CN1038514A - 生产高压氧和高压氮的空气分离流程 - Google Patents

生产高压氧和高压氮的空气分离流程 Download PDF

Info

Publication number
CN1038514A
CN1038514A CN88103515A CN88103515A CN1038514A CN 1038514 A CN1038514 A CN 1038514A CN 88103515 A CN88103515 A CN 88103515A CN 88103515 A CN88103515 A CN 88103515A CN 1038514 A CN1038514 A CN 1038514A
Authority
CN
China
Prior art keywords
nitrogen
oxygen
air
pressure
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN88103515A
Other languages
English (en)
Inventor
白金海
蒋全勋
袁一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN88103515A priority Critical patent/CN1038514A/zh
Publication of CN1038514A publication Critical patent/CN1038514A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Abstract

用液氧泵使氧加压,采用高压循环氮补充固液氧气化压力升高带来的冷损失。在双级精馏塔的下塔底部设置专门用0.8~1.3mPa循环氮作热源的冷凝蒸发器以推动下塔提高氮与氧的分离程度。能从下塔抽取氧气量1.6倍的产品纯氮而保持高的氧提取率。在高压氧与高压循环氮换热流程的设计方面采取避开换热器内零温差的措施克服这两种气体热力学性质不同带来的困难,缩小了此换热器的冷端温差。动力消耗显著降低。

Description

本发明属于借助精馏作用分离气态混合物组分的过程。
在化学工业中,例如在煤或重质油品(渣油)等为原料制氨的生产过程中,要求压力为4~10MPa的氧气,虽然氧纯度不必太高(90~98.5%),但要求空气分离装置同时提供产量为氧气量1.3~1.5倍的纯氮,纯氮压力为3~8MPa。在炼钢工业中,要求氧的纯度高(99.6%),同时往往要求空分装置提供氧气产量0.5~1.3倍的纯氮,要求的氧气压力为3MPa左右,纯氮压力为0.5~2MPa
常规的空气分离流程分别用氧气压缩机和氮气压缩机压缩产品氧和产品氮,投资大,氧气压缩机有着火危险。为了避免采用氧气压缩机,可采用液氧泵使氧加压,即所谓氧气内压缩空气分离流程。US4345925号专利以氩或氩氧混合物为循环介质以回收高压氧气化和复热过程中的冷量,这时空分装置必须专门设置一台高压氩压缩机和一整套处理氩的设备和管线,使装置显著地复杂化。当用户要求的氧气纯度不高时,从空分装置提氩是比较困难的。GB2061478号专利采用一种压力的高压氮为循环介质,仅对生产1.8巴(0.18MPa)(表压)气态氧的流程作了具体说明,对高压氧或高压循环氮的压力超过它们各自的临界压力时的流程如何合理组织,没有提出方案。以上两项专利都没有叙述在生产高压氧气的同时,经济地生产纯氮的问题。事实上,它们也难以在生产氧的同时,经济地大量生产纯氮。
我国镇海化肥厂从国外引进的氧气内压缩空气分离流程(见图5)采用了高压氮为循环介质,在生产9.7MPa高压氧的同时可以从下塔(5)产出0.57MPa纯氮,纯氮产量达氧产量的1.406倍。其流程为:空气经空压机(1)压缩和冷却塔(2)冷却后进入可逆换热器(3)(4)与返流的纯氮和污氮换热,同时空气中的水份、CO2等杂质冻结在换热器(3)(4)的表面而除去。可逆换热器下一次切换时其表面冻结的水份和CO2等被返流污氮带出。空气可逆换热器(4)进入双级精馏塔〔包括下塔(5)主冷凝器(7)和上塔(8)〕的下塔(5)精馏。采用一般的空气膨胀机(6)补充冷损失。采用液氧泵(16)提高氧的压力,由氮压机(18)提供两种压力的高压氮以补充因液氧气化压力升高带来的冷损失和补充下塔(5)的回流液氮,一种为11.8MPa的高压氮与高压氧在(17)中换热后节流至约1MPa,另一种为7.77MPa的高压氮在换热器(19)(氨冷器)、(11)、(12)、(15)中换热后节流。(13)为液化器,(10)为过冷器。这个流程存在下列缺点:(1)加工空气的净化采用板翅式换热器可逆切换流程,限制了纯产品的产量;(2)由于从下塔(5)抽取大量产品纯氮,减小了精馏塔的回流比,不得不加大加工空气量。由于上述两个缺点,使加工空气量达到氧产量的6.29倍(氧纯度98%),氧提取率仅为74.4%。(3)为补充液氧气化压力升高的冷损失而采用的高压氮的压力有11.8MPa和7.77MPa两种,不仅使流程复杂化,而且7.77MPa的循环氮压力低于液氧泵出口液氧的压力,引起高压循环氮用量增加(每Nm39.7MPa氧气用7.77~11.8MPa高压氮2.1Nm3),动力消耗增大;(4)高压氮换热的流程不够合理,不仅徒然地采用了液氨制冷,而且有7500Nm3/h氮气在313K的温度下进入冷箱,在233K温度下排出冷箱,变热不足达80K,冷损很大。高压氮换热器(17)冷端温差达26K,高压氮节流前温度偏高,使节流后液化率降低,高压氮用量增加。
镇海化肥厂的空气分离流程若采用分子筛吸附器净化加工空气,可以解除可逆切换流程因自清除条件对纯产品产量的限制;若采用膨胀空气在进膨胀机前增压的技术有助于减少膨胀空气量,但是由于上述第(2)项缺点,仍不能显著减少加工空气量。如果纯氮改从上塔产出,虽然加工空气量可以减少,却显著降低了氮压机的吸气压力,会大大增加产品氮压缩机的动力消耗。
本发明的目的是发明一种生产高压氧和高压氮的氧气内压缩空气分离流程,以解决现有采用高压氮循环的氧气内压缩空气分离装置加工空气和高压循环氮用量大,空气压缩机和氮气压缩机动力消耗大的问题。
本发明的构成如下:
图1至图4为本发明的流程图
生产高压氧和高压氮的空气分离流程,如图1所示,图中①为空气,②为高压产品氮,③为下塔压力产品氮,④为高压产品氧,⑤为污氮,⑥为液氮。采用液化空气的双级精馏塔(15、16、17),加工空气压缩到下塔压力0.4~0.7MPa,典型条件为0.55~0.65MPa,上塔压力为0.12~0.2MPa。加工空气利用分子筛吸附器(4)除去其中的水份、二氧化碳、烃类等杂质,然后与返流的污氮,纯氮换热后进入下塔(17)精馏,利用空气膨胀机(9)发出的动力将进膨胀机(9)的空气在增压风机(8)中增压到0.9~1.1MPa,膨胀后的空气进上塔(15)中部参加精馏,利用液氧泵(14)使液氧加压到所需的产品氧压力。采用高压循环氮与液氧换热并补充因液氧气化压力升高带来的冷损失。循环氮和产品氮均从下塔(17)顶部抽出,经热交换复热到常温后共用一台压缩机压缩。选择高压氮为循环介质与氧换热,虽然它的热力学性质与氧差别较大,但具有流程简单,可灵活调节下塔回流比,循环氮压缩机吸气压力高、压缩比小等优点。
本发明的特征在于在空气精馏分离流程中,从氮气压缩机(6)中抽出一股与产品氮纯度相同的0.8~1.3MPa循环氮,这种循环氮经在换热器(7)中冷却到和进主换热器(5)的加工空气相同温度后进主换热器(5)热端的专门通道,然后离开主换热器冷端进下塔(17)底部,在这里液化后节流入下塔(17)的顶部。
本发明的特征点还在于下塔(17)底部设置专门为冷凝上述0.8~1.3MPa循环氮和蒸发下塔富氧液体空气的冷凝蒸发器(18)以及在下塔(17)加工空气入口以下和上述冷凝蒸发器(18)以上设置精馏板。0.8~1.3MPa循环氮进入下塔底部的冷凝蒸发器(18)作为下塔底部的加热热源,使下塔底部的富氧液体空气蒸发,并使下塔加工空气入口以下本发明专设的塔板上发生精馏过程。富氧液体空气中的氧含量因此达到39~60%,典型条件为40~50%。这一氧浓度的大小决定于下塔顶部抽取的氮气量和冷凝蒸发器(18)的热负荷。0.8~1.3MPa循环氮在冷凝蒸发器(18)中液化为液氮,然后节流至下塔(17)顶部作为回流液,这改善了下塔的精馏条件,当从下塔抽取大量产品氮的情况下仍能保持下塔足够的回流比和高的氧提取率。0.8~1.3MPa循环氮的具体压力数值,取决于它在冷凝蒸发器(18)中的冷凝温度,而这个冷凝温度又与下塔底部一定含氧浓度的富氧液体空气在一定下塔压力下的蒸发温度有关(考虑2~3K传热温差)。由于0.8~1.3MPa循环氮的压缩比不大(约为2),用于压缩这一部分循环氮的动力消耗相对比较小。
对于上述的生产高压氧和高压氮的空气分离流程,本发明的特征还在于当产品氧的压力(PO2)在1.2~20MPa时,高压循环氮的压力(PN2)在(1.15~3)倍氧的压力范围内选用,即PO2/PN2=1.15~3。这是因为由于氮、氧热力学性质的不同,高压氮与高压氧换热的换热器(11)中容易出现计算零温差或计算负温差。(对铝制板翅式换热器来说,计算温差0~2K视为计算零温差;对盘管式换热器来说,计算温差0~2K视为计算零温差;对盘管式换热器来说,计算温差0~3K视为计算零温差。计算中出现零温差或负温差意味着换热器的设计不可行)为了避免出现这种情况,必须加大与氧换热的高压缩环氮的用量。而当采用的高压循环氮压力较高时,与氧换热的高压循环氮的用量可相对小一些。另外,液氧气化压力升高带来的冷损失主要由高压氮制冷循环补充,当高压氮压力较高时制冷循环比较有效。由于以上原因,高压循环氮的压力不宜低于产品氧的压力,采用较高的压力可降低高压循环氮的动力消耗。具体采用的压力数值与产品氧压力、热交换器型式及离心式压缩机可能达到的压力等条件有关。当要求的氧气压力高于1.2MPa时,高压循环氮的压力可在1.15~3倍氧气压力的范围内选用。当要求的氧气压力不高于6.6MPa时,高压循环氮的压力宜采用不高于8.0MPa以便采用铝制板翅式换热器。当要求的氧气压力高于6.6MPa至20MPa时,高压循环氮的压力宜超过8.0MPa,这时高压氧-高压氮换热器(11)可采用盘管式换热器。当要求的氧气压力不高于1.2MPa时,氧和高压循环氮的压力都不超过各自的临界压力,可根据它们发生液、气相转变的温度(考虑约3K传热温差)选择高压循环氮的压力。在高压氧-高压氮换热器(11)中引入来自下塔的返流氮参与换热,可缩小换热器(11)的内部温差和冷端温差,并使此换热器(11)热端的正流量(高压氮)和返流量(高压氧、返流氮)趋于平衡。
对于上述的生产高压氧的高压氮的空气分离流程,本发明的特征点还在于低于高压液氧气化温度(Tv)或氧的临界温度(Tc)20K至高于Tv或Tc50K的范围内,将压力为0.4~0.65MPa的返流氮从高压氧-高压氮换热器(11)中引出,引出的返流氮在膨胀换热器(10)中与膨胀空气换热,或与其它适当的气体换热,然后再回到高压氧-高压氮换热器(11)。在上述氧的Tv(当产品氧压力低于其临界压力时)或Tc(当产品氧压力等于或高于其临界压力时)附近正是高压氧-高压氮换热器(11)中容易出现计算零温差或计算负温差的位置,在这个位置将返流氮从高压氧-高压氮换热器(11)引出,高压氧-高压氮换热器比较地不容易出现计算零温差或计算负温差,可减少高压循环氮的用量。图2是关于高压氧与高压氮换热的具体的说明,图中H为高压氧-高压氮换热器,①为来自氮气压缩机的高压循环氮,②为常温的产品高压氧,③为来自液泵的液氧,⑤为来自下塔的返流氮,经换热后常温返流氮⑥进入氮气压缩机吸入口。如按图2A所示三种物料简单换热,换热器H中部出现一个最小温差,而冷端温差比较大,高压循环氮④出换热器后温度较高,应分两次节流,第一次节流到0.8~1.3MPa,节流后产生的气体可与低温流体换热而液化,液氮经过冷后第二次节流到下塔顶部。图2B当高压循环氮的温度降到比换热器内最小温差区的高压氮温度更低时,即高压氮越过最小温差区后,将一部分高压氮④从H中部抽出,节流至0.8~1.3MPa,这时换热器H的冷端温差可显著缩小,在冷端可得到过冷的低温液氮⑦。图2C和D加大了H下部的返流氮量,可从H中部抽出一股返流纯氮⑧去主换热器中部,但出冷端的高压氮④仍不能达到足够低的温度。图2正是本发明的高压氧-高压氮换热流程,它所要求的高压氮①的量较图2中A、B、C、D为小,进入H下部的返流氮⑤较图2D更大,因而可在H的冷端得到过冷液氮⑦,从H中部抽出的返流纯氮在膨胀换热器T中与来自主换热器中部的空气(9)换热后一部分返回H,另一部分⑧去主换热器中部。少量纯氮(11)可以从H的中部去主换热器冷端。从T出来的膨胀空气⑩进入膨胀机。由于这样设计的高压氧-高压氮换热流程使H的冷端温差可达到3-4K,因此节流到下塔的液化率很高。可节省高压循环氮的动力。也可以从图2A、B、C、D、E各图中H的中部适当位置抽出一部分高压氮经膨胀机膨胀至0.8~1.3MPa。实际的设备设计时可将高压氧-高压氮换热器H沿Ⅰ-Ⅰ截面及Ⅱ-Ⅱ截面截断,即将此换热器设计成两台或三台串联。当采用盘管式换热器时还可采用双层套管盘绕的结构,内管为高压氧,两层套管中间为高压氮,壳程为来自下塔的返流氮。
对于上述的生产高压氧和高压氮的空气分离流程,其特征还在于可利用高压循环氮节流到0.8~1.3MPa产生的饱和氮气作为下塔底部加热的热源。此0.8~1.3MPa饱和氮气本身则在冷凝蒸发器(18)中液化为液氮,再节流入下塔顶部作回流液。图3表示这样的流程。图中设备符号和物料符号的含义和图1相同。图3中节流阀A为高压循环氮节流阀,节流阀B为0.8~1.3MPa液氮节流阀。在图3所示的流程中高压循环氮的用量较图1为大,高压循环氮的压力则可以较低。高压氧-高压氮换热器可不采用图2E的流程,可采用图2D(或图2A、B、C)的流程。因此图3的流程中没有膨胀换热器。由于高压循环氮首先节流到0.8~1.3MPa,产生相当数量的0.8~1.3MPa饱和氮气,可以减少从氮气压缩机(6)抽出0.8~1.3MPa循环氮的数量,甚至根本不从氮气压缩机抽出0.8~1.3MPa循环氮。这样的流程循环氮压缩机的动力不会得到节省,但与现有技术相比,仍可减少加工空气的用量。
对于上述生产高压氧和高压氮的空气分离流程,其特征还在于可从高压氧高压氮换热器(11)中部抽出一部分高压循环氮通过膨胀机膨胀至0.8~1.3MPa作为下塔底部加热的热源。此0.8~1.3MPa的氮气进冷凝蒸发器(18)冷凝为液氮,再节流至下塔顶部。图3中(21)为高压氮膨胀机,虚线表示的就是这种流程。这种流程中高压氮膨胀机增加了高压氮的制冷量,可减少空气膨胀量,因而有利于增大精馏塔的回流比,减少加工空气量。
对于上述生产高压氧和高压氮的空气分离流程,本发明的特征点还在于可采用0.8~1.1MPa增压空气代替作为下塔(17)底部加热热源的0.8~1.3MPa循环氮。此0.8~1.1MPa增压空气是加工空气的一部分,它在冷凝蒸发器(18)中液化后节流入下塔中部。图4所示即为此种流程,图4中的设备符号和物料符号含义和图1相同。一部分加工空气从空压机出口的主气流引出经增压风机(8)和空压机(2)的增压级增压至0.8~1.1MPa,在(3B)中冷却,经分子筛吸附器(4B)除去水分、CO2和烃类等杂质进主换热器(5),一部分作为膨胀空气从主换热器(5)中部抽出,一部分作为下塔的加热热源进冷凝蒸发器(18)液化,然后节流入下塔中部,补充下塔回流比最感紧张的中下部回流量的不足。由于冷凝蒸发器(18)的蒸发作用和中下部回流量的增大,提高了下塔的分离程度,因而可以在从塔塔抽取较多产品纯氮的情况下减少加工空气用量。但这种流程从下塔提取纯氮的能力不如图1所示的流程大。
对于上述生产高压氧和高压氮的空气分离流程,其特征在于对本发明的增加一种0.8~1.3MPa循环氮或0.8~1.1MPa增压空气,下塔底部设置冷凝蒸发器以冷凝这种循环氮或增压空气,冷凝后的液氮或液体空气节流入下塔顶部或中部作回流液,下塔加工空气入口以下增设塔板的发明点,在氧气外压缩(即采用氧气压缩机)的空气分离流程中也可采用,其效果为缩大下塔的氮、氧分离程度,在从下塔提取较多产品氮的情况下可不增加加工空气用量。
图1是本发明的生产高压氧和高压氮的空气分离典型流程。加工空气经过过滤器(1)、空气压缩机(2)压缩到略高于下塔压力。经冷却器(3)冷却至278~282K,经分子筛吸附器组(4)除去其中水分,CO2、烃类等杂质。然后大部分空气在铝制板翅式主换热器(5)与返流的污氮、纯氮换热后冷却到101~108K,进入下塔(17)进行精馏。另一部分经透平膨胀机(9)带动的增压机(8)增压至0.9~1.1MPa,经冷却和在增压空气换热器(7)降低温度至278~282K进入主换热器(5),在大约170~200K的温度下离开主换热器中部,经膨胀换热器(10)温度降至145~160K,进膨胀机膨胀至上塔压力,进入上塔(15)中部参加精馏。从氮气压缩机(6)抽出一般0.8~1.3MPa循环氮,经换热器(7)冷却至278~282K进入主换热器(5),然后大部分进入下塔(17)底部的冷凝蒸发器(18)液化,再节流至下塔(17)的顶部。另一部分0.8~1.3MPa的循环氮自主换热器(5)进入液化器(12)和过冷器(13),用来自液空过冷器(20)的污氮和来自下塔(17)顶部的纯氮使其液化并过冷到约100K,再节流入下塔(17)顶部。下塔底部的富氧液体空气在液空过冷器(20)中过冷后节流入上塔(15)中部。从下塔(17)取出一定量的污液氮,经在污液氮过冷器(19)中过冷后节流入上塔(15)顶部作回流液。上塔精馏后在塔顶得到污氮,污氮经污液氮过冷器(19)、液空过冷器(20)、液化器(12)去主换热器(5)复热后排出冷箱,可进一步用于再生分子筛吸附器和进接触式冷却塔以降低冷却水的温度。上塔底部得到的液体氧,用液氧泵(14)将其加压到所需压力,然后进高压氧-高压氮换热器(11)与来自氮气压缩机(6)的高压循环氮换热,液氧由此气化和复热成为产品高压氧排出装置。高压循环氮则液化为液氮,节流入下塔(17)顶部作回流液。氮气压缩机的吸气量为产品高压氮量、0.8~1.3MPa循环氮量、高压循环氮量三者之和,称为返流氮。全部从下塔顶部抽出,分别经高压氧-高压氮换热器(11)和过冷器(13)、主换热器(5)复热。纯度与产品氮要求的纯度相同。返流氮经压缩后产品氮从装置排出送用户,0.8~1.3MPa循环氮和高压循环氮返回空分装置。高压产品氧可直接送用户。
本发明的优点和效果如下:
本发明由于增加了一种0.8~1.3MPa循环氮,使精馏塔能在消耗动力不多的情况下,灵活地增加液氮回流量。由于在下塔底部专门设置了用上述0.8~1.3MPa循环氮或0.8~1.1MPa空气作热源的冷凝蒸发器和在下塔空气入口以下设置精馏塔板,提高了下塔的氮、氧分离程度,使下塔富氧液体空气的氧浓度可提高至40~60%,显著高于现有各种空气分离流程。这样就相应地降低了上塔的精馏负荷,减少了精馏过程的能量损失。在纯氮产量达氧产量1.6倍的条件下,全部产品纯氮均可从下塔提取而不必显著增加加工空气量。例如当从下塔抽取产品纯氮量为氧流量1.458倍的条件下,加工空气用量仅为5.25Nm3/Nm3产品氧,而现有技术在纯氮产量为氧产量从1.406倍的条件下,加工空气用量为6.29Nm3/Nm3产品氧,由此可见,本发明的空分流程空压机动力消耗比现有技术低约16.5%。对一个日产1000吨氨厂(以渣油为原料)来说,空压机功率可降低约220KW。
本发明由于使高压循环氮的压力显著高于液氧泵出口氧的压力,并合理组织了高压氧与高压氮的换热,可以在高压氮用量不太大的情况下避免在高压氧-高压氮换热器中出现计算零温差或计算负温差,缩小高压氧-高压氮换热器的冷端温差,提高高压氮节流后的液化率。从补充因液氧气化压力升高而引起的冷损失方面来说,循环氮压力较高时,制冷效率也较高。因此规定较高的高压循环氮压力可降低压缩循环氮的动力消耗。而现有技术高压循环氮的压力往往低于高压氧的压力。本发明的流程用于压缩循环氮的动力消耗比现有技术约低8.8%,且不需液氨制冷,对一个日产1000吨氨厂(渣油为原料)循环氮动力可减少约900KW。
实例:一套每小时产氧2400Nm3(纯度98%)的空气分离装置,采用本发明图1所示的流程,氧气压力为9.5MPa,同时从下塔产0.55MPa的99.999%纯氮35000Nm3/h。0.65MPa加工空气的需要量为126000Nm3/h。采用一台离心式氮气压缩机将产品氮压缩至7.5MPa,同时供给空分装置12.5MPa高压循环氮38000Nm3/h和1.1MPa循环氮20000Nm3/h。氮气压缩机从下塔压力下吸气。适当增加1.1MPa循环氮的用量可增加下塔产出的产品纯氮量或减少加工空气的用量。所产的高压氧和纯氮可供日产1000吨氨的渣油制氨厂使用。而现有的这类氨厂的氧气内压缩空气分离流程(产98%、9.7MPa氧气26600Nm3/h)需要的加工空气量为167200Nm3/h,高压循环氮56000Nm3/h(11.7MPa,35000Nm3/h,7.77MPa21000Nm3/h)。

Claims (7)

1、生产高压氧和高压氮的空气分离流程,采用液化空气的双级精馏塔(15、16、17),加工空气压缩到0.4~0.7MPa,加工空气利用分子筛吸附器(4)除去其中的水份、CO2、烃类等杂质,然后与返流的污氦、纯氮换热后进入下塔(17)精馏,利用空气膨胀机(9)发出的动力将进膨胀机(9)的空气在增压风机(8)中增压到0.9~1.1MPa,膨胀后的空气进上塔(15)中部参加精馏,利用液氧泵(14)使液氧加压到所需的产品氧压力,采用高压循环氮与液氧换热并补充因液氧气化压力升高带来的冷损失,循环氮和产品氮均从下塔(17)顶部抽出,经热交换复热到常温后用一台压缩机压缩,其特征在于:
(1)在空气精馏分离流程中,从氮气压缩机(6)抽出一股与产品氮纯度相同的0.8~1.3MPa循环氮,这种循环氮经冷却到和进主换热器(5)的加工空气相同温度后进主换热器(5)热端专门通道,然后离开主换热器冷端进下塔底部,在这里液化后节流入下塔(17)的顶部。
(2)在下塔(17)底部设置专门为冷凝上述0.8~1.3MPa循环氮和蒸发下塔富氧液体空气的冷凝蒸发器(18)。
3)在下塔(17)加工空气入口以下和上述冷凝蒸发器(18)以上设置精馏板。
2、根据权利要求1所述的生产高压氧和高压氮的空气分离流程,其特征在于当产品氧的压力(PO2)在1.2~20MPa时高压循环氮的压力(PN2)在1.15~3倍氧的压力范围内选用,即PN2/PO2=1.15~3。
3、根据权利要求1、2所述的生产高压氧和高压氮的空气分离流程,其特征在于在低于高压液氧气化温度(Tv)或氧的临界温度(Tc)20K至高于Tv或Tc50K的范围内,将压力为0.4~0.65MPa的返流氮从高压氧-高压氮换热器(11)引出,引出的返流氮在膨胀换热器(10)中与膨胀空气换热,或与其它适当的气体换热后再回高压氧-高压氮换热器(11)。
4、根据权利要求1所述的生产高压氧和高压氮的空气分离流程,其特征在于可利用高压循环氮节流到0.8~1.3MPa产生的饱和氮气作为下塔底部加热的热源,此0.8~1.3MPa饱和氮气本身则在冷凝蒸发器(18)中液化为液氮,再节流入下塔顶部。
5、根据权利要求1所述的生产高压氧和高压氮的空气分离流程,其特征在于可从高压氧高压氮换热器(11)中部抽出一部分高压循环氮通过膨胀机膨胀至0.8~1.3MPa,然后此0.8~1.3MPa的氮气进冷凝蒸发器(18)冷凝为液氮,再节流至下塔顶部。
6、根据权利要求1所述的生产高压氧和高压氮的空气分离流程,其特征在于可采用压力为0.8~1.1MPa的增压空气代作为下塔(17)底部加热热源的0.8~1.3MPa循环氮,此0.8~1.1MPa增压空气在冷凝蒸发器(18)中液化后节流入下塔(17)中部。
7、根据权利要求1、6所述的生产高压氧和高压氮的空气分离流程,其特征在于该流程可用于氧气外压缩(即采用氧气压缩机的)空气分离流程。
CN88103515A 1988-06-08 1988-06-08 生产高压氧和高压氮的空气分离流程 Pending CN1038514A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN88103515A CN1038514A (zh) 1988-06-08 1988-06-08 生产高压氧和高压氮的空气分离流程

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN88103515A CN1038514A (zh) 1988-06-08 1988-06-08 生产高压氧和高压氮的空气分离流程

Publications (1)

Publication Number Publication Date
CN1038514A true CN1038514A (zh) 1990-01-03

Family

ID=4832639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88103515A Pending CN1038514A (zh) 1988-06-08 1988-06-08 生产高压氧和高压氮的空气分离流程

Country Status (1)

Country Link
CN (1) CN1038514A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101044366B (zh) * 2004-06-29 2011-05-04 乔治洛德方法研究和开发液化空气有限公司 紧急备用供给压力气体的方法和设备
CN102721263A (zh) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 一种利用深冷技术分离空气的系统及方法
CN104141391A (zh) * 2013-12-03 2014-11-12 殷家土 一种砌墙机器人
CN105201183A (zh) * 2015-09-11 2015-12-30 赵企跃 真空固结自动粉墙机可伸缩快速调平轨道
CN105625724A (zh) * 2016-01-08 2016-06-01 张玉祥 一种高强多功能筑墙机及其使用方法
CN105758118A (zh) * 2014-12-19 2016-07-13 常熟市永安工业气体制造有限公司 空分系统
CN107940896A (zh) * 2017-11-02 2018-04-20 河南大学 一种利用热泵技术生产富氧气和高压高纯氮气的装置及方法
CN108036584A (zh) * 2017-12-28 2018-05-15 乔治洛德方法研究和开发液化空气有限公司 通过低温精馏从空气中生产高纯氮、氧气和液氧的方法及设备
CN111141110A (zh) * 2020-01-19 2020-05-12 杭州特盈能源技术发展有限公司 一种低能耗中压氮气制取工艺
CN112654827A (zh) * 2018-10-09 2021-04-13 林德有限责任公司 用于提取一种或多种空气产物的方法和空气分离设备

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101044366B (zh) * 2004-06-29 2011-05-04 乔治洛德方法研究和开发液化空气有限公司 紧急备用供给压力气体的方法和设备
CN102721263A (zh) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 一种利用深冷技术分离空气的系统及方法
CN104141391A (zh) * 2013-12-03 2014-11-12 殷家土 一种砌墙机器人
CN105758118A (zh) * 2014-12-19 2016-07-13 常熟市永安工业气体制造有限公司 空分系统
CN105201183A (zh) * 2015-09-11 2015-12-30 赵企跃 真空固结自动粉墙机可伸缩快速调平轨道
CN105625724A (zh) * 2016-01-08 2016-06-01 张玉祥 一种高强多功能筑墙机及其使用方法
CN107940896A (zh) * 2017-11-02 2018-04-20 河南大学 一种利用热泵技术生产富氧气和高压高纯氮气的装置及方法
CN107940896B (zh) * 2017-11-02 2019-06-18 河南大学 一种利用热泵技术生产富氧气和高压高纯氮气的装置及方法
CN108036584A (zh) * 2017-12-28 2018-05-15 乔治洛德方法研究和开发液化空气有限公司 通过低温精馏从空气中生产高纯氮、氧气和液氧的方法及设备
CN112654827A (zh) * 2018-10-09 2021-04-13 林德有限责任公司 用于提取一种或多种空气产物的方法和空气分离设备
CN112654827B (zh) * 2018-10-09 2022-12-06 林德有限责任公司 用于提取一种或多种空气产物的方法和空气分离设备
CN111141110A (zh) * 2020-01-19 2020-05-12 杭州特盈能源技术发展有限公司 一种低能耗中压氮气制取工艺
CN111141110B (zh) * 2020-01-19 2021-05-07 杭州特盈能源技术发展有限公司 一种低能耗中压氮气制取工艺

Similar Documents

Publication Publication Date Title
CN109838975B (zh) 一种低能耗液氮制取装置及工艺
CN104061757B (zh) 一种液氧及液氮制取装置及方法
CN109186179B (zh) 全精馏提氩富氧空分装置及工艺
CN104807286B (zh) 回收利用lng冷能的氮气液化系统
CN108061428A (zh) 一种纯氮制取装置和工艺
CN204115392U (zh) 带补气压缩机的全液体空分设备
CN201377961Y (zh) 多工况空分设备
CN109140903B (zh) 一种利用液化天然气冷能的空分系统及空气分离方法
CN104807289B (zh) 利用lng冷能空分制取液氧液氮的方法
CN108731379A (zh) 一种液体量可调且同时产多规格氧气产品的空分设备及生产方法
CN1057380C (zh) 低温空气分离方法和设备
CN1178038C (zh) 利用液化天然气冷能的空气分离装置
US4192662A (en) Process for liquefying and rectifying air
CN209639357U (zh) 一种低能耗液氮制取装置
CN109442867A (zh) 一种新型外增压内液化纯氮制取装置及方法
CN2811892Y (zh) 一种返流膨胀空气分离的装置
CN108759311A (zh) 大液体量制取的空分装置及方法
CN1038514A (zh) 生产高压氧和高压氮的空气分离流程
CN101535755B (zh) 低温空气分离系统
CN1952569A (zh) 含空气煤层气液化工艺及设备
CN101915495B (zh) 利用液化天然气冷能的全液体空气分离装置及方法
CN112556314A (zh) 一种低能耗的单塔纯氮制取的装置及其制造方法
CN100443838C (zh) 一种返流膨胀空气分离的方法和装置
CN207865821U (zh) 一种低能耗双塔纯氮制取装置
CN201876055U (zh) 利用液化天然气冷能的全液体空气分离装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication