CN112901459B - 一种与深冷空分装置耦合集成的压缩空气储能系统 - Google Patents

一种与深冷空分装置耦合集成的压缩空气储能系统 Download PDF

Info

Publication number
CN112901459B
CN112901459B CN202110065527.2A CN202110065527A CN112901459B CN 112901459 B CN112901459 B CN 112901459B CN 202110065527 A CN202110065527 A CN 202110065527A CN 112901459 B CN112901459 B CN 112901459B
Authority
CN
China
Prior art keywords
air
energy storage
compressed air
air separation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110065527.2A
Other languages
English (en)
Other versions
CN112901459A (zh
Inventor
阮雪华
宋春晓
贺高红
霍文博
鲍军江
肖武
代岩
郭明钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202110065527.2A priority Critical patent/CN112901459B/zh
Publication of CN112901459A publication Critical patent/CN112901459A/zh
Application granted granted Critical
Publication of CN112901459B publication Critical patent/CN112901459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

本发明提供了一种与深冷空分装置耦合集成的压缩空气储能系统,属于能量储存与利用技术领域。本发明从峰谷电差和分时电价政策出发,将深冷空分与压缩空气储能耦合集成,通过用电负荷削峰填谷大幅降低运行成本。由于关键设备、运行维护、管理模式等方面高度相似,本发明对储能装置和空分装置的空气压缩机整体考虑,减少设计裕量和设备投资;合理利用空分装置产生的废热,提高储能系统的发电效率;在电价高位阶段由压缩空气储能系统直接向空分装置提供带压空气,大幅减少高成本电能的消耗。通过深冷空分装置和压缩空气储能系统的耦合集成,用电高峰阶段与用电低谷阶段的总运行成本可节约45%,压缩空气储能装置的投资回收期约为5年。

Description

一种与深冷空分装置耦合集成的压缩空气储能系统
技术领域
本发明涉及一种与深冷空分装置耦合集成的压缩空气储能系统,属于能量储存与利用技术领域。该系统整体考虑空分和储能的空气压缩机,减少设计裕量和设备投资;储存的高压空气在电价高位阶段膨胀发电,实现用电负荷的削峰填谷;与此同时,利用空分装置的废热提高发电效率,向深冷空分装置提供压缩空气,减少电价高位阶段的能耗。
背景技术
大型空气分离装置主要采用深冷精馏工艺,通过空气压缩、膨胀制冷、低温精馏等过程将空气分离为氧气、氮气以及氩气,广泛应用于煤化工、石油化工和冶金等工业过程。在深冷空分装置中,空气压缩机和增压机是主要耗能单元,约占全装置总用能的90%。综合考虑环保、运输和生产操作便捷性等因素,深冷空分装置主要采用电力驱动。
深冷空分装置,尤其是超大规模空分装置,是耗电量巨大的能量密集型工业装置。以林德集团在中国建成的100000Nm3/h(氧气/液氧产量)深冷空分装置为例,空气压缩机的驱动电机功率达到41000kW,增压机的驱动电机功率达到23000kW。如何降低运行成本,是深冷空分装置用户企业重点关注的研究方向。
由于电力需求的多样性和不确定性,电力供应部门按照最大需求设置的供电能力,在需求低谷时段大量被闲置(尤其是经济发达地区,用电负荷存在显著的波峰和波谷,大多数情况下白天用电高峰,晚上用电低谷),显著增加发供电成本。为了优化电力资源配置,提高发供电设备利用率,保证电网安全运行,电力供应和政府部门逐渐将负荷转移管理作为电力营销的重要任务。近年来,负荷转移管理逐渐采用与客户利益挂钩的经济激励措施,比如分时电价转移高峰负荷,鼓励消费企业改变用电时间和方式,平衡电力供需关系,推动用电负荷削峰填谷,减少电费支出。深冷空分装置,作为耗电量巨大的能量密集型工业装置,如果能够充分利用峰谷分时电价这一优惠条件,即可以为装置用户显著降低运行成本,又可以为电力需求的削峰填谷提供巨大的容量。
储能装置通过物理或化学的手段实现电能储存,可以在用电低谷阶段储能,在用电高峰阶段放电,帮助企业合理利用峰谷电差和分时电价政策,降低运行成本。目前已经或者接近工业化应用的大规模储能方式包括抽水储能、压缩/液化空气储能、全钒液流电池储能以及锂电池储能等。其中,压缩空气储能涉及的介质无污染,装置所使用设备已发展成熟,并具有使用寿命长(大于15年)和效率高(70~80%)等众多优点。除此之外,压缩空气储能装置和深冷空分装置在关键设备、运行维护以及管理模式等方面具有很高的相似性,可以更好地进行耦合集成,从而降低设备投资、提高能量利用效率、简化运行维护。
基于以上背景技术,以及压缩空气储能装置与深冷空分装置在多个方面的相似性,本发明提出一种与深冷空分装置耦合集成的压缩空气储能系统,在用电低谷阶段储能,在用电高峰阶段放电,合理利用分时电价政策,实现用电负荷削峰填谷、降低空分装置运行成本。
发明内容
本发明的目的在于提供一种与深冷空分装置耦合集成的压缩空气储能系统,通过用电负荷的削峰填谷来大幅降低深冷空分装置的运行成本。在此基础上,综合考虑储能和空分的空气压缩机,降低设备投资;合理利用空分装置产生的废热来提高发电效率;在电价高位阶段直接向空分装置提供中压压缩空气,大幅减少高成本电能的消耗。本发明中实现深冷空分装置与压缩空气储能装置耦合集成的具体技术方案是:
在电价相对较低的用电低谷阶段(一般为22点至次日8点),除备机1-1之外的所有空气压缩机(1-2、1-3、1-4)满负荷运行,生产压力为0.50~0.70MPaG的压缩空气,其中第一压缩空气S-1作为空分装置进气,第二压缩空气S-2作为储能装置进气;第一压缩空气S-1进入空分装置后分为两股,第三压缩空气S-3作为深冷精馏塔的进料,第四压缩空气S-4经空气增压机2进一步提升压力至1.5~2.5MPaG后作为制冷空气源S-5送往膨胀制冷机;第二压缩空气S-2进入储能压缩机3进一步提高压力至5.0~20.0MPaG,成为第一高压储能空气S-6进入高压空气储罐4;
在电价相对较高的用电高峰阶段(一般为9点至21点),尤其是尖峰阶段,空气压缩机的备机1-1仍保持停运状态,其他三台空气压缩机(1-2、1-3、1-4)通过部分停止运行或者低负荷运行来减少压缩空气输出量,其中第一压缩空气S-1的输出量小于空分装置的空气需求量,第二压缩空气S-2停止向储能装置输出,储能压缩机3停止运行;高压空气储罐4向高压透平及发电机5输出第二高压储能空气S-7,经膨胀发电后形成两股0.50~0.70MPaG的压缩空气,即第五压缩空气S-8和第六压缩空气S-9;第五压缩空气S-8送往空分装置,S-1和S-8的总流量等于空分装置的空气需求量,大幅减少高成本电能的消耗;同时,第六压缩空气S-9送往低压透平及发电机6,经膨胀发电后形成常压外排空气S-10;与此同时,空气压缩机副产热S-11、空气增压机副产热S-12以及低温热源S-13,按照实际需求量送往高压透平及发电机5和低压透平及发电机6,通过加热储能空气来提高发电效率;在此间期间,高压透平及发电机5和低压透平及发电机6产生的电能S-14送往电网或者企业附近的大型电驱动设备,实现用电负荷的削峰填谷。
本发明的有益效果是:基于本发明的工艺流程,围绕耗电量巨大的深冷空分装置建立与之耦合集成的压缩空气储能系统,可以通过用电负荷的削峰填谷大幅降低深冷空分装置的运行成本;可以通过整体考虑空分和储能的空气压缩机,减少设计裕量和设备投资;可以合理利用空分装置产生的废热来提高压缩空气储能系统的发电效率;可以在电价高位阶段由压缩空气储能系统直接向空分装置提供中压压缩空气,大幅减少高成本电能的消耗。
附图说明
图1是与深冷空分装置耦合集成(储能装置排气规模大于空分装置进气规模)的压缩空气储能工艺原则流程图。
图2是与深冷空分装置耦合集成(储能装置排气规模小于空分装置进气规模)的压缩空气储能工艺原则流程图。
图中:1空气压缩机;2空气增压机;3储能压缩机;4高压空气储罐;5高压透平及发电机;6低压透平及发电机;S-1第一压缩空气;S-2第二压缩空气;S-3第三压缩空气;S-4第四压缩空气;S-5制冷空气源;S-6第一高压储能空气;S-7第二高压储能空气;S-8第五压缩空气;S-9第六压缩空气;S-10常压外排空气;S-11空气压缩机副产热;S-12空气增压机副产热;S-13低温热源;S-14电能。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
实施例1
实施例1针对某石化企业100000Nm3/h(氧气/液氧产量)深冷空分装置建立与之耦合集成的压缩空气储能系统,采用附图1所示流程。空分装置总气量500000Nm3/h空气,其中空气压缩机驱动电机功率41.0MW,输出压力0.70MPaG,增压机驱动电机功率23.0MW,输出压力2.50MPaG。储能系统每天的储能规模为8000000Nm3高压空气,储存压力8.3MPaG。
储能装置中空气压缩机和储能压缩机的驱动电机功率分别为65.6MW和74.0MW,每天在电价相对较低的用电低谷阶段运行10小时(22点至次日8点,0.28元/度电)。高压透平的规模为1000000Nm3/h空气,输出压力0.71MPaG,发电机功率67.2MW,在此之后,低压透平的规模为500000Nm3/h空气,输出压力0.02MPaG,发电机功率28.6MW,每天在电价相对较高的用电高峰阶段运行8小时(9点至17点,1.05元/度电)。在发电阶段,空分装置所需的压缩空气由储能装置输出的带压空气代替,空气压缩机处于待机状态,在此期间增压机正常运行;扣除增压机电耗,对外输出功率为72.8MW,每天输出582400度电。
没有配置压缩空气储能系统的100000Nm3/h深冷空分装置,用电低谷阶段运行10小时的用电成本17.92万元,用电高峰阶段运行8小时的用电成本53.76万元。按照实施例1的规格配置压缩空气储能系统后,用电低谷阶段运行10小时的用电成本57.01万元,用电高峰阶段运行8小时输出电能的收益61.15万元。综上所述,结合深冷空分装置建立与之耦合集成的139.6MW压缩空气储能装置,预计建设投资为12.8亿元,每天折旧为23.71万元,每天的收益折合约为52.11万元,投资回收期约为7年。
根据工程设计标准,空分装置中41.0MW空气压缩机的备机功率约为8.5MW,储能装置中65.6MW空气压缩机的备机功率约为13.1MW,综合考虑空分装置和储能装置的空气压缩机,可以节约一台8.5MW的空气压缩机备机,节约设备投资约为3660万元。
在电价高位阶段,由压缩空气储能系统直接向空分装置提供中压压缩空气,可大幅减少高成本电能的消耗。当空分装置500000Nm3/h空气压缩机处于待机状态时,可以减少电机功率41.0MW,而对应的500000Nm3/h低压透平及发电机,运行时电功率输出28.6MW。通过合理利用高压透平输出的带压空气,用电高峰阶段运行8小时相当于多产出99200度电,带来的经济效益达到10.41万元/天。
实施例2
实施例2针对某石化企业100000Nm3/h(氧气/液氧产量)深冷空分装置建立与之耦合集成的压缩空气储能系统,采用附图2所示流程。空分装置总气量500000Nm3/h空气,其中空气压缩机驱动电机功率41.0MW,输出压力0.70MPaG,增压机驱动电机功率23.0MW,输出压力2.50MPaG。储能系统每天的储能规模为4000000Nm3高压空气,储存压力8.3MPaG。
储能装置中空气压缩机和储能压缩机的驱动电机功率分别为32.8MW和37.0MW,每天在电价相对较低的用电低谷阶段运行10小时(22点至次日8点,0.28元/度电)。高压透平规模为500000Nm3/h空气,输出压力0.71MPaG,发电机功率33.6MW,不设置低压透平及发电机,每天在电价相对较高的用电高峰阶段运行8小时(9点至17点,1.05元/度电)。在发电阶段,空分装置所需的压缩空气由储能装置输出的带压空气代替,空气压缩机处于待机状态,增压机正常运行;扣除增压机电耗,对外输出功率为10.6MW,每天输出84800度电。
没有配置压缩空气储能系统的100000Nm3/h深冷空分装置,用电低谷阶段运行10小时的用电成本17.92万元,用电高峰阶段运行8小时的用电成本53.76万元。按照实施例2的规格配置压缩空气储能系统后,用电低谷阶段运行10小时的用电成本37.47万元,用电高峰阶段运行8小时输出电能的收益8.90万元。综上所述,结合深冷空分装置建立与之耦合集成的69.8MW压缩空气储能装置,预计建设投资为5.9亿元,每天折旧为10.93万元,每天的收益折合约为32.18万元,投资回收期约为5年。
根据工程设计标准,空分装置中41.0MW空气压缩机的备机功率约为8.5MW,储能装置中32.8MW空气压缩机的备机功率约为6.5MW,综合考虑空分装置和储能装置的空气压缩机,可以节约一台6.5MW的空气压缩机备机,节约设备投资约为2800万元。
在电价高位阶段,由压缩空气储能系统直接向空分装置提供中压压缩空气,可大幅减少高成本电能的消耗。当空分装置500000Nm3/h空气压缩机处于待机状态时,可以减少电机功率41.0MW,而对应的500000Nm3/h低压透平及发电机,运行时电功率输出28.6MW。通过合理利用高压透平输出的带压空气,用电高峰阶段运行8小时相当于多产出99200度电,带来的经济效益达到10.41万元/天。
实施例3
实施例3针对某石化企业100000Nm3/h(氧气/液氧产量)深冷空分装置建立与之耦合集成的压缩空气储能系统,采用附图2所示流程。空分装置总气量500000Nm3/h空气,其中空气压缩机驱动电机功率41.0MW,输出压力0.70MPaG,增压机驱动电机功率23.0MW,输出压力2.50MPaG。储能系统每天的储能规模为3200000Nm3高压空气,储存压力8.3MPaG。
储能装置中空气压缩机和储能压缩机的驱动电机功率分别为26.3MW和29.6MW,每天在电价相对较低的用电低谷阶段运行10小时(22点至次日8点,0.28元/度电)。高压透平规模为400000Nm3/h空气,输出压力0.71MPaG,发电机功率26.7MW,不设置低压透平及发电机,每天在电价相对较高的用电高峰阶段运行8小时(9点至17点,1.05元/度电)。在发电阶段,储能装置中高压透平输出的400000Nm3/h带压空气全部送往空分装置,同时空气压缩机负荷调整至100000Nm3/h空气,增压机正常运行。空气压缩机电耗为8.2MW,增压机电耗为23.0MW,在这种情况下,扣除储能装置输出的发电量26.7MW,仍需从电网消耗高价电能4.5MW,每天消耗36000度电。
没有配置压缩空气储能系统的100000Nm3/h深冷空分装置,用电低谷阶段运行10小时的用电成本17.92万元,用电高峰阶段运行8小时的用电成本53.76万元。按照实施例3的规格配置压缩空气储能系统后,在用电低谷阶段运行10小时的用电成本为33.57万元,在用电高峰阶段运行8小时的用电成本为3.78万元。综上所述,结合深冷空分装置建立与之耦合集成的55.9MW压缩空气储能装置,预计建设投资为4.8亿元,每天折旧为8.89万元,每天的收益折合约为25.44万元,投资回收期约为5.3年。
根据工程设计标准,空分装置中41.0MW空气压缩机的备机功率约为8.5MW,储能装置中26.3MW空气压缩机的备机功率约为5.3MW,综合考虑空分装置和储能装置的空气压缩机,可以节约一台5.3MW的空气压缩机备机,节约设备投资约为2300万元。
在电价高位阶段,由压缩空气储能系统直接向空分装置提供中压压缩空气,可大幅减少高成本电能的消耗。空分装置的空气压缩规模从500000Nm3/h减少至100000Nm3/h时,可减少电机功率32.8MW,而对应的400000Nm3/h低压透平及发电机,运行时可以输出的电功率约为22.9MW。通过合理利用高压透平输出的带压空气,用电高峰阶段运行8小时相当于多产出79200度电,带来的经济效益达到8.32万元/天。

Claims (1)

1.一种与深冷空分装置耦合集成的压缩空气储能系统,其特征在于:
在电价较低的用电低谷阶段,除备用空气压缩机外的所有空气压缩机满负荷运行,生产压缩空气,其中第一压缩空气作为空分装置进气,第二压缩空气作为储能装置进气;第一压缩空气进入空分装置后分为两股,第三压缩空气作为深冷精馏塔的进料,第四压缩空气经空气增压机进一步提升压力后作为制冷空气源送往膨胀制冷机;第二压缩空气进入储能压缩机进一步提高压力,成为第一高压储能空气进入高压空气储罐;
在电价较高的用电高峰阶段,备用空气压缩机仍保持停运状态,除备用空气压缩机外的所有空气压缩机通过部分停止运行或低负荷运行来减少压缩空气输出量,其中第一压缩空气的输出量小于空分装置的空气需求量,第二压缩空气停止向储能装置输出,储能压缩机停止运行;高压空气储罐向高压透平及发电机输出第二高压储能空气,经膨胀发电后形成两股压缩空气,即第五压缩空气和第六压缩空气;第五压缩空气送往空分装置,第一压缩空气和第五压缩空气的总流量等于空分装置的空气需求量;同时第六压缩空气送往低压透平及发电机,经膨胀发电后形成常压外排空气;与此同时,空气压缩机副产热、空气增压机副产热以及低温热源,按照实际需求量送往高压透平及发电机和低压透平及发电机,通过加热储能空气来提高发电效率;在此期间,高压透平及发电机和低压透平及发电机产生的电能送往电网或者企业附近的大型电驱动设备。
CN202110065527.2A 2021-01-19 2021-01-19 一种与深冷空分装置耦合集成的压缩空气储能系统 Active CN112901459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110065527.2A CN112901459B (zh) 2021-01-19 2021-01-19 一种与深冷空分装置耦合集成的压缩空气储能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110065527.2A CN112901459B (zh) 2021-01-19 2021-01-19 一种与深冷空分装置耦合集成的压缩空气储能系统

Publications (2)

Publication Number Publication Date
CN112901459A CN112901459A (zh) 2021-06-04
CN112901459B true CN112901459B (zh) 2022-04-12

Family

ID=76115064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110065527.2A Active CN112901459B (zh) 2021-01-19 2021-01-19 一种与深冷空分装置耦合集成的压缩空气储能系统

Country Status (1)

Country Link
CN (1) CN112901459B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638893B (zh) * 2021-07-24 2023-05-30 华北电力大学(保定) 一种带化学提质蓄热的压缩空气储能系统
CN114109777B (zh) * 2021-12-02 2022-06-24 广东鑫钻节能科技股份有限公司 一种空压气站用电能管理系统
CN114383384B (zh) * 2021-12-30 2022-09-16 北京科技大学 一种空气液化与深冷空分工艺集成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052256B (zh) * 2009-11-09 2013-12-18 中国科学院工程热物理研究所 超临界空气储能系统
US20150240654A1 (en) * 2013-12-03 2015-08-27 Mada Energie Llc Solar power and liquid air energy storage systems, methods, and devices
CN106285944B (zh) * 2016-09-13 2017-12-01 中国华能集团公司 一种利用空分系统储能的igcc电站调峰装置及方法
CN109944698B (zh) * 2019-04-10 2020-03-27 山东大学 一种提高燃气轮机电热冷联供灵活性的方法及系统
CN110849023B (zh) * 2019-11-01 2021-02-02 西安交通大学 一种压缩空气与热化学耦合储能的冷热电联产系统及方法

Also Published As

Publication number Publication date
CN112901459A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN112901459B (zh) 一种与深冷空分装置耦合集成的压缩空气储能系统
CN111237144A (zh) 一种重力压缩空气储能系统及其工作方法
US20120216520A1 (en) Energy storage system using supercritical air
CN102359437B (zh) 风力发电和压缩空气储能的一体化系统及集成方法
CN202215437U (zh) 一种风力发电和压缩空气储能的一体化系统
CN206972326U (zh) 一种新型蓄冷液化空气储能发电系统
CN112178615A (zh) 一种基于液态压缩空气储能系统的电汽气冷多联供系统
CN110543157A (zh) 一种多能互补智慧供应热电氢的系统及方法
CN114033517A (zh) 一种基于二氧化碳压缩储能的地热发电和冷热供应系统及运行方法
CN212273682U (zh) 一种加氢站与天然气调压站的电冷生产回收利用系统
CN109268144A (zh) 一种集成压缩空气储能和复合制冷的冷热电联供系统
CN109944650B (zh) 一种含超临界压缩空气储能的冷热电联产系统及方法
CN110425413B (zh) 一种大规模低能耗阶梯储氢系统及方法
CN108240242A (zh) 一种新型蓄冷液化空气储能发电系统
Huang et al. Overview of research situation and progress on compressed air energy storage technology
CN116316888A (zh) 氢电耦合系统的优化调度方法、系统及装置
CN213684262U (zh) 低压运行的液态空气储能系统能效提升装置
CN113565684A (zh) 一种二氧化碳液化实现新能源储能的发电方法及系统
CN210183021U (zh) 一种核电站电解制氢合成氨系统
CN210422701U (zh) 一种模块化可移动的冷能发电车
CN203412633U (zh) 一种压缩空气复合式蓄能发电装置
Chen et al. Performance study of salt cavern air storage based non-supplementary fired compressed air energy storage system
CN215860603U (zh) 一种二氧化碳液化实现新能源储能的发电系统
Wang et al. Study of cooling, heating and power characteristics of the improved multi-stage AA-CAES system
CN212690123U (zh) 一种多能联合发电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant