 | 2020-08-14 | 江洪泽 | 车船增储冷能的动力系统 |
DE102015204466A1 (de) * | 2015-03-12 | 2016-09-15 | Siemens Aktiengesellschaft | Anordnung mit zwei Verdichtern, Verfahren zum Nachrüsten |
CN107429577B (zh) * | 2015-03-25 | 2019-10-18 | 西屋电气有限责任公司 | 超临界二氧化碳发电布雷顿循环系统和方法 |
GB2538784A (en) * | 2015-05-28 | 2016-11-30 | Highview Entpr Ltd | Improvements in energy storage |
CN105043147B (zh) * | 2015-06-25 | 2017-01-25 | 中国科学院理化技术研究所 | 一种采用液态蓄冷工质的液化压缩空气储能系统 |
DE102015009256A1 (de) | 2015-07-16 | 2017-01-19 | Linde Aktiengesellschaft | Festbettkältespeicher und Verfahren zur Speicherung von thermischer Energie |
CN105114138B (zh) * | 2015-08-12 | 2016-08-31 | 中国科学院工程热物理研究所 | 一种低温储能发电系统及其运行方法 |
GB2542796A (en) * | 2015-09-29 | 2017-04-05 | Highview Entpr Ltd | Improvements in heat recovery |
JP6649141B2 (ja) * | 2016-03-18 | 2020-02-19 | 株式会社神戸製鋼所 | 圧縮空気貯蔵発電装置 |
US11746013B2 (en) * | 2016-06-27 | 2023-09-05 | Texas Tech University System | Apparatus and method for separating liquid oxygen from liquified air |
US10571188B2 (en) * | 2017-01-05 | 2020-02-25 | Stanislav Sinatov | Method for thermally assisted electric energy storage |
US10634013B2 (en) | 2017-09-05 | 2020-04-28 | Stanislav Sinatov | Method for liquid air energy storage with semi-closed CO2 bottoming cycle |
CN107701406A (zh) * | 2017-10-31 | 2018-02-16 | 清华大学 | 一种尾气回热的绝热压缩空气储能系统 |
CN107780989A (zh) * | 2017-11-09 | 2018-03-09 | 浙江大学 | 一种压缩空气电力储能系统 |
FR3074844B1 (fr) * | 2017-12-11 | 2020-06-12 | IFP Energies Nouvelles | Procede ameliore de stockage et de production d'energie avec une gestion de l'eau optimisee |
FR3074845B1 (fr) * | 2017-12-11 | 2020-06-12 | IFP Energies Nouvelles | Systeme de stockage et de recuperation d'energie ameliore |
US11578916B2 (en) * | 2017-12-29 | 2023-02-14 | L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georqes Claude | Method and device for producing air product based on cryogenic rectification |
CN108252750A (zh) * | 2018-01-09 | 2018-07-06 | 华北电力大学(保定) | 一种有效利用压缩热的液化空气储能发电系统 |
CN108252751A (zh) * | 2018-01-09 | 2018-07-06 | 华北电力大学(保定) | 一种有效利用液态空气冷能的液化空气储能发电系统 |
GB2570946B (en) * | 2018-02-13 | 2021-03-10 | Highview Entpr Ltd | Heat-of-compression recycle system, and sub-systems thereof |
CN108612572B (zh) * | 2018-07-04 | 2024-03-12 | 西安热工研究院有限公司 | 一种超临界二氧化碳布雷顿循环工质回收系统和方法 |
CA3056117A1 (en) * | 2019-09-20 | 2021-03-20 | Daniel L. Cluff | Hybrid cryogenic process |
US11905857B2 (en) * | 2020-03-24 | 2024-02-20 | Energy Dome S.P.A. | Plant and process for energy generation and storage |
CN111396162B (zh) * | 2020-04-20 | 2024-05-07 | 贵州电网有限责任公司 | 一种高效率的先进压缩空气储能系统及方法 |
KR102379133B1 (ko) * | 2020-08-13 | 2022-03-29 | 한국기계연구원 | 액체수소 충전소 |
CN111963269A (zh) * | 2020-08-28 | 2020-11-20 | 西安热工研究院有限公司 | 耦合铝储能和超临界co2循环发电的多联产系统及方法 |
AU2020469637A1 (en) | 2020-09-25 | 2023-04-27 | Energy Dome S.P.A. | Plant and process for energy storage |
CN112682296A (zh) * | 2020-12-30 | 2021-04-20 | 中国核电工程有限公司 | 一种核电厂用的应急动力系统、以及核电厂动力系统 |
CN112901459B (zh) * | 2021-01-19 | 2022-04-12 | 大连理工大学 | 一种与深冷空分装置耦合集成的压缩空气储能系统 |
CN113062848A (zh) * | 2021-04-19 | 2021-07-02 | 中国长江三峡集团有限公司 | 组合式蓄热压缩空气储能系统及方法 |
US11728677B2 (en) | 2021-04-30 | 2023-08-15 | Microsoft Technology Licensing, Llc | Integrated energy storage system including a thermal energy storage coupled with a liquid metal battery storage and a cryogenic energy storage |
KR102351552B1 (ko) * | 2021-09-24 | 2022-01-14 | 고등기술연구원연구조합 | 현열저장 및 잠열저장 기능이 구비된 액화공기 생산 및 발전장치, 이를 이용한 액화공기 생산 및 발전방법 |
CN113834680B (zh) * | 2021-10-20 | 2024-02-02 | 华北电力科学研究院有限责任公司 | 液化空气储能效率的故障测试方法、装置及系统 |
CN114320828B (zh) * | 2021-12-13 | 2024-01-23 | 中国能源建设集团江苏省电力设计院有限公司 | 一种蓄热式压缩空气储能系统及控制方法 |
CN114370896B (zh) * | 2021-12-29 | 2024-03-19 | 贵州电网有限责任公司 | 一种膨胀发电系统蓄热罐加热发电能力监测方法 |
CN114543443B (zh) * | 2022-01-20 | 2024-02-20 | 上海发电设备成套设计研究院有限责任公司 | 一种液化空气与超临界二氧化碳耦合循环储能系统及方法 |
CN114622962B (zh) * | 2022-03-18 | 2024-01-12 | 中国科学院工程热物理研究所 | 一种基于流态化颗粒储冷储热的热泵储电系统 |
CN116241795A (zh) * | 2023-01-28 | 2023-06-09 | 中科富海(杭州)气体工程科技有限公司 | 一种能够稳定存储液态仪表空气的装置 |
WO2024201351A1 (en) * | 2023-03-31 | 2024-10-03 | Energy Dome S.P.A. | Energy transformation and storage plant |
CN116667400B (zh) * | 2023-08-01 | 2023-09-26 | 九州绿能科技股份有限公司 | 一种储能系统及储能方法 |
CN117433248A (zh) * | 2023-12-21 | 2024-01-23 | 河北建投国融能源服务有限公司 | 基于压缩热分级存储的液态空气储能热电联供系统及方法 |
JP7527066B1 (ja) | 2023-12-26 | 2024-08-02 | 孝 八木田 | 発電システム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03156175A (ja) * | 1989-11-10 | 1991-07-04 | Mitsui Eng & Shipbuild Co Ltd | 圧縮空気によるエネルギー蓄積利用装置 |
US6038849A (en) * | 1998-07-07 | 2000-03-21 | Michael Nakhamkin | Method of operating a combustion turbine power plant using supplemental compressed air |
CN1286516A (zh) | 2000-09-28 | 2001-03-07 | 赵申苓 | 一种利用液态空气储存电能的方法 |
US7504739B2 (en) * | 2001-10-05 | 2009-03-17 | Enis Ben M | Method of transporting and storing wind generated energy using a pipeline |
CN1225597C (zh) * | 2003-07-11 | 2005-11-02 | 西安交通大学 | 电热冷联产的压缩空气蓄能装置及方法 |
DE10358233A1 (de) * | 2003-12-12 | 2005-07-28 | Alstom Technology Ltd | Luftspeicherkraftanlage |
TW200813320A (en) | 2006-02-27 | 2008-03-16 | Highview Entpr Ltd | Electrical energy storage and generation |
CN100999999A (zh) * | 2006-11-24 | 2007-07-18 | 李治国 | 单循环热泵发电装置 |
CN101289963A (zh) * | 2007-04-18 | 2008-10-22 | 中国科学院工程热物理研究所 | 压缩空气储能系统 |
US7870746B2 (en) * | 2008-05-27 | 2011-01-18 | Expansion Energy, Llc | System and method for liquid air production, power storage and power release |
-
2009
- 2009-11-18 CN CN2009102252523A patent/CN102052256B/zh active Active
-
2010
- 2010-08-31 WO PCT/CN2010/001325 patent/WO2011054169A1/zh active Application Filing
- 2010-08-31 ES ES10827783.1T patent/ES2572657T3/es active Active
- 2010-08-31 US US13/508,019 patent/US9217423B2/en active Active
- 2010-08-31 JP JP2012537281A patent/JP5508540B2/ja active Active
- 2010-08-31 EP EP10827783.1A patent/EP2500565B1/en active Active
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102213113A (zh) * | 2011-06-12 | 2011-10-12 | 中国科学院工程热物理研究所 | 一种压缩空气储能系统 |
CN102213113B (zh) * | 2011-06-12 | 2013-11-06 | 中国科学院工程热物理研究所 | 一种压缩空气储能系统 |
CN102954050A (zh) * | 2011-08-22 | 2013-03-06 | 中国科学院工程热物理研究所 | 一种液压-气压结合的活塞式储能系统 |
CN102954050B (zh) * | 2011-08-22 | 2016-05-11 | 中国科学院工程热物理研究所 | 一种液压-气压结合的活塞式储能系统 |
CN102996359A (zh) * | 2011-09-14 | 2013-03-27 | 周登荣 | 自然能源蓄能发电方法及其发电系统 |
CN102758690B (zh) * | 2012-07-29 | 2014-08-27 | 中国科学院工程热物理研究所 | 高效高压液态空气储能/释能系统 |
CN102758748A (zh) * | 2012-07-29 | 2012-10-31 | 中国科学院工程热物理研究所 | 高压液态空气储能/释能系统 |
CN102758689A (zh) * | 2012-07-29 | 2012-10-31 | 中国科学院工程热物理研究所 | 超超临界空气储能/释能系统 |
CN102758690A (zh) * | 2012-07-29 | 2012-10-31 | 中国科学院工程热物理研究所 | 高效高压液态空气储能/释能系统 |
CN102758689B (zh) * | 2012-07-29 | 2015-03-04 | 中国科学院工程热物理研究所 | 超超临界空气储能/释能系统 |
CN103016152B (zh) * | 2012-12-06 | 2014-10-01 | 中国科学院工程热物理研究所 | 一种新型流程的超临界空气储能系统 |
CN103016152A (zh) * | 2012-12-06 | 2013-04-03 | 中国科学院工程热物理研究所 | 一种新型流程的超临界空气储能系统 |
CN103114971B (zh) * | 2013-02-06 | 2014-11-05 | 西安交通大学 | 用于平抑集群化风电场功率输出波动的混合储能系统 |
CN103114971A (zh) * | 2013-02-06 | 2013-05-22 | 西安交通大学 | 用于平抑集群化风电场功率输出波动的混合储能系统 |
CN103225598B (zh) * | 2013-04-27 | 2015-11-18 | 清华大学 | 一种压缩空气与储热介质同时储能的方法及系统 |
CN103266952A (zh) * | 2013-05-22 | 2013-08-28 | 南京飓能电控自动化设备制造有限公司 | 基于超临界空气的能源综合利用系统 |
CN103266952B (zh) * | 2013-05-22 | 2015-09-02 | 南京飓能电控自动化设备制造有限公司 | 基于超临界空气的能源综合利用系统 |
CN103452612A (zh) * | 2013-08-28 | 2013-12-18 | 中国科学院工程热物理研究所 | 一种以二氧化碳为工质的压缩气体储能系统 |
CN103452612B (zh) * | 2013-08-28 | 2015-01-28 | 中国科学院工程热物理研究所 | 一种以二氧化碳为工质的压缩气体储能系统 |
WO2016000133A1 (en) * | 2014-06-30 | 2016-01-07 | Tsinghua University | Method and system of efficiency evaluation of rcaes system |
US10837321B2 (en) | 2014-06-30 | 2020-11-17 | Tsinghua University | Method and system of efficiency evaluation of RCAES system |
CN106121749A (zh) * | 2015-05-04 | 2016-11-16 | 熵零股份有限公司 | 蓄能方法及其发动机 |
CN105179033A (zh) * | 2015-08-12 | 2015-12-23 | 中国科学院工程热物理研究所 | 一种利用低温冷能存储电能的系统及其运行方法 |
CN105201555A (zh) * | 2015-10-20 | 2015-12-30 | 彭学军 | 一种应用于高压气体发电的联合膨胀动力系统 |
CN105370408A (zh) * | 2015-12-16 | 2016-03-02 | 中国科学院工程热物理研究所 | 一种新型蓄热式压缩空气储能系统 |
CN105697066A (zh) * | 2016-02-03 | 2016-06-22 | 中国科学院理化技术研究所 | 低温液态空气储能系统 |
CN105546934A (zh) * | 2016-03-09 | 2016-05-04 | 成都深冷液化设备股份有限公司 | 一种空气液化装置及其能量转换贮存和利用方法 |
CN105756727A (zh) * | 2016-04-26 | 2016-07-13 | 中科合肥微小型燃气轮机研究院有限责任公司 | 一种用于燃气轮机试验台的综合气源系统 |
CN106091574B (zh) * | 2016-06-02 | 2018-10-30 | 成都深冷液化设备股份有限公司 | 一种带压缩热回收的气体液化装置及其液化方法 |
CN105927303A (zh) * | 2016-06-16 | 2016-09-07 | 全球能源互联网研究院 | 一种储罐增压型的深冷液态空气储能系统 |
CN110691894A (zh) * | 2017-03-01 | 2020-01-14 | 埃皮卡姆有限公司 | 液态空气发动机和液态空气发动机操作方法,以及发动机操作方法及空气液化方法和系统 |
CN108240241A (zh) * | 2017-03-20 | 2018-07-03 | 华北电力大学(保定) | 一种利用新能源液化空气的储能发电系统 |
CN108240235A (zh) * | 2017-05-26 | 2018-07-03 | 华北电力大学(保定) | 一种非补燃式液化空气储能发电系统 |
WO2018218617A1 (zh) * | 2017-06-01 | 2018-12-06 | 中国科学院工程热物理研究所 | 分级蓄冷式超临界压缩空气储能系统及方法 |
US11892234B2 (en) | 2017-06-01 | 2024-02-06 | Institute Of Engineering Thermophysics, Chinese Academy Of Sciences | Staged cryogenic storage type supercritical compressed air energy storage system and method |
CN107893735B (zh) * | 2017-11-07 | 2019-07-23 | 西安交通大学 | 一种利用波浪能和风能的递进式水下压缩空气储能系统 |
CN107893735A (zh) * | 2017-11-07 | 2018-04-10 | 西安交通大学 | 一种利用波浪能/风能的递进式水下压缩空气储能系统 |
CN108050026A (zh) * | 2017-12-06 | 2018-05-18 | 华北电力大学 | 一种太阳能热电站与压缩空气储能单元联合运行装置及其控制方法 |
CN108235534A (zh) * | 2017-12-17 | 2018-06-29 | 江西烈日之光新能源有限公司 | 一种高速公路太阳能路灯系统 |
CN108224323A (zh) * | 2017-12-17 | 2018-06-29 | 江西烈日之光新能源有限公司 | 一种太阳能路灯系统 |
CN108151364A (zh) * | 2017-12-22 | 2018-06-12 | 中国科学院上海应用物理研究所 | 热泵式储能供电供热方法及装置 |
CN108151364B (zh) * | 2017-12-22 | 2019-01-01 | 中国科学院上海应用物理研究所 | 热泵式储能供电供热方法及装置 |
CN108252869A (zh) * | 2018-02-09 | 2018-07-06 | 四川中投亿星新能源科技有限公司 | 一种风力驱动单螺杆压缩机 |
CN108592518A (zh) * | 2018-04-09 | 2018-09-28 | 华北电力科学研究院有限责任公司 | 深冷液化空气储能发电系统及其启停控制方法 |
CN108592518B (zh) * | 2018-04-09 | 2020-08-14 | 华北电力科学研究院有限责任公司 | 深冷液化空气储能发电系统及其启停控制方法 |
CN108645116B (zh) * | 2018-04-10 | 2023-09-26 | 杭州杭氧化医工程有限公司 | 一种带盘管蓄冷器的液化空气储能系统 |
CN108645116A (zh) * | 2018-04-10 | 2018-10-12 | 杭州杭氧化医工程有限公司 | 一种带盘管蓄冷器的液化空气储能系统 |
CN108533476B (zh) * | 2018-05-21 | 2024-07-23 | 中国科学院工程热物理研究所 | 一种热泵超临界空气储能系统 |
CN108533476A (zh) * | 2018-05-21 | 2018-09-14 | 中国科学院工程热物理研究所 | 一种热泵超临界空气储能系统 |
CN109026241A (zh) * | 2018-08-30 | 2018-12-18 | 中国科学院工程热物理研究所 | 一种热泵压缩空气储能系统 |
CN109026241B (zh) * | 2018-08-30 | 2023-12-08 | 中国科学院工程热物理研究所 | 一种热泵压缩空气储能系统 |
CN109412183A (zh) * | 2018-11-22 | 2019-03-01 | 西安热工研究院有限公司 | 一种联合富氧燃烧和液态氧储能的集成发电系统及方法 |
CN113454313B (zh) * | 2019-02-19 | 2023-10-10 | 能源穹顶公司 | 能量存储设备以及方法 |
CN113454313A (zh) * | 2019-02-19 | 2021-09-28 | 能源穹顶公司 | 能量存储设备以及方法 |
CN111141056A (zh) * | 2019-12-24 | 2020-05-12 | 中国科学院工程热物理研究所 | 一种基于间接储冷储热的热泵储能系统 |
CN111305919A (zh) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | 一种发电厂空气储能灵活性调峰系统及方法 |
CN111305917A (zh) * | 2020-03-20 | 2020-06-19 | 西安西热节能技术有限公司 | 一种蒸汽补热空气储能调峰系统及方法 |
CN112178961A (zh) * | 2020-09-16 | 2021-01-05 | 西安交通大学 | 基于化学储热的产电供热制冷取水结合的系统及方法 |
CN112178961B (zh) * | 2020-09-16 | 2021-07-06 | 西安交通大学 | 基于化学储热的产电供热制冷取水结合的系统及方法 |
CN112234634A (zh) * | 2020-10-19 | 2021-01-15 | 中国科学院理化技术研究所 | 混合储能发电系统及方法 |
CN113036932A (zh) * | 2021-02-26 | 2021-06-25 | 中国科学院力学研究所 | 一种co2跨临界热力循环储电系统和方法 |
CN113098037A (zh) * | 2021-03-29 | 2021-07-09 | 广东电网有限责任公司 | 一种热电混合储能系统的控制方法及其系统 |
CN113175426A (zh) * | 2021-04-16 | 2021-07-27 | 西安热工研究院有限公司 | 一种先进液化压缩空气储能调峰系统及方法 |
US12021382B2 (en) | 2021-05-12 | 2024-06-25 | Quanling WANG | Photovoltaic energy storage power station |
WO2022237792A1 (zh) * | 2021-05-12 | 2022-11-17 | 王全龄 | 一种光伏蓄能电站 |
CN113202584A (zh) * | 2021-05-21 | 2021-08-03 | 中盐华能储能科技有限公司 | 燃气-空气-蒸汽三工质联合循环发电系统及方法 |
CN113890087A (zh) * | 2021-09-13 | 2022-01-04 | 中国华能集团有限公司河北雄安分公司 | 供能系统 |
CN113899162A (zh) * | 2021-10-15 | 2022-01-07 | 华能(天津)煤气化发电有限公司 | 一种igcc电站用快速变负荷的空分装置及其控制方法 |
CN114279107A (zh) * | 2021-12-24 | 2022-04-05 | 中国科学院工程热物理研究所 | 一种开式热泵储电系统及方法 |
CN114645832A (zh) * | 2022-03-24 | 2022-06-21 | 中国科学院工程热物理研究所 | 空气制冷存储与发电方法及其系统 |
CN114810238B (zh) * | 2022-06-23 | 2022-10-11 | 西安热工研究院有限公司 | 一种自压增强式重力压缩空气储能系统和储能方法 |
CN114810238A (zh) * | 2022-06-23 | 2022-07-29 | 西安热工研究院有限公司 | 一种自压增强式重力压缩空气储能系统和储能方法 |
CN115218608A (zh) * | 2022-07-21 | 2022-10-21 | 北京中科富海低温科技有限公司 | 一种液空储气的工艺方法 |
WO2024207582A1 (zh) * | 2023-04-07 | 2024-10-10 | 中国长江三峡集团有限公司 | 压缩空气联储共热系统、电力系统及压缩空气储能方法 |
CN117266944A (zh) * | 2023-11-22 | 2023-12-22 | 泉州装备制造研究所 | 一种基于储气罐温度控制的绝热压缩空气储能系统 |
CN117266944B (zh) * | 2023-11-22 | 2024-02-13 | 泉州装备制造研究所 | 一种基于储气罐温度控制的绝热压缩空气储能系统 |
CN117578744A (zh) * | 2024-01-16 | 2024-02-20 | 合肥通用机械研究院有限公司 | 一种耦合冷量回收的压缩空气储能发电系统及方法 |
CN117578744B (zh) * | 2024-01-16 | 2024-03-26 | 合肥通用机械研究院有限公司 | 一种耦合冷量回收的压缩空气储能发电系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5508540B2 (ja) | 2014-06-04 |
CN102052256B (zh) | 2013-12-18 |
EP2500565B1 (en) | 2016-03-02 |
US9217423B2 (en) | 2015-12-22 |
EP2500565A4 (en) | 2013-05-22 |
WO2011054169A1 (zh) | 2011-05-12 |
US20120216520A1 (en) | 2012-08-30 |
ES2572657T3 (es) | 2016-06-01 |
JP2013510257A (ja) | 2013-03-21 |
EP2500565A1 (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102052256B (zh) | 超临界空气储能系统 | |
CN102758689B (zh) | 超超临界空气储能/释能系统 | |
CN103016152B (zh) | 一种新型流程的超临界空气储能系统 | |
CN102758690B (zh) | 高效高压液态空气储能/释能系统 | |
CN202811078U (zh) | 超超临界空气储能/释能系统 | |
CN102758748B (zh) | 高压液态空气储能/释能系统 | |
CN105114138B (zh) | 一种低温储能发电系统及其运行方法 | |
CN108533476B (zh) | 一种热泵超临界空气储能系统 | |
CN202970911U (zh) | 一种新型流程的超临界空气储能系统 | |
CN101806293B (zh) | 一种提高液化天然气冷能发电效率的集成优化方法 | |
CN104279012B (zh) | 一种基于深冷储能的核电调峰系统 | |
CN102102586B (zh) | 一种高峰负荷发电装置 | |
CN108979762A (zh) | 分级蓄冷式超临界压缩空气储能系统及方法 | |
CN208870659U (zh) | 一种热泵压缩空气储能系统 | |
CN105736056B (zh) | 液态空气储能系统 | |
CN202811238U (zh) | 高压液态空气储能/释能系统 | |
CN105545486A (zh) | 一种燃气轮机发电系统和方法 | |
CN202811079U (zh) | 高效高压液态空气储能/释能系统 | |
CN105370407A (zh) | 低温液态空气储能系统 | |
CN104266454A (zh) | 燃气-超临界二氧化碳联合动力的液化天然气生产系统 | |
Najjar et al. | Using novel compressed‐air energy storage systems as a green strategy in sustainable power generation–a review | |
RU2273742C1 (ru) | Энергоаккумулирующая установка | |
CN203239401U (zh) | 基于超临界空气的能源综合利用系统 | |
CN204960992U (zh) | 一种低温储能发电系统 | |
CN109595461B (zh) | 一种lng再气化与液态空气制备系统及工作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |