CN114383384B - 一种空气液化与深冷空分工艺集成方法 - Google Patents

一种空气液化与深冷空分工艺集成方法 Download PDF

Info

Publication number
CN114383384B
CN114383384B CN202111665570.9A CN202111665570A CN114383384B CN 114383384 B CN114383384 B CN 114383384B CN 202111665570 A CN202111665570 A CN 202111665570A CN 114383384 B CN114383384 B CN 114383384B
Authority
CN
China
Prior art keywords
air
output end
input end
air separation
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111665570.9A
Other languages
English (en)
Other versions
CN114383384A (zh
Inventor
王立
贺秀芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202111665570.9A priority Critical patent/CN114383384B/zh
Publication of CN114383384A publication Critical patent/CN114383384A/zh
Application granted granted Critical
Publication of CN114383384B publication Critical patent/CN114383384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0251Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04636Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a hybrid air separation unit, e.g. combined process by cryogenic separation and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明提供一种空气液化与深冷空分工艺集成方法,属于空分储能技术领域。该方法包括空气液化单元和深冷空分单元。二者配合运行时,空气液化单元储存的低温液空以液态和气态形式回收进入空分单元的精馏系统,实现常规液化空气储能系统低温液空的高效回收和空分装置内原料压缩设备的节电运行。此外,二者还可以分别独立运行。本发明是一种新的集成装置,也适用于对常规空分装置和常规液化空气储能装置的升级改造。该方法通过规模化谷电利用,降低空分设备对电网峰电或平电的需求,节约生产用电成本,提高企业经济效益。此技术的规模化应用可提高电网谷期发电侧的基础负荷率和发电效率,促进节能减排,实现企业经济效益和国家节能减排效益的完美统一。

Description

一种空气液化与深冷空分工艺集成方法
技术领域
本发明涉及空分储能技术领域,特别是指一种空气液化与深冷空分工艺集成方法。
背景技术
随着电子科技领域的迅速发展和居民生活水平的不断提高,工业、农业和商业等领域的部分产业已逐渐被电子信息技术取代,电子产品逐渐走进人类的工作和生活,导致电力市场供需关系频繁变化,电网供电峰谷差居高不下。据数据统计,目前我国燃煤发电占比高达68%,但由于大量调峰负荷机组的存在(或基础负荷比例低),使得谷电期机组发电效率降低,污染物排放量增大。可再生能源发电装机占比虽然逐年增加,但受风电和光电能源输出的不稳定性影响,其很难精准匹配电网负荷需求。为解决这些问题,需要开发大规模储能技术,这已成为国家能源技术发展的战略目标。液化空气储能技术(LAES)具有储能密度高、不受地域限制等独特优势,被广泛认为是一种很有前途的大规模储能解决方案。但常规液化空气储能技术仍然存在以下问题亟待解决:1.制冷能级低,能耗高;2.冷能间接利用,不可逆损失较大;3.释能膨胀输出的高纯空气环境释放,造成资源浪费;4.为了提高空气液化率,压缩设备输出压力高(超过10MPa),对换热器的要求也高,导致重要设备依赖进口,成本造价高,投资回收期长;5.为了得到较高温度的余热资源,对压缩机的压比要求高,压缩能耗大,但循环效率依然较低(约为50%);6.为了充分利用压缩余热和提高系统循环效率,释能过程压力高(甚至达10MPa以上),对换热器的承压要求高,增加投资成本。因此,寻找一种能够在制冷能级和生产原料上与液化空气储能技术相互匹配的配套技术至关重要。
空分是工业生产领域的重要基础设备,其在煤化工、石油炼化和冶金三大行业的制氧能力占比分别为45%、30%和25%。空分工艺的生产过程包括压缩、预冷、纯化、增压、制冷、热交换和精馏等主要过程,制冷温度与液化空气储能技术相当,生产原料为环境空气。值得注意的是,空分设备本身耗电量大,作为单一技术,一种设备,其电力消费占比相当可观。若将液化空气储能技术与常规空分装置相结合,不仅能够实现低温液空冷能的直接回收和利用,还能使两种技术的制冷能级精准匹配,原料利用互为补充,即克服液化空气储能系统释能过程的冷能不可逆损失大和高纯空气排放问题,还能为空分设备提供外部精馏原料,减小空分设备对峰电期电能的需求,降低空分企业综合用电成本,提高经济效益。另外,二者的集成也能从根本上解决常规液化空气储能技术的电循环效率低和对进口设备的依赖,实现液化空气储能技术的完全国产化和低技术门槛发展。谷期用电负荷的提升还有利于提高发电机组运行效率,减小峰电期电力负荷需求,促进部分小型调峰发电机组向基负荷运行机组转变,甚至被大型发电机组所取代,从而有效降低发电煤耗和污染物排放,实现国家电网侧的节能减排。
现阶段,发明人已经提出几种具有储能功能的空分内、外压缩新工艺和改造技术,但以上技术均利用空分设备实现液空的规模化储能,其对空分装置内部的主换热器流体通道做了重新规划和设计,并增加了制冷和液化相关设备,是常规空分工艺技术的进一步升级和更新改造。而对于常规液化空气储能技术目前所面临的冷能间接储存利用、释能高纯空气环境释放、电-电转换效率低、压缩机各级压比大、设备承压要求高和成本回收期长等问题仍然没有得到有效解决。对此,本发明提出对常规液化空气储能技术和空分内、外压缩设备进行集成耦合,在不改变常规深冷空分装置和液化空气储能装置主体工艺的情况下,通过增设控制阀门及其相互之间的连接管道来实现二者的相互配合和独立运行;或通过升级常规液化空气储能装置,之后再与常规深冷空分装置进行集成,实现二者的配合运行。
发明内容
本发明要解决的技术问题是提供一种空气液化与深冷空分工艺集成方法,该方法能够将常规液化空气储能装置中储存的低温液空以液态和气态原料形式回收进入常规深冷空分装置的精馏系统,在不改变原深冷空分装置和液化空气储能装置主体工艺情况下,或通过升级常规液化空气储能装置之后再与深冷空分装置进行集成,实现两种现有技术在能级和物质利用上的高度匹配。
该方法通过将空气液化单元和深冷空分单元集成,二者配合运行时,实现常规液化空气储能装置中低温液空冷能和物质在空分单元中的高效充分回收和利用;二者独立运行时,分别保持深冷空分装置和液化空气储能装置的常规运行状态。
其中,深冷空分单元和空气液化单元分别指常规深冷空分装置和常规液化空气储能装置;常规深冷空分装置包括内压缩和外压缩两种形式;常规液化空气储能装置包括固体颗粒介质和液体介质蓄冷两种形式。
常规深冷空分内压缩装置主要包括压缩系统、预冷系统、纯化系统、增压系统、制冷与热交换系统、精馏系统(包含稀有气体精馏)和氮气压缩系统;常规深冷空分外压缩装置主要包括压缩系统、预冷系统、纯化系统、制冷与热交换系统、精馏系统(包含稀有气体精馏)、氮气压缩系统和氧气压缩系统;二者的主要区别在于常规深冷空分内压缩装置中设置增压系统,其采出的氧产品为液态,通过液氧泵加压和制冷与热交换系统复热后作为氧产品送出;而常规深冷空分外压缩装置中无需设置增压设备,其采出的氧产品为气态,需要经制冷与热交换系统复热,之后通过压缩机对其加压后作为氧产品送出。
常规液化空气储能装置主要由压缩、液化、液空储存、气化、发电、热循环和冷循环7个子系统组成。其中,常规固体颗粒介质蓄冷式液化空气储能装置和液体介质蓄冷式液化空气储能装置的主要区别在于其冷循环子系统,前者的冷循环子系统中采用固体颗粒填充床作为冷能储存容器,冷循环介质为气态物质;而后者的冷循环子系统以液态制冷剂为热交换介质,提取出的冷能存在低温液体储罐中。
以上关于常规深冷空分装置和常规液化空气储能装置的陈述是基于其各子系统的功能划分的,具体到不同装置的工艺细节时,其各设备和管道之间的限定方式会略有差异,但均在各子系统的涵盖范围内,这并不影响常规深冷空分装置和常规液化空气储能装置之间的集成创新。
深冷空分单元与空气液化单元集成是在常规深冷空分装置中制冷与热交换系统的污氮气输出端与空气压缩系统输入端之间增设连接管道和控制阀门五;在常规液化空气储能装置的液空泵输出端与常规深冷空分装置的高压塔输入端之间增设连接管道和控制阀门四;在常规液化空气储能装置的气化器一输出端与常规深冷空分装置的高压塔输入端之间增设连接管道和控制阀门三;在常规液化空气储能装置的液空泵输出端与气化器一的输入端之间增设控制阀门二,在气化器一的输出端与空气加热器一的输入端之间设置控制阀门二十五;
深冷空分单元与空气液化单元配合运行时包含储能和释能两个阶段,储能期间,深冷空分单元与空气液化单元均保持常规独立运行状态,在深冷空分单元输出常规氧气、氮气和氩气等产品的同时,空气液化单元储存低温液态空气;释能期间,关闭控制阀门二十五,原常规液化空气储能装置中的膨胀发电过程停止运行,同时控制阀门三、控制阀门四和控制阀门五开启,空气液化单元中液空储罐内的低温液空经常规液化空气储能装置中的液空泵加压后分为两部分:一部分作为液态原料,经控制阀门四直接进入深冷空分单元的高压塔参与精馏,另一部分经常规液化空气储能装置中的气化器一气化后作为气态原料经控制阀门三进入深冷空分单元的高压塔参与系统精馏,深冷空分单元的压缩、预冷、纯化、增压和制冷系统负荷同时相应减小;
深冷空分单元与空气液化单元独立运行时,控制阀门三、控制阀门四和控制阀门五关闭,控制阀门二、控制阀门二十五开启,深冷空分单元与空气液化单元的储能和释能过程均保持常规独立运行状态,在深冷空分单元输出常规氧气、氮气和氩气等产品的同时,空气液化单元实现低温液空的储存和释能膨胀发电过程;
深冷空分单元与空气液化单元配合或独立运行时,空气液化单元中空气压缩过程储存的过剩压缩余热均用于为深冷空分单元中的纯化系统再生气提供升温热源;
空气液化单元与深冷空分单元配合运行时,深冷空分单元还可在常规深冷空分装置的基础上增设制冷与热交换系统的污氮气输出端与空气压缩系统输入端之间的连接管道和控制阀门五,并在纯化系统的空气输出端增设止回阀二;空气液化单元在常规固体颗粒介质蓄冷式液化空气储能装置的基础上取消原空气发电循环回路,将原级间热油冷却式空气压缩机一更换为两台相互串联的级间水冷式多级压缩机,并保留原空气压缩机一末级的空气冷却器三、原蓄热循环系统、原空气液化和液空气化相关设备,将原空气冷却器五更换为液化器,原气化器一更换为气化器二,并增设与液化器相互连接的膨胀发电机四和膨胀发电机五,同时在两台水冷式多级压缩机之间增设空气净化系统;
所述级间水冷式多级压缩机包括空气压缩机二、空气压缩机三、水冷却器一、水冷却器二、水冷却器三、水冷却器四、水冷却器五和水冷却器六;所述原蓄热循环系统是指原蓄热罐一、蓄热罐二、热介质泵一和热介质泵二;所述原空气液化和液空气化相关设备包括膨胀发电机二、液空储罐、液空泵、循环风机一、循环风机二和固体颗粒蓄冷器一;所述空气净化系统包括分子筛吸附器一、分子筛吸附器二、消音器和加热器二。
空气压缩机二的输入端为环境空气,水冷却器一、水冷却器二、水冷却器三和水冷却器四分别为空气压缩机二的一级、二级、三级和末级空气冷却器,水冷却器四的空气输出端连接于分子筛吸附器一和分子筛吸附器二的底部输入端,分子筛吸附器一和分子筛吸附器二的上部输出端分为两路:一路连接于空气压缩机三的一级气缸输入端,另一路连接于深冷空分单元的现有纯化系统空气输出管道;水冷却器五和水冷却器六分别为空气压缩机三的一级和二级空气冷却器,空气压缩机三的末级空气输出端连接于现有空气冷却器三的热流体输入端,空气冷却器三的热流体输出端连接于液化器的高压空气输入端,液化器的高压空气上部输出端连接于膨胀发电机四的输入端,膨胀发电机四的输出端连接于液化器的中压空气输入端,液化器的中压空气输出端连接于膨胀发电机五的输入端,膨胀发电机五的输出端连接于液化器的低压空气输入端,液化器的低压空气输出端分为两路:一路连接于空气压缩机二的输入端,另一路连接于加热器二的再生气输入端;加热器二的再生气输出端连接于分子筛吸附器一和分子筛吸附器二的上部输入端,分子筛吸附器一和分子筛吸附器二的底部输出端连接于消音器;液化器的高压空气底部输出端连接于常规膨胀发电机二的输入端,膨胀发电机二的输出端连接于常规液空储罐的输入端,液空储罐的气体输出端连接于液化器的富氮低压空气输入端,液化器的富氮低压空气输出端连接于加热器二的再生气输入端;液化器的循环低温介质输入端连接于常规固体颗粒蓄冷器一的下部输出端,固体颗粒蓄冷器一上部输入端连接于常规循环风机二的输出端,循环风机二的输入端连接于深冷空分单元中制冷与热交换系统的污氮气输出管道,液化器的循环低温介质输出端分别连接于深冷空分单元的加热器一的再生气输入端和预冷系统;空气冷却器三的冷流体输入端连接于常规热介质泵二的输出端,热介质泵二的输入端连接于常规蓄热罐二输出端;空气冷却器三的冷流体输出端分为两路:一路连接于加热器二的热流体输入端,另一路连接于常规蓄热罐一的输入端;蓄热罐一的输出端连接于常规热介质泵一的输入端,热介质泵一的输出端为深冷空分单元的加热器一提供升温热源;加热器二的热流体输出端连接于蓄热罐二的输入端;空气液化单元的空气压缩机二的输入端与深冷空分单元中制冷与热交换系统的污氮气输出端之间增设管道;
液空储罐的输出端连接于现有液空泵的输入端,液空泵的输出端分为两路:一路连接于深冷空分单元的高压塔原料输入端,另一路连接于气化器二的冷流体输入端,气化器二的冷流体输出端连接于高压塔的原料输入端;气化器二的热流体输入端连接于常规循环风机一的输出端,循环风机一的输入端连接于深冷空分单元中制冷与热交换系统的污氮气输出管道和固体颗粒蓄冷器一的上部输出端,气化器二的热流体输出端连接于固体颗粒蓄冷器一的下部输入端,固体颗粒蓄冷器一的上部输出端连接于深冷空分单元的加热器一的再生气输入端和预冷系统;气化器二的氮气输入端连接于深冷空分单元的氮气压缩系统级间气体输出管道,气化器二的氮气输出端连接于气化器二的冷流体输出管道。
液空储罐的输出端与液空泵的输入端之间设置控制阀门一,液空泵的输出端与气化器二的输入端之间设置控制阀门二,气化器二的输出端与高压塔的输入端之间设置控制阀门三,液空泵的输出端与高压塔的输入端之间设置控制阀门四,循环风机一的输入端与固体颗粒蓄冷器一的上部输出端之间设置控制阀门六,气化器二的热流体输出端与固体颗粒蓄冷器一的底部输入端之间设置控制阀门七,液化器的循环低温介质输出端设置控制阀门九,空气冷却器三的冷流体输出端与加热器二的热流体输入端之间设置控制阀门十,空气冷却器三的冷流体输出端与蓄热罐一的输入端之间设置控制阀门十一,热介质泵一的输出端与深冷空分单元的加热器一热源输入端之间设置控制阀门二十二,加热器二的热流体输出端与蓄热罐二输入端之间设置控制阀门十二,液化器的低压空气输出端与空气压缩机二的输入端之间设置控制阀门十三,固体颗粒蓄冷器一的上部输出端与深冷空分单元的加热器一的再生气输入端和预冷系统输入端之间设置控制阀门十四,循环风机二的输出端与固体颗粒蓄冷器一的上部输入端之间设置控制阀门十五,固体颗粒蓄冷器一的底部输出端与液化器的循环低温介质体输入端之间设置控制阀门十六,分子筛吸附器一和分子筛吸附器二的空气输出端设置止回阀三,分子筛吸附器一和分子筛吸附器二的空气输出端与深冷空分单元的纯化系统输出端之间设置控制阀门二十一,气化器二的氮气输入端与深冷空分单元的氮气压缩系统级间气体输出管道之间设置节流阀,气化器二的氮气输出端与气化器二的冷流体输出管道之间设置控制阀门二十四,气化器二的冷流体输出端设置止回阀一,空气液化单元的空气压缩机二输入端与深冷空分单元中制冷与热交换系统的污氮气输出端之间设置控制阀门二十三。
所述空气液化单元还可在常规液体介质蓄冷式液化空气储能装置的基础上取消原空气发电循环回路,将原级间热油冷却式空气压缩机一更换为两台相互串联的级间水冷式多级压缩机,并保留原压缩机末级的空气冷却器三、原蓄热循环系统、原空气液化和液空气化相关设备,将原空气冷却器五更换为液化器,原气化器一更换为气化器二,并增设与液化器相互连接的膨胀发电机四和膨胀发电机五,同时在两台水冷式多级压缩机之间增设空气净化系统;
所述级间水冷式多级压缩机包括空气压缩机二、空气压缩机三、水冷却器一、水冷却器二、水冷却器三、水冷却器四、水冷却器五和水冷却器六;所述原空气压缩机一的蓄热循环系统是指原蓄热罐一、蓄热罐二、热介质泵一和热介质泵二;所述原空气液化和液空气化相关设备包括膨胀发电机二、液空储罐、液空泵、蓄冷介质泵一、蓄冷介质泵二、蓄冷罐一、蓄冷罐二;所述空气净化系统包括分子筛吸附器一、分子筛吸附器二、消音器和加热器二。
气化器二的热流体输入端连接于蓄冷介质泵一的输出端,蓄冷介质泵一的输入端连接于蓄冷罐一的输出端,气化器二的热流体输出端连接于蓄冷罐二的输入端,蓄冷罐二的输出端连接于蓄冷介质泵二的输入端,蓄冷介质泵二的输出端连接于液化器的低温蓄冷介质输入端,液化器的低温蓄冷介质输出端连接于蓄冷罐一的输入端;
蓄冷介质泵一的输出端与气化器二的热流体输入端之间设置控制阀门十七,气化器二的热流体输出端与蓄冷罐二的输入端之间设置控制阀门十八,蓄冷介质泵二的输出端与液化器的低温蓄冷介质输入端之间设置控制阀门十九,液化器的低温蓄冷介质输出端与蓄冷罐一的输入端之间设置控制阀门二十。
空气液化单元的空气压缩机二为多级水冷压缩设备,其末级输出压力与深冷空分单元的压缩系统空气输出压力相当,水冷却器四能够用喷淋塔代替;
空气压缩机三为级间水冷式多级压缩设备,末级采用蓄热介质进行降温,并将余热储存在热储罐一中,用于为空气液化单元的加热器二和深冷空分单元的加热器一提供升温热源;
分子筛吸附器一和分子筛吸附器二切换运行,一个吸附,一个再生;膨胀发电机二能够用节流阀代替。
循环风机一和循环风机二输入端的污氮气能够用来自深冷空分单元中制冷与热交换系统的复热后高纯氮气或环境中的空气代替;
氮气代替污氮气时,固体颗粒蓄冷器一的上部输出端和液化器的循环低温介质输出端均连接于深冷空分单元的氮气压缩系统输入端;
环境空气代替污氮气时,固体颗粒蓄冷器一的上部输出端连接于循环风机一的输入端,液化器的循环低温介质体输出端连接于循环风机二的输入端。
深冷空分单元维持全天24h运行,空气液化单元在谷电期间储存低温液空;峰电或平电时段,液空经低温泵加压后分为两部分:一部分作为液态精馏原料,直接送入到深冷空分单元的高压塔,另一部分经气化后作为气态原料进入深冷空分单元的高压塔参与系统精馏;谷电时段,空气压缩机三末级产生的压缩余热不仅直接为空气液化单元自身的分子筛吸附器一和分子筛吸附器二提供再生气升温热源,其储存的热能还能用做深冷空分单元纯化系统的全天再生热;
所述深冷空分单元在谷电时段以最大负荷运行,产品需求负荷以外的纯化后空气通过控制阀门二十一进入空气液化单元的空气压缩机三,与原空气液化单元中的纯化后空气共同参与制冷和空气液化过程。
释能期间,深冷空分单元的压缩系统负荷降到可调负荷下限的情况下,将空气液化单元的空气压缩机二的末级输出端连接到空分单元的预冷系统输入端或在深冷空分单元的压缩系统并联设置至少一台空气压缩机,用于为释能过程深冷空分单元的低负荷运行提供备用切换设备。
空气液化单元的液空泵输出压力与深冷空分单元的高压塔底部压力相同,进入气化器一和气化器二的液空气化后输出温度与深冷空分单元的高压塔的空气原料输入温度相同。
该空气液化与深冷空分工艺集成方法既适用于新建空分内、外压缩装置,又适用于对常规空分内、外压缩装置的集成和升级改造。
本发明的上述技术方案的有益效果如下:
上述方案中,在不改变深冷空分装置主体工艺的情况下,通过结合现有或升级改造后的常规液化空气储能装置,实现二者的相互独立或配合运行。在配合运行时,既提高谷电期空分设备的利用率,又能实现峰电期液化空气储能装置中低温液空的高效率回收和充分利用,为空分设备提供来自外部精馏原料的同时,降低空分设备自身对峰电期电能的需求,减小空分设备的综合用电成本,提高企业经济效益。另外,结合改造后的常规液化空气储能装置还能显著降低空气液化过程的操作压力,降低对压缩设备压比和换热器承压能力的要求,储存的末级压缩余热还能用于满足常规液化空气储能系统自身和配套空分装置中纯化系统再生过程的热能需求,即解决了常规液化空气储能装置的操作压力高、依赖进口设备、释能高纯空气排放、循环效率低和投资回收期长等问题,又充分发挥了深冷空分技术与液化空气储能技术的能级匹配和原料互补优势。另外,谷期用电负荷的提升还能有效平衡电网用电需求,促进部分调峰机组转为基负荷机组或被大型发电机组所取代,从而提高机组发电效率,实现电网侧的节能减排。
附图说明
图1为典型常规空分内压缩工艺流程示意图;
图2为典型常规空分外压缩工艺流程示意图;
图3为典型常规固体颗粒介质蓄冷式独立液化空气储能装置流程示意图;
图4为典型常规液体介质蓄冷式独立液化空气储能装置流程示意图;
图5为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与常规固体颗粒介质蓄冷式液化空气储能装置集成工艺流程示意图;
图6为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与常规液体介质蓄冷式液化空气储能装置集成工艺流程示意图;
图7为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与常规固体颗粒介质蓄冷式液化空气储能装置集成工艺流程示意图;
图8为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与常规液体介质蓄冷式液化空气储能装置集成工艺流程示意图;
图9为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程示意图;
图10为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与升级液体介质蓄冷式空气液化储能装置集成工艺流程示意图;
图11为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程示意图;
图12为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与升级液体介质蓄冷式空气液化储能装置集成工艺流程示意图;
图13为本发明实施例中液化器的流体通道分布示意图;
图14为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺中释能液空回收进入高压塔的流率对低压塔内产品纯度和氩馏分中氩浓度的影响;
图15为峰谷电价比对本发明实施案例中制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺系统用电成本节约率的影响;
图16为本发明实施案例中制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺系统取代全国内压缩空分设备前、后的年用电负荷变化情况。
其中:1-空气增压机;2-膨胀发电机一;3-主换热器;4-加热器一;5-低压塔;6-主冷凝蒸发器;7-高压塔;8-过冷器一;9-液氧泵;10-空气压缩机一;11-空气冷却器一;12-空气冷却器二;13-空气冷却器三;14-空气冷却器四;15-空气冷却器五;16-膨胀发电机二;17-液空泵;18-气化器一;19-空气加热器一;20-空气加热器二;21-空气加热器三;22-空气加热器四;23-膨胀发电机三;24-循环风机一;25-循环风机二;26-固体颗粒蓄冷器一;27-循环风机三;28-循环风机四;29-固体颗粒蓄冷器二;30-热介质泵一;31-蓄热罐一;32-热介质泵二;33-蓄热罐二;34-液空储罐;35-蓄冷罐二;36-蓄冷介质泵二;37-蓄冷罐一;38-蓄冷介质泵一;39-蓄冷介质泵四;40-蓄冷罐四;41-蓄冷介质泵三;42-蓄冷罐三;43-水冷却器一;44-水冷却器二;45-水冷却器三;46-水冷却器四;47-分子筛吸附器一;48-分子筛吸附器二;49-消音器;50-空气压缩机三;51-水冷却器五;52-水冷却器六;53-加热器二;54-液化器;55-膨胀发电机四;56-膨胀发电机五;57-气化器二;58-空气压缩机二;59-增压透平膨胀机;60-增压后冷却器;61-过冷器二;V1-控制阀门一;V2-控制阀门二;V3-控制阀门三;V4-控制阀门四;V5-控制阀门五;V6-控制阀门六;V7-控制阀门七;V8-控制阀门八;V9-控制阀门九;V10-控制阀门十;V11-控制阀门十一;V12-控制阀门十二;V13-控制阀门十三;V14-控制阀门十四;V15-控制阀门十五;V16-控制阀门十六;V17-控制阀门十七;V18-控制阀门十八;V19-控制阀门十九;V20-控制阀门二十;V21-控制阀门二十一;V22-控制阀门二十二;V23-控制阀门二十三;V24-控制阀门二十四;V25-节流阀;V26-止回阀一;V27-止回阀二;V28-止回阀三;V29-控制阀门二十五。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明为解决常规液化空气储能装置存在的冷能间接利用、释能高纯空气环境释放、系统电循环效率低和投资回收期长等问题,提供一种空气液化与深冷空分工艺集成方法,实现常规液化空气储能装置与深冷空分装置的配合运行和独立运行灵活切换,充分提高液化空气储能装置中的低温液空利用率。
图1为典型常规空分内压缩工艺流程示意图。该流程主要由空气压缩、预冷、纯化、增压、制冷与热交换、精馏和氮气压缩系统组成。具体地,原料空气依次通过空气压缩系统、预冷系统和纯化系统后得到干燥纯净空气,这部分空气分为两部分:一部分直接进入主换热器3被冷却至露点温度后进入高压塔7;另一部分为再增压空气,经空气增压机1压缩和冷却后分两路:一路从级间抽出,通过主换热器3降温后进入膨胀发电机一2,之后进入高压塔7的底部参与精馏;另一路为再增压空气,经空气增压机1四级增压后进入主换热器3被返流低温介质冷却为过冷液体,之后通过节流进入高压塔7;在高压塔7内,原料空气根据相对挥发度不同而进行组分分离,高压塔7底部得到含氧约37%的富氧液空,高压塔7顶部得到高纯度氮气,高纯度氮气经过主冷凝蒸发器6与来自低压塔5底部的液氧进行热交换,液氧被蒸发,氮气被冷凝,部分冷凝液氮再回到高压塔7作为回流液,另一部分液氮在过冷器一8中进行过冷,并分为两路:一路送入低压塔5顶部作为回流液,另一路进入氩精馏系统。高压塔7侧面采出的部分液空经过冷器一8冷却为过冷液体后节流进入低压塔5中部参与精馏,来自高压塔7底部的液空同样经过冷器一8被冷却为过冷液体,之后分为两部分:一部分节流到低压塔5中部参与精馏,另一部分送入到氩精馏系统。在低压塔5内,由于氧、氩、氮沸点的差异,经多次部分冷凝和蒸发,低压塔5底部得到纯度为99.6%以上的液氧,该液氧经液氧泵9加压,之后进入主换热器3经气化和复热后出冷箱,作为氧产品送出。低压塔5的中上部抽出污氮气,经过冷器一8和主换热器3复热后分为两部分:一部分去加热器一4做纯化系统的再生气,一部分送入到预冷系统。低压塔5的顶部抽出纯度高于99.99%的氮气,经过冷器一8回收部分冷量后进入制冷与热交换系统进行复热,之后进入冷箱外的氮气压缩系统。
图2为典型常规空分外压缩工艺流程示意图。该流程主要由压缩、预冷、纯化、制冷与热交换、精馏、氮气压缩和氧气压缩系统组成,其与图1所示典型常规空分内压缩工艺流程的主要区别在于,该工艺中无需设置增压设备,其采出的氧产品为气态,需要经制冷与热交换系统复热,之后通过压缩机对其加压后作为氧产品送出。具体地,原料空气通过空气压缩、预冷和纯化系统后得到的纯净空气分为两部分:一部分直接进入主换热器3被冷却至露点温度后进入高压塔7;另一部分为增压膨胀空气,经增压透平膨胀机59的增压端增压和增压后冷却器60降温后进入主换热器3,之后通过过冷器二61进一步降温后进入低压塔5。其精馏系统工作原理与图1所示典型常规空分内压缩装置相同,主要区别在于氧气的采出和压缩方式,即在低压塔5底部得到纯度为99.6%以上的气氧,经过冷器二61和主换热器3依次复热后出冷箱,进入氧气压缩系统,最终作为氧产品送出。
图3为典型常规固体颗粒介质蓄冷式独立液化空气储能装置流程示意图。该系统主要由空气压缩、空气液化、液空储存、液空气化、膨胀发电、热循环和冷循环7个子系统组成。具体地,储能期间,环境空气经空气压缩机一10和空气冷却器一11、空气冷却器二12、空气冷却器三13依次压缩和降温,之后进入空气冷却器四14和空气冷却器五15进一步降温和液化,液化得到的空气通过膨胀发电机二16后进入液空储罐34,液空储罐34内的部分气体作为低温返流介质依次通过空气冷却器四14和空气冷却器五15,为空气液化过程提供部分冷能来源,之后作为空气原料回收进入空气压缩机一10;空气压缩机一10产生的压缩余热利用蓄热介质进行提取和储存,即来自蓄热罐二33的蓄热介质通过热介质泵二32后进入空气冷却器一11、空气冷却器二12和空气冷却器三13,换热得到的高温蓄热介质全部储存在蓄热罐一31内;释能期间,液空储罐34内的液体经液空泵17加压后进入气化器一18和空气加热器一19,之后依次经过空气加热器二20、空气加热器三21、空气加热器四22和膨胀发电机三23逐级加热和膨胀发电后释放到环境中;空气加热器二20、空气加热器三21和空气加热器四22的热源来自蓄热罐一31,经热介质泵一30驱动,为各换热器提供高温热源。气化器一18和空气加热器一19内液空气化和升温释放的冷能分别利用循环风机二25和循环风机四28驱动的循环介质进行提取,然后再将冷能储存在固体颗粒蓄冷器一26和固体颗粒蓄冷器二29中,用于为储能期间的空气液化提供冷能来源,即循环风机一24和循环风机二27驱动环境空气从固体颗粒蓄冷器一26和固体颗粒蓄冷器二29中提取冷能,之后将其输送到空气冷却器四14和空气冷却器五15。
图4为典型常规液体介质蓄冷式独立液化空气储能装置流程示意图。该系统同样由空气压缩、空气液化、液空储存、液空气化、膨胀发电、热循环和冷循环7个子系统组成,其与图3所示常规固体颗粒介质蓄冷式独立液化空气储能装置的主要区别在于冷循环子系统的冷能储存方式不同,即气化器一18和空气加热器一19内液空气化和升温释放的冷能分别利用蓄冷介质泵一38和蓄冷介质泵三41驱动的液体介质进行提取,之后将提取出的冷能全部储存在蓄冷罐二35和蓄冷罐四40中,用于为储能期间的空气液化提供冷能来源,即蓄冷介质泵二36和蓄冷介质泵四39驱动低温介质进入空气冷却器四14和空气冷却器五15,复热后的蓄冷介质最终储存在蓄冷罐一37和蓄冷罐三42中。
如图5,为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与常规固体颗粒介质蓄冷式液化空气储能装置集成工艺流程示意图。结合图1、2、3和4可以看出,集成后的系统由常规固体颗粒介质蓄冷式独立液化空气储能装置、常规空分内压缩装置,及其相互之间的连接管道和控制阀门组成。常规空分内压缩装置中制冷与热交换系统的污氮气输出端与其空气压缩系统输入端之间增设连接管道和控制阀门五V5;常规固体颗粒介质蓄冷式独立液化空气储能装置的液空泵17输出端与常规空分内压缩装置的高压塔7输入端之间增设连接管道和控制阀门四V4;常规固体颗粒介质蓄冷式独立液化空气储能装置的气化器一18输出端与常规空分内压缩装置的高压塔7输入端之间增设连接管道和控制阀门三V3;常规固体颗粒介质蓄冷式独立液化空气储能装置的液空泵17输出端与气化器一18的输入端之间增设控制阀门二V2,气化器一18的输出端与空气加热器一19的输入端之间设置控制阀门二十五V29;
图6为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与常规液体介质蓄冷式液化空气储能装置集成工艺流程示意图;图7为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与常规固体颗粒介质蓄冷式液化空气储能装置集成工艺流程示意图;图8为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与常规液体介质蓄冷式液化空气储能装置集成工艺流程示意图;这三种工艺的集成均与图5所示制氧40000Nm3·h-1空分内压缩装置与常规固体颗粒介质蓄冷式液化空气储能装置的集成方法相同,此处不再赘述。
如图9,为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程示意图。从图9中可以看出,该空气液化与深冷空分工艺集成方法包括空气液化单元和深冷空分单元。其中,深冷空分单元是在图1所示常规空分内压缩工艺流程中制冷与热交换系统的污氮气输出端与空气压缩系统输入端之间设置管道和控制阀门五V5,并在现有纯化系统的空气输出端设置止回阀二V27,所述制冷与热交换系统包括主换热器3和膨胀发电机一2;空气液化储能单元是在图3所示常规固体颗粒介质蓄冷式独立液化空气储能装置的基础上取消其空气发电循环回路,将原级间热油冷却式空气压缩机一10更换为两台相互串联的级间水冷式多级压缩机,并保留原压缩机末级的空气冷却器三13、原蓄热循环系统、原空气液化和液空气化相关设备,将原空气冷却器五15更换为液化器54(图13),原气化器一18更换为气化器二57,并增设膨胀发电机四55和膨胀发电机五56,同时在两台水冷式多级压缩机之间增设空气净化系统;
级间水冷式多级压缩机包括空气压缩机二58、空气压缩机三50、水冷却器一43、水冷却器二44、水冷却器三45、水冷却器四46、水冷却器五51和水冷却器六52;原空气压缩机一10的蓄热循环系统是指原蓄热罐一31、蓄热罐二33、热介质泵一30和热介质泵二32;原空气液化和液空气化相关设备包括膨胀发电机二16、液空储罐34、液空泵17、循环风机一24、循环风机二25和固体颗粒蓄冷器一26;空气净化系统包括分子筛吸附器一47、分子筛吸附器二48、消音器49和加热器二53;
空气压缩机二58的输入端为环境空气,水冷却器一43、水冷却器二44、水冷却器三45和水冷却器四46分别为空气压缩机二58的一级、二级、三级和末级空气冷却器,水冷却器四46的空气输出端与分子筛吸附器一47和分子筛吸附器二48的底部输入端相连,分子筛吸附器一47和分子筛吸附器二48的上部输出端分为两路:一路连接于空气压缩机三50的一级气缸输入端,另一路连接于深冷空分单元的现有纯化系统空气输出管道;水冷却器五51和水冷却器六52分别为空气压缩机三50的一级和二级空气冷却器,空气压缩机三50的末级空气输出端与现有空气冷却器三13的热流体输入端相连,空气冷却器三13的热流体输出端与液化器54的高压空气输入端相连,液化器54的高压空气上部输出端与膨胀发电机四55的输入端相连,膨胀发电机四55的输出端连接于液化器54的中压空气输入端,液化器54的中压空气输出端与膨胀发电机五56的输入端相连,膨胀发电机五56的输出端连接于液化器54的低压空气输入端,液化器54的低压空气输出端分为两路:一路连接于空气压缩机二58的输入端,另一路连接于加热器二22的再生气输入端;加热器二53的再生气输出端与分子筛吸附器一47和分子筛吸附器二48的上部输入端相连,分子筛吸附器一47和分子筛吸附器二48的底部输出端连接于消音器49;液化器54的高压空气底部输出端与常规膨胀发电机二16的输入端相连,膨胀发电机二16的输出端与常规液空储罐34的输入端相连,液空储罐34的气体输出端连接于液化器54的富氮低压空气输入端,液化器54的富氮低压空气输出端与加热器二53的再生气输入端相连;液化器54的循环低温介质输入端连接于常规固体颗粒蓄冷器一26的下部输出端,固体颗粒蓄冷器一26上部输入端与常规循环风机二25的输出端相连,循环风机二25的输入端连接于深冷空分单元中制冷与热交换系统的污氮气输出管道,液化器54的循环低温介质输出端分别连接于深冷空分单元的加热器一4的再生气输入端和预冷系统;空气冷却器三13的冷流体输入端与常规热介质泵二32的输出端相连,热介质泵二32的输入端与常规蓄热罐二33输出端相连;空气冷却器三13的冷流体输出端分为两路:一路连接于加热器二53的热流体输入端,另一路连接于常规蓄热罐一31的输入端;蓄热罐一31的输出端连接于常规热介质泵一30的输入端,热介质泵一30的输出端为深冷空分单元的加热器一4提供升温热源;加热器二53的热流体输出端与蓄热罐二33的输入端相连;空气液化单元的空气压缩机二58的输入端与深冷空分单元中制冷与热交换系统的污氮气输出端之间增设管道;
液空储罐34的输出端与常规液空泵17的输入端相连,液空泵17的输出端分为两路:一路连接于深冷空分单元的高压塔7原料输入端,另一路连接于气化器二57的冷流体输入端,气化器二57的冷流体输出端连接于高压塔7的原料输入端;气化器二57的热流体输入端与常规循环风机一24的输出端相连,循环风机一24的输入端连接于深冷空分单元中制冷与热交换系统的污氮气输出管道和固体颗粒蓄冷器一26的上部输出端,气化器二57的热流体输出端连接于固体颗粒蓄冷器一26的下部输入端,固体颗粒蓄冷器一26的上部输出端连接于深冷空分单元的加热器一4的再生气输入端和预冷系统;气化器二57的氮气输入端连接于深冷空分单元的氮气压缩系统级间气体输出管道,气化器二57的氮气输出端连接于气化器二57的冷流体输出管道。
液空储罐34的输出端与液空泵17的输入端之间设置控制阀门一V1,液空泵17的输出端与气化器二57的输入端之间设置控制阀门二V2,气化器二57的输出端与高压塔7的输入端之间设置控制阀门三V3,液空泵17的输出端与高压塔7的输入端之间设置控制阀门四V4,循环风机一24的输入端与固体颗粒蓄冷器一26的上部输出端之间设置控制阀门六V6,气化器二57的热流体输出端与固体颗粒蓄冷器一26的底部输入端之间设置控制阀门七V7,循环风机一24与循环风机二25之间的连接管道与污氮气输入端之间设置控制阀门八V8;液化器54的循环低温介质输出端设置控制阀门九V9,空气冷却器三13的冷流体输出端与加热器二53的热流体输入端之间设置控制阀门十V10,空气冷却器三13的冷流体输出端与蓄热罐一31的输入端之间设置控制阀门十一V11,热介质泵一30的输出端与深冷空分单元的加热器一4热源输入端之间设置控制阀门二十二V22,加热器二53的热流体输出端与蓄热罐二33输入端之间设置控制阀门十二V12,液化器54的低压空气输出端与空气压缩机二58的输入端之间设置控制阀门十三V13,固体颗粒蓄冷器一26的上部输出端与深冷空分单元的加热器一4的再生气输入端和预冷系统输入端之间设置控制阀门十四V14,循环风机二25的输出端与固体颗粒蓄冷器一26的上部输入端之间设置控制阀门十五V15,固体颗粒蓄冷器一26的底部输出端与液化器54的循环低温介质体输入端之间设置控制阀门十六V16,分子筛吸附器一47和分子筛吸附器二48的空气输出端设置止回阀三V28,分子筛吸附器一47和分子筛吸附器二48的空气输出端与深冷空分单元的纯化系统输出端之间设置控制阀门二十一V21,气化器二57的氮气输入端与深冷空分单元的氮气压缩系统级间气体输出管道之间设置节流阀V25,气化器二57的氮气输出端与气化器二57的冷流体输出管道之间设置控制阀门二十四V24,气化器二57的冷流体输出端设置止回阀一V26,空气液化单元的空气压缩机二58输入端与深冷空分单元中制冷与热交换系统的污氮气输出端之间设置控制阀门二十三V23。
图10为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与升级液体介质蓄冷式空气液化储能装置集成工艺流程示意图;从图10中可以看出,该空气液化与深冷空分工艺集成方法中,常规空分内压缩装置还可与图4所示常规液体介质蓄冷式独立液化空气储能装置进行集成,与图9所示集成方法相同,在常规液体介质蓄冷式独立液化空气储能装置的基础上取消原空气发电循环回路,将原级间热油冷却式空气压缩机一10更换为两台级间水冷式多级压缩机,并保留原压缩机末级的空气冷却器三13、原蓄热循环系统、原空气液化和液空气化相关设备,将原空气冷却器五15更换为液化器54,原气化器一18更换为气化器二57,并增设膨胀发电机四55和膨胀发电机五56,同时在两台水冷式多级压缩机之间增设空气净化系统;级间水冷式多级压缩机包括空气压缩机二58、空气压缩机三50、水冷却器一43、水冷却器二44、水冷却器三45、水冷却器四46、水冷却器五51和水冷却器六52;原空气压缩机一10的蓄热循环系统是指原蓄热罐一31、蓄热罐二33、热介质泵一30和热介质泵二32;原空气液化和液空气化相关设备包括膨胀发电机二16、液空储罐34、液空泵17、蓄冷介质泵一38、蓄冷介质泵二36、蓄冷罐一37、蓄冷罐二35;空气净化系统包括分子筛吸附器一47、分子筛吸附器二48、消音器49和加热器二53。
气化器二57的热流体输入端连接于蓄冷介质泵一38的输出端,蓄冷介质泵一38的输入端连接于蓄冷罐一37的输出端,气化器二57的热流体输出端连接于蓄冷罐二35的输入端,蓄冷罐二35的输出端连接于蓄冷介质泵二36的输入端,蓄冷介质泵二36的输出端连接于液化器54的低温蓄冷介质输入端,液化器54的低温蓄冷介质输出端连接于蓄冷罐一37的输入端;蓄冷介质泵一38的输出端与气化器二57的热流体输入端之间设置控制阀门十七V17,气化器二57的热流体输出端与蓄冷罐二35的输入端之间设置控制阀门十八V18,蓄冷介质泵二36的输出端与液化器54的低温蓄冷介质输入端之间设置控制阀门十九V19,液化器54的低温蓄冷介质输出端与蓄冷罐一37的输入端之间设置控制阀门二十V20。
图11为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程示意图;图12为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与升级液体介质蓄冷式空气液化储能装置集成工艺流程示意图;从图11和12中可以看出,该空气液化与深冷空分工艺集成方法中的常规空分内压缩装置还可用常规空分外压缩装置(如图2)代替,同样在空分外压缩装置中制冷与热交换系统(包括主换热器3和增压透平膨胀机59)的污氮气输出管道与空气压缩系统输入端之间增设管道和控制阀门五V5,并在常规外压缩空分装置的纯化系统空气输出端设置止回阀二V27;常规空分外压缩装置的纯化系统空气输出端与空气液化单元的分子筛吸附器一47和分子筛吸附器二47的上部输出端之间设置管道和控制阀门二十一V21;常规空分外压缩装置中制冷与热交换系统的污氮气输出端与空气液化单元的空气压缩机二58输入端之间设置管道和控制阀门二十三V23,空气液化单元的液空泵17输出端与常规空分外压缩装置的高压塔7输入端之间设置管道和控制阀门四V4,气化器二57的冷流体输出端与常规空分外压缩装置的高压塔7输入端之间设置管道和控制阀门三V3;常规空分外压缩装置的氮气压缩系统级间气体输出端与空气液化单元的气化器二57氮气输入端之间设置管道和节流阀V25;空气液化单元中热介质泵一31的输出端与常规空分外压缩装置的加热器一9的热源输入端之间设置管道和控制阀门二十二V22;图11中空气液化单元的各设备、管道和控制阀门设置均与图9所示制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺系统的相应设备、管道和控制阀门的限定方式相同;图12中空气液化单元的各设备、管道和控制阀门设置均与图10所示制氧40000Nm3·h-1空分内压缩装置与升级液体介质蓄冷式空气液化储能装置集成工艺系统的相应设备、管道和控制阀门的限定方式相同;
在具体实施应用中,
如图5,为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与常规固体颗粒介质蓄冷式液化空气储能装置集成工艺流程示意图。二者配合运行时分为储能和释能两个阶段,储能期间,深冷空分单元与空气液化单元均保持常规运行状态,在深冷空分单元输出常规氧气、氮气和氩气等产品的同时,空气液化单元储存低温液态空气;释能期间,关闭控制阀门二十五,同时控制阀门三、控制阀门四和控制阀门五开启,空气液化单元中液空储罐34内的低温液空经常规液空泵17加压后分为两部分:一部分作为液态原料,直接进入深冷空分单元的高压塔7参与精馏,另一部分作为气态原料,经现有气化器一18气化后进入深冷空分单元的高压塔7参与系统精馏,同时深冷空分单元的压缩、预冷、纯化、增压和制冷系统负荷相应减小;
二者独立运行时,控制阀门三V3、控制阀门四V4和控制阀门五V5关闭,控制阀门二V2、控制阀门二十五V29开启,深冷空分单元,以及空气液化单元的储释能过程均保持常规运行状态,在深冷空分单元输出常规氧气、氮气和氩气等产品的同时,空气液化单元实现低温液空的储存和释能膨胀发电过程。
如图9所示为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程示意图。储能过程,深冷空分单元与空气液化储能单元同时运行。其中,空气液化单元中的原料空气首先进入空气压缩机二58进行压缩和多级冷却,之后进入分子筛吸附器一47或分子筛吸附器二48进行净化,净化得到的干燥空气通过空气压缩机三50进行再增压,其末级输出的高压空气通过空气冷却器三13初步降温后进入到液化器54,在液化器54内,高压空气冷却到一定温度后分为两部分:一部分从液化器54的中上部抽出,另一部分经完全液化和过冷后从液化器54的底部抽出;其中,液化器54中上部抽出的高压空气首先进入膨胀发电机四55,经一次膨胀后作为中压空气返流进入液化器54中回收低温冷能,之后进入膨胀发电机五56进行二次膨胀,膨胀到接近常压后,低压空气返流进入液化器54的低压空气通道,在液化器54内复热后的低压空气分为两部分:一部分回收到空气压缩机二58的入口,另一部分进入加热器二53作为分子筛吸附器的再生气;液化器54底部抽出的高压液空进入膨胀发电机二16进行膨胀,膨胀后的常压液空进入液空储罐34,部分气化后的富氮空气返流进入液化器54为正流介质提供冷能,之后通过加热器二53加热为分子筛吸附器一47或分子筛吸附器二48的解吸提供再生气,最终通过消音器49排放到空气中;来自空气冷却器三13的高温空气通过热介质泵二32输送的热介质(如导热油)进行降温,蓄热介质来自蓄热罐一31,从空气冷却器三13提取出的余热分为两部分:一部分为空气液化单元自身的加热器二53提供升温热源,另一部分储存到蓄热罐二33中,经热介质泵一30输送到深冷空分单元的加热器一4,为其提供24小时升温热源,之后再将蓄热介质回收到空气液化单元的蓄热罐一31中。
深冷空分单元保持原空分内压缩设备常规运行状态,即原料空气依次通过空气压缩系统、预冷系统和纯化系统后得到干燥纯净空气,这部分空气分为三部分:一部分进入制冷与热交换系统被冷却至露点温度后进入高压塔7;另一部分为再增压空气,经空气增压系统压缩和冷却后分两路:一路空气从级间抽出,另一路经末级压缩和冷却后出空气增压系统;其中,级间抽出的空气经降温和膨胀后进入高压塔7的底部参与精馏;空气增压系统末级输出的空气直接进入制冷与热交换系统,经返流低温介质冷却为过冷液体后通过节流进入高压塔7;来自纯化系统的剩余纯净空气全部输送到空气液化单元的空气压缩机三50进行再增压;在高压塔7内,原料空气根据相对挥发度不同而进行组分分离,高压塔7底部得到含氧约37%的富氧液空,高压塔7顶部得到高纯度氮气,高纯度氮气经过主冷凝蒸发器6与来自低压塔5底部的液氧进行热交换,液氧被蒸发,氮气被冷凝,部分冷凝液氮再回到高压塔7作为回流液,另一部分液氮在过冷器一8中进行过冷,并分为两路:一路送入低压塔5顶部作为回流液,另一路进入氩精馏系统。高压塔7侧面采出的部分液空经过冷器一8冷却为过冷液体后节流进入低压塔5中部参与精馏,来自高压塔7底部的液空同样经过冷器一8被冷却为过冷液体,之后分为两部分:一部分节流到低压塔5中部参与精馏,另一部分送入到氩精馏系统。在低压塔5内,由于氧、氩、氮沸点的差异,经多次部分冷凝和蒸发,低压塔5底部得到纯度为99.6%以上的液氧,该液氧经液氧泵9加压,之后进入制冷与热交换系统,经气化和复热后出冷箱,作为氧产品送出。低压塔5的中上部抽出污氮气,经过冷器一8和制冷与热交换系统复热后分为三部分:一部分去加热器一4做纯化系统的再生气,一部分送入到预冷系统,另一部分进入空气液化单元的空气压缩机二58,用于调节储能过程储存液空的组分纯度。低压塔5的顶部抽出纯度高于99.99%的氮气,经过冷器一8回收部分冷量后进入制冷与热交换系统进行复热,之后进入冷箱外的氮气压缩系统。
释能过程在峰电或平电期间进行,该过程中,液空储罐34内的低温液体经液空泵17加压后分为两部分:一部分直接进入深冷空分单元的高压塔7底部;另一部分经气化器二57气化后同样送入到的高压塔7底部参与精馏;相应地,深冷空分单元的入塔原料空气量减小,压缩系统、预冷系统、纯化系统和增压系统均降负荷运行,深冷空分单元的精馏系统保持原运行状态,出冷箱的少量污氮气回流进入压缩系统,用来平衡精馏系统的组分浓度。当谷电期间储存的液空量充足的情况下,通过气化器二57气化后进入深冷空分单元高压塔7的空气量占比较大,能够完全取代原深冷空分单元的原料气,此时深冷空分单元的压缩系统、预冷系统、纯化系统和增压系统可完全停止运行,精馏系统组分浓度可通过来自氮气压缩系统的级间氮气经节流和降温后进行调节。气化器二57内液空气化释放的冷能通过利用循环风机一24驱动的污氮气提取,并将其储存在固体颗粒蓄冷器一26中,其中,污氮气来自深冷空分单元的冷箱输出管道,出固体颗粒蓄冷器一26的污氮气为深冷空分单元的纯化系统和预冷系统提供再生气和干燥气;储存在固体颗粒蓄冷器一26中的冷能再通过循环风机二25驱动污氮气进行提取,为谷电期间的空气液化提供冷量来源,深冷空分单元中其余设备的运行方式均与储能过程相同。
图10为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与升级液体介质蓄冷式空气液化储能装置集成工艺流程示意图;该流程相对图9所示空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程的区别在于其液空气化过程的冷能储存方式。释能期间,气化器二57内释放的冷能亦可利用蓄冷介质泵一38驱动的液态蓄冷介质进行提取,并将其储存在蓄冷介质罐二35中;蓄冷介质罐二35中储存的冷能用于储能过程,即低温液态蓄冷介质通过蓄冷介质泵二36后进入液化器54释放冷能,之后回收到蓄冷介质罐一37中,便于释能过程的循环再利用。
图11为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程示意图;该空气液化与深冷空分工艺集成方法中的深冷空分单元也可以是常规空分外压缩装置,同样在空分外压缩装置中的污氮气输出管道与空气压缩系统输入端之间增设管道和控制阀门五V5,并在纯化系统的空气输出端设置止回阀二V27;另外,空气液化单元的运行方法与图9所示空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程的运行方法相同,其区别主要在于空分外压缩装置的运行过程。谷电储能期间,深冷空分单元的原料空气依次通过空气压缩系统、预冷系统和纯化系统后得到的干燥纯净空气分为三部分:一部分进入制冷与热交换系统,被冷却至露点温度后进入高压塔7;另一部分为膨胀空气,经过制冷与热交换系统的降温和膨胀制冷后进入低压塔5参与精馏;来自纯化系统的剩余纯净空气全部输送到空气液化单元的空气压缩机三50进行再增压;空分外压缩装置的精馏原理与空分内压缩系统相同,最终在低压塔5底部得到纯度为99.6%以上的气氧,经过制冷与热交换系统复热后出冷箱。低压塔5的中上部抽出污氮气,经过冷器一8和制冷与热交换系统复热后分为三部分:一部分去加热器一4做纯化系统的再生气,一部分送入到预冷系统,另一部分进入空气液化单元的空气压缩机二58,用于调节储能过程低温液空的组分纯度。低压塔5的顶部抽出纯度高于99.99%的氮气,经过冷器一8回收部分冷能后进入制冷与热交换系统进行复热,之后进入冷箱外的氮气压缩系统。
释能过程,液空储罐34内的低温液体经液空泵17加压后分为两部分:一部分液空通过气化器二57气化后进入高压塔7底部,用于取代或减小原深冷空分单元的进气原料;另一部分液空直接进入高压塔7,用于为深冷空分单元补充冷能,同样,空分外压缩系统中的精馏组分浓度需要通过回收污氮气进入压缩系统或节流氮气压缩系统的级间氮气进入高压塔7进行调节。
图12为本发明实施例中制氧40000Nm3·h-1空分外压缩装置与升级液体介质蓄冷式空气液化储能装置集成工艺流程示意图;该流程相对图11所示空分外压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺流程的区别在于其液空气化冷能储存过程。释能期间,气化器二57内释放的冷能亦可利用蓄冷介质泵一38驱动的液态蓄冷介质进行提取,并将其储存在蓄冷罐二35中;蓄冷罐二35中储存的冷能用于储能过程,即低温液态蓄冷介质通过蓄冷介质泵二36后进入液化器54释放冷能,之后回收到蓄冷罐一37中,便于释能过程液空气化的循环再利用。
本过程以上述制氧40000Nm3·h-1的空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺系统和方法为例(图9)。设本案例中空分设备的全天运行负荷为其标准设计负荷(即100%),储能期间,空气液化单元的液空储存量仅以满足40000Nm3·h-1空分内压缩系统中的增压空气液化量为标准;释能时,利用深冷空分单元对空气液化单元储存的低温液空进行回收,附图9所示的控制阀门二V2、控制阀门三V3、控制阀门二十四V24和节流阀V25均关闭,储存的低温液空直接进入深冷空分单元的精馏系统,相应地,空分单元的压缩系统、预冷系统、纯化系统和增压系统均保持降负荷运行。
本发明通过利用ASPEN PLUS V10模拟软件对上述实例的储、释能过程进行建模和初步模拟计算,并将其与全天运行负荷为100%的常规空分内压缩装置运行情况进行对比。模拟过程中,假设压缩机和空气增压机1的机械效率为0.98、多变效率为0.85,膨胀机的等熵效率和机械效率分别为0.87和0.97,低温泵的机械效率为0.75,各管路和设备组件中的能量和阻力损失均忽略不计。设电网的峰、平、谷电时长均为8h,电价以表1所示中国上海市工业电价为标准。建模过程中,为使空气液化单元的液空储存量与制氧40000Nm3·h-1空分内压缩系统的增压液化空气量相匹配,设计空气液化单元的液空储存规模为56041kg/h,储能时长为8h(谷电)。若使该集成系统的释能过程集中在峰电期(8h)进行,则储存的液空需以56041kg/h的流率全部回收进入深冷空分单元的精馏系统,相应地,深冷空分单元中的压缩、预冷和纯化系统运行负荷降低到空分产品设计负荷的78%。
表1.上海市工业电价标准
Figure BDA0003448224700000241
本领域技术人员所熟知的是,对于常规空分而言,通常要求低压塔内输出的氮和氧产品纯度分别不低于99.99和99.6mol%,富氩馏分中的氩浓度不低于8mol%。对于该实施案例的储能过程,由于来自液化器54内的高压空气节流储存时部分液空气化,从而导致储存液空中的氧浓度高于环境空气中的氧浓度,故释能过程利用空分设备回收这部分液态空气后会导致深冷空分单元精馏系统原料中的氧浓度有所升高,从而影响最终的氧、氮产品纯度和氩馏分中的氩浓度。图14为本发明实施例中制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺中释能液空回收进入高压塔的流率对低压塔内产品纯度和氩馏分中氩浓度的影响曲线图。可以看出,液空回收进入高压塔前,低压塔内的氮气和液氧产品纯度分别为99.99和99.89mol%,氩馏分中的氩浓度为8.94mol%,均满足空分产品生产需求。在维持精馏塔内回流比不变的情况下,随着释能液空流率的增大,低压塔内的氮产品纯度和氩馏分中的氩浓度逐渐降低,氧产品纯度逐渐增大。当液空进入高压塔的流率达到15.6kg/s(56041kg/h)时,低压塔内的氧产品纯度和氩馏分中的氩浓度分别为99.897和8.46mol%,而氮产品纯度降低到99.9863mol%,低于常规空分产品纯度要求。适当增大高压塔内回流比可有效提高高压塔塔顶氮气纯度,使得低压塔内回流液氮中的氮浓度增加,进而提高低压塔塔顶氮产品纯度。当高压塔内回流比增大1.2%时,低压塔顶部氮组分浓度升高到99.9901%,此时,液氧浓度和富氩馏分中的氩浓度也满足生产浓度要求,说明该技术的实施案例具有可行性。
基于可行性分析,本实施案例进一步计算了该集成装置的储释能过程综合耗电情况,系统地分析了其电-电转换效率和经济效益,评估了其实施对中国电网用电负荷的影响和节能减排效益。计算结果表明,以100%负荷运行的40000Nm3/h常规内压缩空分装置的24h平均耗电功率为33367KW(包括分子筛再生电耗和氮气压缩电耗)。储能期间,空气液化单元的总耗电功率为24961KW,将空气压缩机三50的末级压缩余热应用于深冷空分单元的加热器一4之后,空分单元的运行耗电功率下降为31589KW(节约了纯化系统的再生电耗),则储能期间该集成装置的综合耗电功率为56550KW,相对100%负荷运行的常规内压缩空分装置而言,耗电功率增加69.5%;平电期间,液化空气储能单元停止运行,深冷空分单元保持常规运行状态,集成装置的综合耗电功率为31589KW(节约了纯化系统的再生电耗),相对100%负荷运行的常规内压缩空分装置,耗电功率减小5.3%;峰电释能时段,液空泵17启动,深冷空分单元的运行负荷显著降低,系统综合耗电功率下降到15017KW(节约了压缩、增压和纯化系统的再生电耗),相对100%负荷运行的常规内压缩空分装置,耗电功率下降55%,因此,该集成装置的综合电-电转换效率可达87%。
图15为峰谷电价比对本发明实施案例中制氧40000Nm3·h-1空分内压缩装置与升级固体颗粒介质蓄冷式空气液化储能装置集成工艺系统用电成本节约率的影响。可以看出,峰谷电价比越大,该集成装置相对常规内压缩空分装置的用电成本节约率越高。当峰谷电价比为3:1时,相比100%负荷运行的常规内压缩空分装置,该集成装置的用电成本节约率为17.95%;若以上海市工业电价计,其相比100%负荷运行的常规内压缩空分装置的用电成本节约率可达20.19%,随着电力市场峰谷电价实施力度的加大,本实施案例的经济效益将更加显著。
另外,考虑到空分设备在工业领域的应用范围和耗电占比,该空气液化与深冷空分工艺集成装置的广泛实施和应用将会显著改善我国的电网峰谷用电需求,对于促进电网削峰填谷,以及推动小型发电机组向基负荷机组或大型发电机组转变具有重要意义。2020年,中国粗钢产量为10.65亿吨,按每吨钢平均耗氧量120Nm3,单位氧气综合电耗为0.77KWh/Nm3计,全国冶金空分生产年耗电量可达984.06亿KWh,因冶金空分制氧能力占全国总制氧能力的25%,按内、压外压缩空分设备各占50%计,则2020年全国空分内压缩设备生产耗电总量为1968.12亿KWh,分摊到峰、平、谷三个时段,全国空分内压缩设备的峰、平、谷用电量分别为656.04亿KWh。如图16所示,若全国常规空分内压缩设备均由该集成装置所取代,并对其实施电力需求侧管理,使其全面参与电网调峰,则中国电网的年谷电负荷需求将上升456亿kWh,平电和峰电年负荷需求将分别下降35和361亿kWh,全行业应用后降低电网峰谷差率约9.8%(当前为25.98%),可有效提高电网发电机组的稳定性和运行效率。电网峰谷差的减小还可促使部分小中型调峰机组转为基负荷机组或被新型大容量发电机组所取代,从而降低发电煤耗和污染物排放。基于电网“低负荷”调峰节煤计算模型(见表2)及其不同容量发电机组的煤耗情况(见表3),集成装置参与中国电网调峰后,若使部分300MW的中小型常规“低负荷”调峰机组被660MW或1000MW的大型超临界机组取代,其因削峰填谷所产生的年节煤效益可达8.9-13.2Mtce(忽略平电负荷下降所产生的节煤效益),降低碳排放7.17-10.63Mt(或实现CO2减排25.58-37.9Mt)。若利用大型超临界机组来取代200MW及其以下的小型调峰机组,其节能减排效果将更加显著。
表2 低负荷调峰模式节煤量计算
Figure BDA0003448224700000261
Figure BDA0003448224700000271
表3 燃煤发电机组运行基本参数
Figure BDA0003448224700000272
本发明基于液化空气储能技术与深冷空分工艺技术的制冷能级相互匹配和原料利用互为补充的特点,对常规深冷空分装置和常规液化空气储能装置进行集成,即实现二者的配合运行,也能保持原有的独立运行状态。二者配合运行时,谷电期液化空气储能单元储存的低温液空能够为深冷空分单元的峰电期运行提供精馏原料,显著降低深冷空分装置对峰电期电能的需求,系统电转换效率和成本效益得到显著提高。该技术的实施和推广对企业有经济效益,对电网侧有节能减排效益,是企业经济效益和国家经济与环境效益的完美统一。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,即凡涉及到深冷空分装置与液化空气储能装置(包括与其它技术集成的液化空气储能装置)的类似集成和在此基础上的若干改进和润饰均视为本发明的保护范围。

Claims (9)

1.一种空气液化与深冷空分工艺集成方法,其特征在于,通过将空气液化单元和深冷空分单元集成,二者配合运行时,实现常规液化空气储能装置中低温液空冷能和物质在空分单元中的高效充分回收和利用;二者独立运行时,分别保持液化空气储能装置和深冷空分装置的常规运行状态;
深冷空分单元与空气液化单元集成是在常规深冷空分装置的制冷与热交换系统的污氮气输出端与空气压缩系统输入端之间增设连接管道和控制阀门五;在常规液化空气储能装置的液空泵输出端与常规深冷空分装置的高压塔输入端之间增设连接管道和控制阀门四;在常规液化空气储能装置的气化器一输出端与常规深冷空分装置的高压塔输入端之间增设连接管道和控制阀门三;在常规液化空气储能装置的液空泵输出端与气化器一的输入端之间增设控制阀门二,在气化器一的输出端与空气加热器一的输入端之间设置控制阀门二十五;
深冷空分单元与空气液化单元配合运行时包含储能和释能两个阶段,储能期间,深冷空分单元与空气液化单元均保持常规独立运行状态,在深冷空分单元输出常规氧气、氮气和氩气的同时,空气液化单元储存低温液态空气;释能期间,关闭控制阀门二十五,常规液化空气储能装置中的原膨胀发电过程停止运行,同时控制阀门三、控制阀门四和控制阀门五开启,空气液化单元中液空储罐内的低温液空经常规液化空气储能装置中的液空泵加压后分为两部分:一部分作为液态原料,经控制阀门四直接进入深冷空分单元的高压塔参与精馏,另一部分经常规液化空气储能装置中的气化器一气化后作为气态原料经控制阀门三进入深冷空分单元的高压塔参与系统精馏,深冷空分单元的压缩、预冷、纯化、增压和制冷系统负荷同时相应减小;
深冷空分单元与空气液化单元独立运行时,控制阀门三、控制阀门四和控制阀门五关闭,控制阀门二、控制阀门二十五开启,深冷空分单元与空气液化单元的储能和释能过程均保持独立常规运行状态,在深冷空分单元输出常规氧气、氮气和氩气的同时,空气液化单元实现低温液空的储存和释能膨胀发电过程;
深冷空分单元与空气液化单元配合或独立运行时,空气液化单元中空气压缩过程储存的过剩压缩余热均用于为深冷空分单元中的纯化系统再生气提供升温热源;
所述深冷空分单元和空气液化单元分别指常规深冷空分装置和常规液化空气储能装置;常规深冷空分装置包括内压缩和外压缩两种形式;常规液化空气储能装置包括固体颗粒介质和液体介质蓄冷两种形式。
2.根据权利要求1所述的空气液化与深冷空分工艺集成方法,其特征在于,空气液化单元与深冷空分单元配合运行时,深冷空分单元是在常规内压缩空分装置主换热器的污氮气输出端增设与空气压缩系统输入端之间的连接管道和控制阀门五,并在纯化系统的空气输出端增设止回阀二;所述空气液化单元在常规固体颗粒介质蓄冷式液化空气储能装置的基础上取消原空气发电循环回路,将原级间热油冷却式空气压缩机一更换为两台相互串联的级间水冷式多级压缩机,并保留原空气压缩机一末级的空气冷却器三、原蓄热循环系统、原空气液化和液空气化相关设备,将原空气冷却器五更换为液化器,原气化器一更换为气化器二,增设与液化器相互连接的膨胀发电机四和膨胀发电机五,同时在两台水冷式多级压缩机之间增设空气净化系统;
所述级间水冷式多级压缩机包括空气压缩机二、空气压缩机三、水冷却器一、水冷却器二、水冷却器三、水冷却器四、水冷却器五和水冷却器六;所述原蓄热循环系统是指原蓄热罐一、蓄热罐二、热介质泵一和热介质泵二;所述原空气液化和液空气化相关设备包括膨胀发电机二、液空储罐、液空泵、循环风机一、循环风机二和固体颗粒蓄冷器一;所述空气净化系统包括分子筛吸附器一、分子筛吸附器二、消音器和加热器二。
3.根据权利要求2所述的空气液化与深冷空分工艺集成方法,其特征在于,所述空气压缩机二的输入端为环境空气,水冷却器一、水冷却器二、水冷却器三和水冷却器四分别为空气压缩机二的一级、二级、三级和末级空气冷却器,水冷却器四的空气输出端连接于分子筛吸附器一和分子筛吸附器二的底部输入端,分子筛吸附器一和分子筛吸附器二的上部输出端分为两路:一路连接于空气压缩机三的一级气缸输入端,另一路连接于常规深冷空分单元的纯化系统空气输出管道;水冷却器五和水冷却器六分别为空气压缩机三的一级和二级空气冷却器,空气压缩机三的末级空气输出端连接于常规空气冷却器三的热流体输入端,空气冷却器三的热流体输出端连接于液化器的高压空气输入端,液化器的高压空气上部输出端连接于膨胀发电机四的输入端,膨胀发电机四的输出端连接于液化器的中压空气输入端,液化器的中压空气输出端连接于膨胀发电机五的输入端,膨胀发电机五的输出端连接于液化器的低压空气输入端,液化器的低压空气输出端分为两路:一路连接于空气压缩机二的输入端,另一路连接于加热器二的再生气输入端;加热器二的再生气输出端连接于分子筛吸附器一和分子筛吸附器二的上部输入端,分子筛吸附器一和分子筛吸附器二的底部输出端连接于消音器;液化器的高压空气底部输出端连接于常规膨胀发电机二的输入端,膨胀发电机二的输出端连接于常规液空储罐的输入端,液空储罐的气体输出端连接于液化器的富氮低压空气输入端,液化器的富氮低压空气输出端连接于加热器二的再生气输入端;液化器的循环低温介质输入端连接于常规固体颗粒蓄冷器一的下部输出端,固体颗粒蓄冷器一上部输入端连接于常规循环风机二的输出端,循环风机二的输入端连接于深冷空分单元中制冷与热交换系统的污氮气输出管道,液化器的循环低温介质输出端分别连接于深冷空分单元的加热器一的再生气输入端和预冷系统;空气冷却器三的冷流体输入端连接于常规热介质泵二的输出端,热介质泵二的输入端连接于常规蓄热罐二输出端;空气冷却器三的冷流体输出端分为两路:一路连接于加热器二的热流体输入端,另一路连接于常规蓄热罐一的输入端;蓄热罐一的输出端连接于常规热介质泵一的输入端,热介质泵一的输出端为深冷空分单元的加热器一提供升温热源;加热器二的热流体输出端连接于蓄热罐二的输入端;空气液化单元的空气压缩机二的输入端与深冷空分单元中制冷与热交换系统的污氮气输出端之间增设管道;
液空储罐的输出端连接于常规液空泵的输入端,液空泵的输出端分为两路:一路连接于深冷空分单元的高压塔原料输入端,另一路连接于气化器二的冷流体输入端,气化器二的冷流体输出端连接于高压塔的原料输入端;气化器二的热流体输入端连接于常规循环风机一的输出端,循环风机一的输入端连接于深冷空分单元中制冷与热交换系统的污氮气输出管道和固体颗粒蓄冷器一的上部输出端,气化器二的热流体输出端连接于固体颗粒蓄冷器一的下部输入端,固体颗粒蓄冷器一的上部输出端连接于深冷空分单元的加热器一的再生气输入端和预冷系统;气化器二的氮气输入端连接于深冷空分单元的氮气压缩系统级间气体输出管道,气化器二的氮气输出端连接于气化器二的冷流体输出管道。
4.根据权利要求3所述的空气液化与深冷空分工艺集成方法,其特征在于,所述液空储罐的输出端与液空泵的输入端之间设置控制阀门一,液空泵的输出端与气化器二的输入端之间设置控制阀门二,气化器二的输出端与高压塔的输入端之间设置控制阀门三,液空泵的输出端与高压塔的输入端之间设置控制阀门四,循环风机一的输入端与固体颗粒蓄冷器一的上部输出端之间设置控制阀门六,气化器二的热流体输出端与固体颗粒蓄冷器一的底部输入端之间设置控制阀门七,液化器的循环低温介质输出端设置控制阀门九,空气冷却器三的冷流体输出端与加热器二的热流体输入端之间设置控制阀门十,空气冷却器三的冷流体输出端与蓄热罐一的输入端之间设置控制阀门十一,热介质泵一的输出端与深冷空分单元的加热器一热源输入端之间设置控制阀门二十二,加热器二的热流体输出端与蓄热罐二输入端之间设置控制阀门十二,液化器的低压空气输出端与空气压缩机二的输入端之间设置控制阀门十三,固体颗粒蓄冷器一的上部输出端与深冷空分单元的加热器一的再生气输入端和预冷系统输入端之间设置控制阀门十四,循环风机二的输出端与固体颗粒蓄冷器一的上部输入端之间设置控制阀门十五,固体颗粒蓄冷器一的底部输出端与液化器的循环低温介质体输入端之间设置控制阀门十六,分子筛吸附器一和分子筛吸附器二的空气输出端设置止回阀三,分子筛吸附器一和分子筛吸附器二的空气输出端与深冷空分单元的纯化系统输出端之间设置控制阀门二十一,气化器二的氮气输入端与深冷空分单元的氮气压缩系统级间气体输出管道之间设置节流阀,气化器二的氮气输出端与气化器二的冷流体输出管道之间设置控制阀门二十四,气化器二的冷流体输出端设置止回阀一,空气液化单元的空气压缩机二输入端与深冷空分单元中制冷与热交换系统的污氮气输出端之间设置控制阀门二十三。
5.根据权利要求1所述的空气液化与深冷空分工艺集成方法,其特征在于,所述空气液化单元在常规液体介质蓄冷式液化空气储能装置的基础上取消原空气发电循环回路,将原级间热油冷却式空气压缩机一更换为两台相互串联的级间水冷式多级压缩机,并保留原压缩机末级的空气冷却器三、原蓄热循环系统、原空气液化和液空气化相关设备,将原空气冷却器五更换为液化器,原气化器一更换为气化器二,并增设与液化器相互连接的膨胀发电机四和膨胀发电机五,同时在两台水冷式多级压缩机之间增设空气净化系统;
所述级间水冷式多级压缩机包括空气压缩机二、空气压缩机三、水冷却器一、水冷却器二、水冷却器三、水冷却器四、水冷却器五和水冷却器六;所述原蓄热循环系统是指原蓄热罐一、蓄热罐二、热介质泵一和热介质泵二;所述原空气液化和液空气化相关设备包括膨胀发电机二、液空储罐、液空泵、蓄冷介质泵一、蓄冷介质泵二、蓄冷罐一、蓄冷罐二;所述空气净化系统包括分子筛吸附器一、分子筛吸附器二、消音器和加热器二;
所述气化器二的热流体输入端连接于蓄冷介质泵一的输出端,蓄冷介质泵一的输入端连接于蓄冷罐一的输出端,气化器二的热流体输出端连接于蓄冷罐二的输入端,蓄冷罐二的输出端连接于蓄冷介质泵二的输入端,蓄冷介质泵二的输出端连接于液化器的低温蓄冷介质输入端,液化器的低温蓄冷介质输出端连接于蓄冷罐一的输入端;
所述蓄冷介质泵一的输出端与气化器二的热流体输入端之间设置控制阀门十七,气化器二的热流体输出端与蓄冷罐二的输入端之间设置控制阀门十八,蓄冷介质泵二的输出端与液化器的低温蓄冷介质输入端之间设置控制阀门十九,液化器的低温蓄冷介质输出端与蓄冷罐一的输入端之间设置控制阀门二十。
6.根据权利要求3所述的空气液化与深冷空分工艺集成方法,其特征在于,所述空气液化单元的空气压缩机二为多级水冷压缩设备,其末级输出压力与深冷空分单元的压缩系统空气输出压力相当,水冷却器四能够用喷淋塔代替;
所述空气压缩机三为级间水冷式多级压缩设备,末级采用蓄热介质进行降温,并将余热储存在热储罐一中,用于为空气液化单元的加热器二和深冷空分单元的加热器一提供升温热源;
所述分子筛吸附器一和分子筛吸附器二切换运行,一个吸附,一个再生;
所述膨胀发电机二能够用节流阀代替。
7.根据权利要求3所述的空气液化与深冷空分工艺集成方法,其特征在于,所述循环风机一和循环风机二输入端的污氮气能够用来自深冷空分单元中制冷与热交换系统的复热后高纯氮气或环境中的空气代替;
氮气代替污氮气时,固体颗粒蓄冷器一的上部输出端和液化器的循环低温介质输出端均连接于深冷空分单元的氮气压缩系统输入端;
环境空气代替污氮气时,固体颗粒蓄冷器一的上部输出端连接于循环风机一的输入端,液化器的循环低温介质体输出端连接于循环风机二的输入端。
8.根据权利要求3所述的空气液化与深冷空分工艺集成方法,其特征在于,所述深冷空分单元维持全天24h运行,空气液化单元在谷电期间储存低温液空;峰电或平电时段,液空经低温泵加压后分为两部分:一部分作为液态精馏原料,直接送入到深冷空分单元的高压塔,另一部分经气化后作为气态原料进入深冷空分单元的高压塔参与系统精馏;谷电时段,空气压缩机三末级产生的压缩余热不仅直接为空气液化单元自身的分子筛吸附器一和分子筛吸附器二提供再生气升温热源,还用做深冷空分单元纯化系统的全天再生热;
所述深冷空分单元在谷电时段以最大负荷运行,产品需求负荷以外的纯化后空气通过控制阀门二十一进入空气液化单元的空气压缩机三,与原空气液化单元中的纯化后空气共同参与制冷和空气液化过程;
释能期间,深冷空分单元的压缩系统负荷降到可调负荷下限,将空气液化单元的空气压缩机二的末级输出端连接到深冷空分单元的预冷系统输入端或在深冷空分单元的压缩系统并联设置至少一台空气压缩机,用于为释能过程深冷空分单元的低负荷运行提供备用切换设备。
9.根据权利要求3所述的空气液化与深冷空分工艺集成方法,其特征在于,所述液空泵输出压力与深冷空分单元的高压塔底部压力相同,进入气化器一和气化器二的液空气化后输出温度与深冷空分单元的高压塔的空气原料输入温度相同。
CN202111665570.9A 2021-12-30 2021-12-30 一种空气液化与深冷空分工艺集成方法 Active CN114383384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111665570.9A CN114383384B (zh) 2021-12-30 2021-12-30 一种空气液化与深冷空分工艺集成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111665570.9A CN114383384B (zh) 2021-12-30 2021-12-30 一种空气液化与深冷空分工艺集成方法

Publications (2)

Publication Number Publication Date
CN114383384A CN114383384A (zh) 2022-04-22
CN114383384B true CN114383384B (zh) 2022-09-16

Family

ID=81200729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111665570.9A Active CN114383384B (zh) 2021-12-30 2021-12-30 一种空气液化与深冷空分工艺集成方法

Country Status (1)

Country Link
CN (1) CN114383384B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670003B (zh) * 2021-07-29 2022-08-09 北京科技大学 高安全性的储能、发电和物质回收外压缩空分工艺流程

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050132746A1 (en) * 2003-12-23 2005-06-23 Jean-Renaud Brugerolle Cryogenic air separation process and apparatus
US20170211882A1 (en) * 2014-07-31 2017-07-27 Linde Aktiengesellschaft Production of an air product in an air separation plant with cold storage unit
CN109341193A (zh) * 2018-11-16 2019-02-15 杭州凯德空分设备有限公司 一种峰谷电生产液氧液氮装置及方法
CN110160315A (zh) * 2019-06-13 2019-08-23 兰文旭 一种利用夜间廉价电力的液体空分装置及生产方法
CN110319652A (zh) * 2019-06-25 2019-10-11 杭州杭氧化医工程有限公司 一种用于储释能的空气分离制氧装置
CN112901459A (zh) * 2021-01-19 2021-06-04 大连理工大学 一种与深冷空分装置耦合集成的压缩空气储能系统
CN113670003A (zh) * 2021-07-29 2021-11-19 北京科技大学 高安全性的储能、发电和物质回收外压缩空分工艺流程
CN113686099A (zh) * 2021-08-09 2021-11-23 北京科技大学 一种基于内压缩空分储能装置的物质回收方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050132746A1 (en) * 2003-12-23 2005-06-23 Jean-Renaud Brugerolle Cryogenic air separation process and apparatus
US20170211882A1 (en) * 2014-07-31 2017-07-27 Linde Aktiengesellschaft Production of an air product in an air separation plant with cold storage unit
CN109341193A (zh) * 2018-11-16 2019-02-15 杭州凯德空分设备有限公司 一种峰谷电生产液氧液氮装置及方法
CN110160315A (zh) * 2019-06-13 2019-08-23 兰文旭 一种利用夜间廉价电力的液体空分装置及生产方法
CN110319652A (zh) * 2019-06-25 2019-10-11 杭州杭氧化医工程有限公司 一种用于储释能的空气分离制氧装置
CN112901459A (zh) * 2021-01-19 2021-06-04 大连理工大学 一种与深冷空分装置耦合集成的压缩空气储能系统
CN113670003A (zh) * 2021-07-29 2021-11-19 北京科技大学 高安全性的储能、发电和物质回收外压缩空分工艺流程
CN113686099A (zh) * 2021-08-09 2021-11-23 北京科技大学 一种基于内压缩空分储能装置的物质回收方法

Also Published As

Publication number Publication date
CN114383384A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN111043833B (zh) 一种具有储能和发电功能的内压缩空分工艺流程
CN112179046B (zh) 一种液态空气储能与氨气合成集成装置及方法
JP4885734B2 (ja) 極低温の空気分離法および装置
CN110319652B (zh) 一种用于储释能的空气分离制氧装置
CN1124405C (zh) 内设气化器的联合循环/空气分离装置发电系统及操作
CN113739516B (zh) 一种空分储能耦合富氧燃烧的系统及方法
CN113686099B (zh) 一种基于内压缩空分储能装置的物质回收方法
CN201377961Y (zh) 多工况空分设备
CN112145248B (zh) 具有储能、发电和物质回收功能的外压缩空分工艺流程
CN104807289A (zh) 利用lng冷能空分制取液氧液氮的方法
CN114383384B (zh) 一种空气液化与深冷空分工艺集成方法
CN111811213A (zh) 具有储能和物质能量资源高效回收的内压缩空分工艺流程
CN209085172U (zh) 一种液体量可调且同时产多规格氧气产品的空分设备
CN202101512U (zh) 一种膨胀式可燃气体液化装置
CN102269509B (zh) 与余热驱动制冷相结合的co2压缩液化系统
CN213480731U (zh) 一种液态空气储能与氨气合成集成装置
CN113670003B (zh) 高安全性的储能、发电和物质回收外压缩空分工艺流程
CN110185506B (zh) 一种天然气调压站压力能综合利用系统
CN210197867U (zh) 一种用于储释能的空气分离制氧装置
CN210119067U (zh) 一种利用夜间廉价电力的液体空分装置
CN102072612A (zh) N型模式节能制气方法及n型模式节能制气装置
US20230212768A1 (en) Device and method for producing hydrogen and byproduct oxygen by using green electricity electrolyzed water
CN1038514A (zh) 生产高压氧和高压氮的空气分离流程
CN107626183B (zh) 一种适用于电网峰-谷负荷运行的富氧燃烧二氧化碳捕集集成系统
CN211526879U (zh) 一种半连续中压氮气供应的空气分离系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant