CN113686099B - 一种基于内压缩空分储能装置的物质回收方法 - Google Patents

一种基于内压缩空分储能装置的物质回收方法 Download PDF

Info

Publication number
CN113686099B
CN113686099B CN202110909100.6A CN202110909100A CN113686099B CN 113686099 B CN113686099 B CN 113686099B CN 202110909100 A CN202110909100 A CN 202110909100A CN 113686099 B CN113686099 B CN 113686099B
Authority
CN
China
Prior art keywords
air
heat exchanger
main heat
medium
pressure main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110909100.6A
Other languages
English (en)
Other versions
CN113686099A (zh
Inventor
王立
贺秀芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202110909100.6A priority Critical patent/CN113686099B/zh
Publication of CN113686099A publication Critical patent/CN113686099A/zh
Application granted granted Critical
Publication of CN113686099B publication Critical patent/CN113686099B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/0285Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon

Abstract

本发明提供一种基于内压缩空分储能装置的物质回收方法,属于空分技术领域。该方法通过在常规内压缩空分装置的基础上更换或增设中压主换热器,增设透平膨胀发电机、液空过冷器、气液分离器、液空储罐和低温泵,实现内压缩空分装置的规模化储能,以及循环制冷空气和低温液态空气的高效回收利用。本发明既是一种新的内压缩空分装置,也适用于对现有内压缩空分装置的升级和更新改造。该方法通过回收储能过程循环制冷空气,提高空分储能装置的液空储存能力,释能时利用空分装置的精馏系统直接回收低温液空,实现系统内部能量和物质的跨时间利用,进而降低空分装置对峰电期电能的需求,即节约生产用电成本,又能实现国家电网侧的节能减排。

Description

一种基于内压缩空分储能装置的物质回收方法
技术领域
本发明涉及空分技术领域,特别是指一种基于内压缩空分储能装置的物质回收方法。
背景技术
随着电子科技领域的迅速发展和居民生活水平的不断提高,工业、农业和商业等领域的部分产业已逐渐被电子信息技术取代,电子产品逐渐走进人类的工作和生活,导致电力市场供需关系频繁变化,电网供电峰谷差居高不下。据数据统计,目前我国燃煤发电占比高达68%,但由于大量调峰负荷机组的存在(或基础负荷比例低),使得谷电期机组发电效率降低,污染物排放量增大。可再生能源发电装机占比虽然逐年增加,但受风电和光电能源输出的不稳定性影响,其很难精准匹配电网负荷需求。为解决这些问题,需要开发大规模储能技术,这已成为国家能源技术发展的战略目标。液化空气储能技术(LAES)具有储能密度高、不受地域限制等独特优势,被广泛认为是一种很有前途的大规模储能解决方案。但独立液化空气储能技术仍然存在以下问题亟待解决:1.制冷能级低,能耗高;2.冷能间接回收,不可逆损失大;3.释能膨胀输出的高纯空气环境释放,造成资源浪费;4.循环效率低(约为50%),且成本回收期较长,在没有余热利用的情况下,成本回收期高达约25年。因此,寻找一种能够在制冷能级和生产原料上与液化空气储能技术相互匹配的配套技术至关重要。
空分是工业生产领域的重要基础设备,其在煤化工、石油炼化和冶金三大行业的制氧能力占比分别为45%、30%和25%。空分工艺的生产过程包括压缩、预冷、纯化、增压、制冷、热交换和精馏等主要过程,制冷温度与液化空气储能技术相当,生产原料为环境空气。值得注意的是,空分设备本身耗电量大,以钢铁行业为例,2020年中国粗钢产量为10.65亿吨,按每吨钢综合耗氧量120Nm3,单位氧气综合电耗为0.77kWh/Nm3计(包括压缩能耗),全国空分生产年用电总量可达3936.24亿kWh(钢铁行业占比为25%),为全国电力消费总量的5.24%。作为单一技术,一种设备,其电力消费占比相当可观。若能将液化空气储能技术集成融入到空分装置,不仅能够实现低温液空冷能的直接回收和利用,还能使两种技术的制冷能级精准匹配,原料利用互为补充,即克服液化空气储能系统的冷能利用不可逆损失大、高纯空气排放等问题,还能实现空分设备的大型化发展和规模化储能。除此之外,通过利用空分设备储存低温液空还能减少储能技术的设备投资,节约人力运行成本。再结合峰谷分时电价制度和电力需求侧管理,可显著降低空分设备的综合用电成本,提高企业的经济效益。谷期用电负荷的提升还有利于提高发电机组运行效率,减小峰电期电力负荷需求,促进部分小型调峰发电机组向基负荷运行机组转变,甚至被大型发电机组所取代,从而有效降低发电煤耗和污染物排放,实现国家电网侧的节能减排。
现阶段,发明人已经提出两种内压缩空分储能相关技术,但关于储能过程的循环制冷空气排放和空气液化率低等问题并未得到有效解决。另外,释能过程液空的回收利用也存在多种方式,将液空加压复热后进行膨胀发电,主要侧重于空分储能技术与余热利用的结合,而液空经加压、气化和膨胀后进行物质回收是为了提高空分装置本身的物质和能量利用率,但该方法仍然存在冷能间接利用和增加换热器负荷等问题。对此,本发明针对空分储能装置储、释能过程工艺所存在的缺陷,提出了储能过程循环制冷空气的增压机前和空压机前回收,以及释能过程低温液态空气的直接利用,并针对特定的物质回收方式,对中压主换热器的结构,增压透平膨胀机,以及新增膨胀设备的限定做出了新设计和规划。
发明内容
本发明要解决的技术问题是提供一种基于内压缩空分储能装置的物质回收方法,该物质回收方法包括储能过程循环制冷空气的回收和释能过程低温液态空气的直接利用。本发明的内压缩空分储能装置与相应的物质回收方法相配套,实现空分储能装置储能过程中压主换热器内制冷能级的高度匹配和制冷空气的高效循环利用,以及释能过程低温液态空气的高品质回收。
该方法通过在常规内压缩空分装置的基础上更换中压主换热器或在保留常规内压缩空分装置中压主换热器的基础上增设中压主换热器,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;
其中,在常规内压缩空分装置的基础上更换中压主换热器具体为:将原中压主换热器更换为中压主换热器一,同时改变原增压透平膨胀机膨胀端输入和输出管道的限定方式,并增设透平膨胀发电机一、透平膨胀发电机二、液空过冷器、常压气液分离器、液空储罐和低温泵,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;内压缩空分储能装置和储能过程循环制冷空气的增压机前回收通过中压主换热器一、透平膨胀发电机一、透平膨胀发电机二、液空过冷器、常压气液分离器和液空储罐实现;中压主换热器一设置循环空气降温通道、增压膨胀空气降温通道、增压后中压空气通道、循环空气复热通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时氮气复热通道上设置中部和上部两个流体抽出位置;其中,中压主换热器一的循环空气降温通道输入端连接于现有的空气增压机的四级冷却器输出端,中压主换热器一的循环空气降温通道输出端连接于透平膨胀发电机二的输入端,透平膨胀发电机二的输出端连接于中压主换热器一的循环空气复热通道输入端,中压主换热器一的循环空气复热通道输出端连接于现有的空气增压机的一级气缸输入端;原增压透平膨胀机的增压后冷却器输出端连接于增压透平膨胀机的膨胀端输入管道,增压透平膨胀机的膨胀端输出管道连接于中压主换热器一的增压膨胀空气降温通道输入端,中压主换热器一的增压膨胀空气降温通道输出端连接于透平膨胀发电机一的输入端,透平膨胀发电机一的输出端连接于高压塔的原料输入端;中压主换热器一的纯化后低压空气通道输入端连接于分子筛吸附器的空气输出端,中压主换热器一的纯化后低压空气通道输出端连接于高压塔的原料输入端;中压主换热器一的增压后中压空气通道输入端连接于空气增压机的四级冷却器输出端,中压主换热器一的增压后中压空气通道输出端分为两路:一路连接于高压塔的原料输入端,另一路连接于液空过冷器的液态空气输入端;中压主换热器一的污氮气复热通道输入端连接于过冷器的污氮气输出端,中压主换热器一的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器一的氧气复热通道输入端连接于液氧泵的输出端,中压主换热器一的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器一的氮气复热通道输入端连接于过冷器的氮气输出端,中压主换热器一的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;所述液空过冷器的液态空气输出端连接于常压气液分离器的气体输入端;所述常压气液分离器的气体输出端连接于液空过冷器的低温空气输入端,液空过冷器的低温空气输出端连接于中压主换热器一的污氮气复热通道输入管道,常压气液分离器的液体输出端连接于低温液空储罐的输入端;所述内压缩空分储能装置释能过程低温液态空气的直接利用通过低温泵实现,所述低温泵的输入端连接于液空储罐的输出端,低温泵的输出端连接于高压塔的原料输入端;
在保留常规内压缩空分装置中压主换热器的基础上增设中压主换热器具体为:在保留常规内压缩空分装置中压主换热器的基础上增设中压主换热器一、透平膨胀发电机一、透平膨胀发电机二、液空过冷器、常压气液分离器、液空储罐和低温泵,同时改变原增压透平膨胀机膨胀端输入和输出管道的限定方式,关闭原中压主换热器增压膨胀空气通道的输入和输出端,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;所述原增压透平膨胀机的膨胀端以及增设中压主换热器一、透平膨胀发电机一、透平膨胀发电机二、液空过冷器、常压气液分离器、液空储罐和低温泵的管道限定方式与上述在常规内压缩空分装置的基础上更换中压主换热器为中压主换热器一中相应设备的限定方式相同。
上述,中压主换热器一的循环空气降温通道输入端与现有的空气增压机的四级冷却器输出端之间设置控制阀门一,中压主换热器一的循环空气降温通道输出端与透平膨胀发电机二的输入端之间设置控制阀门二,透平膨胀发电机二的输出端与中压主换热器一的循环空气复热通道输入端之间设置控制阀门三,中压主换热器一的循环空气复热通道输出端与空气增压机的一级气缸输入端之间设置控制阀门四;所述增压透平膨胀机的膨胀端输出管道与中压主换热器一的增压膨胀空气降温通道输入端之间设置控制阀门五,中压主换热器一的增压膨胀空气降温通道输出端与透平膨胀发电机一的输入端之间设置控制阀门六,透平膨胀发电机一的输出端与高压塔的原料输入端之间设置控制阀门七;所述液空过冷器的液态空气输出端与常压气液分离器的输入端之间设置控制阀门八,液空过冷器的低温空气输出端与中压主换热器一的污氮气复热通道输入管道之间设置控制阀门九,低温泵的输出端与高压塔的原料输入端之间设置控制阀门十,中压主换热器一的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一。
进一步,在常规内压缩空分装置的基础上更换中压主换热器,还可以为:在常规内压缩空分装置的基础上将原中压主换热器更换为中压主换热器二,并增设透平膨胀发电机三、透平膨胀发电机四、液空过冷器、常压气液分离器、液空储罐和低温泵,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;内压缩空分储能装置储能过程循环制冷空气的增压机前回收方法中的中压主换热器二设置循环空气降温通道、增压膨胀空气降温通道、增压后中压空气通道、循环空气复热通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时氮气复热通道上设置中部和上部两个流体抽出位置;所述透平膨胀发电机三的输入端连接于现有的空气增压机的四级冷却器输出端,透平膨胀发电机三的输出端连接于中压主换热器二的循环空气降温通道输入端,中压主换热器二的循环空气降温通道输出端连接于透平膨胀发电机四的输入端,透平膨胀发电机四的输出端连接于中压主换热器二的循环空气复热通道输入端,中压主换热器二的循环空气复热通道输出端连接于空气增压机的一级气缸输入端;中压主换热器二的增压膨胀空气降温通道输入端连接于现有的增压后冷却器的输出端,中压主换热器二的增压膨胀空气降温通道输出端连接于现有的增压透平膨胀机的膨胀端输入管道;中压主换热器二的纯化后低压空气通道输入端连接于分子筛吸附器的空气输出端,中压主换热器二的纯化后低压空气通道输出端连接于高压塔的原料输入端;中压主换热器二的增压后中压空气通道输入端连接于空气增压机的四级冷却器输出端,中压主换热器二的增压后中压空气通道输出端分为两路:一路连接于高压塔的原料输入端,另一路连接于液空过冷器的液态空气输入端;中压主换热器二的污氮气复热通道输入端连接于过冷器的污氮气输出端,中压主换热器二的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器二的氧气复热通道输入端连接于液氧泵的输出端,中压主换热器二的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器二的氮气复热通道输入端连接于过冷器的氮气输出端,中压主换热器二的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;所述液空过冷器的液态空气输出端连接于常压气液分离器的气体输入端;所述常压气液分离器的气体输出端连接于液空过冷器的低温空气输入端,液空过冷器的低温空气输出端连接于中压主换热器二的污氮气复热通道输入管道,常压气液分离器的液体输出端连接于低温液空储罐的输入端;
同样的,在保留常规内压缩空分装置中压主换热器的基础上增设中压主换热器还可以具体为:在保留常规内压缩空分装置中压主换热器的基础上增设中压主换热器二、透平膨胀发电机三、透平膨胀发电机四、液空过冷器、常压气液分离器、液空储罐和低温泵,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;所述中压主换热器二、透平膨胀发电机三、透平膨胀发电机四、液空过冷器、常压气液分离器、液空储罐和低温泵以及现有的增压透平膨胀机的管道限定方式与上述在常规内压缩空分装置的基础上更换中压主换热器为中压主换热器二中相应设备的限定方式相同。
上述,透平膨胀发电机三的输入端与现有的空气增压机的四级冷却器输出端之间设置控制阀门十二,透平膨胀发电机三的输出端与中压主换热器二的循环空气降温通道输入端之间设置控制阀门十三,中压主换热器二的循环空气降温通道输出端与透平膨胀发电机四的输入端之间设置控制阀门十四,透平膨胀发电机四的输出端与中压主换热器二的循环空气复热通道输入端之间设置控制阀门十五,中压主换热器二的循环空气复热通道输出端与空气增压机的一级气缸输入端之间设置控制阀门四;所述液空过冷器的液态空气输出端与常压气液分离器的输入端之间设置控制阀门八,液空过冷器的低温空气输出端与中压主换热器二的污氮气复热通道输入管道之间设置控制阀门九,低温泵的输出端与高压塔的原料输入端之间设置控制阀门十,中压主换热器二的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一。
进一步,在常规内压缩空分装置的基础上更换中压主换热器,还可以为:在常规内压缩空分装置的基础上将原中压主换热器更换为中压主换热器三,并增设透平膨胀发电机三、透平膨胀发电机五、透平膨胀发电机六、液空过冷器、常压气液分离器、液空储罐和低温泵,实现内压缩空分储能装置储能过程循环制冷空气的空压机前回收和释能过程低温液态空气的直接利用;所述中压主换热器三设置增压膨胀空气降温通道、循环空气一次复热通道、循环空气二次复热通道、循环空气三次复热通道、增压后中压空气通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时氮气复热通道上设置中部和上部两个流体抽出位置;所述透平膨胀发电机三的输入端连接于现有的空气增压机的四级冷却器输出端,透平膨胀发电机三的输出端连接于中压主换热器三的循环空气一次复热通道输入端,中压主换热器三的循环空气一次复热通道输出端连接于透平膨胀发电机五的输入端,透平膨胀发电机五的输出端连接于中压主换热器三的循环空气二次复热通道输入端,中压主换热器三的循环空气二次复热通道输出端连接于透平膨胀发电机六的输入端,透平膨胀发电机六的输出端连接于中压主换热器三的循环空气三次复热通道输入端,中压主换热器三的循环空气三次复热通道输出端连接于现有空气压缩机的原料气输入端;中压主换热器三的增压膨胀空气降温通道输入端连接于现有的增压后冷却器的输出端,中压主换热器三的增压膨胀空气降温通道输出端连接于现有的增压透平膨胀机的膨胀端输入管道;中压主换热器三的纯化后低压空气输入端连接于分子筛吸附器的空气输出端,中压主换热器三的纯化后低压空气输出端连接于高压塔的原料输入端;中压主换热器三的增压后中压空气输入端连接于空气增压机的四级冷却器输出端,中压主换热器三的增压后中压空气输出端分为两路:一路连接于高压塔的原料输入端,另一路连接于液空过冷器的液态空气输入端;中压主换热器三的污氮气复热通道输入端连接于过冷器的污氮气输出端,中压主换热器三的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器三的氧气复热通道输入端连接于液氧泵的输出端,中压主换热器三的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器三的氮气复热通道输入端连接于过冷器的氮气输出端,中压主换热器三的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;所述液空过冷器的液态空气输出端连接于常压气液分离器的输入端;所述常压气液分离器的气体输出端连接于液空过冷器的低温空气输入端,液空过冷器的低温空气输出端连接于中压主换热器三的污氮气复热通道输入管道,常压气液分离器的液体输出端连接于低温液空储罐的输入端;
同样的,在保留常规内压缩空分装置中压主换热器的基础上增设中压主换热器还可以具体为:在保留常规内压缩空分装置中压主换热器的基础上增设中压主换热器三、透平膨胀发电机三、透平膨胀发电机五、透平膨胀发电机六、液空过冷器、常压气液分离器、液空储罐和低温泵,实现内压缩空分储能装置储能过程循环制冷空气的空压机前回收和释能过程低温液态空气的直接利用;所述增设中压主换热器三、透平膨胀发电机三、透平膨胀发电机五、透平膨胀发电机六、液空过冷器、常压气液分离器、液空储罐和低温泵的管道限定方式与上述在常规内压缩空分装置的基础上更换中压主换热器为中压主换热器三中相应设备的限定方式相同。
上述,透平膨胀发电机三的输入端与现有的空气增压机的四级冷却器输出端之间设置控制阀门十二,透平膨胀发电机三的输出端与中压主换热器三的循环空气一次复热通道输入端之间设置控制阀门十六,中压主换热器三的循环空气一次复热通道输出端与透平膨胀发电机五的输入端之间设置控制阀门十七,透平膨胀发电机五的输出端与中压主换热器三的循环空气二次复热通道输入端之间设置控制阀门十八,中压主换热器三的循环空气二次复热通道输出端与透平膨胀发电机六的输入端之间设置控制阀门十九,透平膨胀发电机六的输出端与中压主换热器三的循环空气三次复热通道输入端之间设置控制阀门二十,中压主换热器三的循环空气三次复热通道输出端与现有空气压缩机的原料气输入端之间设置控制阀门二十一;所述液空过冷器的液态空气输出端与常压气液分离器的输入端之间设置控制阀门八,液空过冷器的低温空气输出端与中压主换热器三的污氮气复热通道输入管道之间设置控制阀门九,低温泵的输出端与高压塔的原料输入端之间设置控制阀门十,中压主换热器三的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一。
上述,内压缩空分储能装置循环制冷空气的增压机前回收是指储能过程空分富余产能的空气液化时,制冷空气通过透平膨胀发电机二的膨胀端输出压力与空气压缩机的空气输出压力相当,经中压主换热器一和中压主换热器二复热后回收进入空气增压机;所述释能过程低温液态空气的直接利用是指将所储存的低温液态空气利用低温泵加压后直接送入高压塔,参与空分装置的精馏过程,即提供精馏原料,又提供压力能和大量冷能。
内压缩空分储能装置循环制冷空气的空压机前回收是指储能过程空分富余产能的空气液化时,制冷空气通过透平膨胀发电机六的膨胀端输出压力高于常压,经中压主换热器三复热后回收进入空气压缩机。
上述,内压缩空分储能装置循环制冷空气的增压机前和空压机前回收既能避免储能期间高纯空气的环境释放,又能降低分子筛吸附器的运行负荷,提高空分装置的液空生产和储存能力。
内压缩空分储能装置和物质回收方法中现有增压透平膨胀发电机膨胀端输入和输出管道的重新限定、以及增压透平膨胀机一和增压透平膨胀机二的增设与中压主换热器一的结构设计相对应,实现储能过程循环制冷空气的增压机前回收;该限定方式所形成内压缩空分储能装置和物质回收方法中的中压主换热器一热交换不可逆损失小,装置储液量大;
内压缩空分储能装置和循环制冷空气的增压机前回收是一个循环空气量先逐渐增大,后趋于稳定的制冷过程,即当空分产能需求以外的富余空气全部参与液化时,没有额外的空气再为其提供制冷原料,此时循环进入空气增压机的制冷空气量趋于稳定;当并联设置不少于一台空气压缩机时,实现低温液态空气的更大规模储存。
该内压缩空分储能装置和物质回收方法中的透平膨胀发电机一、透平膨胀发电机二、透平膨胀发电机三、透平膨胀发电机四、透平膨胀发电机五和透平膨胀发电机六均为气体膨胀发电设备;其中,透平膨胀发电机二和透平膨胀发电机四的膨胀端输出温度约为-170~-130℃;透平膨胀发电机三、透平膨胀发电机五和透平膨胀发电机六的膨胀端输出温度不低于-100℃。
该内压缩空分储能装置和物质回收方法利用低成本谷电将空分富余产能的空气以液体的形式储存于低温储罐,峰电或平电期,低温液空经加压后直接送入高压塔,为空分装置提供冷能和压力能的同时,作为生产原料参与空分系统的精馏过程,实现空分装置内部能量和物质的高效转换和利用,进而降低空分设备的峰电和平电电耗,为空分企业节约用电成本,提高经济效益。
该内压缩空分储能装置和物质回收方法既适用于新建空分装置,又适用于对现有内压缩空分装置的升级和更新改造。
本发明的上述技术方案的有益效果如下:
上述方案中,通过在常规内压缩空分装置的基础上更换或增设中压主换热器,增设透平膨胀发电机、液空过冷器、气液分离器、液空储罐和低温泵,实现内压缩空分装置的规模化储能,以及循环制冷空气和低温液态空气的高效回收和利用。该技术既避免了储能过程循环制冷空气的环境释放,还能使各中压主换热器内的制冷能级得到高度匹配,提高了空分储能装置的制冷能力和空气液化量;另外,释能过程低温液空的直接利用,进一步提高了空分储能装置的能量和物质利用率,降低了空分设备的峰电和平电电耗,进而降低空分企业的用电成本,提高企业经济效益。谷期用电负荷的提升还能有效平衡电网用电需求,促进部分调峰机组转为基负荷机组或被大型发电机组所取代,从而提高机组发电效率,实现电网侧的节能减排。
附图说明
图1为常规内压缩空分工艺流程示意图;
图2为本发明实施例中制氧40000Nm3·h-1更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图;
图3为本发明实施例中制氧40000Nm3·h-1新增中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图;
图4为本发明实施例中制氧40000Nm3·h-1更换中压主换热器二的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图;
图5为本发明实施例中制氧40000Nm3·h-1新增中压主换热器二的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图;
图6为本发明实施例中制氧40000Nm3·h-1更换中压主换热器三的内压缩空分储能装置储能过程循环制冷空气空压机前回收工艺流程示意图;
图7为本发明实施例中制氧40000Nm3·h-1新增中压主换热器三的内压缩空分储能装置储能过程循环制冷空气空压机前回收工艺流程示意图;
图8为本发明实施例中压主换热器一的流体通道分布示意图;
图9为本发明实施例中压主换热器二的流体通道分布示意图;
图10为本发明实施例中压主换热器三的流体通道分布示意图;
图11为本发明实施例中制氧40000Nm3·h-1内压缩空分储能装置释能期间液空回收流率对低压塔内产品纯度和氩馏分中氩浓度的影响;
图12为峰谷电价比对本发明实施案例中制氧40000Nm3·h-1更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺系统用电成本节约率和成本回收期的影响;
图13为本发明实施案例中制氧40000Nm3·h-1更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺系统取代全国内压缩空分设备前、后的年用电负荷变化情况。
其中:1-空气过滤器;2-空气压缩机;3-空冷塔;4-水冷塔;5-冷却水泵;6-冷冻水泵;7-冷水机组;8-分子筛吸附器;9-消声器;10-电加热器;11-空气增压机;12-增压透平膨胀机;13-增压后冷却器;14-透平膨胀发电机一;15-透平膨胀发电机二;16-透平膨胀发电机三;17-透平膨胀发电机四;18-透平膨胀发电机五;19-透平膨胀发电机六;20-原中压主换热器;21-中压主换热器一;22-中压主换热器二;23-中压主换热器三;24-中压氩换热器;25-低压塔;26-主冷凝蒸发器;27-高压塔;28-过冷器;29-液氧泵;30-粗氩I塔;31-粗氩II塔;32-粗液氩循环泵;33-粗氩液化器;34-精氩塔;35-精氩泵;36-液空过冷器;37-常压气液分离器;38-液空储罐;39-低温泵;V1-控制阀门一;V2-控制阀门二;V3-控制阀门三;V4-控制阀门四;V5-控制阀门五;V6-控制阀门六;V7-控制阀门七;V8-控制阀门八;V9-控制阀门九;V10-控制阀门十;V11-控制阀门十一;V12-控制阀门十二;V13-控制阀门十三;V14-控制阀门十四;V15-控制阀门十五;V16-控制阀门十六;V17-控制阀门十七;V18-控制阀门十八;V19-控制阀门十九;V20-控制阀门二十,V21-控制阀门二十一。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明为解决内压缩空分装置储能期间空气液化率低,循环制冷空气环境释放,释能过程低温液空间接回收等问题,提供一种基于内压缩空分储能装置的物质回收方法,实现内压缩空分设备的规模化储能和物质能量的高效循环利用。
该方法通过在常规内压缩空分装置的基础上更换中压主换热器20或在保留常规内压缩空分装置中压主换热器20的基础上增设中压主换热器,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用。
如图2,为本发明实施例中制氧40000Nm3·h-1更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图。从图2中可以看出,该基于内压缩空分储能装置的物质回收方法在图1所示常规内压缩空分工艺流程的基础上将原中压主换热器20更换为中压主换热器一21,同时改变原增压透平膨胀机12膨胀端输入和输出管道的限定方式,并增设透平膨胀发电机一14、透平膨胀发电机二15、液空过冷器36、常压气液分离器37、液空储罐38和低温泵39;结合图8给出的中压主换热器一21的流体通道分布示意图可以看出,中压主换热器一21设置循环空气降温通道、增压膨胀空气降温通道、增压后中压空气通道、循环空气复热通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时在氮气复热通道上设置中部和上部两个流体抽出位置;其中,中压主换热器一21的循环空气降温通道输入端与现有的空气增压机11的四级冷却器输出端相连,中压主换热器一21的循环空气降温通道输出端与透平膨胀发电机二15的输入端相连,透平膨胀发电机二15的输出端与中压主换热器一21的循环空气复热通道输入端相连,中压主换热器一21的循环空气复热通道输出端与空气增压机11的一级气缸输入端相连;现有的增压透平膨胀机12的增压后冷却器13的输出端与增压透平膨胀机12的膨胀端输入管道相连,增压透平膨胀机12的膨胀端输出管道与中压主换热器一21的增压膨胀空气降温通道输入端相连,中压主换热器一21的增压膨胀空气降温通道输出端与透平膨胀发电机一14的输入端相连,透平膨胀发电机一14的输出端连接于高压塔27的原料输入端;中压主换热器一21的纯化后低压空气通道输入端与分子筛吸附器8的空气输出端相连,中压主换热器一21的纯化后低压空气通道输出端连接于高压塔27的原料输入端;中压主换热器一21的增压后中压空气通道输入端与空气增压机11的四级冷却器输出端相连,中压主换热器一21的增压后中压空气通道输出端分别连接于高压塔27的原料输入端和液空过冷器36的液态空气输入端;中压主换热器一21的污氮气复热通道输入端与过冷器28的污氮气输出端相连,中压主换热器一21的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器一21的氧气复热通道输入端与液氧泵29的输出端相连,中压主换热器一21的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器一21的氮气复热通道输入端与过冷器28的氮气输出端相连,中压主换热器一21的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;液空过冷器36的液态空气输出端与常压气液分离器37的输入端相连;常压气液分离器37的气体输出端与液空过冷器36的低温空气输入端相连,液空过冷器36的低温空气输出端连接于中压主换热器一21的污氮气复热通道输入管道,常压气液分离器37的液体输出端与低温液空储罐38的输入端相连;液空储罐38的输出端与低温泵39的输入端相连,低温泵39的输出端连接于高压塔27的原料输入端。
中压主换热器一21的循环空气降温通道输入端与现有的空气增压机11的四级冷却器输出端之间设置控制阀门一V1,中压主换热器一21的循环空气降温通道输出端与透平膨胀发电机二15的输入端之间设置控制阀门二V2,透平膨胀发电机二15的输出端与中压主换热器一21的循环空气复热通道输入端之间设置控制阀门三V3,中压主换热器一21的循环空气复热通道输出端与空气增压机11的一级气缸输入端之间设置控制阀门四V4;增压透平膨胀机12的膨胀端输出管道与中压主换热器一21的增压膨胀空气降温通道输入端之间设置控制阀门五V5,中压主换热器一21的增压膨胀空气降温通道输出端与透平膨胀发电机一14的输入端之间设置控制阀门六V6,透平膨胀发电机一14的输出端与高压塔27的原料输入端之间设置控制阀门七V7;液空过冷器36的液态空气输出端与常压气液分离器37的输入端之间设置控制阀门八V8,液空过冷器36的低温空气输出端与中压主换热器一21的污氮气复热通道输入管道之间设置控制阀门九V9,低温泵39的输出端与高压塔27的原料输入端之间设置控制阀门十V10,中压主换热器一21的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一V11;
图3为本发明实施例中制氧40000Nm3·h-1新增中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图;从图3中可以看出,该基于内压缩空分储能装置的物质回收方法还可在图1所示常规内压缩空分工艺流程的基础上保留原内压缩空分装置的中压主换热器20,并在此基础上增设中压主换热器一21、透平膨胀发电机一14、透平膨胀发电机二15、液空过冷器36、常压气液分离器37、液空储罐38和低温泵39,同时改变原增压透平膨胀机12膨胀端输入和输出管道的限定方式,关闭原中压主换热器20增压膨胀空气通道的输入和输出通道,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;
所述原增压透平膨胀机12的增压端输入管道连接于空气增压机11的三级冷却器输出端,增压透平膨胀机12的增压端输出管道连接于增压后冷却器13的输入端;增压透平膨胀机12的膨胀端输入管道连接于增压后冷却器13的输出端,增压透平膨胀机12的膨胀端输出管道连接于中压主换热器一21的增压膨胀空气降温通道输入端;中压主换热器一21的增压膨胀空气降温通道输出端连接于透平膨胀发电机一14的输入端,透平膨胀发电机一14的输出端连接于高压塔27的原料输入端;原中压主换热器20和中压主换热器一21的增压后中压空气通道输入端连接于空气增压机11的四级冷却器输出端,原中压主换热器20和中压主换热器一21的增压后中压空气通道输出端分为两路:一路连接于高压塔27的原料输入端,另一路连接于液空过冷器36的液态空气输入端;原中压主换热器20和中压主换热器一21的纯化后低压空气通道输入端连接于分子筛吸附器8的空气输出端,原中压主换热器20和中压主换热器一21的纯化后低压空气通道输出端连接于高压塔27的原料输入端;原中压主换热器20和中压主换热器一21的氧气复热通道输入端连接于液氧泵29的输出端,原中压主换热器20和中压主换热器一21的氧气复热通道输出端连接于氧气产品输出管道;原中压主换热器20和中压主换热器一21的氮气复热通道输入端连接于过冷器28的氮气输出端,原中压主换热器20和中压主换热器一21的氮气复热通道输出端均连接于氮气产品输出管道;原中压主换热器20和中压主换热器一21的污氮气复热通道输入端连接于过冷器28的污氮气输出端,原中压主换热器20和中压主换热器一21的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器一21的循环空气降温通道输入端连接于空气增压机11的四级冷却器输出端,中压主换热器一21的循环空气降温通道输出端连接于透平膨胀发电机二15的输入端,透平膨胀发电机二15的输出端连接于中压主换热器一21的循环空气复热通道输入端,中压主换热器一21的循环空气复热通道输出端连接于空气增压机11的一级气缸输入端;液空过冷器36、常压气液分离器37、液空储罐38和低温泵39的管道限定方式以及阀门设置均与图2所示更换中压主换热器一21的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程中相应设备和阀门的限定方式相同;
图4为本发明实施例中制氧40000Nm3·h-1更换中压主换热器二的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图;从图4中可以看出,该基于内压缩空分储能装置的物质回收方法也可在图1所示常规内压缩空分工艺流程的基础上将原中压主换热器20更换为中压主换热器二22,并增设透平膨胀发电机三16、透平膨胀发电机四17、液空过冷器36、常压气液分离器37、液空储罐38和低温泵39,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;结合图9给出的中压主换热器二22的流体通道分布示意图可以看出,中压主换热器二22设置循环空气降温通道、增压膨胀空气降温通道、增压后中压空气通道、循环空气复热通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时在氮气复热通道上设置中部和上部两个流体抽出位置;透平膨胀发电机三16的输入端与现有的空气增压机11的四级冷却器输出端相连,透平膨胀发电机三16的输出端与中压主换热器二22的循环空气降温通道输入端相连,中压主换热器二22的循环空气降温通道输出端与透平膨胀发电机四17的输入端相连,透平膨胀发电机四17的输出端与中压主换热器二22的循环空气复热通道输入端相连,中压主换热器二22的循环空气复热通道输出端连接于空气增压机11的一级气缸输入端;中压主换热器二22的增压膨胀空气降温通道输入端与现有的增压后冷却器13的输出端相连,中压主换热器二22的增压膨胀空气降温通道输出端与现有的增压透平膨胀机12的膨胀端输入管道相连;中压主换热器二22的纯化后低压空气通道输入端与分子筛吸附器8的空气输出端相连,中压主换热器二22的纯化后低压空气通道输出端与高压塔27的原料输入端相连;中压主换热器二22的增压后中压空气通道输入端与空气增压机11的四级冷却器输出端相连,中压主换热器二22的增压后中压空气通道输出端分别连接于高压塔27的原料输入端和液空过冷器36的液态空气输入端;中压主换热器二22的污氮气复热通道输入端与过冷器28的污氮气输出端相连,中压主换热器二22的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器二22的氧气复热通道输入端与液氧泵29的输出端相连,中压主换热器二22的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器二22的氮气复热通道输入端与过冷器28的氮气输出端相连,中压主换热器二22的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;液空过冷器36的液态空气输出端与常压气液分离器37的输入端相连;常压气液分离器37的气体输出端与液空过冷器36的低温空气输入端相连,液空过冷器36的低温空气输出端连接于中压主换热器二22的污氮气复热通道输入管道,常压气液分离器37的液体输出端与低温液空储罐38的输入端相连;低温泵39的输入端与液空储罐38的输出端相连,低温泵39的输出端连接于高压塔27的原料输入端;
透平膨胀发电机三16的输入端与现有的空气增压机11的四级冷却器输出端之间设置控制阀门十二V12,透平膨胀发电机三16的输出端与中压主换热器二22的循环空气降温通道输入端之间设置控制阀门十三V13,中压主换热器二22的循环空气降温通道输出端与透平膨胀发电机四17的输入端之间设置控制阀门十四V14,透平膨胀发电机四17的输出端与中压主换热器二22的循环空气复热通道输入端之间设置控制阀门十五V15,中压主换热器二22的循环空气复热通道输出端与空气增压机11的一级气缸输入端之间设置控制阀门四V4;液空过冷器36的液态空气输出端与常压气液分离器37的输入端之间设置控制阀门八V8,液空过冷器36的低温空气输出端与中压主换热器二22的污氮气复热通道输入管道之间设置控制阀门九V9,低温泵39的输出端与高压塔27的原料输入端之间设置控制阀门十V10,中压主换热器二22的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一V11;
图5为本发明实施例中制氧40000Nm3·h-1新增中压主换热器二的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图;从图5中可以看出,该基于内压缩空分储能装置的物质回收方法还可在图1所示常规内压缩空分工艺流程的基础上保留原内压缩空分装置的中压主换热器20,并在此基础上增设中压主换热器二22、透平膨胀发电机三16、透平膨胀发电机四17、液空过冷器36、常压气液分离器37、液空储罐38和低温泵39,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;
原中压主换热器20与中压主换热器二22的增压膨胀空气降温通道输入端连接于增压后冷却器13的输出端,原中压主换热器20与中压主换热器二22的增压膨胀空气降温通道输出端连接于增压透平膨胀机12的膨胀端输入管道;原中压主换热器20与中压主换热器二22的增压后中压空气通道输入端连接于空气增压机11的四级冷却器输出端,原中压主换热器20与中压主换热器二22的增压后中压空气通道输出端分为两路:一路连接于高压塔27的原料输入端,另一路连接于液空过冷器36的液态空气输入端;原中压主换热器20和中压主换热器二22的纯化后低压空气通道输入端连接于分子筛吸附器8的空气输出端,原中压主换热器20和中压主换热器二22的纯化后低压空气通道输出端连接于高压塔27的原料输入端;原中压主换热器20和中压主换热器二22的氧气复热通道输入端连接于液氧泵的输出端,中压主换热器和中压主换热器二的氧气复热通道输出端连接于氧气产品输出管道;原中压主换热器20和中压主换热器二22的氮气复热通道输入端连接于过冷器28的氮气输出端,原中压主换热器20和中压主换热器二22的氮气复热通道输出端均连接于氮气产品输出管道;原中压主换热器20和中压主换热器二22的污氮气复热通道输入端连接于过冷器28的污氮气输出端,原中压主换热器20和中压主换热器二22的污氮气复热通道输出端连接于污氮气输出管道;透平膨胀发电机三16的输入端连接于空气增压机11的四级冷却器输出端,透平膨胀发电机三16的输出端连接于中压主换热器二22的循环空气降温通道输入端,中压主换热器二22的循环空气降温通道输出端连接于透平膨胀发电机四17的输入端,透平膨胀发电机四17的输出端连接于中压主换热器二22的循环空气复热通道输入端,中压主换热器二22的循环空气复热通道输出端连接于空气增压机11的一级气缸输入端;液空过冷器26、常压气液分离器37、液空储罐38和低温泵39的管道限定方式以及阀门设置均与图4所示更换中压主换热器二22的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程中相应设备和阀门的限定方式相同;
图6为本发明实施例中制氧40000Nm3·h-1更换中压主换热器三的内压缩空分储能装置储能过程循环制冷空气空压机前回收工艺流程示意图;从图6中可以看出,该基于内压缩空分储能装置的物质回收方法也可在图1所示常规内压缩空分工艺流程的基础上将原中压主换热器20更换为中压主换热器三23,并增设透平膨胀发电机三16、透平膨胀发电机五18、透平膨胀发电机六19、液空过冷器36、常压气液分离器37、液空储罐38和低温泵39,实现内压缩空分储能装置储能过程循环制冷空气的空压机前回收和释能过程低温液态空气的直接利用;结合图10给出的中压主换热器三23的流体通道分布示意图可以看出,中压主换热器三23设置增压膨胀空气降温通道、循环空气一次复热通道、循环空气二次复热通道、循环空气三次复热通道、增压后中压空气通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时氮气复热通道上设置中部和上部两个流体抽出位置;透平膨胀发电机三16的输入端与现有的空气增压机11的四级冷却器输出端相连,透平膨胀发电机三16的输出端与中压主换热器三23的循环空气一次复热通道输入端相连,中压主换热器三23的循环空气一次复热通道输出端与透平膨胀发电机五18的输入端相连,透平膨胀发电机五18的输出端与中压主换热器三23的循环空气二次复热通道输入端相连,中压主换热器三23的循环空气二次复热通道输出端与透平膨胀发电机六19的输入端相连,透平膨胀发电机六19的输出端与中压主换热器三23的循环空气三次复热通道输入端相连,中压主换热器三23的循环空气三次复热通道输出端与现有的空气压缩机2的原料气输入端相连;中压主换热器三23的增压膨胀空气降温通道输入端与现有的增压后冷却器13的输出端相连,中压主换热器三23的增压膨胀空气降温通道输出端与现有的增压透平膨胀机12的膨胀端输入管道相连;中压主换热器三23的纯化后低压空气输入端与分子筛吸附器8的空气输出端相连,中压主换热器三23的纯化后低压空气输出端与高压塔27的原料输入端相连;中压主换热器三23的增压后中压空气输入端与空气增压机11的四级冷却器输出端相连,中压主换热器三23的增压后中压空气输出端分别连接于高压塔27的原料输入端和液空过冷器36的液态空气输入端;中压主换热器三23的污氮气复热通道输入端与过冷器28的污氮气输出端相连,中压主换热器三23的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器三23的氧气复热通道输入端与液氧泵29的输出端相连,中压主换热器三23的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器三23的氮气复热通道输入端与过冷器28的氮气输出端相连,中压主换热器三23的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;液空过冷器36的液态空气输出端与常压气液分离器37的输入端相连;常压气液分离器37的气体输出端与液空过冷器36的低温空气输入端相连,液空过冷器36的低温空气输出端与中压主换热器三23的污氮气复热通道输入管道相连,常压气液分离器37的液体输出端与低温液空储罐38的输入端相连;低温泵39的输入端与液空储罐38的输出端相连,低温泵39的输出端与高压塔27的原料输入端相连;
透平膨胀发电机三16的输入端与现有的空气增压机11的四级冷却器输出端之间设置控制阀门十二V12,透平膨胀发电机三16的输出端与中压主换热器三23的循环空气一次复热通道输入端之间设置控制阀门十六V16,中压主换热器三23的循环空气一次复热通道输出端与透平膨胀发电机五18的输入端之间设置控制阀门十七V17,透平膨胀发电机五18的输出端与中压主换热器三23的循环空气二次复热通道输入端之间设置控制阀门十八V18,中压主换热器三23的循环空气二次复热通道输出端与透平膨胀发电机六19的输入端之间设置控制阀门十九V19,透平膨胀发电机六19的输出端与中压主换热器三23的循环空气三次复热通道输入端之间设置控制阀门二十V20,中压主换热器三23的循环空气三次复热通道输出端与现有空气压缩机2的原料气输入端之间设置控制阀门二十一V21;液空过冷器36的液态空气输出端与常压气液分离器37的输入端之间设置控制阀门八V8,液空过冷器36的低温空气输出端与中压主换热器三23的污氮气复热通道输入管道之间设置控制阀门九V9,低温泵39的输出端与高压塔27的原料输入端之间设置控制阀门十V10,中压主换热器三23的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一V11;
图7为本发明实施例中制氧40000Nm3·h-1新增中压主换热器三的内压缩空分储能装置储能过程循环制冷空气空压机前回收工艺流程示意图;从图7中可以看出,该基于内压缩空分储能装置的物质回收方法还可在图1所示常规内压缩空分工艺流程的基础上保留原内压缩空分装置的中压主换热器20,并增设中压主换热器三23、透平膨胀发电机三16、透平膨胀发电机五18、透平膨胀发电机六19、液空过冷器36、常压气液分离器37、液空储罐38和低温泵39,实现内压缩空分储能装置储能过程循环制冷空气的空压机前回收和释能过程低温液态空气的直接利用;
透平膨胀发电机三16的输入端连接于空气增压机11的四级冷却器输出端,透平膨胀发电机三16的输出端连接于中压主换热器三23的循环空气一次复热通道输入端,中压主换热器三23的循环空气一次复热通道输出端连接于透平膨胀发电机五18的输入端,透平膨胀发电机五18的输出端连接于中压主换热器三23的循环空气二次复热通道输入端,中压主换热器三23的循环空气二次复热通道输出端连接于透平膨胀发电机六19的输入端,透平膨胀发电机六19的输出端连接于中压主换热器三23的循环空气三次复热通道输入端,中压主换热器三23的循环空气三次复热通道输出端连接于空气压缩机2的原料气输入端;原中压主换热器20和中压主换热器三23的增压膨胀空气降温通道输入端连接于增压后冷却器13的输出端,原中压主换热器20和中压主换热器三23的增压膨胀空气降温通道输出端连接于增压透平膨胀机12的膨胀端输入管道;原中压主换热器20和中压主换热器三23的纯化后低压空气输入端连接于分子筛吸附器8的空气输出端,原中压主换热器20和中压主换热器三23的纯化后低压空气输出端连接于高压塔27的原料输入端;原中压主换热器20和中压主换热器三23的增压后中压空气输入端连接于空气增压机11的四级冷却器输出端,原中压主换热器20和中压主换热器三23的增压后中压空气输出端分为两路:一路连接于高压塔27的原料输入端,另一路连接于液空过冷器36的液态空气输入端;原中压主换热器20和中压主换热器三23的污氮气复热通道输入端连接于过冷器28的污氮气输出端,原中压主换热器20和中压主换热器三23的污氮气复热通道输出端连接于污氮气输出管道;原中压主换热器20和中压主换热器三23的氧气复热通道输入端连接于液氧泵29的输出端,原中压主换热器20和中压主换热器三23的氧气复热通道输出端连接于氧气产品输出管道;原中压主换热器20和中压主换热器三23的氮气复热通道输入端连接于过冷器28的氮气输出端,原中压主换热器20和中压主换热器三23的氮气复热通道输出端均连接于氮气产品输出管道;液空过冷器36、常压气液分离器37、液空储罐38和低温泵39的管道限定方式和阀门设置均与图6所示更换中压主换热器三23的内压缩空分储能装置储能过程循环制冷空气空压机前回收工艺流程中相应设备和阀门的限定方式相同。
下面结合具体实施例予以说明。
如图2所示为本发明实施例中制氧40000Nm3·h-1更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图。储能过程,原料空气经空气过滤器1去除灰尘后进入空气压缩机2进行压缩,之后进入空冷塔3进行冷却和洗涤,空冷塔3用于冷却空气的水有两部分:一部分为冷却循环水,由冷却水泵5加压后送入空冷塔3中部;另一部分为冷冻水,由来自精馏系统的干燥污氮气和氮气在水冷塔4内对循环冷却水进行初步降温,之后经冷冻水泵6加压,并由冷水机组7进一步降温后送入空冷塔3顶部。出空冷塔3的空气进入分子筛吸附器8进行吸附和纯化,获得纯净干燥的空气。分子筛吸附器8有两台,交替使用,一台吸附杂质,另一台由污氮气在电加热器10内加热后对其进行再生,分子筛吸附器8处设置消声器9。
来自分子筛吸附器8的纯化后干燥空气分为两路:一路进入中压氩换热器24和中压主换热器一21被冷却至露点温度后进入高压塔27;另一路为再增压空气,经空气增压机11一、二、三级压缩和冷却后分两部分:一部分作为增压膨胀空气从级间抽出,另一部分在空气增压机11内进行四级压缩和冷却;其中,级间抽出的增压膨胀空气首先进入增压透平膨胀机12的增压端,经增压后冷却器13降温后再通过增压透平膨胀机12的膨胀端,膨胀后的空气进入中压主换热器一21的增压膨胀空气降温通道,被返流气体冷却到一定温度后出中压主换热器一21,之后进入透平膨胀发电机一14,经透平膨胀发电机一14膨胀后的空气进入高压塔27的底部参与精馏;在空气增压机11内进行四级压缩和冷却后的中压空气分为两部分:一部分作为循环制冷空气,进入中压主换热器一21,冷却到一定温度后从中压主换热器一21的中上部抽出,之后进入透平膨胀发电机二15,经透平膨胀发电机二15膨胀到接近空气压缩机2的输出压力时,以返流气体形式进入中压主换热器一21进行复热,复热后的空气再次进入空气增压机11;另一部分作为空气液化原料,经中压主换热器一21内的返流低温介质冷却为过冷液体后分为两部分:一部分直接节流进入高压塔27;另一部分经液空过冷器36,被来自常压气液分离器37分离所得的低温空气再次降温后节流至常压,并进入常压气液分离器37进行分离。常压气液分离器37分离所得的液体即为所要储存的液空产品,进入低温液空储罐38,分离所得的气体经液空过冷器36回收部分冷能后,以返流气体形式并入中压主换热器一21的污氮气复热管道。
进入高压塔27的原料在塔内因相对挥发度不同而进行组分分离,高压塔27底部得到含氧约37%的富氧液空,高压塔27顶部得到高纯度氮气,高纯度氮气经过主冷凝蒸发器26与来自低压塔25底部的液氧进行热交换,液氧被蒸发,氮气被冷凝,部分冷凝液氮再回到高压塔27作为回流液,另一部分液氮在过冷器28中进行过冷,并分为两路:一路送入低压塔25顶部作为回流液,另一路分别送入粗氩液化器33和精氩塔34顶部用来冷凝气氩。高压塔27侧面采出的部分液空经过冷器28冷却为过冷液体后节流进入低压塔25中部参与精馏,来自高压塔27底部的液空同样经过冷器28被冷却为过冷液体,之后分为两部分:一部分节流到低压塔25中部参与精馏,另一部分送入粗氩II塔31顶部。在低压塔25内,由于氧、氩、氮沸点的差异,经多次部分冷凝和蒸发,低压塔25底部得到纯度为99.6%以上的液氧,该液氧经液氧泵29加压,之后进入中压主换热器一21,经气化和复热后出冷箱作为氧产品送出。低压塔25的中上部抽出污氮气,经过冷器28和中压主换热器一21复热后分为两部分:一部分去纯化系统作再生气,另一部分送入预冷系统的水冷塔4。低压塔25的顶部抽出纯度高于99.99%的氮气,经过冷器28回收部分冷量后进入中压主换热器一21内进行复热,之后以中抽和顶抽形式作为氮气产品抽出。低压塔25中部抽出的富含氩馏分气体直接进入粗氩I塔30的底部,与来自粗氩II塔31底部经粗液氩循环泵32加压后的粗氩在塔内进行对流接触换热和逐级分离,粗氩I塔30底部可得纯度较高的液氧,并将其返送回低压塔25中部,粗氩I塔30顶部所得气体为粗气氩,直接送入粗氩II塔31底部,该气体上升到塔顶时被过冷后的液空所冷凝,并为塔内精馏提供回流液,吸热后的液空重返低压塔25参与精馏,最终由塔顶得到富含氮组分的粗氩气,并进入粗氩液化器33,由底部得到较纯液氩,然后进入精氩塔34进行氮氩组分分离,由塔底部得到纯液氩,所得纯液氩由精氩泵35加压后进入中压氩换热器24,复热后送入氩气管网。
释能过程在峰电或平电期间进行,该过程中,增压透平膨胀机12、透平膨胀发电机一14、透平膨胀发电机二15、液空过冷器36和常压气液分离器37停止运行,控制阀门一V1、控制阀门二V2、控制阀门三V3、控制阀门四V4、控制阀门五V5、控制阀门六V6、控制阀门七V7、控制阀门八V8(节流阀)、和控制阀门九V9均处于关闭状态。控制阀门十V10和控制阀门十一V11打开,液空储罐38内的液化空气由液空泵39加压到一定压力后全部送入高压塔27参与精馏,此时,空气压缩机2的进气量相应减小,空气增压机11的输出压力相应降低,该过程中其余设备的运行方式均与储能过程相同。
图4为本发明实施例中制氧40000Nm3·h-1更换中压主换热器二的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程示意图;从图中可以看出,该基于空分储能装置的物质回收方法与更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程的主要区别在于储能期间的膨胀制冷过程。储能过程中,来自分子筛吸附器8的纯化后干燥空气分为两路:一路进入中压氩换热器24和中压主换热器二22被冷却至露点温度后进入高压塔27;另一路为再增压空气,经空气增压机11一、二、三级压缩和冷却后分两部分:一部分作为增压膨胀空气从级间抽出,另一部分在空气增压机11内进行四级压缩和冷却;其中,级间抽出的增压膨胀空气首先进入增压透平膨胀机12的增压端,经增压后冷却器13冷却后进入中压主换热器二22的增压膨胀空气通道被返流气体冷却,之后从中压主换热器二22的中部抽出,进入增压透平膨胀机12的膨胀端,膨胀至接近高压塔27压力后直接进入高压塔27底部参与精馏;经空气增压机11四级压缩和冷却后的中压空气分为两路:一路作为循环制冷空气,经透平膨胀发电机三16膨胀后进入中压主换热器二22,被返流介质冷却到一定温度后出中压主换热器二22,同时进入透平膨胀发电机四17,经透平膨胀发电机四17膨胀到接近空气压缩机2的空气输出压力时,以返流气体形式进入中压主换热器二22进行复热,复热后的空气再次进入空气增压机11;另一路作为空气液化原料,经中压主换热器二22内的返流低温介质冷却为过冷液体后分为两部分:一部分直接节流进入高压塔27;另一部分经液空过冷器36,被来自常压气液分离器37分离所得的低温空气再次降温后节流至常压,并进入常压气液分离器37进行分离。常压气液分离器37分离所得的液体即为所要储存的液空产品,进入低温液空储罐38,分离所得的气体经液空过冷器36回收部分冷能后,以返流气体形式并入中压主换热器二22的污氮气复热管道。
图6为本发明实施例中制氧40000Nm3·h-1更换中压主换热器三的内压缩空分储能装置储能过程循环制冷空气空压机前回收工艺流程示意图;从图中可以看出,该基于空分储能装置的物质回收方法与更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺流程的主要区别在于储能期间的膨胀制冷过程。储能过程中,来自分子筛吸附器8的纯化后干燥空气分为两路:一路进入中压氩换热器24和中压主换热器三23被冷却至露点温度后进入高压塔27;另一路为再增压空气,经空气增压机11一、二、三级压缩和冷却后分两部分:一部分作为增压膨胀空气从级间抽出,另一部分在空气增压机11内进行四级压缩和冷却;其中,级间抽出的增压膨胀空气首先进入增压透平膨胀机12的增压端,经增压后冷却器13冷却后进入中压主换热器三23的增压膨胀空气通道被返流气体冷却,之后从中压主换热器三23的中部抽出,进入增压透平膨胀机12的膨胀端,膨胀至接近高压塔27压力后直接进入高压塔27底部参与精馏;经空气增压机11四级压缩和冷却后的中压空气分为两路:一路作为循环制冷空气,经透平膨胀发电机三16膨胀后以返流气体形式进入中压主换热器三23进行复热,一次复热后的循环空气依次通过透平膨胀发电机五18和中压主换热器三23进行二次膨胀和二次复热,之后再通过透平膨胀发电机六19和中压主换热器三23进行三次膨胀和三次复热,最终回收进入空气压缩机2;另一路作为空气液化原料,经中压主换热器三23内的返流低温介质冷却为过冷液体后分为两部分:一部分直接节流进入高压塔27;另一部分经液空过冷器36,被来自常压气液分离器37分离所得的低温空气再次降温后节流至常压,并进入常压气液分离器37进行分离。常压气液分离器37分离所得的液体即为所要储存的液空产品,进入低温液空储罐38,分离所得的气体经液空过冷器36回收部分冷能后,以返流气体形式并入中压主换热器三23的污氮气复热管道。
本过程以上述制氧40000Nm3·h-1更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收方法为例。考虑到常规空分装置的负荷调节范围为产品设计负荷的70-105%,而目前冶金空分设备的平均运行负荷基本维持在产品设计负荷的80%。假设电网峰、平、谷电时长均为8h,电价以表1所示中国上海市工业电价为标准,通过对该工艺流程实施电力需求侧管理,设计选择谷电储能期间空分设备的压缩负荷为产品设计负荷的105%,精馏系统的运行负荷为产品设计负荷的80%;峰电和平电期间,储存的低温液空直接回收进入高压塔,空压机运行负荷相应减小(不低于产品设计负荷的70%),精馏系统继续维持在80%设计负荷下运行。
表1.上海市工业电价标准
Figure GDA0003603860330000251
本发明通过利用ASPEN PLUS V10模拟软件对上述实例的储、释能过程进行建模和初步模拟计算,并将其与全天运行负荷为80%的常规内压缩空分装置运行情况进行对比。模拟过程中,假设液空储罐内液体日损失率为0.2%,压缩机和空气增压机的机械效率为0.98、多变效率为0.87,膨胀机的等熵效率和机械效率分别为0.88和0.97,低温泵的机械效率为0.75,各管路和设备组件中的能量和阻力损失均忽略不计。模拟结果表明,储能过程将循环制冷空气回收进入空气增压机可显著提高空分储能装置的制冷能力,使空分富余产能的空气最大限度液化,即谷电期间液空储存流率可达51958kg/h,总储液量为416t,释能过程对这些低温液空进行回收,回收期可持续16h(峰电+平电),即每小时的液空回收量为25927kg,空压机压缩负荷可下调到70%。
本技术领域人员所熟知的是,对于常规空分而言,通常要求低压塔内输出的氮和氧产品纯度分别不低于99.99和99.6mol%,富氩馏分中的氩浓度不低于8mol%。而对于该实施案例的储能过程,其液空储存系统与空分精馏系统相互独立,产品纯度不受影响。但在液空回收过程中,由于储能期间产生的低温液态空气中的氧浓度高于环境空气中的氧纯度,故释能过程回收这部分液态空气后会导致精馏系统原料中的氧浓度有所升高,从而影响最终的氧、氮产品纯度和氩馏分中的氩浓度。图11为释能期间液空回收流率对低压塔内产品纯度和氩馏分中氩浓度的影响曲线图。可以看出,液空回收进入高压塔前,低压塔内的氮气和液氧产品纯度分别为99.99和99.89mol%,氩馏分中的氩浓度为8.94mol%,均满足空分产品生产需求。在维持精馏塔内回流比不变的情况下,随着释能液空流率的增大,低压塔内的氮产品纯度和氩馏分中的氩浓度逐渐降低,氧产品纯度逐渐增大。当液空进入高压塔的流率达到7.2kg/s(25927kg/h)时,低压塔内的氧产品纯度和氩馏分中的氩浓度分别为99.90和8.60mol%,而氮产品纯度降低到99.9898mol%,低于常规空分产品纯度要求。适当增大高压塔内回流比可有效提高高压塔塔顶氮气纯度,使得低压塔内回流液氮中的氮浓度增加,进而提高低压塔塔顶氮产品纯度。当高压塔内回流比增大1%时,低压塔顶部氮组分浓度升高到99.993%,此时,液氧浓度和富氩馏分中的氩浓度也满足生产浓度要求,说明该技术的实施案例具有可行性。
本发明基于该装置储释能过程的综合耗电情况,系统地分析了其电-电转换效率和经济效益,评估了其实施对中国电网用电负荷的影响和节能减排效益。计算结果表明,以80%负荷运行的40000Nm3/h常规内压缩空分装置的耗电功率为26751KW(包括分子筛再生电耗和氮气压缩电耗),储能期间,随着循环制冷空气量的增大,液空储存流率增加,耗电量也不断增大,当液空储存流率达到51958kg/h时,进入空气增压机的循环制冷空气量趋于稳定,耗电功率为48849KW,相比80%负荷运行的常规内压缩空分装置,其耗电功率增加82.61%;释能期间,液空直接回收进入高压塔的流率为25927kg/h,释能周期为16h,空气压缩机的运行负荷相应减小,装置总耗电功率可降低到18110KW,相比80%负荷运行的常规内压缩空分装置,其耗电功率减小32.30%,考虑到装置的释能周期为储能时长的两倍,故装置综合电-电转换效率可达78.2%。
图12为峰谷电价比对本发明实施案例中制氧40000Nm3·h-1更换中压主换热器一的内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺系统用电成本节约率和成本回收期的影响。可以看出,峰谷电价比越大,空分储能装置相对常规内压缩空分装置的用电成本节约率越高,新增储能设备的投资成本回收期越小。当峰谷电价比为3:1时,相比80%负荷运行的常规内压缩空分装置,该储能装置的用电成本节约率为12.76%,新增储能相关设备的成本回收期为2.3年;若以上海市工业电价计,其相比80%负荷运行的常规内压缩空分装置的用电成本节约率可达14.39%,新增储能相关设备的成本回收期为1.9年。随着电力市场峰谷电价实施力度的加大,本实施案例的经济效益将更加显著。
另外,考虑到空分设备在工业领域的应用范围和耗电占比,该内压缩空分储能装置和物质回收方法将会显著改善我国的电网峰谷用电需求,对于促进电网削峰填谷,以及推动小型发电机组向基负荷机组或大型发电机组转变具有重要意义。2020年,中国粗钢产量为10.65亿吨,按每吨钢平均耗氧量120Nm3,单位氧气综合电耗为0.77KWh/Nm3计,全国冶金空分生产年耗电量可达984.06亿KWh,因冶金空分制氧能力占全国总制氧能力的25%,按内、压外压缩空分设备各占50%计,则2020年全国内压缩空分设备生产耗电总量为1968.12亿KWh,分摊到峰、平、谷三个时段,全国内压缩空分设备的峰、平、谷用电量分别为656.04亿KWh。如图13所示,若全国常规内压缩空分设备均由该基于内压缩空分储能装置储能过程循环制冷空气增压机前回收工艺系统所取代,并对其实施电力需求侧管理,使其全面参与电网调峰,则中国电网的年谷电负荷需求将上升542亿kWh,平电和峰电年负荷需求将均下降212和212亿kWh,全行业应用后降低电网峰谷差率约9.4%(当前为25.98%),可有效提高电网发电机组的稳定性和运行效率。电网峰谷差的减小还可促使部分小中型调峰机组转为基负荷机组或被新型大容量发电机组所取代,从而降低发电煤耗和污染物排放。基于电网“低负荷”调峰节煤计算模型(见表2)及其不同容量发电机组的煤耗情况(见表3),新工艺流程参与中国电网调峰后,若使部分300MW的中小型常规“低负荷”调峰机组被660MW或1000MW的大型超临界机组取代,其因削峰填谷所产生的年节煤效益可达3.05-9.82Mtce(忽略平电负荷下降所产生的节煤效益),降低碳排放2.73-8.77Mt(或实现CO2减排9.99-32.17Mt)。若利用大型超临界机组来取代200MW及其以下的小型调峰机组,其节能减排效果将更加显著。
表2低负荷调峰模式节煤量计算
Figure GDA0003603860330000281
表3燃煤发电机组运行基本参数
Figure GDA0003603860330000282
本发明将低温液空储能技术集成融入到内压缩空分装置中,实现了单一技术在一种装备上的规模化分布式储能。该装置技术针对储能过程循环制冷空气和释能过程低温液空的回收利用,通过调节循环制冷量和合理匹配中压主换热器内的制冷能级,建立了配套的空分储能装置和工艺流程,实现了空分富余产能空气的最大限度储能。该技术相比常规液化空气储能技术,既减少了设备用量,又节约了后期的设备运营维护和人力资源投资成本,提高谷期用电负荷和节约峰电用量的同时,企业经济效益显著提高。因此,其应用对企业有经济效益,对电网侧有节能减排效益,是企业经济效益和国家经济与环境效益的完美统一。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种基于内压缩空分储能装置的物质回收方法,其特征在于:通过在常规内压缩空分装置的基础上更换中压主换热器(20)或在保留常规内压缩空分装置中压主换热器(20)的基础上增设中压主换热器,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;
其中,在常规内压缩空分装置的基础上更换中压主换热器(20)具体为:将原中压主换热器(20)更换为中压主换热器一(21),同时改变原增压透平膨胀机(12)膨胀端输入和输出管道的限定方式,并增设透平膨胀发电机一(14)、透平膨胀发电机二(15)、液空过冷器(36)、常压气液分离器(37)、液空储罐(38)和低温泵(39),实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;内压缩空分储能装置和储能过程循环制冷空气的增压机前回收通过中压主换热器一(21)、透平膨胀发电机一(14)、透平膨胀发电机二(15)、液空过冷器(36)、常压气液分离器(37)和液空储罐(38)实现;中压主换热器一(21)设置循环空气降温通道、增压膨胀空气降温通道、增压后中压空气通道、循环空气复热通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时氮气复热通道上设置中部和上部两个流体抽出位置;其中,中压主换热器一(21)的循环空气降温通道输入端连接于现有的空气增压机(11)的四级冷却器输出端,中压主换热器一(21)的循环空气降温通道输出端连接于透平膨胀发电机二(15)的输入端,透平膨胀发电机二(15)的输出端连接于中压主换热器一(21)的循环空气复热通道输入端,中压主换热器一(21)的循环空气复热通道输出端连接于现有的空气增压机(11)的一级气缸输入端;原增压透平膨胀机(12)包括增压端和膨胀端,增压端的输入管道连接于空气增压机(11)的三级冷却器输出端,增压端的输出管道连接于增压后冷却器(13)的输入端;增压透平膨胀机(12)的膨胀端限定不同于原增压透平膨胀机,即增压透平膨胀机(12)的膨胀端输入管道连接于增压后冷却器(13)的输出端,增压透平膨胀机(12)的膨胀端输出管道连接于中压主换热器一(21)的增压膨胀空气降温通道输入端;中压主换热器一(21)的增压膨胀空气降温通道输出端连接于透平膨胀发电机一(14)的输入端,透平膨胀发电机一(14)的输出端连接于高压塔(27)的原料输入端;中压主换热器一(21)的纯化后低压空气通道输入端连接于分子筛吸附器(8)的空气输出端,中压主换热器一(21)的纯化后低压空气通道输出端连接于高压塔(27)的原料输入端;中压主换热器一(21)的增压后中压空气通道输入端连接于空气增压机(11)的四级冷却器输出端,中压主换热器一(21)的增压后中压空气通道输出端分为两路:一路连接于高压塔(27)的原料输入端,另一路连接于液空过冷器(36)的液态空气输入端;中压主换热器一(21)的污氮气复热通道输入端连接于过冷器(28)的污氮气输出端,中压主换热器一(21)的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器一(21)的氧气复热通道输入端连接于液氧泵(29)的输出端,中压主换热器一(21)的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器一(21)的氮气复热通道输入端连接于过冷器(28)的氮气输出端,中压主换热器一(21)的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;所述液空过冷器(36)的液态空气输出端连接于常压气液分离器(37)的气体输入端;所述常压气液分离器(37)的气体输出端连接于液空过冷器(36)的低温空气输入端,液空过冷器(36)的低温空气输出端连接于中压主换热器一(21)的污氮气复热通道输入管道,常压气液分离器(37)的液体输出端连接于低温液空储罐(38)的输入端;所述内压缩空分储能装置释能过程低温液态空气的直接利用通过低温泵(39)实现,所述低温泵(39)的输入端连接于液空储罐(38)的输出端,低温泵(39)的输出端连接于高压塔(27)的原料输入端;
在保留常规内压缩空分装置中压主换热器(20)的基础上增设中压主换热器具体为:在保留常规内压缩空分装置中压主换热器(20)的基础上增设中压主换热器一(21)、透平膨胀发电机一(14)、透平膨胀发电机二(15)、液空过冷器(36)、常压气液分离器(37)、液空储罐(38)和低温泵(39),同时改变原增压透平膨胀机(12)膨胀端输入和输出管道的限定方式,关闭原中压主换热器(20)增压膨胀空气通道的输入和输出端,实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;所述原增压透平膨胀机(12)的增压端输入管道连接于空气增压机(11)的三级冷却器输出端,增压透平膨胀机(12)的增压端输出管道连接于增压后冷却器(13)的输入端;增压透平膨胀机(12)的膨胀端输入管道连接于增压后冷却器(13)的输出端,增压透平膨胀机(12)的膨胀端输出管道连接于中压主换热器一(21)的增压膨胀空气降温通道输入端;中压主换热器一(21)的增压膨胀空气降温通道输出端连接于透平膨胀发电机一(14)的输入端,透平膨胀发电机一(14)的输出端连接于高压塔(27)的原料输入端;原中压主换热器(20)和中压主换热器一(21)的增压后中压空气通道输入端连接于空气增压机(11)的四级冷却器输出端,原中压主换热器(20)和中压主换热器一(21)的增压后中压空气通道输出端分为两路:一路连接于高压塔(27)的原料输入端,另一路连接于液空过冷器(36)的液态空气输入端;原中压主换热器(20)和中压主换热器一(21)的纯化后低压空气通道输入端连接于分子筛吸附器(8)的空气输出端,原中压主换热器(20)和中压主换热器一(21)的纯化后低压空气通道输出端连接于高压塔(27)的原料输入端;原中压主换热器(20)和中压主换热器一(21)的氧气复热通道输入端连接于液氧泵(29)的输出端,原中压主换热器(20)和中压主换热器一(21)的氧气复热通道输出端连接于氧气产品输出管道;原中压主换热器(20)和中压主换热器一(21)的氮气复热通道输入端连接于过冷器(28)的氮气输出端,原中压主换热器(20)和中压主换热器一(21)的氮气复热通道输出端均连接于氮气产品输出管道;原中压主换热器(20)和中压主换热器一(21)的污氮气复热通道输入端连接于过冷器(28)的污氮气输出端,原中压主换热器(20)和中压主换热器一(21)的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器一(21)的循环空气降温通道输入端连接于空气增压机(11)的四级冷却器输出端,中压主换热器一(21)的循环空气降温通道输出端连接于透平膨胀发电机二(15)的输入端,透平膨胀发电机二(15)的输出端连接于中压主换热器一(21)的循环空气复热通道输入端,中压主换热器一(21)的循环空气复热通道输出端连接于空气增压机(11)的一级气缸输入端;液空过冷器(36)、常压气液分离器(37)、液空储罐(38)和低温泵(39)的管道限定方式与上述在常规内压缩空分装置的基础上更换中压主换热器为中压主换热器一(21)中相应设备的限定方式相同。
2.根据权利要求1所述的基于内压缩空分储能装置的物质回收方法,其特征在于:所述中压主换热器一(21)的循环空气降温通道输入端与现有的空气增压机(11)的四级冷却器输出端之间设置控制阀门一(V1),中压主换热器一(21)的循环空气降温通道输出端与透平膨胀发电机二(15)的输入端之间设置控制阀门二(V2),透平膨胀发电机二(15)的输出端与中压主换热器一(21)的循环空气复热通道输入端之间设置控制阀门三(V3),中压主换热器一(21)的循环空气复热通道输出端与空气增压机(11)的一级气缸输入端之间设置控制阀门四(V4);所述增压透平膨胀机(12)的膨胀端输出管道与中压主换热器一(21)的增压膨胀空气降温通道输入端之间设置控制阀门五(V5),中压主换热器一(21)的增压膨胀空气降温通道输出端与透平膨胀发电机一(14)的输入端之间设置控制阀门六(V6),透平膨胀发电机一(14)的输出端与高压塔(27)的原料输入端之间设置控制阀门七(V7);所述液空过冷器(36)的液态空气输出端与常压气液分离器(37)的输入端之间设置控制阀门八(V8),液空过冷器(36)的低温空气输出端与中压主换热器一(21)的污氮气复热通道输入管道之间设置控制阀门九(V9),低温泵(39)的输出端与高压塔(27)的原料输入端之间设置控制阀门十(V10),中压主换热器一(21)的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一(V11)。
3.根据权利要求1所述的基于内压缩空分储能装置的物质回收方法,其特征在于:所述在常规内压缩空分装置的基础上更换中压主换热器(20),具体为:在常规内压缩空分装置的基础上将原中压主换热器(20)更换为中压主换热器二(22),并增设透平膨胀发电机三(16)、透平膨胀发电机四(17)、液空过冷器(36)、常压气液分离器(37)、液空储罐(38)和低温泵(39),实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;内压缩空分储能装置储能过程循环制冷空气的增压机前回收方法中的中压主换热器二(22)设置循环空气降温通道、增压膨胀空气降温通道、增压后中压空气通道、循环空气复热通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时氮气复热通道上设置中部和上部两个流体抽出位置;所述透平膨胀发电机三(16)的输入端连接于现有的空气增压机(11)的四级冷却器输出端,透平膨胀发电机三(16)的输出端连接于中压主换热器二(22)的循环空气降温通道输入端,中压主换热器二(22)的循环空气降温通道输出端连接于透平膨胀发电机四(17)的输入端,透平膨胀发电机四(17)的输出端连接于中压主换热器二(22)的循环空气复热通道输入端,中压主换热器二(22)的循环空气复热通道输出端连接于空气增压机(11)的一级气缸输入端;中压主换热器二(22)的增压膨胀空气降温通道输入端连接于现有的增压后冷却器(13)的输出端,中压主换热器二(22)的增压膨胀空气降温通道输出端连接于现有的增压透平膨胀机(12)的膨胀端输入管道;中压主换热器二(22)的纯化后低压空气通道输入端连接于分子筛吸附器(8)的空气输出端,中压主换热器二(22)的纯化后低压空气通道输出端连接于高压塔(27)的原料输入端;中压主换热器二(22)的增压后中压空气通道输入端连接于空气增压机(11)的四级冷却器输出端,中压主换热器二(22)的增压后中压空气通道输出端分为两路:一路连接于高压塔(27)的原料输入端,另一路连接于液空过冷器(36)的液态空气输入端;中压主换热器二(22)的污氮气复热通道输入端连接于过冷器(28)的污氮气输出端,中压主换热器二(22)的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器二(22)的氧气复热通道输入端连接于液氧泵(29)的输出端,中压主换热器二(22)的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器二(22)的氮气复热通道输入端连接于过冷器(28)的氮气输出端,中压主换热器二(22)的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;所述液空过冷器(36)的液态空气输出端连接于常压气液分离器(37)的气体输入端;所述常压气液分离器(37)的气体输出端连接于液空过冷器(36)的低温空气输入端,液空过冷器(36)的低温空气输出端连接于中压主换热器二(22)的污氮气复热通道输入管道,常压气液分离器(37)的液体输出端连接于低温液空储罐(38)的输入端;
在保留常规内压缩空分装置中压主换热器(20)的基础上增设中压主换热器具体为:在保留常规内压缩空分装置中压主换热器(20)的基础上增设中压主换热器二(22)、透平膨胀发电机三(16)、透平膨胀发电机四(17)、液空过冷器(36)、常压气液分离器(37)、液空储罐(38)和低温泵(39),实现内压缩空分储能装置储能过程循环制冷空气的增压机前回收和释能过程低温液态空气的直接利用;原中压主换热器(20)与中压主换热器二(22)的增压膨胀空气降温通道输入端连接于增压后冷却器(13)的输出端,原中压主换热器(20)与中压主换热器二(22)的增压膨胀空气降温通道输出端连接于增压透平膨胀机(12)的膨胀端输入管道;原中压主换热器(20)与中压主换热器二(22)的增压后中压空气通道输入端连接于空气增压机(11)的四级冷却器输出端,原中压主换热器(20)与中压主换热器二(22)的增压后中压空气通道输出端分为两路:一路连接于高压塔(27)的原料输入端,另一路连接于液空过冷器(36)的液态空气输入端;原中压主换热器(20)和中压主换热器二(22)的纯化后低压空气通道输入端连接于分子筛吸附器(8)的空气输出端,原中压主换热器(20)和中压主换热器二(22)的纯化后低压空气通道输出端连接于高压塔(27)的原料输入端;原中压主换热器(20)和中压主换热器二(22)的氧气复热通道输入端连接于液氧泵的输出端,中压主换热器和中压主换热器二的氧气复热通道输出端连接于氧气产品输出管道;原中压主换热器(20)和中压主换热器二(22)的氮气复热通道输入端连接于过冷器(28)的氮气输出端,原中压主换热器(20)和中压主换热器二(22)的氮气复热通道输出端均连接于氮气产品输出管道;原中压主换热器(20)和中压主换热器二(22)的污氮气复热通道输入端连接于过冷器(28)的污氮气输出端,原中压主换热器(20)和中压主换热器二(22)的污氮气复热通道输出端连接于污氮气输出管道;透平膨胀发电机三(16)的输入端连接于空气增压机(11)的四级冷却器输出端,透平膨胀发电机三(16)的输出端连接于中压主换热器二(22)的循环空气降温通道输入端,中压主换热器二(22)的循环空气降温通道输出端连接于透平膨胀发电机四(17)的输入端,透平膨胀发电机四(17)的输出端连接于中压主换热器二(22)的循环空气复热通道输入端,中压主换热器二(22)的循环空气复热通道输出端连接于空气增压机(11)的一级气缸输入端;液空过冷器(26)、常压气液分离器(37)、液空储罐(38)和低温泵(39)的管道限定方式与上述在常规内压缩空分装置的基础上更换中压主换热器为中压主换热器二(22)中相应设备的限定方式相同。
4.根据权利要求3所述的基于内压缩空分储能装置的物质回收方法,其特征在于:所述透平膨胀发电机三(16)的输入端与现有的空气增压机(11)的四级冷却器输出端之间设置控制阀门十二(V12),透平膨胀发电机三(16)的输出端与中压主换热器二(22)的循环空气降温通道输入端之间设置控制阀门十三(V13),中压主换热器二(22)的循环空气降温通道输出端与透平膨胀发电机四(17)的输入端之间设置控制阀门十四(V14),透平膨胀发电机四(17)的输出端与中压主换热器二(22)的循环空气复热通道输入端之间设置控制阀门十五(V15),中压主换热器二(22)的循环空气复热通道输出端与空气增压机(11)的一级气缸输入端之间设置控制阀门四(V4);所述液空过冷器(36)的液态空气输出端与常压气液分离器(37)的输入端之间设置控制阀门八(V8),液空过冷器(36)的低温空气输出端与中压主换热器二(22)的污氮气复热通道输入管道之间设置控制阀门九(V9),低温泵(39)的输出端与高压塔(27)的原料输入端之间设置控制阀门十(V10),中压主换热器二(22)的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一(V11)。
5.根据权利要求1所述的基于内压缩空分储能装置的物质回收方法,其特征在于:所述在常规内压缩空分装置的基础上更换中压主换热器(20),具体为:在常规内压缩空分装置的基础上将原中压主换热器(20)更换为中压主换热器三(23),并增设透平膨胀发电机三(16)、透平膨胀发电机五(18)、透平膨胀发电机六(19)、液空过冷器(36)、常压气液分离器(37)、液空储罐(38)和低温泵(39),实现内压缩空分储能装置储能过程循环制冷空气的空压机前回收和释能过程低温液态空气的直接利用;所述中压主换热器三(23)设置增压膨胀空气降温通道、循环空气一次复热通道、循环空气二次复热通道、循环空气三次复热通道、增压后中压空气通道、纯化后低压空气通道、污氮气复热通道、氧气复热通道和氮气复热通道,同时氮气复热通道上设置中部和上部两个流体抽出位置;所述透平膨胀发电机三(16)的输入端连接于现有的空气增压机(11)的四级冷却器输出端,透平膨胀发电机三(16)的输出端连接于中压主换热器三(23)的循环空气一次复热通道输入端,中压主换热器三(23)的循环空气一次复热通道输出端连接于透平膨胀发电机五(18)的输入端,透平膨胀发电机五(18)的输出端连接于中压主换热器三(23)的循环空气二次复热通道输入端,中压主换热器三(23)的循环空气二次复热通道输出端连接于透平膨胀发电机六(19)的输入端,透平膨胀发电机六(19)的输出端连接于中压主换热器三(23)的循环空气三次复热通道输入端,中压主换热器三(23)的循环空气三次复热通道输出端连接于现有空气压缩机(2)的原料气输入端;中压主换热器三(23)的增压膨胀空气降温通道输入端连接于现有的增压后冷却器(13)的输出端,中压主换热器三(23)的增压膨胀空气降温通道输出端连接于现有的增压透平膨胀机(12)的膨胀端输入管道;中压主换热器三(23)的纯化后低压空气输入端连接于分子筛吸附器(8)的空气输出端,中压主换热器三(23)的纯化后低压空气输出端连接于高压塔(27)的原料输入端;中压主换热器三(23)的增压后中压空气输入端连接于空气增压机(11)的四级冷却器输出端,中压主换热器三(23)的增压后中压空气输出端分为两路:一路连接于高压塔(27)的原料输入端,另一路连接于液空过冷器(36)的液态空气输入端;中压主换热器三(23)的污氮气复热通道输入端连接于过冷器(28)的污氮气输出端,中压主换热器三(23)的污氮气复热通道输出端连接于污氮气输出管道;中压主换热器三(23)的氧气复热通道输入端连接于液氧泵(29)的输出端,中压主换热器三(23)的氧气复热通道输出端连接于氧气产品输出管道;中压主换热器三(23)的氮气复热通道输入端连接于过冷器(28)的氮气输出端,中压主换热器三(23)的氮气复热通道中部和上部输出端均连接于氮气产品输出管道;所述液空过冷器(36)的液态空气输出端连接于常压气液分离器(37)的输入端;所述常压气液分离器(37)的气体输出端连接于液空过冷器(36)的低温空气输入端,液空过冷器(36)的低温空气输出端连接于中压主换热器三(23)的污氮气复热通道输入管道,常压气液分离器(37)的液体输出端连接于低温液空储罐(38)的输入端;
在保留常规内压缩空分装置中压主换热器(20)的基础上增设中压主换热器具体为:在保留常规内压缩空分装置中压主换热器(20)的基础上增设中压主换热器三(23)、透平膨胀发电机三(16)、透平膨胀发电机五(18)、透平膨胀发电机六(19)、液空过冷器(36)、常压气液分离器(37)、液空储罐(38)和低温泵(39),实现内压缩空分储能装置储能过程循环制冷空气的空压机前回收和释能过程低温液态空气的直接利用;透平膨胀发电机三(16)的输入端连接于空气增压机(11)的四级冷却器输出端,透平膨胀发电机三(16)的输出端连接于中压主换热器三(23)的循环空气一次复热通道输入端,中压主换热器三(23)的循环空气一次复热通道输出端连接于透平膨胀发电机五(18)的输入端,透平膨胀发电机五(18)的输出端连接于中压主换热器三(23)的循环空气二次复热通道输入端,中压主换热器三(23)的循环空气二次复热通道输出端连接于透平膨胀发电机六(19)的输入端,透平膨胀发电机六(19)的输出端连接于中压主换热器三(23)的循环空气三次复热通道输入端,中压主换热器三(23)的循环空气三次复热通道输出端连接于空气压缩机(2)的原料气输入端;原中压主换热器(20)和中压主换热器三(23)的增压膨胀空气降温通道输入端连接于增压后冷却器(13)的输出端,原中压主换热器(20)和中压主换热器三(23)的增压膨胀空气降温通道输出端连接于增压透平膨胀机(12)的膨胀端输入管道;原中压主换热器(20)和中压主换热器三(23)的纯化后低压空气输入端连接于分子筛吸附器(8)的空气输出端,原中压主换热器(20)和中压主换热器三(23)的纯化后低压空气输出端连接于高压塔(27)的原料输入端;原中压主换热器(20)和中压主换热器三(23)的增压后中压空气输入端连接于空气增压机(11)的四级冷却器输出端,原中压主换热器(20)和中压主换热器三(23)的增压后中压空气输出端分为两路:一路连接于高压塔(27)的原料输入端,另一路连接于液空过冷器(36)的液态空气输入端;原中压主换热器(20)和中压主换热器三(23)的污氮气复热通道输入端连接于过冷器(28)的污氮气输出端,原中压主换热器(20)和中压主换热器三(23)的污氮气复热通道输出端连接于污氮气输出管道;原中压主换热器(20)和中压主换热器三(23)的氧气复热通道输入端连接于液氧泵(29)的输出端,原中压主换热器(20)和中压主换热器三(23)的氧气复热通道输出端连接于氧气产品输出管道;原中压主换热器(20)和中压主换热器三(23)的氮气复热通道输入端连接于过冷器(28)的氮气输出端,原中压主换热器(20)和中压主换热器三(23)的氮气复热通道输出端均连接于氮气产品输出管道;液空过冷器(36)、常压气液分离器(37)、液空储罐(38)和低温泵(39)的管道限定方式与上述在常规内压缩空分装置的基础上更换中压主换热器(20)为中压主换热器三(23)中相应设备的限定方式相同。
6.根据权利要求5所述的基于内压缩空分储能装置的物质回收方法,其特征在于:所述透平膨胀发电机三(16)的输入端与现有的空气增压机(11)的四级冷却器输出端之间设置控制阀门十二(V12),透平膨胀发电机三(16)的输出端与中压主换热器三(23)的循环空气一次复热通道输入端之间设置控制阀门十六(V16),中压主换热器三(23)的循环空气一次复热通道输出端与透平膨胀发电机五(18)的输入端之间设置控制阀门十七(V17),透平膨胀发电机五(18)的输出端与中压主换热器三(23)的循环空气二次复热通道输入端之间设置控制阀门十八(V18),中压主换热器三(23)的循环空气二次复热通道输出端与透平膨胀发电机六(19)的输入端之间设置控制阀门十九(V19),透平膨胀发电机六(19)的输出端与中压主换热器三(23)的循环空气三次复热通道输入端之间设置控制阀门二十(V20),中压主换热器三(23)的循环空气三次复热通道输出端与现有空气压缩机(2)的原料气输入端之间设置控制阀门二十一(V21);所述液空过冷器(36)的液态空气输出端与常压气液分离器(37)的输入端之间设置控制阀门八(V8),液空过冷器(36)的低温空气输出端与中压主换热器三(23)的污氮气复热通道输入管道之间设置控制阀门九(V9),低温泵(39)的输出端与高压塔(27)的原料输入端之间设置控制阀门十(V10),中压主换热器三(23)的氮气复热通道中部输出端与氮气产品输出管道之间设置控制阀门十一(V11)。
7.根据权利要求3所述的基于内压缩空分储能装置的物质回收方法,其特征在于:所述内压缩空分储能装置循环制冷空气的增压机前回收是指储能过程空分富余产能的空气液化时,制冷空气通过透平膨胀发电机二(15)的膨胀端输出压力与空气压缩机(2)的空气输出压力相当,经中压主换热器一(21)和中压主换热器二(22)复热后回收进入空气增压机(11);所述释能过程低温液态空气的直接利用是指将所储存的低温液态空气利用低温泵(39)加压后直接送入高压塔(27),参与空分装置的精馏过程,即提供精馏原料,又提供压力能和大量冷能。
8.根据权利要求5所述的基于内压缩空分储能装置的物质回收方法,其特征在于:所述内压缩空分储能装置循环制冷空气的空压机前回收是指储能过程空分富余产能的空气液化时,制冷空气通过透平膨胀发电机六(19)的膨胀端输出压力高于常压,经中压主换热器三(23)复热后回收进入空气压缩机(2)。
9.根据权利要求3所述的基于内压缩空分储能装置的物质回收方法,其特征在于:所述透平膨胀发电机二(15)和透平膨胀发电机四(17)的膨胀端输出温度为-170~-130℃。
10.根据权利要求5所述的基于内压缩空分储能装置的物质回收方法,其特征在于:透平膨胀发电机三(16)、透平膨胀发电机五(18)和透平膨胀发电机六(19)的膨胀端输出温度不低于-100℃。
CN202110909100.6A 2021-08-09 2021-08-09 一种基于内压缩空分储能装置的物质回收方法 Active CN113686099B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110909100.6A CN113686099B (zh) 2021-08-09 2021-08-09 一种基于内压缩空分储能装置的物质回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110909100.6A CN113686099B (zh) 2021-08-09 2021-08-09 一种基于内压缩空分储能装置的物质回收方法

Publications (2)

Publication Number Publication Date
CN113686099A CN113686099A (zh) 2021-11-23
CN113686099B true CN113686099B (zh) 2022-08-09

Family

ID=78579251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110909100.6A Active CN113686099B (zh) 2021-08-09 2021-08-09 一种基于内压缩空分储能装置的物质回收方法

Country Status (1)

Country Link
CN (1) CN113686099B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670003B (zh) * 2021-07-29 2022-08-09 北京科技大学 高安全性的储能、发电和物质回收外压缩空分工艺流程
CN114383384B (zh) * 2021-12-30 2022-09-16 北京科技大学 一种空气液化与深冷空分工艺集成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB454141A (en) * 1935-05-17 1936-09-24 Linde Eismasch Ag Method of and apparatus for operating cold accumulators
CN103148676A (zh) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置
CN203224100U (zh) * 2013-01-27 2013-10-02 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置
CN104019628A (zh) * 2014-05-14 2014-09-03 中国海洋石油总公司 使空分系统在lng冷能供应中断期间连续运行的方法
CN107940896A (zh) * 2017-11-02 2018-04-20 河南大学 一种利用热泵技术生产富氧气和高压高纯氮气的装置及方法
CN109140903A (zh) * 2018-08-24 2019-01-04 邢仁钊 一种利用液化天然气冷能的空分系统及空气分离方法
CN210197867U (zh) * 2019-06-25 2020-03-27 杭州杭氧化医工程有限公司 一种用于储释能的空气分离制氧装置
CN114279169A (zh) * 2022-01-21 2022-04-05 浙江智海化工设备工程有限公司 一种中压、低压氧气空分及氪氙浓缩一体化设备及浓缩工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697325B1 (fr) * 1992-10-27 1994-12-23 Air Liquide Procédé et installation de production d'azote et d'oxygène.
JP3065968B2 (ja) * 1997-08-20 2000-07-17 日本エア・リキード株式会社 空気液化分離装置および空気液化分離方法
DE19815885A1 (de) * 1998-04-08 1999-10-14 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft
JP3976188B2 (ja) * 2002-12-16 2007-09-12 株式会社神戸製鋼所 空気分離装置を用いた製品ガス製造方法
JP2006250457A (ja) * 2005-03-11 2006-09-21 Aisin Seiki Co Ltd 流体分離装置
US20150192065A1 (en) * 2012-06-28 2015-07-09 Linde Aktiengesellschaft Process and apparatus for generating electric energy
EP3196573A1 (de) * 2016-01-21 2017-07-26 Linde Aktiengesellschaft Verfahren zur gewinnung eines luftprodukts und luftzerlegungs anlage
CN108731379A (zh) * 2018-07-24 2018-11-02 杭州杭氧股份有限公司 一种液体量可调且同时产多规格氧气产品的空分设备及生产方法
CN109812304B (zh) * 2019-03-06 2023-08-29 上海发电设备成套设计研究院有限责任公司 集成二氧化碳循环与液化空气储能的调峰发电系统及方法
CN111043833B (zh) * 2019-12-20 2021-01-15 北京科技大学 一种具有储能和发电功能的内压缩空分工艺流程
CN111811213A (zh) * 2020-06-10 2020-10-23 北京科技大学 具有储能和物质能量资源高效回收的内压缩空分工艺流程

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB454141A (en) * 1935-05-17 1936-09-24 Linde Eismasch Ag Method of and apparatus for operating cold accumulators
CN103148676A (zh) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置
CN203224100U (zh) * 2013-01-27 2013-10-02 南京瑞柯徕姆环保科技有限公司 一种等压分离制取氧氮的空分装置
CN104019628A (zh) * 2014-05-14 2014-09-03 中国海洋石油总公司 使空分系统在lng冷能供应中断期间连续运行的方法
CN107940896A (zh) * 2017-11-02 2018-04-20 河南大学 一种利用热泵技术生产富氧气和高压高纯氮气的装置及方法
CN109140903A (zh) * 2018-08-24 2019-01-04 邢仁钊 一种利用液化天然气冷能的空分系统及空气分离方法
CN210197867U (zh) * 2019-06-25 2020-03-27 杭州杭氧化医工程有限公司 一种用于储释能的空气分离制氧装置
CN114279169A (zh) * 2022-01-21 2022-04-05 浙江智海化工设备工程有限公司 一种中压、低压氧气空分及氪氙浓缩一体化设备及浓缩工艺

Also Published As

Publication number Publication date
CN113686099A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN111043833B (zh) 一种具有储能和发电功能的内压缩空分工艺流程
JP4885734B2 (ja) 極低温の空気分離法および装置
CN109186179B (zh) 全精馏提氩富氧空分装置及工艺
CN113686099B (zh) 一种基于内压缩空分储能装置的物质回收方法
CN1124405C (zh) 内设气化器的联合循环/空气分离装置发电系统及操作
WO2021043182A1 (zh) 一种利用lng冷能的空分装置和方法
CN204115392U (zh) 带补气压缩机的全液体空分设备
CN201377961Y (zh) 多工况空分设备
CN108759311B (zh) 大液体量制取的空分装置及方法
CN111811213A (zh) 具有储能和物质能量资源高效回收的内压缩空分工艺流程
CN101492156A (zh) 低能耗制氮方法和装置
CN101858685A (zh) Co2分离-液化-提纯系统及方法
CN112145248B (zh) 具有储能、发电和物质回收功能的外压缩空分工艺流程
CN209085172U (zh) 一种液体量可调且同时产多规格氧气产品的空分设备
CN114383384B (zh) 一种空气液化与深冷空分工艺集成方法
CN113670003B (zh) 高安全性的储能、发电和物质回收外压缩空分工艺流程
CN109323533B (zh) 一种使用中压精馏塔降低空分能耗方法及装置
CN1038514A (zh) 生产高压氧和高压氮的空气分离流程
CN201377962Y (zh) 从含甲烷混合气中制取压缩天然气的设备
CN208443098U (zh) 大液体量制取的空分装置
CN203687518U (zh) 带辅助精馏塔的低纯氧制取装置
CN107626183B (zh) 一种适用于电网峰-谷负荷运行的富氧燃烧二氧化碳捕集集成系统
CN215766044U (zh) 氮气循环流程全液体制取的空分装置
CN110746259B (zh) 一种带闪蒸分离器的富气乙烷回收方法
CN2499774Y (zh) 利用液化天然气冷能的空气分离装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant