CN1178038C - 利用液化天然气冷能的空气分离装置 - Google Patents

利用液化天然气冷能的空气分离装置 Download PDF

Info

Publication number
CN1178038C
CN1178038C CNB011271337A CN01127133A CN1178038C CN 1178038 C CN1178038 C CN 1178038C CN B011271337 A CNB011271337 A CN B011271337A CN 01127133 A CN01127133 A CN 01127133A CN 1178038 C CN1178038 C CN 1178038C
Authority
CN
China
Prior art keywords
nitrogen
heat exchanger
natural gas
liquefied natural
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB011271337A
Other languages
English (en)
Other versions
CN1407303A (zh
Inventor
陈则韶
程文龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CNB011271337A priority Critical patent/CN1178038C/zh
Publication of CN1407303A publication Critical patent/CN1407303A/zh
Application granted granted Critical
Publication of CN1178038C publication Critical patent/CN1178038C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明是一种利用液化天然气冷能的空气分离装置,它涉及液化天然气冷能利用和空气分离装置等技术。它是在现有空气分离装置的基础上,增设由多级循环氮气压缩机(13、14、28)、LNG热交换器(25)、循环氮气热交换器(26)等组成的氮内循环和氮外循环的联合制冷系统,以及由载冷剂冷凝蒸发传热的空气冷却系统。它可充分利用液化天然气低温的冷量来冷却低温压缩的循环氮气和常温压缩的空气,使装置的能耗大幅下降,日产330吨液氧、300吨液氮、17吨液氩的空气分离装置年节电约1亿度,并可节省对液化天然气进行气化的设备及其运行费。而且,由于把液化天然气换热管(LNG1→NG2)与压缩空气回路隔离开,保证了设备安全。

Description

利用液化天然气冷能的空气分离装置
技术领域:
本发明涉及空气分离装置,同时涉及液化天然气冷能的利用技术。
背景技术:
空气分离装置是利用空气为原料,通过把空气液化后,根据氧气、氮气、氩气等的沸点不同使之进行分离,从而生产氧气、氮气、氩气及其液体的装置。液化空气通常采用林德循环或其他改进型循环,通俗地说:首先把空气压缩到高压,用冷却水使被压缩的空气冷却到常温,让高压空气节流或膨胀产生低温,并通过回热换热器利用自身产生的低温空气回流来冷却高压空气,于是,高压空气将在较低温度下进行节流或膨胀产生更低的温度,如此循环继续,直至使空气液化。空气液化后,根据空气中各成分的沸点不同、利用分馏塔进行分离,最终获得纯度很高的氧气、氮气、氩气或它们的液体。生产的氧气、氮气、氩气或其液体在炼钢、生产合成氨的化肥等工业、医疗等领域有广泛的用途。但是,普通空分装置的运行要消耗很多电力,每日生产330吨液氧的大型空分装置的耗电约0.9~1.2千瓦时/公斤液氧,日耗电约30~40万千瓦时。因此,研究节能的空气分离装置是很有意义的。
另一方面,液化天然气(简称LNG)作为洁净燃料已逐渐在推广使用。液化天然气的主要成份是甲烷,储藏罐中的LNG温度在-162℃(111K)。当利用液化天然气作燃料时,需从-162℃的液体状态加热气化至常温才能被利用,目前通常采用海水加热。而冷能是一种很宝贵的能量,用海水加热法,就使液化天然气宝贵的冷能白白浪费了。如何科学地利用液化天然气冷能的研究工作也是很有意义的。
发明内容:
本发明提出一种利用液化天然气冷能的空气分离装置,一方面可使生产过程的耗电量大大减少,另一方面又可省去气化LNG时的加热装置和运行费,一举两得。
本发明的技术解决方案如下:
一种利用液化天然气冷能的空气分离装置,包括:吸入空气的过滤器1,空气压缩机2,空气冷却器3,分子筛吸附系统4,主热交换器5,高压分馏塔6,低压分馏塔7,过冷器8,氩气分馏系统10,液氩储罐9,液氮储罐11,液氧储罐12,液体空气节流阀J1,液体氮节流阀J2,制氩用液氮小节流阀J5,液氮开关阀F1,液氧开关阀F2,液氩开关阀F3以及连接管路,辅助系统的废氮气加热器16;所述主热交换器5中设有:上进下出的高压空气换热通道A5→A6、下进上出的低纯度废氮气通道n4→n5,其特征在于:装置中还包括:与液化天然气冷能进行热交换的氮循环制冷系统和空气冷却系统;所述主热交换器5增设有循环氮气回热通道S9→S10;其中:
所述与液化天然气冷能进行热交换的氮循环制冷系统,是具有氮内循环和氮外循环的联合制冷系统,它包括:低压氮气压缩机13、高压氮气压缩机14、外循环中压氮气压缩机28、LNG热交换器25、低-高压循环氮气热交换器26、主热交换器5中的循环氮气回热通道S9→S10、内循环氮节流阀J4、外循环氮节流阀J7和J8及其连接管路;
所述LNG热交换器25中设有:下进上出的液化天然气吸热管LNG1→NG2、上进下出的次高压内循环氮气放热管SN4→SN5、上进下出的高压内循环氮气放热管SN6→SN7、上进下出的中压外循环氮气放热通道S11→S12和上进下出的高压外循环氮气放热管S15→S16;
所述低-高压循环氮气热交换器26中设有:上进下出的高压内循环氮气放热管SN7→SN8、下进上出的低压内循环氮气回热通道SN1→SN2、上进下出高压外循环氮气放热管S16→S17和下进上出的中压外循环氮气回热管S13→S12;
所述与液化天然气冷能进行热交换的氮内循环制冷系统的连接方式顺序是:自低压分馏塔7顶部纯氮气出口n1起,接过冷器8,接低-高压循环氮气热交换器26的低压内循环氮气回热通道SN1→SN2,经调节阀F6,接低压氮气压缩机13,接LNG热交换器25的次高压内循环氮气放热管SN4→SN5,接高压氮气压缩机14,接LNG热交换器25的高压内循环氮气放热管SN6→SN7,接低-高压循环氮气热交换器26的高压内循环氮气放热管SN7→SN8,接内循环氮节流阀J4,经交汇口SN14接至高压分馏塔6的液氮入口e;
所述与液化天然气冷能进行热交换的氮外循环制冷系统的连接方式顺序是:自与高压分馏塔6中上部的氮气出口d相接的单向阀DF1的出口和节流阀J7的出口交汇点S9起,接主热交换器5的循环氮气回热通道S9→S10,接调节阀F4,接LNG热交换器25的中压外循环氮气放热通道S11→S12,接外循环中压氮气压缩机28,接LNG热交换器25的高压外循环氮气放热管S15→S16,接低-高压循环氮气热交换器26的高压外循环氮气放热管S16→S17,在接口S17之后分二路分别接外循环氮节流阀J7和J8;节流阀J7之后接主热交换器5的循环氮气回热通道S9→S10的入口S9,并从入口S9引一旁路接调节阀F8,再接低-高压循环氮气热交换器26的中压外循环氮气回热通道S13→S12;节流阀J8的出口与节流阀J4的出口交汇于SN14后,再接至高压分馏塔6的液氮入口e
所述与液化天然气冷能进行热交换的空气冷却系统包括:天然气回温热交换器15、冷却循环泵17、空气冷却器3和连接管路及冷却回路中的载冷剂;所述载冷剂为氟利昂类制冷工质或防冻液;所述空气冷却系统的载冷剂循环回路连接方式是:天然气回温热交换器15的载冷剂通路的出口R1接冷却循环泵17,继而接空气冷却器3的载冷剂通道R2→R3,而后接至天然气回温热交换器15的载冷剂通道的入口;天然气回温热交换器15的天然气通路的入口与主热交换器5中液化天然气吸热管的出口NG2连接,其天然气通路的出口NG3与调节供气阀F5连接。
在上述方案中,所述与液化天然气冷能进行热交换的空气冷却系统也可以是一个集天然气回温热交换器15和空气冷却器3于一体的冷凝蒸发换热器;所述冷凝蒸发换热器是个箱体,由箱壳30、天然气回温热交换器15、空气冷却器3和箱内氟里昂工质31组成;天然气回温热交换器15置于箱体内的上部作为氟里昂工质的冷凝器,留有与天然气连接的进口NG2和出口NG3,空气冷却器3置于箱体内的下部作为氟里昂工质的蒸发器,留有与压缩空气连接的进口A3和出口A4。
在上述方案的基础上,所述LNG热交换器25的顶部增设一个前置外循环氮气预冷器29;所述外循环氮气预冷器29中只设有液化天然气与来自主热交换器5的循环氮气的两换热流道,其液化天然气换热流道的入口接自LNG热交换器25的液化天然气吸热管LNG1→NG2的出口,其液化天然气换热流道的出口接天然气回温热交换器15的天然气通路的入口,其循环氮气换热流道的入口与主热交换器5的循环氮气回热通道的出口S10连接,其出口接调节阀F4后,接至LNG热交换器25的中压外循环氮气放热通道S11→S12的入口S11。
在上述各方案的基础上,所述低-高压循环氮气热交换器26的中上部也可增设液化天然气的换热流道,其入口与液化天然气站18的低温液化天然气供应管口对接,其出口接LNG热交换器25的液化天然气吸热管LNG1→NG2的入口。
由于本发明在空气分离装置中设置了与液化天然气冷能进行热交换的氮循环制冷系统和空气冷却系统,引用液化天然气站的-162℃(111K)的液化天然气通过氮内、氮外多级循环制冷系统和空气冷却系统来冷却压缩空气,充分利用了LNG的宝贵冷能,从而使制取液氧、液氮和液氩为主产品的空气分离装置的耗电量大大降低。计算表明本发明所提出的空气分离装置的单位公斤液氧或液氮的耗电量可从传统的0.9~1.2千瓦时降至0.3~0.5千瓦时,对于氧气产量为10000NM3/h的空气分离装置日生产330吨液氧、300吨液氮、17吨液氩来说,年节电量达9千万~1亿千瓦时,价值5000~6000多万元,日消耗700吨液化天然气的冷能,约折合2.0×1011kJ能量,也无需另设加热设备和消耗海水泵功。另外,由于把液化天然气换热管LNG1→NG2置于LNG热交换器25内、与压缩空气回路隔离开,采用循环氮气和氟里昂或防冻液冷却压缩空气,保证了设备安全;装置中还省去了低温膨胀机等部件,结构紧凑,造价低。同时,本发明还具有对传统空分设备改造较少和投资较省等优点。
附图说明:
附图1是本发明的一种实施例的设备连接示意图;附图2是另一种实施例的设备连接示意图;附图3是本发明的冷凝蒸发换热器形式的空气冷却系统。
具体实施方式:
下面结合附图进一步说明本发明的具体技术内容。
实施例1的空气分离装置所采用的设备及其连接路线是(见附图1所示):
空气过滤器1留有空气吸入口A1,其出口接空气压缩机2的入口A2;空气压缩机2的出口接空气冷却器3的空气入口A3;空气冷却器3的空气出口接分子筛吸附系统4的空气入口,连接点A4;分子筛吸附系统4的空气出口接主热交换器5热端顶部的高压空气换热管的入口,连接点A5;主热交换器5的高压空气换热管的出口A6设在底部,它与高压分馏塔6的高压空气入口a连接;高压分馏塔6的液体空气出口b接过冷器8,液体空气盘管出口与液体空气节流阀J1连接,接点gb;液体空气节流阀J1出口与氩气分馏系统10中的粗氩塔19的液体空气入口连接;粗氩塔19有二根与低压分馏塔7连接的液体空气的管路,连接点分别为L1、L2;粗氩塔19还有二根与低压分馏塔7连接的气体空气的管路,连接点分别为g1、g2;高压分馏塔6的液体氮出口c与过冷器8的液体氮盘管连接,过冷器8的液体氮盘管出口gc分二路:一路与液体氮节流阀J2连接后进低压分馏塔7,接口Ln,另一路经调节阀F1后与液氮储罐11相接;高压分馏塔6的低纯度液体氮出口f引出的细管依序与氩气分馏系统10中的精氩提纯塔20的下换热器21、制氩用液体污氮小节流阀J5和上换热器22连接后,与从低压分馏塔7出口n2出来的低纯氮气管相汇在n3后,进入过冷器8的低纯氮气盘管;过冷器8的低纯氮气盘管的出口与主热交换器5的低纯度氮气的低温端入口连接,连接点n4;低纯度氮气在主热交换器5中的废氮气通道通过,其高温端出口n5与废氮气加热器16连接,同时还与放气阀F7相接;废氮气加热器16的出口与分子筛吸附系统4的氮气入口连接,连接点n6;分子筛吸附系统4的氮气出口n7通大气;低压分馏塔7底部的液体氧出口Lo接调节阀F2后与液氧储罐12连接;氩气分馏系统10中粗氩塔19的近顶部有粗氩气出口Y1,接氩气热交换器24、经接口Y2接氢钯催化脱氧器23、经接口Y3回接氩气热交换器24、经接口Y4接精氩提纯塔20、由精氩提纯塔20的下部液氩出口接调节阀F3后再与液氩储罐9相连接;液氮储罐11、液氩储罐9和液氧储罐12都留有液氮、液氩、液氧的出口。
以上部分的连接与普通的空分装置相同,而本发明的不同之处是在空分装置中所增加的与液化天然气冷能进行热交换的氮循环制冷系统和空气冷却系统;其中:
所述与液化天然气冷能进行热交换的氮循环制冷系统,是具有氮内循环和氮外循环的联合制冷系统,它包括:低压氮气压缩机13、高压氮气压缩机14、外循环中压氮气压缩机28、LNG热交换器25、低-高压循环氮气热交换器26、主热交换器5中的循环氮气回热通道S9→S10、内循环氮节流阀J4、外循环氮节流阀J7和J8及其连接管路等;
所述LNG热交换器25中设有:下进上出的液化天然气吸热管LNG1→NG2、上进下出的次高压内循环氮气放热管SN4→SN5、上进下出的高压内循环氮气放热管SN6→SN7、上进下出的中压外循环氮气放热通道S11→S12和上进下出的高压外循环氮气放热管S15→S16;
所述低-高压循环氮气热交换器26中设有:上进下出的高压内循环氮气放热管SN7→SN8、下进上出的低压内循环氮气回热通道SN1→SN2、上进下出高压外循环氮气放热管S16→S17和下进上出的中压外循环氮气回热管S13→S12;
所述与液化天然气冷能进行热交换的氮内循环制冷系统的连接方式顺序是:自低压分馏塔7顶部纯氮气出口n1起,接过冷器8,接低-高压循环氮气热交换器26的低压内循环氮气回热通道SN1→SN2,经调节阀F6,接低压氮气压缩机13,接LNG热交换器25的次高压内循环氮气放热管SN4→SN5,接高压氮气压缩机14,接LNG热交换器25的高压内循环氮气放热管SN6→SN7,接低-高压循环氮气热交换器26的高压内循环氮气放热管SN7→SN8,接内循环氮节流阀J4,经交汇口SN14接至高压分馏塔6的液氮入口e;
所述与液化天然气冷能进行热交换的氮外循环制冷系统的连接方式顺序是:自与高压分馏塔6中上部的氮气出口d相接的单向阀DF1的出口和节流阀J7的出口交汇点S9起,接主热交换器5的循环氮气回热通道S9→S10,接调节阀F4,接LNG热交换器25的中压外循环氮气放热通道S11→S12,接外循环中压氮气压缩机28,接LNG热交换器25的高压外循环氮气放热管S15→S16,接低-高压循环氮气热交换器26的高压外循环氮气放热管S16→S17,在接口S17之后分二路分别接外循环氮节流阀J7和J8;节流阀J7之后接主热交换器5的循环氮气回热通道S9→S10的入口S9(即单向阀DF1的出口和节流阀J7的出口交汇点S9),并从入口S9引一旁路接调节阀F8,再接低-高压循环氮气热交换器26的中压外循环氮气回热通道S13→S12;节流阀J8的出口与节流阀J4的出口交汇于SN14后,再接至高压分馏塔6的液氮入口e;
低压氮气压缩机13、高压氮气压缩机14和外循环中压氮气压缩机28为透平式,三者可共用一台电机27;LNG热交换器25为盘管式,管间流动的是来自主热交换器5的外循环氮气;低-高压循环氮气热交换器26为盘管式,管间流动的是低压循环氮气;主热交换器5为板式热交换器。
所述与液化天然气冷能进行热交换的空气冷却系统包括:天然气回温热交换器15、冷却循环泵17、空气冷却器3和连接管路及冷却回路中的载冷剂;所述载冷剂为氟利昂类制冷工质或防冻液;所述空气冷却系统的载冷剂循环回路连接方式是:天然气回温热交换器15的载冷剂通路的出口R1接冷却循环泵17,继而接空气冷却器3的载冷剂通道R2→R3,而后接至天然气回温热交换器15的载冷剂通道的入口;天然气回温热交换器15的天然气通路的入口与主热交换器5中液化天然气吸热管的出口NG2连接,其天然气通路的出口NG3与调节供气阀F5连接。
载冷剂可选用氟利昂R22或R134a,也可以选用防冻液,如二醇溶液;天然气回温热交换器15可采用盘管式,管间流动的是载冷剂;冷却循环泵17可采用旋转式。
实施例1的空气分离装置是这样运行的:
空气经空气过滤器1过滤去除灰尘杂质后进入空气压缩机2被压缩到0.5MPa以上,压缩空气在空气冷却器3中被载冷剂降温至1~5℃(274~278K),进入分子筛吸附系统4,由分子筛吸附掉空气中的水份和二氧化碳后进入主热交换器5的高压空气换热通道A5→A6;主热交换器5中还设有下进上出的中压循环氮气回热通道SN9→SN10和低纯度废氮气通道n4→n5,压缩空气被返流的-180℃(93K)左右的中压循环氮气和低纯度废氮气所冷却,成为饱和态湿空气,而后进入高压分馏塔6的入口a;
在高压分馏塔6内,空气与从塔顶流下的液氮在多层的塔板上反复冷凝和蒸发,含有较多液氧成分的富氧液空集于高压分馏塔6的底部,氮气集于高压分馏塔6的顶部,并与低压分馏塔7底部液氧交换热量,然后氮气被冷凝成液体;
高压分馏塔6顶部液氮收集器收集的液氮由出口c引出,经过冷器8进一步降温,再经液体氮节流阀J2降压至0.14MPa左右,进入低压分馏塔7顶部的接口Ln,作为低压分馏塔7顶部的回流液,另一部分经调节阀F1后流放到液氮储罐11储存;
高压分馏塔6底部的富氧液空从出口b流出后经过冷器8冷却,再经液体空气节流阀J1降压后,进入氩气分馏系统10的粗氩塔19,富氧液空在氩气分馏系统10中被初步提取氩气后又经与低压分馏塔7连接的液体空气的管路从低压分馏塔7中部的接口L1、L2流到低压分馏塔7内,低压分馏塔7内的富氩空气由连接管路g1进入粗氩塔19,粗氩塔19中的空气经连接管路g2返回低压分馏塔7;经低压分馏塔7分馏后高纯度液氧集于低压分馏塔7底部,并从接口Lo经调节阀F2放至液氧储罐12储存;
低压分馏塔7顶部出口n1流出的高纯氮气,经过冷器8回收部分冷量后,进入低-高压循环氮气热交换器26的低压内循环氮气回热通道SN1→SN2,把冷量传给上进下出的高压内循环氮气放热管SN7→SN8的高压循环氮气,升温至约110~150K(-163~-123℃),而后进入低压氮气压缩机13进行压缩,压缩至1.0MPa以上、出口温度超过220K(-53℃)以后,进入LNG热交换器25的次高压内循环氮气放热管SN4→SN5,放出热量给LNG,温度降回到约120~150K(-153~-123℃),再进入高压氮气压缩机14压缩至5.0~5.5MPa,再进入LNG热交换器25的高压内循环氮气放热管SN6→SN7放出热量给LNG,温度降至约115~150K(-158~-123℃)后,再进入低-高压循环氮气热交换器26的高压内循环氮气放热管SN7→SN8,进一步降温至约100K(-173℃),而后经内循环氮节流阀J4节流降压到约0.5MPa,产生大量液氮和部分饱和氮气,而后经交汇口SN14进入高压分馏塔6的液氮入口e;
自高压分馏塔6中上部的氮气出口d引出的中压循环氮气,只是在装置刚开动初期,经单向阀DF1,进主热交换器5的中压循环氮气回热通道S9→S10;在装置正常运行时外循环的氮气不再从高压分馏塔6中上部的氮气出口d引出,而引自氮节流阀J7节流后的低温氮气;约90~100K(-183~-173℃)的低温外循环氮气在主热交换器5的中压循环氮气回热通道S9→S10中把冷量传给压缩空气,同时自身回热到接近压缩空气进入主热交换器入口的温度,经调节阀F4调节到合适的流量,而后进入LNG热交换器25的中压外循环氮气放热通道S11→S12,重新被液化天然气冷却至120~150K(-153~-123℃)左右,再进入外循环中压氮气压缩机28、把氮气压缩到3~5MPa,出口的循环氮气温度约高于190K(-83℃),而后进入LNG热交换器25的高压外循环氮气放热管S15→S16,吸收LNG冷量降温至115~140K(-158~-133℃)左右、再进入低-高压循环氮气热交换器26的高压外循环氮气放热管S16→S17,再进一步降温至约100K(-173℃);当装置起动之初,关节流阀J7、开节流阀J8,让循环氮气进入分离塔,参与分馏;当循环管内已充满高纯氮气之后,关闭节流阀J8,开通外循环氮节流阀J7和调节阀F8,节流后压力也在约0.5MPa,上述回路外循环氮制冷系统正常运行;该系统外循环的氮气起制冷和传输LNG冷能给压缩空气、内循环压缩氮气和外循环压缩氮气的作用,而不进入分馏塔,因而可避免因天然气泄漏而进入分馏塔与氧化合引起的危险;
低压分馏塔7上部出口n2流出的低纯度氮气,与从高压分馏塔6中部出口f引出的、流经氩气分馏系统10中精氩提纯塔20的下换热器21和制氩用液体污氮小节流阀J5及上换热器22的氮气在接口n3处汇合,而后经过令器8换热后温度约在90K(-183℃)进入主热交换器5的废氮气通道n4→n5,在主热交换器中吸收压缩空气的热量并被回热,最终在出口n5处被回热至接近于A5入口处的压缩空气温度;将该回热至室温的低纯氮气在废氮气加热器16被电热器加热后,送到分子筛吸附系统4,去脱附已饱和的分子筛中的水份和二氧化碳,使之再生,或由阀F7放空;
富氩液空在氩气分馏系统10中经粗氩塔19初步分馏后,经热交换器24换热、在脱氧器23中经加氢钯催化脱氧,再经热交换器24回热后,送到精氩提纯塔20提纯,液氩经开关阀F3存于液氩储罐9中;
流过液化天然气换热管LNG1→NG2的液体天然气在LNG热交换器25中吸收循环氮气的热量后温度仍较低,于是被引到天然气回温换热器15,使载冷剂冷凝,载冷剂液体被冷却循环泵17送至空气冷却器3的载冷剂通道,被压缩空气加热蒸发,同时压缩空气被冷却,可冷至1~5℃(274~278K)。
该装置和不用LNG冷能的、同样日生产量为液氧330吨、液氮300吨、液氩17吨的常规空气分离装置相比,节约用电约30~33万千瓦时/日,使用初始温度-162℃(111K)、压力为1~8MPa的液化天然气700吨/日的冷能,节省了循环氮气量约3/4,使循环氮的压缩机投资成本降低50%以上,并可省去300~500冷吨普通冷水机组一套,综合总投资经费可节约10~20%,约节约1000~2000万元,年节电9千万~1亿千瓦时,约6000万元,有巨大经济效益。
实施例2的空气分离装置与实施例1的不同设备及其连接路线是(见附图2所示):
在所述LNG热交换器25的顶部增设一个前置外循环氮气预冷器29,其中只设有液化天然气与来自主热交换器5的循环氮气的两换热流道,其液化天然气换热流道的入口接自LNG热交换器25的液化天然气吸热管LNG1→NG2的出口,其液化天然气换热流道的出口接天然气回温热交换器15的天然气通路的入口,其循环氮气换热流道的入口与主热交换器5的循环氮气回热通道的出口S10连接,其出口接调节阀F4后,接至LNG热交换器25的中压外循环氮气放热通道S11→S12的入口S11。这对于高压LNG系统有效。前置外循环氮气预冷器29可采用盘管式换热器,管间流动的是来自主热交换器5的中压外循环氮气;
另外,LNG热交换器25中的液化天然气吸热管也可下移一段至所述的低-高压循环氮气热交换器26的中上部,即其入口与液化天然气站18的低温液化天然气供应管口对接,其出口接LNG热交换器25的液化天然气吸热管LNG1→NG2的入口;液化天然气站18的低温液化天然气供应管先进入低-高压循环氮气热交换器26的中上部,把LNG的低温冷量先集中供给低-高压循环氮气热交换器26中自上而下的高压循环氮气,而后进入LNG热交换器25的液化天然气吸热管LNG1→NG2;这对于LNG冷能被利用之后必须保持6~8Mpa气压的工况的系统是有利的;
如果还想利用本发明的装置生产氧气或纯氮气,可以根据已有技术在装置中增加相应的管路。如实施例2中所设的氧气管路:从低压分馏塔7的底部、液氧出口的上方设一气氧的出口Go,经连接管进入主热交换器5中另设的氧气回热通道,在主热交换器5中回热至室温后经调节阀F8送出;
再者,装置中的氩气分馏系统10还可简化:省去氢钯催化脱氧器23和热交换器24,而在粗氩塔19和精氩塔20内放置规则蜂窝状填料分馏器,液空经节流阀J1进入低压分馏塔7,液空另设支路经节流阀J3进入粗氩塔19顶部冷凝器,富氩空气由低压分馏塔7的出口g1进入粗氩塔19下部,被抽取了氩气的液空经接口L1返回低压分馏塔7,粗氩塔19顶部有被抽取了氩气的饱和空气经接口g2返回低压分馏塔7,粗氩塔19近顶部有粗氩气直接进入精氩塔20的中部,精氩塔20的下换热器21和上换热器22置于塔内、所需的液氮加热和冷却回路与实施例1相同。
在实施例1和实施例2的装置中,也可在所述高压分馏塔6中部的f出口另接一低纯度的液体氮管路,经过冷器8、液体污氮主节流阀、接至低压分馏塔7上部的污氦接口,这样低压分馏塔7上部就又有一股液氮回流液,对于获得高纯氮气有好处。
附图3所示的空气冷却系统是一种冷凝蒸发换热器形式的空气冷却集成设备。该设备是集天然气回温热交换器15和空气冷却器3于一体的冷凝蒸发换热器;所述冷凝蒸发换热器是个箱体,由箱壳30、天然气回温热交换器15、空气冷却器3和箱内氟里昂工质31组成;天然气回温热交换器15置于箱体内上部作为氟里昂工质的冷凝器,留有与天然气连接的进口NG2和出口NG3,空气冷却器3置于箱体内下部作为氟里昂工质的蒸发器,留有与压缩空气连接的进口A3和出口A4,这样,就省去了冷却循环泵17。氟里昂工质选用R22或R134a,充注压力为0.1~0.5MPa,饱和温度235~270K(-38~-3℃);工作时,液体氟里昂聚于箱底部被压缩空气加热蒸发,在箱顶部的蒸气氟里昂被低温天然气所冷却而凝结为液体,靠自身重量滴落于箱底。该冷凝蒸发换热器是大型的热管换热交换器,有很高的传热效率。

Claims (5)

1、一种利用液化天然气冷能的空气分离装置,包括:吸入空气的过滤器(1),空气压缩机(2),空气冷却器(3),分子筛吸附系统(4),主热交换器(5),高压分馏塔(6),低压分馏塔(7),过冷器(8),氩气分馏系统(10),液氩储罐(9),液氮储罐(11),液氧储罐(12),液体空气节流阀(J1),液体氮节流阀(J2),制氩用液氮小节流阀(J5),液氮开关阀(F1),液氧开关阀(F2),液氩开关阀(F3)以及连接管路,辅助系统的废氮气加热器(16);所述主热交换器(5)中设有:上进下出的高压空气换热通道(A5→A6)、下进上出的低纯度废氮气通道(n4→n5),其特征在于:装置中还包括:与液化天然气冷能进行热交换的氮循环制冷系统和空气冷却系统;所述主热交换器(5)增设有循环氮气回热通道(S9→S10);其中:
1.1、所述与液化天然气冷能进行热交换的氮循环制冷系统,是具有氮内循环和氮外循环的联合制冷系统,它包括:低压氮气压缩机(13)、高压氮气压缩机(14)、外循环中压氮气压缩机(28)、LNG热交换器(25)、低-高压循环氮气热交换器(26)、主热交换器(5)中的循环氮气回热通道(S9→S10)、内循环氮节流阀(J4)、外循环氮节流阀(J7和J8)及其连接管路;
1.1.1、所述LNG热交换器(25)中设有:下进上出的液化天然气吸热管(LNG1→NG2)、上进下出的次高压内循环氮气放热管(SN4→SN5)、上进下出的高压内循环氮气放热管(SN6→SN7)、上进下出的中压外循环氮气放热通道(S11→S12)和上进下出的高压外循环氮气放热管(S15→S16);
1.1.2、所述低-高压循环氮气热交换器(26)中设有:上进下出的高压内循环氮气放热管(SN7→SN8)、下进上出的低压内循环氮气回热通道(SN1→SN2)、上进下出高压外循环氮气放热管(S16→S17)和下进上出的中压外循环氮气回热管(S13→S12);
1.1.3、所述与液化天然气冷能进行热交换的氮内循环制冷系统的连接方式顺序是:自低压分馏塔(7)顶部纯氮气出口(n1)起,接过冷器(8),接低-高压循环氮气热交换器(26)的低压内循环氮气回热通道(SN1→SN2),经调节阀(F6),接低压氮气压缩机(13),接LNG热交换器(25)的次高压内循环氮气放热管(SN4→SN5),接高压氮气压缩机(14),接LNG热交换器(25)的高压内循环氮气放热管(SN6→SN7),接低-高压循环氮气热交换器(26)的高压内循环氮气放热管(SN7→SN8),接内循环氮节流阀(J4),经交汇口(SN14)接至高压分馏塔(6)的液氮入口(e);
1.1.4、所述与液化天然气冷能进行热交换的氮外循环制冷系统的连接方式顺序是:自与高压分馏塔(6)中上部的氮气出口(d)相接的单向阀(DF1)的出口和节流阀(J7)的出口交汇点(S9)起,接主热交换器(5)的循环氮气回热通道(S9→S10),接调节阀(F4),接LNG热交换器(25)的中压外循环氮气放热通道(S11→S12),接外循环中压氮气压缩机(28),接LNG热交换器(25)的高压外循环氮气放热管(S15→S16),接低-高压循环氮气热交换器(26)的高压外循环氮气放热管(S16→S17),在接口(S17)之后分二路分别接外循环氮节流阀(J7和J8);节流阀(J7)之后接主热交换器(5)的循环氮气回热通道(S9→S10)的入口(S9),并从入口(S9)引一旁路接调节阀(F8),再接低-高压循环氮气热交换器(26)的中压外循环氮气回热通道(S13→S12);节流阀(J8)的出口与节流阀(J4)的出口交汇于(SN14)后,再接至高压分馏塔(6)的液氮入口(e);
1.2、所述与液化天然气冷能进行热交换的空气冷却系统包括:天然气回温热交换器(15)、冷却循环泵(17)、空气冷却器(3)和连接管路及冷却回路中的载冷剂;所述载冷剂为氟利昂类制冷工质或防冻液;所述空气冷却系统的载冷剂循环回路连接方式是:天然气回温热交换器(15)的载冷剂通路的出口(R1)接冷却循环泵(17),继而接空气冷却器(3)的载冷剂通道(R2→R3),而后接至天然气回温热交换器(15)的载冷剂通道的入口;天然气回温热交换器(15)的天然气通路的入口与主热交换器(5)中液化天然气吸热管的出口(NG2)连接,其天然气通路的出口(NG3)与调节供气阀(F5)连接。
2、一种利用液化天然气冷能的空气分离装置,包括:吸入空气的过滤器(1),空气压缩机(2),空气冷却器(3),分子筛吸附系统(4),主热交换器(5),高压分馏塔(6),低压分馏塔(7),过冷器(8),氩气分馏系统(10),液氩储罐(9),液氮储罐(11),液氧储罐(12),液体空气节流阀(J1),液体氮节流阀(J2),制氩用液氮小节流阀(J5),液氮开关阀(F1),液氧开关阀(F2),液氩开关阀(F3)以及连接管路,辅助系统的废氮气加热器(16);所述主热交换器(5)中设有:上进下出的高压空气换热通道(A5→A6)、下进上出的低纯度废氮气通道(n4→n5),其特征在于:装置中还包括:与液化天然气冷能进行热交换的氮循环制冷系统和空气冷却系统;所述主热交换器(5)增设有循环氮气回热通道(S9→S10);其中:
1.1、所述与液化天然气冷能进行热交换的氮循环制冷系统,是具有氮内循环和氮外循环的联合制冷系统,它包括:低压氮气压缩机(13)、高压氮气压缩机(14)、外循环中压氮气压缩机(28)、LNG热交换器(25)、低-高压循环氮气热交换器(26)、主热交换器(5)中的循环氮气回热通道(S9→S10)、内循环氮节流阀(J4)、外循环氮节流阀(J7和J8)及其连接管路;
1.1.1、所述LNG热交换器(25)中设有:下进上出的液化天然气吸热管(LNG1→NG2)、上进下出的次高压内循环氮气放热管(SN4→SN5)、上进下出的高压内循环氮气放热管(SN6→SN7)、上进下出的中压外循环氮气放热通道(S11→S12)和上进下出的高压外循环氮气放热管(S15→S16);
1.1.2、所述低-高压循环氮气热交换器(26)中设有:上进下出的高压内循环氮气放热管(SN7→SN8)、下进上出的低压内循环氮气回热通道(SN1→SN2)、上进下出高压外循环氮气放热管(S16→S17)和下进上出的中压外循环氮气回热管(S13→S12);
1.1.3、所述与液化天然气冷能进行热交换的氮内循环制冷系统的连接方式顺序是:自低压分馏塔(7)顶部纯氮气出口(n1)起,接过冷器(8),接低-高压循环氮气热交换器(26)的低压内循环氮气回热通道(SN1→SN2),经调节阀(F6),接低压氮气压缩机(13),接LNG热交换器(25)的次高压内循环氮气放热管(SN4→SN5),接高压氮气压缩机(14),接LNG热交换器(25)的高压内循环氮气放热管(SN6→SN7),接低-高压循环氮气热交换器(26)的高压内循环氮气放热管(SN7→SN8),接内循环氮节流阀(J4),经交汇口(SN14)接至高压分馏塔(6)的液氮入口(e);
1.1.4、所述与液化天然气冷能进行热交换的氮外循环制冷系统的连接方式顺序是:自与高压分馏塔(6)中上部的氮气出口(d)相接的单向阀(DF1)的出口和节流阀(J7)的出口交汇点(S9)起,接主热交换器(5)的循环氮气回热通道(S9→S10),接调节阀(F4),接LNG热交换器(25)的中压外循环氮气放热通道(S11→S12),接外循环中压氮气压缩机(28),接LNG热交换器(25)的高压外循环氮气放热管(S15→S16),接低-高压循环氮气热交换器(26)的高压外循环氮气放热管(S16→S17),在接口(S17)之后分二路分别接外循环氮节流阀(J7和J8);节流阀(J7)之后接主热交换器(5)的循环氮气回热通道(S9→S10)的入口(S9),并从入口(S9)引一旁路接调节阀(F8),再接低-高压循环氮气热交换器(26)的中压外循环氮气回热通道(S13→S12);节流阀(J8)的出口与节流阀(J4)的出口交汇于(SN14)后,再接至高压分馏塔(6)的液氮入口(e);
1.2、所述与液化天然气冷能进行热交换的空气冷却系统是一个集天然气回温热交换器(15)和空气冷却器(3)于一体的冷凝蒸发换热器;所述冷凝蒸发换热器是个箱体,由箱壳(30)、天然气回温热交换器(15)、空气冷却器(3)和箱内氟里昂工质(31)组成;天然气回温热交换器(15)置于箱体内的上部作为氟里昂工质的冷凝器,留有与天然气连接的进口(NG2)和出口(NG3),空气冷却器(3)置于箱体内的下部作为氟里昂工质的蒸发器,留有与压缩空气连接的进口(A3)和出口(A4)。
3、如权利要求1或2所述的利用液化天然气冷能的空气分离装置,其特征在于:所述LNG热交换器(25)的顶部增设一个前置外循环氮气预冷器(29);所述外循环氮气预冷器(29)中只设有液化天然气与来自主热交换器(5)的循环氮气的两换热流道,其液化天然气换热流道的入口接自LNG热交换器(25)的液化天然气吸热管(LNG1→NG2)的出口,其液化天然气换热流道的出口接天然气回温热交换器(15)的天然气通路的入口,其循环氮气换热流道的入口与主热交换器(5)的循环氮气回热通道的出口(S10)连接,其出口接调节阀(F4)后,接至LNG热交换器(25)的中压外循环氮气放热通道(S11→S12)的入口(S11)。
4、如权利要求1或2所述的利用液化天然气冷能的空气分离装置,其特征在于:所述低-高压循环氮气热交换器(26)的中上部增设液化天然气的换热流道,其入口与液化天然气站(18)的低温液化天然气供应管口对接,其出口接LNG热交换器(25)的液化天然气吸热管(LNG1→NG2)的入口。
5、如权利要求3所述的利用液化天然气冷能的空气分离装置,其特征在于:所述低-高压循环氮气热交换器(26)的中上部增设液化天然气的换热流道,其入口与液化天然气站(18)的低温液化天然气供应管口对接,其出口接LNG热交换器(25)的液化天然气吸热管(LNG1→NG2)的入口。
CNB011271337A 2001-08-19 2001-08-19 利用液化天然气冷能的空气分离装置 Expired - Fee Related CN1178038C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011271337A CN1178038C (zh) 2001-08-19 2001-08-19 利用液化天然气冷能的空气分离装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011271337A CN1178038C (zh) 2001-08-19 2001-08-19 利用液化天然气冷能的空气分离装置

Publications (2)

Publication Number Publication Date
CN1407303A CN1407303A (zh) 2003-04-02
CN1178038C true CN1178038C (zh) 2004-12-01

Family

ID=4667123

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011271337A Expired - Fee Related CN1178038C (zh) 2001-08-19 2001-08-19 利用液化天然气冷能的空气分离装置

Country Status (1)

Country Link
CN (1) CN1178038C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357684C (zh) * 2004-10-28 2007-12-26 苏州市兴鲁空分设备科技发展有限公司 一种空气分离的方法和装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231784B2 (en) * 2004-10-13 2007-06-19 Praxair Technology, Inc. Method for producing liquefied natural gas
EP1715267A1 (en) * 2005-04-22 2006-10-25 Air Products And Chemicals, Inc. Dual stage nitrogen rejection from liquefied natural gas
CN100363699C (zh) * 2005-04-25 2008-01-23 林福粦 回收液化天然气冷能的空气分离系统
US7552599B2 (en) * 2006-04-05 2009-06-30 Air Products And Chemicals, Inc. Air separation process utilizing refrigeration extracted from LNG for production of liquid oxygen
FR2920866A1 (fr) * 2007-09-12 2009-03-13 Air Liquide Ligne d'echange principale et appareil de separation d'air par distillation cryogenique incorporant une telle ligne d'echange
CN101832696A (zh) * 2010-04-29 2010-09-15 中国海洋石油总公司 液化天然气冷能储蓄用于空气分离的方法
CN101846436A (zh) * 2010-05-27 2010-09-29 中国海洋石油总公司 利用lng冷能的全液体空气分离装置
CN101943512B (zh) * 2010-09-29 2012-08-29 中国海洋石油总公司 一种利用液化天然气冷能的空分方法
CN103782120A (zh) * 2011-06-21 2014-05-07 琳德股份公司 用于冷能回收的方法和设备
CN103486823B (zh) * 2013-09-29 2015-09-30 天津凯德实业有限公司 一种移动式油田制氮液化装置
CN104792113B (zh) * 2014-01-22 2018-09-28 北京中科富海低温科技有限公司 氦液化器及其控制方法
CN104019629B (zh) * 2014-05-14 2016-01-06 中国海洋石油总公司 一种可与接收站冷能供应相匹配的空气分离方法
CN104807286B (zh) * 2014-10-31 2016-02-03 刘继福 回收利用lng冷能的氮气液化系统
CN107702432B (zh) * 2017-11-06 2024-02-09 翁志远 气体制备系统及利用空气分离和制备设备进行发电的系统
WO2019127343A1 (zh) * 2017-12-29 2019-07-04 乔治洛德方法研究和开发液化空气有限公司 一种基于深冷精馏生产空气产品的方法及设备
CN110017628A (zh) * 2018-01-10 2019-07-16 毛文军 一种基于氩循环的lng冷能利用系统及方法
CN109268681A (zh) * 2018-07-23 2019-01-25 上海加力气体有限公司 一种汽化站低温液体冷量回收系统
CN109665080B (zh) * 2019-01-25 2020-03-27 集美大学 水下航器空气净化系统
CN110440135A (zh) * 2019-08-13 2019-11-12 青岛科技大学 一种基于LNG冷能的VOCs回收系统
CN115342597A (zh) * 2022-07-01 2022-11-15 中国石油化工股份有限公司 一种lng冷能用于空气分离与海水淡化系统及其综合利用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357684C (zh) * 2004-10-28 2007-12-26 苏州市兴鲁空分设备科技发展有限公司 一种空气分离的方法和装置

Also Published As

Publication number Publication date
CN1407303A (zh) 2003-04-02

Similar Documents

Publication Publication Date Title
CN1178038C (zh) 利用液化天然气冷能的空气分离装置
CN104807286B (zh) 回收利用lng冷能的氮气液化系统
CN109838975B (zh) 一种低能耗液氮制取装置及工艺
CN109186179B (zh) 全精馏提氩富氧空分装置及工艺
CN101886871B (zh) 一种空气分离制取压力氧气的方法及装置
CN108061428A (zh) 一种纯氮制取装置和工艺
CN104807289B (zh) 利用lng冷能空分制取液氧液氮的方法
CN201377961Y (zh) 多工况空分设备
CN101846436A (zh) 利用lng冷能的全液体空气分离装置
CN100390481C (zh) 空气分离装置
CN109442867A (zh) 一种新型外增压内液化纯氮制取装置及方法
CN102047057A (zh) 分离空气的方法和设备
CN1141547C (zh) 氮的产生方法和设备
CN109084528B (zh) 一种新增制氮塔的深冷空分系统
CN2499774Y (zh) 利用液化天然气冷能的空气分离装置
CN1038514A (zh) 生产高压氧和高压氮的空气分离流程
CN101915495A (zh) 利用液化天然气冷能的全液体空气分离装置及方法
CN113137828A (zh) 一种利用液化天然气终端冷能制取富氧的系统和方法
CN207865821U (zh) 一种低能耗双塔纯氮制取装置
CN103666585B (zh) 一种低温甲醇洗工艺和co2压缩工艺的耦合方法及系统
CN201876055U (zh) 利用液化天然气冷能的全液体空气分离装置
CN100357684C (zh) 一种空气分离的方法和装置
CN101464085B (zh) 一种超低压单塔深冷空分工艺
CN207751221U (zh) 一种lng冷能利用的热泵空气分离系统
CN209165910U (zh) 一种新型外增压内液化纯氮制取装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee