CN111811213A - 具有储能和物质能量资源高效回收的内压缩空分工艺流程 - Google Patents
具有储能和物质能量资源高效回收的内压缩空分工艺流程 Download PDFInfo
- Publication number
- CN111811213A CN111811213A CN202010532426.7A CN202010532426A CN111811213A CN 111811213 A CN111811213 A CN 111811213A CN 202010532426 A CN202010532426 A CN 202010532426A CN 111811213 A CN111811213 A CN 111811213A
- Authority
- CN
- China
- Prior art keywords
- air
- heat exchanger
- liquid
- main heat
- expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 138
- 238000004146 energy storage Methods 0.000 title claims abstract description 78
- 238000011084 recovery Methods 0.000 title claims abstract description 75
- 238000007906 compression Methods 0.000 title claims abstract description 68
- 239000000463 material Substances 0.000 title claims abstract description 46
- 230000006835 compression Effects 0.000 title claims abstract description 41
- 239000007788 liquid Substances 0.000 claims abstract description 263
- 238000000034 method Methods 0.000 claims abstract description 65
- 238000003860 storage Methods 0.000 claims abstract description 64
- 230000008569 process Effects 0.000 claims abstract description 61
- 230000005611 electricity Effects 0.000 claims abstract description 33
- 238000005516 engineering process Methods 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 248
- 229910052757 nitrogen Inorganic materials 0.000 claims description 124
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 88
- 229910052786 argon Inorganic materials 0.000 claims description 44
- 239000002994 raw material Substances 0.000 claims description 42
- 239000007789 gas Substances 0.000 claims description 40
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 32
- 239000001301 oxygen Substances 0.000 claims description 32
- 229910052760 oxygen Inorganic materials 0.000 claims description 32
- 239000002699 waste material Substances 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 16
- 239000002808 molecular sieve Substances 0.000 claims description 16
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 14
- 239000010865 sewage Substances 0.000 claims description 13
- 238000010248 power generation Methods 0.000 claims description 11
- 238000003303 reheating Methods 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- 238000005057 refrigeration Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 238000002309 gasification Methods 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 238000005086 pumping Methods 0.000 description 7
- 239000013526 supercooled liquid Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000005272 metallurgy Methods 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000003889 chemical engineering Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- 229910001341 Crude steel Inorganic materials 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04096—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04496—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04612—Heat exchange integration with process streams, e.g. from the air gas consuming unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04703—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04721—Producing pure argon, e.g. recovered from a crude argon column
- F25J3/04727—Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04787—Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
- F25J2205/32—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
- F25J2205/34—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/40—Air or oxygen enriched air, i.e. generally less than 30mol% of O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/02—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/58—One fluid being argon or crude argon
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本发明提供一种具有储能和物质能量资源高效回收的内压缩空分工艺流程,属于空分技术领域。该工艺通过在常规空分内压缩工艺流程的基础上设置低温液空储存和物质能量回收系统,形成集气体分离、液空储存和物质能量资源回收为一体的空分新工艺流程,实现空分设备和技术的规模化储能特性。本发明既是一种新的空分工艺流程,也适用于对现有空分内压缩工艺流程的升级和更新改造。该工艺流程可通过利用廉价的谷电资源将过剩的电能储存于液态空气中,释能过程通过回收储存物质及其气化过程释放的冷能降低系统对峰电期电能的需求,有效提高空分系统的能量转换效率和运行经济性。
Description
技术领域
本发明涉及空分技术领域,特别是指一种具有储能和物质能量资源高效回收的内压缩空分工艺流程。
背景技术
随着电子科技领域的迅速发展和居民生活水平的不断提高,工业、农业和商业等领域的部分产业已逐渐被电子信息技术取代,电子产品逐渐走进人类的工作和生活,导致电力市场供需关系频繁变化,电网峰谷差逐渐扩大,电网调峰面临巨大挑战。目前,我国70%以上的电力负荷来自火电机组,光伏、风电等可再生能源机组受电力调峰能力和传输容量限制,呈现出不同程度的弃风、弃光现象,因此,未来几年中国的火电机组调峰仍将占据主导地位,而调峰机组的频繁启停和变负荷运行严重影响发电机组的运行效率和使用寿命,同时也会增加发电煤耗和污染物排放。
针对高耗电企业采取电力需求侧管理和在电网侧接入“储能调峰”技术是两种平衡电网用电需求和降低企业运行成本的重要辅助手段。空分设备是工业领域的重要高耗电企业,其在煤化工、石油炼化和冶金三大行业的制氧能力占比分别为45%、30%和25%。随着我国冶金和化工等传统工业去产能、降成本、优结构发展态势的逐渐深入,空分行业的发展也进入了“新常态”,冶金空分行业普遍面临减产、停产和设备闲置等多重危机,部分化工领域的空分设备也普遍降负荷运行,致使设计产能普遍大于实际气体需求,空分气体耗散量严重。以钢铁行业为例,2017年,我国粗钢产量为8.71亿吨,占世界钢铁总产量的49.2%,按每吨钢耗氧量为120Nm3/h,单位制氧综合电耗为0.8KWh/Nm3计算,2017年全国冶金行业制氧综合总电耗可达836.16×109KWh,相比中国工业总电耗为44959.8×109KWh,可推算出2017年我国空分设备总制氧综合电耗可占全国工业总电耗的7.4%,能耗占比相当可观。因此,在对空分设备实施生产电力需求侧管理的同时,如果能够利用空分设备实现规模化储能技术,则对于改善空分设备产能供过于求的生产运行现状和节约储能设备投资成本具有重要意义。目前,常用的规模化物理储能技术主要有抽水储能、压缩空气储能和液化空气储能等,抽水储能和压缩空气储能技术受地理位置和选址范围约束,发展受到一定限制,而液化空气储能技术因其储能密度大、时间响应短、安全系数高、原料来源广、不受天气变化、地理位置和环境限制等独特优势受到了人们的广泛关注,但建立独立的液化空气储能系统设备投资大,成本高,回本周期长。考虑到空分系统与液化空气储能系统的工艺流程和工作原理的相似性,若将液化空气储能技术应用于空分系统,不仅可以提高空分系统的设备利用率,充分挖掘空分系统的运行潜力,还可以极大程度上降低气体产品的放散量,平衡电网电力负荷,节约空分企业用电成本,同时实现空分设备和工艺技术流程的大型化、超大型化、多功能化和集成性发展。
发明内容
本发明要解决的技术问题是提供一种具有储能和物质能量资源高效回收的内压缩空分工艺流程,该流程基于电力市场电力峰谷分时电价制度和中国空分设备产能供过于求的生产现状,以平衡电网用电需求、提高空分设备利用率、挖掘空分设备运行潜力和推进空分设备规模大型化、功能多样化发展为目的,开发具有储能和物质能量资源高效回收的全新空分工艺流程。
该工艺流程在常规空分内压缩工艺流程基础上设置低温液空储存和物质能量回收系统,实现空分设备和技术的规模化储能特性;在取消常规空分内压缩装置的中压主换热器一时,低温液空储存和物质能量回收系统包括中压主换热器二、低温透平膨胀发电机一、低温透平膨胀发电机二、液空过冷器、常压气液分离器、液空储罐、液空泵和节流阀二;在保留常规空分内压缩装置的中压主换热器一时,低温液空储存和物质能量回收系统还包括中压主换热器三、低温透平膨胀发电机一、低温透平膨胀发电机二、液空过冷器、常压气液分离器、液空储罐、液空泵和节流阀二。
当低温液空储存和物质能量回收系统包括中压主换热器二、低温透平膨胀发电机一、低温透平膨胀发电机二、液空过冷器、常压气液分离器、液空储罐、液空泵和节流阀二时;中压主换热器二设置四个正流通道和六个逆流通道,四个正流通道分别为纯化后低压空气通道、增压后中压空气通道、增压膨胀空气通道和外循环膨胀空气通道,六个逆流通道分别为污氮气通道、液氧通道、氮气产品通道、膨胀空气回收通道、低温空气回收通道和液空复热通道,同时在氮气产品通道上设置中部和上部两个流体抽出位置,外循环膨胀空气通道上设置中部和底部两个流体抽出位置,液空复热通道上设置中部抽出位置;其中,中压主换热器二的纯化后低压空气输入端连接于分子筛吸附器的空气输出端,中压主换热器二的纯化后低压空气输出端连接于精馏塔下塔的原料输入端;中压主换热器二的增压后中压空气输入端连接于空气增压机的四级冷却器输出端,中压主换热器二的增压后中压空气输出端分为两路:一路连接于精馏塔下塔的原料输入端,另一路连接于液空过冷器的液态空气输入端;中压主换热器二的增压膨胀空气输入端连接于增压后冷却器的输出端,中压主换热器二的增压膨胀空气输出端连接于增压透平膨胀机的膨胀端输入管道;中压主换热器二的外循环膨胀空气输入端连接于空气增压机的三级冷却器输出端,中压主换热器二的外循环膨胀空气的中部和底部输出端连接于低温透平膨胀发电机一的膨胀端输入管道;中压主换热器二的污氮气输入端连接于过冷器的污氮气输出端,中压主换热器二的污氮气输出端连接于污氮气输出管道;中压主换热器二的液氧输入端连接于液氧泵的输出端,中压主换热器二的复热氧气输出端连接于氧气产品输出管道;中压主换热器二的氮气产品输入端连接于过冷器的氮气输出端,中压主换热器二的氮气产品中部和上部输出端均连接于氮气产品输出管道;中压主换热器二的膨胀回收空气输入端连接于液空过冷器的膨胀空气输出端,中压主换热器二的膨胀回收空气输出端连接于污氮气输出管道;中压主换热器二的低温空气输入端连接于液空过冷器的低温空气输出端,中压主换热器二的低温空气输出端连接于污氮气输出管道;中压主换热器二的液态空气输入端连接于液空泵的输出端,中压主换热器二的气化空气中部输出端连接于低温透平膨胀发电机二的膨胀端输入管道;所述低温透平膨胀发电机一的膨胀端输出管道分为两路:一路直接连接于精馏塔上塔的原料输入端,另一路连接于液空过冷器的膨胀空气输入端;所述低温透平膨胀发电机二的膨胀端输出管道直接连接于精馏塔下塔的原料输入端;所述液空过冷器的液态空气输出端连接于常压气液分离器的输入端;所述常压气液分离器的气体输出端连接于液空过冷器的低温空气输入端,常压气液分离器的液体输出端连接于液空储罐的输入端;所述液空储罐的输出端连接于液空泵的输入端;
所述液空过冷器的液态空气输出端与常压气液分离器的输入端之间设置节流阀二;所述分子筛吸附器的空气输出端与中压主换热器二和中压氩换热器的低压空气输入端之间设置控制阀门一,所述液空泵的输出端与中压主换热器二的液态空气输入端之间设置控制阀门五;所述空气增压机的三级冷却器输出端与中压主换热器二的外循环膨胀空气输入端之间设置控制阀门六,中压主换热器二的外循环膨胀空气中部输出端与低温透平膨胀发电机一的膨胀端输入管道之间设置控制阀门八,中压主换热器二的外循环膨胀空气底部输出端与低温透平膨胀发电机一的膨胀端输入管道之间设置控制阀门九;所述中压主换热器二的氮气产品中部输出端与氮气产品输出管道之间设置控制阀门十,中压主换热器二的氮气产品上部输出端与氮气产品输出管道之间设置控制阀门十一;所述中压主换热器二的膨胀回收空气输出端与污氮气输出管道之间设置控制阀门十二,中压主换热器二的低温空气输出端与污氮气输出管道之间设置控制阀门十三;所述低温透平膨胀发电机一的膨胀端输出管道与精馏塔上塔的原料输入端之间设置控制阀门十四,低温透平膨胀发电机一的膨胀端输出管道与液空过冷器的液态空气输入端之间设置控制阀门十七;所述低温透平膨胀发电机二的膨胀端输出管道与精馏塔下塔的原料输入端之间设置控制阀门十五。
当低温液空储存和物质能量回收系统包括中压主换热器一、中压主换热器三、低温透平膨胀发电机一、低温透平膨胀发电机二、液空过冷器、常压气液分离器、液空储罐、液空泵和节流阀二时,中压主换热器三设置四个正流通道和五个逆流通道,四个正流通道分别为纯化后低压空气通道、增压后中压空气通道、增压膨胀空气通道和外循环膨胀空气通道,五个逆流通道分别为液氧通道、氮气产品通道、膨胀空气回收通道、低温空气回收通道和液空复热通道,同时在氮气产品通道上设置中部和上部两个流体抽出位置,外循环膨胀空气通道上设置中部和底部两个流体抽出位置,液空复热通道上设置中部抽出位置;其中,分子筛吸附器的空气输出端连接于中压主换热器一、中压主换热器三和中压氩换热器的低压空气输入端;中压主换热器三的纯化后低压空气输出端连接于精馏塔下塔的原料输入端,中压主换热器三的增压后中压空气输入端连接于空气增压机的四级冷却器输出端,中压主换热器三的增压后中压空气输出端连接于中压主换热器一的增压后中压空气输出管道;中压主换热器三的增压膨胀空气输入端连接于增压后冷却器的输出端,中压主换热器三的增压膨胀空气输出端连接于增压透平膨胀机的膨胀端输入管道;中压主换热器三的外循环膨胀空气输入端连接于空气增压机的三级冷却器输出端,中压主换热器三的外循环膨胀空气的中部和底部输出端连接于低温透平膨胀发电机一的膨胀端输出入管道;中压主换热器三的氮气产品输入端连接于过冷器的氮气输出端,中压主换热器三的氮气产品中部和上部输出端均连接于氮气产品输出管道;中压主换热器三的液氧输入端连接于液氧泵的输出端,中压主换热器三的复热氧气输出端连接于氧气产品输出管道;中压主换热器三的膨胀回收空气输入端连接于液空过冷器的膨胀空气输出端,中压主换热器三的膨胀回收空气输出端连接于污氮气输出管道;中压主换热器三的低温空气输入端连接于液空过冷器的低温空气输出端,中压主换热器三的低温空气输出端连接于污氮气输出管道;中压主换热器三的液态空气输入端连接于液空泵的输出端,中压主换热器三的气化空气中部输出端连接于低温透平膨胀发电机二的膨胀端输入管道;所述低温透平膨胀发电机一的膨胀端输出管道分为两路:一路直接连接于精馏塔上塔的原料输入端,另一路连接于液空过冷器的膨胀空气输入端;所述低温透平膨胀发电机二的膨胀端输出管道直接连接于精馏塔下塔的原料输入端;所述液空过冷器的液态空气输入端连接于中压主换热器一和中压主换热器三的增压后中压空气输出端,液空过冷器的液态空气输出端连接于常压气液分离器的输入端;所述常压气液分离器的气体输出端连接于液空过冷器的低温空气输入端,常压气液分离器的液体输出端连接于液空储罐的输入端;所述液空储罐的输出端连接于液空泵的输入端;
所述分子筛吸附器的空气输出端与中压主换热器一、中压主换热器三和中压氩换热器的低压空气输入端之间设置控制阀门一,所述中压主换热器三的低压空气输入端与中压主换热器一和中压氩换热器的低压空气输入端之间设置控制阀门三,中压主换热器三的增压后中压空气输入端与空气增压机的四级冷却器输出端之间设置控制阀门二,中压主换热器三的液氧输入端与液氧泵的输出端之间设置控制阀门四,中压主换热器三的液空输入端与液空泵的输出端之间设置控制阀门五,中压主换热器三的外循环膨胀空气输入端与空气增压机的三级冷却器输出端之间设置控制阀门六,中压主换热器三的增压膨胀空气输入端与增压后冷却器输出端之间设置控制阀门七,中压主换热器三的外循环膨胀空气中部输出端与低温透平膨胀发电机一的膨胀端输入管道之间设置控制阀门八,中压主换热器三的外循环膨胀空气底部输出端与低温透平膨胀发电机一的膨胀端输入管道之间设置控制阀门九;所述中压主换热器三的氮气产品输入端与过冷器的氮气输出端之间设置控制阀门十六,中压主换热器三的氮气产品中部输出端与氮气产品输出管道之间设置控制阀门十,中压主换热器三的氮气产品上部输出端与氮气产品输出管道之间设置控制阀门十一;所述中压主换热器三的膨胀回收空气输出端与污氮气输出管道之间设置控制阀门十二,中压主换热器三的低温空气输出端与污氮气输出管道之间设置控制阀门十三;所述低温透平膨胀发电机一的膨胀端输出管道与精馏塔上塔的原料输入端之间设置控制阀门十四,低温透平膨胀发电机一的膨胀端输出管道与液空过冷器的液态空气输入端之间设置控制阀门十七;所述低温透平膨胀发电机二的膨胀端输出管道与精馏塔下塔的原料输入端之间设置控制阀门十五;所述液空过冷器的液态空气输出端与常压气液分离器的输入端之间设置节流阀二。
上述低温透平膨胀发电机一和低温透平膨胀发电机二采用气体膨胀设备,释能过程为系统提供冷量来源,并实现空气的膨胀发电功能。
液空过冷器为液空节流前冷却器,通过常压气液分离器分离所得的低温空气或膨胀后的低温空气对节流前液空进行冷却,进一步降低液空节流过程的气化率,提高空分系统的液空储存量。
控制阀门一为空气流量调节阀,便于系统运行过程中储能和释能流程的相互切换;所述控制阀门五为液空进中压主换热器二和中压主换热器三的流量调节阀;所述节流阀一与节流阀二协调作用,节流降压的同时,增加空分系统储能和释能过程操作的灵活性,便于该系统液氧产量和液空储存量的调整,以及峰、谷电期间系统的功能切换;所述控制阀门六为空气流量调节阀,用来调节系统的外循环膨胀制冷量;所述控制阀门二、控制阀门三、控制阀门四、控制阀门七和控制阀门十六用来平衡和分配中压主换热器一和中压主换热器三之间的物质和能量需求;所述控制阀门八和控制阀门九为中压主换热器二和中压主换热器三的外循环膨胀空气中抽和底抽流量调节阀,用来控制低温透平膨胀发电机一的膨胀端进气温度;所述控制阀门十和控制阀门十一为中压主换热器二和中压主换热器三的氮气产品中抽和顶抽流量调节阀,二者协调作用,用来调节和平衡中压主换热器二和中压主换热器三的冷量需求;所述控制阀门十四为储能过程外循环膨胀空气入精馏塔上塔的流量调节阀,与控制阀门十七协调操作,降低储能过程膨胀空气放散量,提高系统产品回收率;所述控制阀门十三为中压主换热器二和中压主换热器三的膨胀回收空气流量控制阀,仅储能期间开启。所述控制阀门十二为中压主换热器二和中压主换热器三的低温空气流量控制阀,仅储能期间开启。
控制阀门十五为释能过程低温回收空气入精馏塔下塔的流量控制阀,通过调节控制阀门十四和控制阀门十五可确保空分系统精馏过程的产品产量和纯度维持在正常工况范围,满足下游用户的产品需求;储能期间将控制阀门十五关闭,释能期间将控制阀门十四关闭,防止精馏塔内气体流入管道,降低系统跑冷损失。
低温透平膨胀发电机一的膨胀端输出压力接近于精馏塔上塔的原料输入压力,低温透平膨胀发电机二的膨胀端输出压力接近于精馏塔下塔的原料输入压力,且低温透平膨胀发电机一的膨胀端与精馏塔上塔的连接管道,以及低温透平膨胀发电机二的膨胀端与精馏塔下塔的连接管道均为物质回收输运管道,协同管道上设置的控制阀门均进行保冷处理,减小整个工艺系统的跑冷损失。
中压主换热器二、中压主换热器三、低温透平膨胀发电机一、低温透平膨胀发电机二、液空过冷器、常压气液分离器、液空泵和节流阀二,以及其相互之间的连接管道和控制阀门均进行保冷处理,减小整个工艺系统的跑冷损失。
低温液空储存和物质能量回收系统的低温液空储存过程与空气产品分离过程共享空气压缩、冷却、纯化、增压,以及热交换和膨胀制冷设备,所述低温液空储存和物质能量回收系统的物质能量回收过程与空气产品分离过程共享热交换设备。
低温液空储存和物质能量回收系统利用低成本谷电将产品用户负荷需求以外的外供空气以液体的形式储存于低温储罐,峰电或平电期,将储存的低温液空利用空分自身携带的换热设备对高品位冷能进行回收,同时通过透平膨胀发电设备输出电能,并将膨胀输出的低温纯净空气全部回收,使其以原料的形式进入精馏塔下塔,参与空分系统的精馏过程,实现空分新工艺流程释能期间集物质、能量高效回收和膨胀发电为一体的生产过程,极大程度降低空分系统峰电或平电期的空气压缩设备负荷和高价位峰电的电能消耗,有效提高液化空气储能过程的电能转换效率和空分系统设备的运行经济性。
本发明工艺流程中,中压主换热器二和中压主换热器三为该核心设备,利用中压主换热器二和中压主换热器三将空气分离、液化空气储能、气体膨胀发电和物质、冷能回收工艺过程集合为一体,实现空分设备的大型化、多功能化和一体化生产过程。
该具有储能和物质能量资源高效回收的内压缩空分工艺流程相比现有液化空气储能技术,液空储能和冷能回收过程工艺设计简单,冷能回收为直接性冷能利用,无需设置蓄冷、蓄热中间换热设备,很大程度上减少设备安装数量和材料使用量,可达到节约初期投资成本的目的。
该具有储能和物质能量资源高效回收的内压缩空分工艺流程既是一种全新的空分新工艺流程,也适用于对现有内压缩空分工艺流程的升级和改造。
本发明的上述技术方案的有益效果如下:
上述方案中,将空分内压缩工艺与低温液体储能和物质能量回收系统有机结合,使系统仅利用单一空分设备和技术即可实现液化空气的规模化储能,相比现有液化空气储能技术,所述工艺技术设备和材料用量少、工艺设计简单,可极大程度减少设备建设规模和初期成本投资;在运行过程中,液空储能与空气分离过程协调操作,即可确保空分系统的产品产量和分离纯度,又能实现液态空气的安全储存和“高品位”冷能的直接回收利用,同时还能对储存的物质进行充分回收,进一步降低系统的压缩设备负荷和能耗,提高其在液化空气储能和释能期间的电-电转换效率,达到降低空分企业运行成本的目的。
附图说明
图1为常规内压缩空分工艺流程示意图;
图2为本发明实施例中制氧40000Nm3˙h-1更换中压主换热器的储能和物质能量资源高效回收的空分内压缩工艺流程示意图;
图3为本发明实施例中制氧40000Nm3˙h-1新增中压主换热器的储能和物质能量资源高效回收的空分内压缩工艺流程示意图;
图4为本发明实施例中制氧40000Nm3˙h-1储能和物质能量资源高效回收的空分内压缩工艺流程的储液过程与80%负荷运行的常规空分内压缩工艺流程精馏塔上塔气相组分分部对比图;
图5为峰谷电价比对本发明实施案例中制氧40000Nm3˙h-1储能和物质能量资源高效回收的空分内压缩工艺流程的用电成本节约率的影响曲线图;
图6为峰谷电价比对本发明实施案例中制氧40000Nm3˙h-1储能和物质能量资源高效回收的空分内压缩工艺流程的投资成本回收期的影响曲线图。
其中:1-空气过滤器;2-空压机;3-空冷塔;4-水冷塔;5-冷却水泵;6-冷冻水泵;7-冷水机组;8-分子筛吸附器;9-消声器;10-蒸汽加热器;11-空气增压机;12-增压透平膨胀机;13-增压后冷却器;14-低温透平膨胀发电机一;15-低温透平膨胀发电机二;16-中压主换热器一;17-中压氩换热器;18-中压主换热器二;19-中压主换热器三;20-精馏塔上塔;21-主冷凝蒸发器;22-精馏塔下塔;23-过冷器;24-液氧泵;25-粗氩I塔;26-粗氩II塔;27-粗液氩循环泵;28-粗氩液化器;29-精氩塔;30-精氩泵;31-液氮储罐;32-液氧储罐;33-液氩储罐;34-液空过冷器;35-常压气液分离器;36-液空储罐;37-液空泵;V1-控制阀门一;V2-控制阀门二;V3-控制阀门三;V4-控制阀门四;V5-节流阀一;V6-节流阀二;V7-控制阀门五;V8-控制阀门六;V9-控制阀门七;V10-控制阀门八;V11-控制阀门九;V12-控制阀门十;V13-控制阀门十一;V14-控制阀门十二;V15-控制阀门十三;V16-控制阀门十四;V17-控制阀门十五;V18-控制阀门十六;V19-控制阀门十七。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明为合理平衡电力系统峰、谷电负荷,提高冶金和化工等重要工业领域的现有空分设备利用率,充分挖掘空分系统的设备运行潜力,提高空分内压缩系统的设备运行经济效益,不断推进空分工艺技术迈向新台阶,提供一种具有储能和物质能量资源高效回收的内压缩空分工艺流程。
为使本发明在现有常规内压缩空分工艺流程基础上对储能和物质能量高效回收的内压缩空分工艺流程表达的更加清楚,附常规内压缩空分工艺流程示意图,见图1。图2为本发明实施例中制氧40000Nm3˙h-1更换中压主换热器的储能和物质能量资源高效回收的空分内压缩工艺流程示意图,从图中可以看出,该方法在图1所示常规内压缩空分工艺流程的基础上设置中压主换热器二18、低温透平膨胀发电机一14、低温透平膨胀发电机二15、液空过冷器34、常压气液分离器35、液空储罐36、液空泵37和节流阀二V6,同时取消常规内压缩空分装置的中压主换热器一16。中压主换热器二18的纯化后低压空气输入端与分子筛吸附器8的空气输出端相连,中压主换热器二18的纯化后低压空气输出端与精馏塔下塔22的原料输入端相连;中压主换热器二18的增压后中压空气输入端与空气增压机11的四级冷却器输出端相连,中压主换热器二18的增压后中压空气输出端分为两路:一路连接于精馏塔下塔22的原料输入端,另一路与液空过冷器34的液态空气输入端相连;中压主换热器二18的增压膨胀空气输入端与增压后冷却器13的输出端相连,中压主换热器二18的增压膨胀空气输出端与增压透平膨胀机12的膨胀端输入管道相连;中压主换热器二18的外循环膨胀空气输入端与空气增压机11的三级冷却器输出端相连,中压主换热器二18的外循环膨胀空气的中部和底部输出端均与低温透平膨胀发电机一14的膨胀端输入管道相连;中压主换热器二18的污氮气输入端与过冷器23的污氮气输出端相连,中压主换热器二18的污氮气输出端连接于污氮气输出管道;中压主换热器二18的液氧输入端与液氧泵24的输出端相连,中压主换热器二18的复热氧气输出端连接于氧气产品输出管道;中压主换热器二18的氮气产品输入端与过冷器23的氮气输出端相连,中压主换热器二18的氮气产品中部和上部输出端均连接于氮气产品输出管道;中压主换热器二18的膨胀回收空气输入端与液空过冷器34的膨胀空气输出端相连,中压主换热器二18的膨胀回收空气输出端连接于污氮气输出管道;中压主换热器二18的低温空气输入端与液空过冷器34的低温空气输出端相连;中压主换热器二18的低温空气输出端连接于污氮气输出管道;中压主换热器二18的液态空气输入端与液空泵37的输出端相连,中压主换热器二18的气化空气中部输出端与低温透平膨胀发电机二15的膨胀端输入管道相连;低温透平膨胀发电机一14的膨胀端输出管道分为两路:一路直接连接于精馏塔上塔20的原料输入端,另一路与液空过冷器34的膨胀空气输入端相连;低温透平膨胀发电机二15的膨胀端输出管道直接连接于精馏塔下塔22的原料输入端;液空过冷器34的液态空气输出端与常压气液分离器35的输入端相连;常压气液分离器35的气体输出端与液空过冷器34的低温空气输入端相连,常压气液分离器35的液体输出端与液空储罐36的输入端相连;液空储罐36的输出端连接于液空泵37的输入端;
液空过冷器34的液态空气输出端与常压气液分离器35的输入端之间设置节流阀二V6;分子筛吸附器8的空气输出端与中压主换热器二18和中压氩换热器17的低压空气输入端之间设置控制阀门一V1;液空泵37的输出端与中压主换热器二18的液态空气输入端之间设置控制阀门五V7;空气增压机11的三级冷却器输出端与中压主换热器二18的外循环膨胀空气输入端之间设置控制阀门六V8,中压主换热器二18的外循环膨胀空气中部输出端与低温透平膨胀发电机一14的膨胀端输入管道之间设置控制阀门八V10,中压主换热器二18的外循环膨胀空气底部输出端与低温透平膨胀发电机一14的膨胀端输入管道之间设置控制阀门九V11;中压主换热器二18的氮气产品中部输出端与氮气产品输出管道之间设置控制阀门十V12,中压主换热器二18的氮气产品上部输出端与氮气产品输出管道之间设置控制阀门十一V13;中压主换热器二18的膨胀回收空气输出端与污氮气输出管道之间设置控制阀门十二V14,中压主换热器二18的低温空气输出端与污氮气输出管道之间设置控制阀门十三V15;低温透平膨胀发电机一14的膨胀端输出管道与精馏塔上塔20的原料输入端之间设置控制阀门十四V16,低温透平膨胀发电机一14的膨胀端输出管道与液空过冷器34的液态空气输入端之间设置控制阀门十七V19;低温透平膨胀发电机二15的膨胀端输出管道与精馏塔下塔22的原料输入端之间设置控制阀门十五V17;精馏塔下塔22和液空过冷器34之间设置节流阀一V5;
图3为本发明实施例中制氧40000Nm3˙h-1新增中压主换热器的储能和物质能量资源高效回收的空分内压缩工艺流程示意图,从图中可以看出,低温液空储存和物质能量回收系统还可在图1所示常规空分内压缩工艺流程的基础上保留原内压缩空分装置的主换热器一16,并在此基础上新增一台中压主换热器三19,同时增设低温透平膨胀发电机一14、低温透平膨胀发电机二15、液空过冷器34、常压气液分离器35、液空储罐36、液空泵37和节流阀二V6;分子筛吸附器8的空气输出端与中压主换热器一16、中压主换热器三19和中压氩换热器17的低压空气输入端相连;中压主换热器三19的纯化后低压空气输出端与精馏塔下塔22的原料气体输入端相连;中压主换热器三19的增压后中压空气输入端与空气增压机11的四级冷却器输出端相连,中压主换热器三19的增压后中压空气输出端与中压主换热器一16的增压膨胀空气输出管道相连;中压主换热器三19的外循环膨胀空气输入端与空气增压机11的三级冷却器输出端相连,中压主换热器三19的外循环膨胀空气的中部和底部输出端均与低温透平膨胀发电机一14的膨胀端输出入管道相连;中压主换热器三19的氮气产品输入端与过冷器23的氮气输出端相连,中压主换热器三19的氮气产品中部和上部输出端均连接于氮气产品输出管道;中压主换热器三19的液氧输入端与液氧泵24的输出端相连,中压主换热器三19的复热氧气输出端连接于氧气产品输出管道;中压主换热器三19的膨胀回收空气输入端与液空过冷器34的膨胀空气输出端相连,中压主换热器三19的膨胀回收空气输出端连接于污氮气输出管道;中压主换热器三19的低温空气输入端与液空过冷器34的低温空气输出端相连,中压主换热器三19的低温空气输出端连接于污氮气输出管道;中压主换热器三19的液态空气输入端与液空泵37的输出端相连,中压主换热器三19的气化空气中部输出端与低温透平膨胀发电机二15的膨胀端输入管道相连;低温透平膨胀发电机一14的膨胀端输出管道分为两路:一路直接连接于精馏塔上塔20的原料输入端,另一路与液空过冷器34的膨胀空气输入端相连;低温透平膨胀发电机二15的膨胀端输出管道直接连接于精馏塔下塔22的原料输入端;液空过冷器34的液态空气输入端与中压主换热器一16和中压主换热器三19的增压后中压空气输出端相连,液空过冷器34的液态空气输出端与常压气液分离器35的输入端相连;常压气液分离器35的气体输出端与液空过冷器34的低温空气输入端相连,常压气液分离器35的液体输出端与液空储罐36的输入端相连;液空储罐36的输出端连接于液空泵37的输入端;
分子筛吸附器8的空气输出端与中压主换热器一16、中压主换热器三19和中压氩换热器17的低压空气输入端之间设置控制阀门一V1,中压主换热器三19的低压空气输入端与中压主换热器一16和中压氩换热器17的低压空气输入端之间设置控制阀门三V3,中压主换热器三19的增压后中压空气输入端与空气增压机11的四级冷却器输出端之间设置控制阀门二V2,中压主换热器三19的液氧输入端与液氧泵24的输出端之间设置控制阀门四V4,中压主换热器三19的液空输入端与液空泵37的输出端之间设置控制阀门五V7,中压主换热器三19的外循环膨胀空气输入端与空气增压机11的三级冷却器输出端之间设置控制阀门六V8,中压主换热器三19的增压膨胀空气输入端与增压后冷却器13的输出端之间设置控制阀门七V9,中压主换热器三19的外循环膨胀空气中部输出端与低温透平膨胀发电机一14的膨胀端输入管道之间设置控制阀门八V10,中压主换热器三19的外循环膨胀空气底部输出端与低温透平膨胀发电机一14的膨胀端输入管道之间设置控制阀门九V11;中压主换热器三19的氮气产品输入端与过冷器23的氮气输出端之间设置控制阀门十六V18,中压主换热器三19的氮气产品中部输出端与氮气产品输出管道之间设置控制阀门十V12,中压主换热器三19的氮气产品上部输出端与氮气产品输出管道之间设置控制阀门十一V13;中压主换热器三19的膨胀回收空气输出端与污氮气输出管道之间设置控制阀门十二V14,中压主换热器三19的低温空气输出端与污氮气输出管道之间设置控制阀门十三V15;低温透平膨胀发电机一14的膨胀端输出管道与精馏塔上塔20的原料输入端之间设置控制阀门十四V16,低温透平膨胀发电机一14的膨胀端输出管道与液空过冷器34的液态空气输入端之间设置控制阀门十七V19;低温透平膨胀发电机二15的膨胀端输出管道与精馏塔下塔22的原料输入端之间设置控制阀门十五V17;液空过冷器34的液态空气输出端与气液分离器35的输入端之间设置节流阀二V6;精馏塔下塔22和液空过冷器34之间设置节流阀一V5。
下面结合具体实施例予以说明。
如图2所示为本发明实施例中制氧40000Nm3˙h-1更换中压主换热器的储能和物质能量资源高效回收的空分内压缩工艺流程示意图。谷电储液期间,原料空气经空气过滤器1去除灰尘后进入空压机2进行压缩,之后进入空冷塔3进行冷却和洗涤,空冷塔3用于冷却空气的水有两部分:一部分为冷却循环水,由冷却水泵5加压后送入空冷塔3中部;另一部分为冷冻水,由来自精馏系统的干燥污氮气和氮气在水冷塔4内对循环冷却水进行初步降温,之后经冷冻水泵6加压,并由冷水机组7进一步降温后送入空冷塔3顶部。出空冷塔3的空气进入分子筛吸附器8进行吸附和纯化,获得纯净干燥的空气。分子筛吸附器8有两台,交替使用,一台吸附杂质,另一台由污氮气在蒸汽加热器10内加热后对其进行再生,分子筛吸附器8处设置消声器9。
来自分子筛吸附器8的纯化后干燥空气分为两路:一路进入中压氩换热器17和中压主换热器二18被冷却至露点温度后进入精馏塔下塔22;另一路为再增压空气,经空气增压机11一、二、三级压缩和冷却后分三部分:一部分作为增压膨胀空气从级间抽出,一部分作为外循环膨胀空气从级间抽出,另一部分在空气增压机11内进行四级压缩和冷却;其中,级间抽出的增压膨胀空气首先进入增压透平膨胀机12的增压端,经增压后冷却器13冷却后进入中压主换热器二18的增压膨胀空气通道被返流气体冷却,之后从中压主换热器二18的中部抽出,进入增压透平膨胀机12的膨胀端,膨胀至接近精馏塔下塔22压力后直接进入精馏塔下塔22底部参与精馏;级间抽出的外循环膨胀空气进入中压主换热器二18冷却到一定温度后经中部和底部抽出,在低温透平膨胀发电机一14中膨胀到常压后分为两部分:一部分直接进入精馏塔上塔20参与精馏;另一部分经液空过冷器34回收部分冷量后以返流气体形式在中压主换热器二18内进行复热和释放冷能,之后汇入污氮气输出管道。经空气增压机11四级压缩和冷却后的中压空气首先进入中压主换热器二18,被返流低温流体冷却为过冷液体后分为两部分:一部分直接节流进入精馏塔下塔22;另一部分经液空过冷器34被来自常压气液分离器35分离所得的低温空气和膨胀后低温空气过冷后节流至常压,并进入常压气液分离器35进行分离。常压气液分离器35分离所得的液体即为所要储存的液空产品,进入低温液空储罐36,分离所得的气体经液空过冷器34后进入中压主换热器二18的低温空气回收通道,并与正流气体进行能量交换。
进入精馏塔下塔22的原料在塔内因相对挥发度不同而进行组分分离,精馏塔下塔22底部得到含氧约37%的富氧液空,精馏塔下塔22顶部得到高纯度氮气,高纯度氮气经过主冷凝蒸发器21与来自精馏塔上塔20底部的液氧进行热交换,液氧被蒸发,氮气被冷凝,部分冷凝液氮再回到精馏塔下塔22作为回流液,另一部分液氮在过冷器23中进行过冷,并分为两路:一路送入精馏塔上塔20顶部作为回流液,另一路分别送入粗氩液化器28和精氩塔29顶部用来冷凝气氩,多余部分液氮可储存于液氮储罐31内。精馏塔下塔22侧面采出的部分液空经过冷器23冷却为过冷液体后节流进入精馏塔上塔20中部参与精馏,来自精馏塔下塔22底部的液空同样经过冷器23被冷却为过冷液体,之后分为两部分:一部分节流到精馏塔上塔20中部参与精馏,另一部分送入粗氩II塔26顶部。在精馏塔上塔20内,由于氧、氩、氮沸点的差异,经多次部分冷凝和蒸发,精馏塔上塔20底部得到纯度为99.6%以上的液氧,该液氧经液氧泵24加压,之后进入中压主换热器二18,经汽化和复热后出冷箱作为氧产品送出,多余部分液氧储存于液氧储罐32中。精馏塔上塔20的中上部抽出污氮气,经过冷器23和中压主换热器二18复热后分为两部分:一部分去纯化系统作再生气,另一部分送入预冷系统的水冷塔4。精馏塔上塔20的顶部抽出纯度高于99.99%的氮气,经过冷器23回收部分冷量后进入中压主换热器二18内进行复热,之后以中抽和顶抽形式作为氮气产品抽出。精馏塔上塔20中部抽出的富含氩馏分气体直接进入粗氩I塔25底部,与来自粗氩II塔26底部经粗液氩循环泵27加压后的粗氩在塔内进行对流接触换热和逐级分离,粗氩I塔25底部可得纯度较高的液氧,并将其返送回精馏塔上塔20中部,粗氩I塔25顶部所得气体为粗气氩,直接送入粗氩II塔26底部,该气体上升到塔顶时被过冷后的液空所冷凝,并为塔内精馏提供回流液,吸热后的液空重返精馏塔上塔20参与精馏,最终由塔顶得到富含氮组分的粗氩气,并进入粗氩液化器28,由底部得到较纯液氩,然后进入精氩塔29进行氮氩组分分离,由塔底部得到纯液氩,所得纯液氩由精氩泵30加压后进入中压氩换热器17,复热后送入氩气管网,多余部分储存于液氩储罐33内。
释能过程在峰电或平电期间进行,该过程中,低温透平膨胀发电机一14、液空过冷器34、常压气液分离器35停止运行,节流阀二V6、控制阀门六V8、控制阀门八V10、控制阀门九V11、控制阀门十二V14、控制阀门十三V15、控制阀门十四V16、控制阀门十七V19处于关闭状态。控制阀门一V1、控制阀门五V7和控制阀门十五V17均打开,液空储罐36内的液化空气由液空泵37加压到一定压力后进入中压主换热器二18内进行气化和冷能回收,经中压主换热器二18的中部抽出后进入低温透平膨胀发电机二15进行膨胀,膨胀到接近精馏塔下塔压力后全部送入精馏塔下塔22参与精馏,其余运行过程与储能期间新工艺系统的运行方式相同。
图3为本发明实施例中制氧40000Nm3˙h-1新增中压主换热器的储能和物质能量资源高效回收的空分内压缩工艺流程示意图,从图中可以看出,该流程与更换中压主换热器的储能和物质能量资源高效回收的空分内压缩工艺流程的主要区别在于储能过程的运行方法。来自分子筛吸附器8的纯化后干燥空气分为两路:一路进入中压主换热器一16、中压氩换热器17和中压主换热器三19被冷却至露点温度后进入精馏塔下塔22;另一路为再增压空气,经空气增压机11一、二、三级压缩和冷却后分三部分:一部分作为增压膨胀空气从级间抽出,一部分作为外循环膨胀空气从级间抽出,另一部分在空气增压机11内进行四级压缩和冷却;其中,级间抽出的增压膨胀空气首先进入增压透平膨胀机12的增压端,经增压后冷却器13冷却后进入中压主换热器一16和中压主换热器二18的增压膨胀空气通道被返流气体冷却,之后分别从中压主换热器一16和中压主换热器二18的中部抽出,进入增压透平膨胀机12的膨胀端,膨胀至接近精馏塔下塔22压力后直接进入精馏塔下塔22底部参与精馏;级间抽出的外循环膨胀空气进入中压主换热器三19冷却到一定温度后经中部和底部抽出,之后进入低温透平膨胀发电机一14膨胀到常压后分为两部分:一部分直接进入精馏塔上塔20参与精馏;另一部分经液空过冷器回收部分冷量后以返流气体形式在中压主换热器三19内进行复热和释放冷能,之后汇入污氮气输出管道。经空气增压机11四级压缩和冷却后的中压空气分别进入中压主换热器一16和中压主换热器三19,被返流低温流体冷却为过冷液体后分别从中压主换热器一16和中压主换热器三19底部抽出,并分为两部分:一部分直接节流进入精馏塔下塔22;另一部分经液空过冷器34被来自常压气液分离器35分离所得的低温空气和膨胀后低温空气过冷后节流至常压,并进入常压气液分离器35进行分离。常压气液分离器35分离所得的液体即为所要储存的液空产品,进入低温液空储罐36,分离所得的气体经液空过冷器34后进入中压主换热器三19的低温空气回收通道,并与正流气体进行能量交换。精馏塔上塔20顶部分离所得的纯度高于99.99%的氮气,经过冷器23回收部分冷量后分别进入中压主换热器一16和中压主换热器三19内进行复热,之后分别作为氮气产品抽出。精馏塔上塔20底部得到纯度为99.6%以上的液氧,经液氧泵24加压后分别进入中压主换热器一16和中压主换热器三19,经汽化和复热后出冷箱,作为氧产品送出,多余部分液氧储存于液氧储罐32中。
本过程以上述40000Nm3·h-1氧气的储能和物质、能量高效回收的内压缩空分新工艺流程和技术方法为例,考虑到空分系统负荷调节范围为产品设计需求的70-105%,而目前冶金空分设备的平均运行负荷维持在产品设计需求的80%。基于电力峰谷分时电价制度,通过对该工艺流程实施生产电力需求侧管理,设计选择谷电储能期间空分设备的压缩负荷为产品设计负荷的105%,精馏系统工作负荷为产品设计负荷的80%,峰电和平电期间,继续维持精馏系统在80%的设计负荷下运行。本实施案例参考表1所示中国工业经济发达地区(上海市)工业用电划分时段和电价标准,可以看出,上海地区峰、平、谷电段时长均为8小时,谷电储能期间,时间集中、价格低廉,而峰电和平电期间,时间分布相互交错,因此,当谷电期间的液空储存容量一定时,系统释能时间的长短直接影响释能过程压缩设备的运行负荷和操作稳定性,进而影响系统的电能转换效率和经济效益。本发明分别选取11小时(case1:10:00-21:00)、13小时(case2:10:00-23:00)和16小时(case3:7:00-23:00)三种释能时间方案,通过利用ASPEN PLUS V10模拟软件对上述3种实例运行方案进行建模和初步模拟计算,并分别将其与全天运行负荷为80%的常规空分内压缩工艺流程进行对比。
表1.上海市工业用电划分和电价标准
模拟过程中,假设液空储罐内液体日损失率为0.2%,精馏塔上塔的拉赫曼进气量为零,膨胀后低压制冷气体全部排放,同时设置压缩机和空气增压机的机械效率为0.98、多变效率为0.87,膨胀机的等熵效率和机械效率分别为0.88和0.97,低温泵的机械效率为0.75,各管路和设备组件中的能量和阻力损失均忽略不计。模拟结果表明,通过对工艺流程中各管路的控制和调节,可使低温液空储存和物质能量回收系统独立于空分精馏系统,即可保证空分系统安全稳定运行,又不影响空分系统的产品产量和精馏纯度。本实施案例以系统储液过程和80%负荷运行的常规空分内压缩工艺流程精馏塔上塔气相组分分部对比图(图4)为例,可以看出,该工艺流程在运行过程中,精馏塔上塔各组分纯度均与80%负荷运行的常规空分内压缩工艺的组分分部保持一致,满足常规空分工艺的生产要求。本发明通过对该工艺流程的综合耗电情况进行计算,系统地分析了以上三种释能运行方案下的电转换效率和经济效益,验证了该工艺流程设计的可行性。
计算结果表明,以80%负荷运行的常规空分内压缩工艺流程的每小时平均耗电功率为25258KW,而本发明设计新工艺流程的储能过程三种运行方案的时耗电功率均为30474KW,相比80%负荷运行的常规空分内压缩工艺流程,其时耗电功率增加20.65%;释能过程,case1-3运行方案分别以11h、13h和16h运行,其时耗电功率分别为22350KW、22227KW和22181KW,相比80%负荷运行的常规空分内压缩工艺流程,其时耗电功率分别减小11.51%、12.00%和12.18%,故case1-3三种运行方案的储、释能过程电-电转换效率分别为55.73%、58.11%和58.98%。当全国的传统空分工艺流程由该工艺流程所取代,且参与电网调峰后,全国电网的平均峰谷差率可由目前的25.98%至少降低至22%,降低率为15%。
除此之外,经济效益也是衡量本实施案例的重要性能指标,图5和图6分别为地方峰谷电价比对本发明实施案例中制氧40000Nm3˙h-1储能和物质能量资源高效回收的空分内压缩工艺流程的用电成本节约率和投资成本回收期的影响曲线图,可以看出,峰谷电价比越大,系统的经济效益节约效果越显著,而目前中国的多数工业经济发达地区的峰谷电价比已达3:1左右,因此,当峰谷电价比为3:1时,以上三种释能方案相比80%负荷运行的常规空分内压缩工艺流程的用电成本节约率分别为4.93%、5.37%和5.37%,新增和更新设备投资成本回收期分别为3.23、2.97和2.97年;以上海市的工业电价计,上述三种释能方案相比80%负荷运行的常规空分内压缩工艺流程的用电成本节约率分别可达5.78%、6.47%和6.68%,新增和更新设备投资成本回收期分别为2.57、2.30和2.23年;随着未来中国电力市场峰谷电价实施力度的逐渐增大,本实施案例的投资成本回收期将进一步缩短,经济效益节约效果将更加显著。考虑到上述三种释能方案受系统释能时间的不连续性影响,在运行过程中需分别满足2、3、4次的负荷变化次数才能满足新空分工艺流程储、释能过程切换的实际操作要求,其负荷变化次数越少,空分系统的运行稳定性就越强,因此,本发明在未来的应用选择中可根据系统的电-电转换效率、经济效益,以及当前空分工艺的自动变负荷能力、技术水平和现场操作熟练程度选择具体运行方案。本发明将低温液空储能技术与空分内压缩工艺系统相结合,相比单纯的液化空气储能工艺而言,既节约了大量的初期设备投资成本,又减少了后期的设备运营维护和人力资源投资成本,经济效益显著得到提高,同时可提高空分内压缩设备的利用率,降低产品气体耗散量,实现空分机组的大型化和多样化发展,对推动空分设备在电力储能调峰中的应用,开发新的储能发电空分工艺流程具有重要意义。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (9)
1.一种具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:在常规空分内压缩工艺流程基础上设置低温液空储存和物质能量回收系统,实现空分设备和技术的规模化储能特性;在取消常规空分内压缩装置的中压主换热器一(16)时,低温液空储存和物质能量回收系统包括中压主换热器二(18)、低温透平膨胀发电机一(14)、低温透平膨胀发电机二(15)、液空过冷器(34)、常压气液分离器(35)、液空储罐(36)、液空泵(37)和节流阀二(V6);在保留常规空分内压缩装置的中压主换热器一(16)时,低温液空储存和物质能量回收系统还包括中压主换热器三(19)、低温透平膨胀发电机一(14)、低温透平膨胀发电机二(15)、液空过冷器(34)、常压气液分离器(35)、液空储罐(36)、液空泵(37)和节流阀二(V6)。
2.根据权利要求1所述的具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:所述低温液空储存和物质能量回收系统包括中压主换热器二(18)、低温透平膨胀发电机一(14)、低温透平膨胀发电机二(15)、液空过冷器(34)、常压气液分离器(35)、液空储罐(36)、液空泵(37)和节流阀二(V6)时;中压主换热器二(18)设置四个正流通道和六个逆流通道,四个正流通道分别为纯化后低压空气通道、增压后中压空气通道、增压膨胀空气通道和外循环膨胀空气通道,六个逆流通道分别为污氮气通道、液氧通道、氮气产品通道、膨胀空气回收通道、低温空气回收通道和液空复热通道,同时在氮气产品通道上设置中部和上部两个流体抽出位置,外循环膨胀空气通道上设置中部和底部两个流体抽出位置,液空复热通道上设置中部抽出位置;其中,中压主换热器二(18)的纯化后低压空气输入端连接于分子筛吸附器(8)的空气输出端,中压主换热器二(18)的纯化后低压空气输出端连接于精馏塔下塔(22)的原料输入端;中压主换热器二(18)的增压后中压空气输入端连接于空气增压机(11)的四级冷却器输出端,中压主换热器二(18)的增压后中压空气输出端分为两路:一路连接于精馏塔下塔(22)的原料输入端,另一路连接于液空过冷器(34)的液态空气输入端;中压主换热器二(18)的增压膨胀空气输入端连接于增压后冷却器(13)的输出端,中压主换热器二(18)的增压膨胀空气输出端连接于增压透平膨胀机(12)的膨胀端输入管道;中压主换热器二(18)的外循环膨胀空气输入端连接于空气增压机(11)的三级冷却器输出端,中压主换热器二(18)的外循环膨胀空气的中部和底部输出端连接于低温透平膨胀发电机一(14)的膨胀端输入管道;中压主换热器二(18)的污氮气输入端连接于过冷器(23)的污氮气输出端,中压主换热器二(18)的污氮气输出端连接于污氮气输出管道;中压主换热器二(18)的液氧输入端连接于液氧泵(24)的输出端,中压主换热器二(18)的复热氧气输出端连接于氧气产品输出管道;中压主换热器二(18)的氮气产品输入端连接于过冷器(23)的氮气输出端,中压主换热器二(18)的氮气产品中部和上部输出端均连接于氮气产品输出管道;中压主换热器二(18)的膨胀回收空气输入端连接于液空过冷器(34)的膨胀空气输出端,中压主换热器二(18)的膨胀回收空气输出端连接于污氮气输出管道;中压主换热器二(18)的低温空气输入端连接于液空过冷器(34)的低温空气输出端,中压主换热器二(18)的低温空气输出端连接于污氮气输出管道;中压主换热器二(18)的液态空气输入端连接于液空泵(37)的输出端,中压主换热器二(18)的气化空气中部输出端连接于低温透平膨胀发电机二(15)的膨胀端输入管道;所述低温透平膨胀发电机一(14)的膨胀端输出管道分为两路:一路直接连接于精馏塔上塔(20)的原料输入端,另一路连接于液空过冷器(34)的膨胀空气输入端;所述低温透平膨胀发电机二(15)的膨胀端输出管道直接连接于精馏塔下塔(22)的原料输入端;所述液空过冷器(34)的液态空气输出端连接于常压气液分离器(35)的输入端;所述常压气液分离器(35)的气体输出端连接于液空过冷器(34)的低温空气输入端,常压气液分离器(35)的液体输出端连接于液空储罐(36)的输入端;所述液空储罐(36)的输出端连接于液空泵(37)的输入端;
所述液空过冷器(34)的液态空气输出端与常压气液分离器(35)的输入端之间设置节流阀二(V6);所述分子筛吸附器(8)的空气输出端与中压主换热器二(18)和中压氩换热器(17)的低压空气输入端之间设置控制阀门一(V1),所述液空泵(37)的输出端与中压主换热器二(18)的液态空气输入端之间设置控制阀门五(V7);所述空气增压机(11)的三级冷却器输出端与中压主换热器二(18)的外循环膨胀空气输入端之间设置控制阀门六(V8),中压主换热器二(18)的外循环膨胀空气中部输出端与低温透平膨胀发电机一(14)的膨胀端输入管道之间设置控制阀门八(V10),中压主换热器二(18)的外循环膨胀空气底部输出端与低温透平膨胀发电机一(14)的膨胀端输入管道之间设置控制阀门九(V11);所述中压主换热器二(18)的氮气产品中部输出端与氮气产品输出管道之间设置控制阀门十(V12),中压主换热器二(18)的氮气产品上部输出端与氮气产品输出管道之间设置控制阀门十一(V13);所述中压主换热器二(18)的膨胀回收空气输出端与污氮气输出管道之间设置控制阀门十二(V14),中压主换热器二(18)的低温空气输出端与污氮气输出管道之间设置控制阀门十三(V15);所述低温透平膨胀发电机一(14)的膨胀端输出管道与精馏塔上塔(20)的原料输入端之间设置控制阀门十四(V16),低温透平膨胀发电机一(14)的膨胀端输出管道与液空过冷器(34)的液态空气输入端之间设置控制阀门十七(V19);所述低温透平膨胀发电机二(15)的膨胀端输出管道与精馏塔下塔(22)的原料输入端之间设置控制阀门十五(V17)。
3.根据权利要求1所述的具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:所述低温液空储存和物质能量回收系统包括中压主换热器一(16)、中压主换热器三(19)、低温透平膨胀发电机一(14)、低温透平膨胀发电机二(15)、液空过冷器(34)、常压气液分离器(35)、液空储罐(36)、液空泵(37)和节流阀二(V6)时,中压主换热器三(19)设置四个正流通道和五个逆流通道,四个正流通道分别为纯化后低压空气通道、增压后中压空气通道、增压膨胀空气通道和外循环膨胀空气通道,五个逆流通道分别为液氧通道、氮气产品通道、膨胀空气回收通道、低温空气回收通道和液空复热通道,同时在氮气产品通道上设置中部和上部两个流体抽出位置,外循环膨胀空气通道上设置中部和底部两个流体抽出位置,液空复热通道上设置中部抽出位置;其中,分子筛吸附器(8)的空气输出端连接于中压主换热器一(16)、中压主换热器三(19)和中压氩换热器(17)的低压空气输入端;中压主换热器三(19)的纯化后低压空气输出端连接于精馏塔下塔(22)的原料输入端;中压主换热器三(19)的增压后中压空气输入端连接于空气增压机(11)的四级冷却器输出端,中压主换热器三(19)的增压后中压空气输出端连接于中压主换热器一(16)的增压后中压空气输出管道;中压主换热器三(19)的增压膨胀空气输入端连接于增压后冷却器(13)的输出端,中压主换热器三(19)的增压膨胀空气输出端连接于增压透平膨胀机(12)的膨胀端输入管道;中压主换热器三(19)的外循环膨胀空气输入端连接于空气增压机(11)的三级冷却器输出端,中压主换热器三(19)的外循环膨胀空气的中部和底部输出端连接于低温透平膨胀发电机一(14)的膨胀端输出入管道;中压主换热器三(19)的氮气产品输入端连接于过冷器(23)的氮气输出端,中压主换热器三(19)的氮气产品中部和上部输出端均连接于氮气产品输出管道;中压主换热器三(19)的液氧输入端连接于液氧泵(24)的输出端,中压主换热器三(19)的复热氧气输出端连接于氧气产品输出管道;中压主换热器三(19)的膨胀回收空气输入端连接于液空过冷器(34)的膨胀空气输出端,中压主换热器三(19)的膨胀回收空气输出端连接于污氮气输出管道;中压主换热器三(19)的低温空气输入端连接于液空过冷器(34)的低温空气输出端,中压主换热器三(19)的低温空气输出端连接于污氮气输出管道;中压主换热器三(19)的液态空气输入端连接于液空泵(37)的输出端,中压主换热器三(19)的气化空气中部输出端连接于低温透平膨胀发电机二(15)的膨胀端输入管道;所述低温透平膨胀发电机一(14)的膨胀端输出管道分为两路:一路直接连接于精馏塔上塔(20)的原料输入端,另一路连接于液空过冷器(34)的膨胀空气输入端;所述低温透平膨胀发电机二(15)的膨胀端输出管道直接连接于精馏塔下塔(22)的原料输入端;所述液空过冷器(34)的液态空气输入端连接于中压主换热器一(16)和中压主换热器三(19)的增压后中压空气输出端,液空过冷器(34)的液态空气输出端连接于常压气液分离器(35)的输入端;所述常压气液分离器(35)的气体输出端连接于液空过冷器(34)的低温空气输入端,常压气液分离器(35)的液体输出端连接于液空储罐(36)的输入端;所述液空储罐(36)的输出端连接于液空泵(37)的输入端;
所述分子筛吸附器(8)的空气输出端与中压主换热器一(16)、中压主换热器三(19)和中压氩换热器(17)的低压空气输入端之间设置控制阀门一(V1),所述中压主换热器三(19)的低压空气输入端与中压主换热器一(16)和中压氩换热器(17)的低压空气输入端之间设置控制阀门三(V3),中压主换热器三(19)的增压后中压空气输入端与空气增压机(11)的四级冷却器输出端之间设置控制阀门二(V2),中压主换热器三(19)的液氧输入端与液氧泵(24)的输出端之间设置控制阀门四(V4),中压主换热器三(19)的液空输入端与液空泵(37)的输出端之间设置控制阀门五(V7),中压主换热器三(19)的外循环膨胀空气输入端与空气增压机(11)的三级冷却器输出端之间设置控制阀门六(V8),中压主换热器三(19)的增压膨胀空气输入端与增压后冷却器(13)的输出端之间设置控制阀门七(V9),中压主换热器三(19)的外循环膨胀空气中部输出端与低温透平膨胀发电机一(14)的膨胀端输入管道之间设置控制阀门八(V10),中压主换热器三(19)的外循环膨胀空气底部输出端与低温透平膨胀发电机一(14)的膨胀端输入管道之间设置控制阀门九(V11);所述中压主换热器三(19)的氮气产品输入端与过冷器(23)的氮气输出端之间设置控制阀门十六(V18),中压主换热器三(19)的氮气产品中部输出端与氮气产品输出管道之间设置控制阀门十(V12),中压主换热器三(19)的氮气产品上部输出端与氮气产品输出管道之间设置控制阀门十一(V13);所述中压主换热器三(19)的膨胀回收空气输出端与污氮气输出管道之间设置控制阀门十二(V14),中压主换热器三(19)的低温空气输出端与污氮气输出管道之间设置控制阀门十三(V15);所述低温透平膨胀发电机一(14)的膨胀端输出管道与精馏塔上塔(20)的原料输入端之间设置控制阀门十四(V16),低温透平膨胀发电机一(14)的膨胀端输出管道与液空过冷器(34)的液态空气输入端之间设置控制阀门十七(V19);所述低温透平膨胀发电机二(15)的膨胀端输出管道与精馏塔下塔(22)的原料输入端之间设置控制阀门十五(V17);所述液空过冷器(34)的液态空气输出端与常压气液分离器(35)的输入端之间设置节流阀二(V6)。
4.根据权利要求1所述的具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:所述低温透平膨胀发电机一(14)和低温透平膨胀发电机二(15)采用气体膨胀设备,释能过程为系统提供冷量来源,并实现空气的膨胀发电功能。
5.根据权利要求2或3所述的具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:所述控制阀门十四(V16)为储能过程外循环膨胀空气入精馏塔上塔(20)的流量控制阀,所述控制阀门十五(V17)为释能过程低温回收空气入精馏塔下塔(22)的流量控制阀,通过调节控制阀门十四(V16)和控制阀门十五(V17)确保空分系统精馏过程的产品产量和纯度维持在正常工况范围,满足下游用户对产品的需求;储能期间将控制阀门十五(V17)关闭,释能期间将控制阀门十四(V16)关闭,防止精馏塔内气体流入管道,降低系统跑冷损失。
6.根据权利要求2或3所述的具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:低温透平膨胀发电机一(14)的膨胀端输出压力接近于精馏塔上塔(20)的原料输入压力,低温透平膨胀发电机二(15)的膨胀端输出压力接近于精馏塔下塔(22)的原料输入压力,且低温透平膨胀发电机一(14)的膨胀端与精馏塔上塔(20)的连接管道,以及低温透平膨胀发电机二(15)的膨胀端与精馏塔下塔(22)的连接管道均为物质回收输运管道,协同管道上设置的控制阀门均进行保冷处理,减小整个工艺系统的跑冷损失。
7.根据权利要求2或3所述的具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:中压主换热器二(18)、中压主换热器三(19)、低温透平膨胀发电机一(14)、低温透平膨胀发电机二(15)、液空过冷器(34)、常压气液分离器(35)、液空泵(37)和节流阀二(V6),以及其相互之间的连接管道和控制阀门均进行保冷处理,减小整个工艺系统的跑冷损失。
8.根据权利要求1所述的具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:所述低温液空储存和物质能量回收系统的低温液空储存过程与空气产品分离过程共享空气压缩、冷却、纯化、增压,以及热交换和膨胀制冷设备,所述低温液空储存和物质能量回收系统的物质能量回收过程与空气产品分离过程共享热交换设备。
9.根据权利要求1所述的具有储能和物质能量资源高效回收的内压缩空分工艺流程,其特征在于:所述低温液空储存和物质能量回收系统利用低成本谷电将产品用户负荷需求以外的外供空气以液体的形式储存于低温储罐,峰电或平电期,将储存的低温液空利用空分自身携带的换热设备对高品位冷能进行回收,同时通过透平膨胀发电设备输出电能,并将膨胀输出的低温纯净空气全部以空气原料的形式回收至精馏塔下塔(22),使其参与空分系统的精馏过程,实现空分新工艺流程释能期间集物质、能量高效回收和膨胀发电为一体的生产过程。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010532426.7A CN111811213A (zh) | 2020-06-10 | 2020-06-10 | 具有储能和物质能量资源高效回收的内压缩空分工艺流程 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010532426.7A CN111811213A (zh) | 2020-06-10 | 2020-06-10 | 具有储能和物质能量资源高效回收的内压缩空分工艺流程 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111811213A true CN111811213A (zh) | 2020-10-23 |
Family
ID=72844930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010532426.7A Pending CN111811213A (zh) | 2020-06-10 | 2020-06-10 | 具有储能和物质能量资源高效回收的内压缩空分工艺流程 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111811213A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113670003A (zh) * | 2021-07-29 | 2021-11-19 | 北京科技大学 | 高安全性的储能、发电和物质回收外压缩空分工艺流程 |
CN113686099A (zh) * | 2021-08-09 | 2021-11-23 | 北京科技大学 | 一种基于内压缩空分储能装置的物质回收方法 |
CN115265091A (zh) * | 2021-04-29 | 2022-11-01 | 势加透博(北京)科技有限公司 | 空分装置耦合空气储能的系统及其控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2837564A1 (fr) * | 2003-05-28 | 2003-09-26 | Air Liquide | Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur |
CN108979762A (zh) * | 2017-06-01 | 2018-12-11 | 中国科学院工程热物理研究所 | 分级蓄冷式超临界压缩空气储能系统及方法 |
CN110108090A (zh) * | 2019-04-26 | 2019-08-09 | 北京科技大学 | 一种降低空分装置上塔压力和系统能耗的方法 |
CN110319652A (zh) * | 2019-06-25 | 2019-10-11 | 杭州杭氧化医工程有限公司 | 一种用于储释能的空气分离制氧装置 |
CN111043833A (zh) * | 2019-12-20 | 2020-04-21 | 北京科技大学 | 一种具有储能和发电功能的内压缩空分工艺流程 |
-
2020
- 2020-06-10 CN CN202010532426.7A patent/CN111811213A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2837564A1 (fr) * | 2003-05-28 | 2003-09-26 | Air Liquide | Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur |
CN108979762A (zh) * | 2017-06-01 | 2018-12-11 | 中国科学院工程热物理研究所 | 分级蓄冷式超临界压缩空气储能系统及方法 |
CN110108090A (zh) * | 2019-04-26 | 2019-08-09 | 北京科技大学 | 一种降低空分装置上塔压力和系统能耗的方法 |
CN110319652A (zh) * | 2019-06-25 | 2019-10-11 | 杭州杭氧化医工程有限公司 | 一种用于储释能的空气分离制氧装置 |
CN111043833A (zh) * | 2019-12-20 | 2020-04-21 | 北京科技大学 | 一种具有储能和发电功能的内压缩空分工艺流程 |
Non-Patent Citations (1)
Title |
---|
周智勇: "《深冷技术》", 30 September 2007 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115265091A (zh) * | 2021-04-29 | 2022-11-01 | 势加透博(北京)科技有限公司 | 空分装置耦合空气储能的系统及其控制方法 |
CN113670003A (zh) * | 2021-07-29 | 2021-11-19 | 北京科技大学 | 高安全性的储能、发电和物质回收外压缩空分工艺流程 |
CN113670003B (zh) * | 2021-07-29 | 2022-08-09 | 北京科技大学 | 高安全性的储能、发电和物质回收外压缩空分工艺流程 |
CN113686099A (zh) * | 2021-08-09 | 2021-11-23 | 北京科技大学 | 一种基于内压缩空分储能装置的物质回收方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111043833B (zh) | 一种具有储能和发电功能的内压缩空分工艺流程 | |
CN111811213A (zh) | 具有储能和物质能量资源高效回收的内压缩空分工艺流程 | |
CN112145248B (zh) | 具有储能、发电和物质回收功能的外压缩空分工艺流程 | |
He et al. | A novel air separation unit with energy storage and generation and its energy efficiency and economy analysis | |
US9879905B2 (en) | Natural gas isobaric liquefaction apparatus | |
CN1178038C (zh) | 利用液化天然气冷能的空气分离装置 | |
US20230092115A1 (en) | Device and method for recovering by-product oxygen of hydrogen production from electrolyzed water by low-temperature method | |
CN113686099B (zh) | 一种基于内压缩空分储能装置的物质回收方法 | |
US10006696B2 (en) | Natural gas isobaric liquefaction apparatus | |
CN203572141U (zh) | 具有再生气辅助精馏降压的空气分离系统 | |
CN110108090B (zh) | 一种降低空分装置上塔压力和系统能耗的方法 | |
CN210625119U (zh) | 一种降低氮循环能耗的co深冷分离系统 | |
CN209085172U (zh) | 一种液体量可调且同时产多规格氧气产品的空分设备 | |
CN113670003B (zh) | 高安全性的储能、发电和物质回收外压缩空分工艺流程 | |
CN215766044U (zh) | 氮气循环流程全液体制取的空分装置 | |
CN110746259B (zh) | 一种带闪蒸分离器的富气乙烷回收方法 | |
CN1038514A (zh) | 生产高压氧和高压氮的空气分离流程 | |
CN113137828A (zh) | 一种利用液化天然气终端冷能制取富氧的系统和方法 | |
CN114383384B (zh) | 一种空气液化与深冷空分工艺集成方法 | |
CN218120363U (zh) | 一种绿电高效转化低能耗空分储能装置 | |
CN201876055U (zh) | 利用液化天然气冷能的全液体空气分离装置 | |
CN114777416B (zh) | 一种绿电高效转化低能耗空分储能工艺 | |
CN114017993B (zh) | 一种利用绿电电解水制氢副产氧气的装置及方法 | |
CN2499774Y (zh) | 利用液化天然气冷能的空气分离装置 | |
CN107626183B (zh) | 一种适用于电网峰-谷负荷运行的富氧燃烧二氧化碳捕集集成系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201023 |
|
RJ01 | Rejection of invention patent application after publication |