CN104019629B - 一种可与接收站冷能供应相匹配的空气分离方法 - Google Patents

一种可与接收站冷能供应相匹配的空气分离方法 Download PDF

Info

Publication number
CN104019629B
CN104019629B CN201410203736.9A CN201410203736A CN104019629B CN 104019629 B CN104019629 B CN 104019629B CN 201410203736 A CN201410203736 A CN 201410203736A CN 104019629 B CN104019629 B CN 104019629B
Authority
CN
China
Prior art keywords
air
nitrogen
liquid
lng
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410203736.9A
Other languages
English (en)
Other versions
CN104019629A (zh
Inventor
江克忠
夏永强
江蓉
张磊
赖勇杰
王玉川
魏林瑞
胡钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Offshore Oil Corp CNOOC
CNOOC Energy Technology and Services Ltd
Original Assignee
China National Offshore Oil Corp CNOOC
CNOOC Energy Technology and Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Offshore Oil Corp CNOOC, CNOOC Energy Technology and Services Ltd filed Critical China National Offshore Oil Corp CNOOC
Priority to CN201410203736.9A priority Critical patent/CN104019629B/zh
Publication of CN104019629A publication Critical patent/CN104019629A/zh
Application granted granted Critical
Publication of CN104019629B publication Critical patent/CN104019629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • F25J3/04272The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Abstract

本发明公开了一种可与接收站冷能供应相匹配的空气分离方法,包括以下步骤:当LNG供应充足时,来自空分系统的氮气经多次压缩后与LNG多次换热,获得高压过冷液氮,为空分系统提供冷量;从高压过冷液氮中抽出一股液氮并节流后与第二股原料空气换热,液氮升温成低压氮气,并汇入与LNG换热的氮气中,第二股原料空气降温液化成液空,液空形成储备液空,当LNG供应不足时,将储备液空送入空分系统的上塔,为空分系统提供冷量及部分分离空气,此时,LNG与来自空分系统的氮气没有热交换,LNG与原料空压机的冷却液换热,升温至管输温度后送入天然气管线。本发明能够使空气分离方法对LNG冷能的需求与LNG冷能的供应很好地相匹配。

Description

一种可与接收站冷能供应相匹配的空气分离方法
技术领域
本发明涉及一种空气分离方法,特别涉及一种利用液化天然气冷能、但液化天然气冷能供应又不稳定的空气分离方法。
背景技术
中国发明专利文献CN101943512B在2011年1月12日公开了一种利用液化天然气冷能的空气分离方法,这种空气分离方法要求液化天然气的冷能要连续不间断稳定供应。但是,接收站的LNG总是白天气化多,可供应的冷能充裕,晚上LNG气化少,可供应的冷能不足。这种对LNG冷能需求与供应之间的矛盾严重影响了上述利用液化天然气冷能的空气分离方法的应用,也严重影响了不稳定LNG冷能的充分利用。
发明内容
本发明为解决公知技术中存在的技术问题而提供一种可与接收站冷能供应相匹配的空气分离方法。
本发明为解决公知技术中存在的技术问题所采取的技术方案是:第一股原料空气冷却后进入空气分离系统的下塔进行初步分离;当LNG供应充足时,来自空气分离系统的氮气经多次压缩后与LNG多次换热,获得高压过冷液氮,为空气分离系统提供冷量,LNG换热后升温至管输温度送入天然气管线;
从高压过冷液氮中抽出一股液氮与第二股原料空气换热,液氮升温成低压氮气,并汇入与LNG换热的氮气中,第二股原料空气降温液化成液空LA,液空LA形成储备液空LA存入液空贮槽,当LNG供应不足时,将储备液空LA送入空分系统的上塔,为空分系统提供冷量及部分分离空气,此时,LNG与来自空气分离系统的氮气没有热交换,LNG与原料空压机的冷却液换热,升温至管输温度后送入天然气管线。
当LNG供应充足时,从高压过冷液氮中抽出一股并节流后过冷作为液氮产品,从高压过冷液氮中抽出一股液氮与出入下塔顶部的压力氮气换热,为空气分离系统提供冷量,液氮换热升温成循环压力氮气,循环压力氮气进一步升温后与LNG换热,形成高压过冷液氮。
当LNG供应充足时,从高压过冷液氮中抽出一股作为复热液氮,从高压过冷液氮中抽出一股作为过冷液氮,过冷液氮被复热液氮进一步冷却成液氮产品,复热液氮升温成液氮,与第二股原料空气换热,液氮被复热成低压氮气,并汇入所述低温氮气;第二股原料空气被降温液化成液空LA,液空LA分成两部分,一部分送入上塔,为空分系统提供冷量及部分分离空气,另一部分存入液空贮槽,形成储备液空LA。
当LNG供应不足时,从下塔顶部抽出一股氮气复热后送出作为氮气产品或者放空。
当LNG供应充足时,LNG与乙二醇水溶液换热,冷却后的乙二醇水溶液作为原料空压机中间冷却器和末级冷却器的冷却液。
本发明具有的优点和积极效果是:既具备了现有利用液化天然气冷能的空气分离方法可大幅度降低液体空分产品的单位电耗、可获得大量液氮产品、氩提取率高、不消耗冷却水等优点,又使利用液化天然气冷能的空气分离方法对LNG冷能的需求与接收站LNG冷能的供应很好地相匹配,使利用液化天然气冷能的空气分离方法能获得更多的应用,使接收站不稳定供应的LNG冷能获得更多的利用,完全符合节能减排、发展循环经济的大趋势,具有明显的社会效益和经济效益。
附图说明
图1为本发明实施例1的工艺流程图;
图2为本发明实施例2的工艺流程图。
图中:1、21、空气过滤器,2、空压机,3、纯化器,4、主换热器,5、下塔,6、主冷凝蒸发器,7、上塔,8、液空液氮过冷器,9、液氮-氮换热器,10、23再生用加热器,11、放空消音器,12、LNG-氮换热器,13、乙二醇水溶液循环泵,14、LNG-乙二醇水溶液换热器,15、低温低压氮气压缩机,16、低温中压氮气压缩机组,17、空压机,18、纯化器,19、空气液化器,20、液氮过冷器,21、空气过滤器,22、液空贮槽。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
本发明一种可与接收站冷能供应相匹配的空气分离方法,包括以下步骤:第一股原料空气101冷却后进入空分系统的下塔5进行初步分离;当LNG601供应充足时,来自空分系统的氮气经多次压缩后与LNG601多次换热,获得高压过冷液氮710,为空分系统提供冷量及部分分离空气,LNG601换热后升温至管输温度送入天然气管线;其特点在于:从高压过冷液氮710中抽出一股冷液氮711与第二股原料空气301换热,液氮711升温成低压氮气712,并汇入与LNG601换热的氮气中,第二股原料空气301降温液化成液空LA302,液空LA302形成储备液空LA305存入液空贮槽22,当LNG601供应不足时,将储备液空LA305送入空分系统的上塔7,为空分系统提供冷量及部分分离空气,此时,LNG601与来自空分系统的氮气没有热交换,LNG601与原料空压机的冷却液换热,升温至管输温度后送入天然气管线。
实施例1:
请参阅图1,一种可与接收站冷能供应相匹配的空分方法,包括以下步骤:
第一股空气100经空气过滤器1吸入并经空压机2多级压缩(各级冷却器用乙二醇水溶液冷却)达到0.5MPa左右,然后进空气纯化器3除去二氧化碳、水、乙炔等有害杂质,压缩净化后的第一股原料空气101送入空气分离系统的下塔5。
第二股空气200经空气过滤器21吸入并经空压机17多级压缩(各级冷却器用乙二醇水溶液冷却)达到0.4MPa左右,然后进空气纯化器18除去二氧化碳、水、乙炔等杂质,压缩净化后的第二股原料空气301送入空气液化器19,在其中被从高压过冷液氮710中引出的经节流后的液氮711冷却并液化成液空LA302,该液空302形成储备液空LA305被送入液空贮槽22,在晚上LNG冷能供应不足时,从液空贮槽22中抽出储备液空LA305与富氧液空106汇合后送入上塔7,为空气分离系统提供所需的冷量及部分分离空气。液氮711被复热气化为低压氮气712,与出主换热器4的低温低压氮气208汇合成低温氮气713,进LNG-氮换热器12与LNG601换热。
第一股原料空气101在主换热器4中与返流气体换热降温到要求温度后送入下塔5。在下塔5经初步分离后,在下塔5底部得到富氧液空106,在下塔5顶部得到压力氮气。在LNG601供应充足的白天,抽出下塔5顶部的一部分压力氮气103进入液氮-氮换热器9中被LNG-氮换热器12来的循环压力液氮708液化后返回下塔5,实现冷量的传递。下塔5顶部的其余压力氮气进入主冷凝蒸发器6,在其中被上塔7来的液氧冷凝成液氮。该液氮的一部分送回下塔以维持下塔的精馏工况,另一部分液氮107经液空液氮过冷器8过冷后节流送入上塔7顶部参与精馏。
出下塔的富氧液空106经液空液氮过冷器8过冷后节流送入上塔7中部参与上塔7的精馏。
送入上塔的液氮107、富氧液空106与主冷凝蒸发器6蒸发的气氧进行再次精馏,在上塔7顶部得到低压氮气104,并获得精馏产品液氮203,从上塔7上部得到污氮气105,从上塔中部得到氩馏分,主冷凝蒸发器6的上部与上塔7底部连通,在上塔7底部得到液氧,从主冷凝蒸发器6中抽出该液氧,经液空液氮过冷器8过冷后送出作为产品液氧201。从上塔7顶部得到的低压氮气104在液空液氮过冷器8和主换热器4中复热,由主换热器4中部设定温度位置抽出其中一部分低温低压氮气208,与来自空气液化器19的低压氮气712汇合成低温氮气713,低温氮气713进入LNG-氮换热器12,在其中被冷却到-100℃~-150℃后送入低温低压氮气压缩机15被压缩成压力氮气702,其余的低压氮气104由主换热器4复热成常温低压氮气产品210去用户或作为低压放空氮气209去放空消音器11。从上塔7上部得到的污氮气105在液空液氮过冷器8和主换热器4中复热升温,出空气分离系统后分成三路,一路污氮气206经再生用加热器23加热后,去空气纯化器18作再生用气,一路污氮气205经再生用加热器10加热后,去空气纯化器3作再生用气,一路作为放空污氮207去放空消音器11放空。氩馏分送入制氩系统制取产品液氩,该制氩系统是本行业技术人员所熟知的,在此不再累述。
循环氮气在LNG-氮换热器12内与高压的LNG601换热:压力氮气702和常温循环压力氮气211汇合后进入LNG-氮换热器12中被冷却到-100℃~-150℃后,再与从高压过冷液氮710中返流的压力氮气703汇合,汇合后的压力氮气701进入低温中压氮气压缩机组16一段入口压缩,出低温中压氮气压缩机组16一段的中压氮气704再次进入LNG-氮换热器12与LNG601换热,中压氮气704被冷却到-100℃~-150℃后,与从高压过冷液氮710中返流的中压氮气705汇合,汇合后的中压氮气706进入低温中压氮气压缩机组16的二段入口压缩,出低温中压氮气压缩机组16二段的高压氮气707进入LNG-氮换热器12被LNG601液化并过冷形成高压过冷液氮710。
高压过冷液氮710出LNG-氮换热器12后分成五股:其一节流成压力氮气703返回LNG-氮换热器12复热,与冷却后的压力氮气702、冷却后的常温循环压力氮气211汇合,回到低温中压氮气压缩机组16一段入口;其二节流成中压氮气705,中压氮气705经LNG-氮换热器12复热后与冷却后的中压氮气704汇合,进低温中压氮气压缩机组16二段入口;其三进入空气分离系统液空液氮过冷器8中继续过冷后节流送出,作为产品液氮202;其四节流成循环压力液氮708进入空气分离系统的液氮-氮换热器9,将下塔抽出的压力氮气103冷却成液体的同时本身被气化成循环压力氮气709,循环压力氮气709经主换热器4复热后形成常温循环压力氮气211,常温循环压力氮气211被送至LNG-氮换热器12冷却后回到低温中压氮气压缩机组16一段入口;其五节流成液氮711,进入空气液化器19,与第二股原料空气301换热,在将第二股原料空气301液化成液空LA302的同时本身被被气化成低压氮气712,低压氮气712汇入低温氮气713。
上述低温低压氮气压缩机15的排气压力在0.38MPa左右。低温中压氮气压缩机组16的末级出口氮气压力大于3.5MPa。
在LNG601供应充足的白天,进入接收站的液化天然气LNG601在LNG-氮换热器12中与常温循环压力氮气211和低温氮气713换热,在LNG-氮换热器12设定位置抽出大部分低温天然气602进入LNG-乙二醇水溶液换热器14与复热后的乙二醇水溶液801换热,充分利用LNG的高温段冷能,在冷却乙二醇水溶液的同时本身被升温形成复热天然气605,与从LNG-氮换热器12热端直接抽出的热端天然气603汇合后形成管输天然气604送入天然气管线。在LNG-氮换热器12的各物流流出处设置有报警联锁的碳烃化合物检测仪。在晚上LNG冷能供应不足时,从液空贮槽22中抽出储备液空LA305与节流后的富氧液空106汇合送入上塔7,为空气分离系统提供冷源及部分分离空气;LNG601直接供入LNG-乙二醇水溶液换热器14,与作为空压机2、17中间冷却器和末级冷却器冷却液的乙二醇水溶液801换热,升温到管输温度后送入天然气管线。这样,就大大减少了在晚上对LNG冷能的需求量,使空分方法可与接收站LNG的供应量相匹配。此时,LNG-氮换热器12、低温低压氮气压缩机15、低温中压氮气压缩机组16、原料空气压缩机17、纯化器18、空气液化器19和液氮-氮换热器9等机组都是停运的。
在晚上从上塔7顶部抽出的低压氮气104经主换热器4复热后送出作为低压氮气产品或者放空。从下塔5顶部抽出一股氮气714经主换热器4复热后送出作为氮气产品或者放空。
经LNG-乙二醇水溶液换热器14冷却后的乙二醇水溶液802,作为空压机2和空压机17中间冷却器和末级冷却器的冷却液,复热后的乙二醇水溶液801经乙二醇水溶液循环泵13加压后送回LNG-乙二醇水溶液换热器14。
如果需要,可在液氮202出口加液氮泵,在液氧201出口加液氧泵,在主换热器4内增设压力氮、压力氧通道,可以全部或部分生产内压缩氮、氧产品。
在本实施例中,在LNG601供应充足的白天,冷量的传递由压力氮作为循环的介质,通过LNG-氮换热器12与液氮-氮换热器9来实现。氮气经过低温低压氮气压缩机15及低温中压氮气压缩机组16的循环压缩及与LNG的不断换热,最终获得高压过冷液氮710,经节流后形成循环压力液氮708被送入液氮-氮换热器9,与下塔5顶部抽出压力氮气103换热,将压力氮气103液化的同时本身被汽化,汽化后的氮气经主换热器4复热后与低温低压氮气压缩机15出口的压力氮气702汇合送入LNG-氮换热器12被冷却,并与高压返流氮气703汇合后送入低温中压氮气压缩机组一段入口。从下塔5抽出的氮气被液化后返回下塔5顶部作为回流液,从而完成冷量的传递。
在本实施例中将压力氮作为循环的介质,通过LNG-氮换热器12及液氮-氮换热器9将冷量传输给空气分离系统精馏塔中的压力氮气103。产品液氧201由空气分离系统中的主冷凝蒸发器6中抽出并经液空液氮过冷器8过冷后送出,产品液氮一部分来自低压氮气104经低温氮气压缩机组循环增压进入LNG-氮换热器12液化节流后送入空气分离系统液空液氮过冷器8进一步过冷后再节流获得,其余部分由空分精馏获得,低温氮气压缩机组由低温低压氮气压缩机及低温中压氮气压缩机组组成。
在本实施例中,在LNG601供应不足的晚上,空气分离所需的冷量由储备液空LA305来保障供给。
本实施例有以下几个特点:
1、白天对LNG冷能的需求量大,晚上对LNG冷能的需求量少,可很好地与接收站LNG冷能的供应量相匹配;
2、白天由液氮708为空气分离提供所需的冷量,由液氮202作为主要的液氮产品。晚上由液空LA305为空气分离提供所需的冷量,并作为一部分分离空气。因此,液氧和液氩的产量是白天少晚上多,而液氮的产量是白天多而晚上少;
3、本实施例解决了利用LNG冷能的空气分离方法对LNG冷能的需求与接收站LNG冷能供应之间的矛盾,为LNG冷能空分装置的建设,为接收站LNG不稳定冷能的利用,为发展循环经济、节能减排提供了新的途径。
实施例2:
请参阅图2,一种可与接收站冷能供应相匹配的空分方法,与实施例1的主要不同是:实施例1在白天用液氮为空气分离提供所需的冷量,在晚上用液空为空气分离提供所需的冷量及部分分离空气。而本实施例则无论白天和晚上都是用液空为空气分离提供所需的冷量及部分分离空气。
在本实施例中,没有液氮-氮换热器9,因此也没有从LNG-氮换热器12中为空气分离提供循环压力液氮708及大部分液氮产品202,也没有从下塔顶部抽出的压力氮气103和氮气714。
在白天从高压过冷液氮710中引出一股作为复热液氮715,从高压过冷液氮710中引出一股作为过冷液氮716,过冷液氮716在液氮过冷器20中被复热液氮715过冷节流为液氮产品202送出,复热液氮715被升温成液氮711,进入空气液化器19与第二股原料空气301换热,液氮711被复热成低压氮气712,并汇入低温氮气713;由空气液化器19产生的液空302分成两部分,一部分液空303送入空气分离系统与节流后的富氧液空106汇合后进上塔7,为空气分离系统提供所需的冷量及部分分离空气,另一部分液空LA304存入液空贮槽22,形成储备液空LA305,在晚上从液空贮槽22中抽出储备液空LA305送入空气分离系统与节流后的富氧液空106汇合后进上塔7,为空气分离系统提供所需的冷量及部分分离空气。
从主换热器4顶部抽出的一股低压氮气212与来自空气液化器19的低压氮气712汇合成低温氮气713,低温氮气713进入LNG-氮换热器12,在其中被冷却到规定温度后送入低温低压氮气压缩机15被压缩成压力氮气702,从主换热器4顶部抽出的另一部分低压氮气作为产品210或者作为209去放空。在晚上只从上塔顶部获得液氮产品203。
综上所述,本发明提供了两个实施例,实施例1在白天用液氮为空气分离系统提供所需的冷量,在晚上用液空为空气分离系统提供所需的冷量及部分分离空气;实施例1则无论白天和晚上都用液空为空气分离系统提供所需的冷量及部分分离空气。以下作具体对比说明:
1、压缩净化后的第一股原料空气送入空气分离系统,空气分离系统包括主换热器和精馏塔系统;精馏塔系统包括上塔、下塔、主冷凝蒸发器和液空液氮过冷器;在实施例1中还包括液氮-氮换热器,在实施例2中还包括液氮过冷器;
2、压缩净化后的第二股原料空气送入空气液化器,与液氮换热后液化成液空LA;在实施例1中该液空LA存入液空贮槽,在夜间LNG冷能供应不足时从贮槽取出作为物流LA送入上塔,为空气分离系统提供冷量及一部分分离空气;在实施例2中,白天,液空LA分成两部分,一部分送入上塔,另一部分送入液空贮槽,晚上则从液空贮槽取出送入上塔,连续不断地为空气分离系统提供冷量及一部分分离空气;
3、第一股原料空气在主换热器中通过与上塔排出的低压氮气和污氮气换热而被冷却,冷却后的第一股原料空气进入下塔参与精馏;第一股原料空气经过精馏塔系统的精馏后获得液氧、液氮和液氩等产品;在实施例1中,白天进入主换热器的返流气有循环压力氮气,晚上有从下塔顶抽出的一股压力氮气;
4、经过下塔的精馏,在下塔顶部获得压力氮气,在实施例1中,白天从下塔顶部抽出一股压力氮气,在液氮-氮换热器中与LNG-氮换热器中来的循环压力液氮换热并被液化后返回下塔,将冷量传递至精馏塔系统,循环压力液氮被气化为循环压力氮气;在实施例2中则不抽压力氮气;
5、在实施例1中,白天在主换热器中部从低压氮气中抽出一股低温低压氮气,与来自空气液化器的低压氮气汇合后进入LNG-氮换热器经压缩并与LNG换热形成高压过冷液氮,循环压力氮气复热后进入LNG-氮换热器经压缩并与LNG换热形成高压过冷液氮;在实施例2中没有低温低压氮气,也没有循环压力氮气这股物流,在主换热器复热送出的低压氮气一部分作为产品或者放空,另一部分则与来自空气液化器的低压氮气汇合后进入LNG-氮换热器经压缩并与LNG换热形成高压过冷液氮。
6、LNG白天在LNG-氮换热器及乙二醇水溶液换热器中换热升温到管输温度后送入天然气管线;冷却后的乙二醇水溶液作为原料空压机中间冷却器和末级冷却器的冷却液;晚上则只经过乙二醇水溶液换热器。
两种压缩原料空气的压力是不同的。
上述LNG-氮换热器,低温低压氮气压缩机,低温中压氮气压缩机组,液氮过冷器、第二股原料空气的压缩机及纯化器和空气液化器仅在白天LNG冷能供应充裕时运行,在晚上LNG冷能供应不足时停运。
在实施例1中,在白天LNG冷能供应充裕时,由LNG-氮换热器为空气分离系统提供冷源液氮及大部分液氮产品,在晚上LNG冷能供应不足时,由液空LA为空气分离系统提供冷源及部分分离空气;在实施例2中,则不论白天和晚上,均由液空为空气分离系统提供冷源及部分分离空气。
在实施例1中,在夜间从所述上塔顶部抽出的低压氮气经主换热器复热后送出作为低压氮气产品或者放空;从下塔顶部抽出的压力氮气中抽出一股氮气经主换热器复热后送出作为氮气产品或者放空;在实施例2中,从所述上塔顶部抽出的低压氮气经主换热器复热后送出,一部分作为低压氮气产品或者放空,另一部分与从空气液化器来的低压氮气汇合;从下塔顶部抽出的压力氮气则全部进入主冷凝蒸发器。
在实施例1中,液氮产品白天由两部分组成,其中一部分是由高压过冷液氮中抽出一股,送入液空液氮过冷器中过冷并节流后送出作为液氮产品,另一部分为下塔顶部获得的氮气经主冷凝蒸发器冷凝成液氮后,经液空液氮过冷器过冷送入上塔后从上塔顶部抽取的;进入上塔顶部的其余大部分液氮则作为上塔的回流液;液氮产品在夜间就只有从上塔顶部抽取的那一部分。在实施例2中,由高压过冷液氮中抽取的一股液氮产品则在独立的液氮过冷器中被过冷后作为产品送出。
上述低温中压氮气压缩机组为二段低温进气的多级压缩机。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护范围之内。

Claims (5)

1.一种可与接收站冷能供应相匹配的空气分离方法,包括以下步骤:
第一股原料空气(101)冷却后进入空气分离系统的下塔(5)进行初步分离;当LNG(601)供应充足时,来自空气分离系统的氮气经多次压缩后与LNG(601)多次换热,获得高压过冷液氮(710),为空气分离系统提供冷量,LNG(601)换热后升温至管输温度送入天然气管线;其特征在于:
从高压过冷液氮(710)中抽出一股液氮(711)与第二股原料空气(301)换热,液氮(711)升温成低压氮气(712),并汇入与LNG(601)换热的氮气中,第二股原料空气(301)降温液化成液空LA(302),液空LA(302)形成储备液空LA(305)存入液空贮槽(22),当LNG(601)供应不足时,将储备液空LA(305)送入空分系统的上塔(7),为空分系统提供冷量及部分分离空气,此时,LNG(601)与来自空气分离系统的氮气没有热交换,LNG(601)与原料空压机的冷却液换热,升温至管输温度后送入天然气管线。
2.根据权利要求1所述的可与接收站冷能供应相匹配的空气分离方法,其特征在于:当LNG(601)供应充足时,从高压过冷液氮(710)中抽出一股并节流后过冷作为液氮产品(202),从高压过冷液氮(710)中抽出一股液氮(708)与出下塔(5)顶部的压力氮气(103)换热,为空气分离系统提供冷量,液氮(708)换热升温成循环压力氮气(709),循环压力氮气(709)进一步升温并经压缩后与LNG(601)换热,形成高压过冷液氮(710)。
3.根据权利要求1所述的可与接收站冷能供应相匹配的空气分离方法,其特征在于:当LNG(601)供应充足时,从高压过冷液氮(710)中抽出一股作为复热液氮(715),从高压过冷液氮(710)中抽出一股作为过冷液氮(716),过冷液氮(716)被复热液氮(715)进一步冷却成液氮产品(202),复热液氮(715)升温成液氮(711),与第二股原料空气(301)换热,液氮(711)被复热成低压氮气(712),并汇入低温氮气(713);第二股原料空气(301)被降温液化成液空LA(302),液空LA(302)分成两部分,一部分送入上塔(7),为空分系统提供冷量及部分分离空气,另一部分存入液空贮槽(22),形成储备液空LA(305)。
4.根据权利要求2所述的可与接收站冷能供应相匹配的空气分离方法,其特征在于:当LNG(601)供应不足时,从下塔(5)顶部抽出一股氮气(714)复热后送出作为氮气产品或者放空。
5.根据权利要求1所述的可与接收站冷能供应相匹配的空气分离方法,其特征在于:当LNG(601)供应充足时,LNG(601)与乙二醇水溶液换热,冷却后的乙二醇水溶液作为原料空压机中间冷却器和末级冷却器的冷却液。
CN201410203736.9A 2014-05-14 2014-05-14 一种可与接收站冷能供应相匹配的空气分离方法 Active CN104019629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410203736.9A CN104019629B (zh) 2014-05-14 2014-05-14 一种可与接收站冷能供应相匹配的空气分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410203736.9A CN104019629B (zh) 2014-05-14 2014-05-14 一种可与接收站冷能供应相匹配的空气分离方法

Publications (2)

Publication Number Publication Date
CN104019629A CN104019629A (zh) 2014-09-03
CN104019629B true CN104019629B (zh) 2016-01-06

Family

ID=51436517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410203736.9A Active CN104019629B (zh) 2014-05-14 2014-05-14 一种可与接收站冷能供应相匹配的空气分离方法

Country Status (1)

Country Link
CN (1) CN104019629B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322917A (zh) * 2015-06-26 2017-01-11 上海恩图能源科技有限公司 液氮液化空气并精馏分类工艺
US20200355429A1 (en) * 2017-11-29 2020-11-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic distillation method and apparatus for producing pressurized air by means of expander booster in linkage with nitrogen expander for braking
CN109140903B (zh) * 2018-08-24 2024-01-09 邢仁钊 一种利用液化天然气冷能的空分系统及空气分离方法
CN115342597A (zh) * 2022-07-01 2022-11-15 中国石油化工股份有限公司 一种lng冷能用于空气分离与海水淡化系统及其综合利用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295837B1 (en) * 1999-05-26 2001-10-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for air separation
CN1407303A (zh) * 2001-08-19 2003-04-02 中国科学技术大学 利用液化天然气冷能的空气分离装置
CN1436995A (zh) * 2002-02-07 2003-08-20 北京燕化高新技术股份有限公司 空分装置中回收放空的氧气、氮气、空气的方法
DE102009060842A1 (de) * 2008-12-29 2010-07-01 Linde Ag Luftzerlegungsanlage und Verfahren zum Betreiben derselben
CN101832696A (zh) * 2010-04-29 2010-09-15 中国海洋石油总公司 液化天然气冷能储蓄用于空气分离的方法
CN201653068U (zh) * 2010-04-06 2010-11-24 浙江大学 基于lng卫星站冷能利用的倒灌式空气分离系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137558A (en) * 1991-04-26 1992-08-11 Air Products And Chemicals, Inc. Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high presure nitrogen stream
JP3868033B2 (ja) * 1996-07-05 2007-01-17 三菱重工業株式会社 Lngボイルオフガスの再液化方法及びその装置
JP2003083674A (ja) * 2001-09-12 2003-03-19 Osaka Gas Co Ltd 空気分離設備およびその液化天然ガスの利用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295837B1 (en) * 1999-05-26 2001-10-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for air separation
CN1407303A (zh) * 2001-08-19 2003-04-02 中国科学技术大学 利用液化天然气冷能的空气分离装置
CN1436995A (zh) * 2002-02-07 2003-08-20 北京燕化高新技术股份有限公司 空分装置中回收放空的氧气、氮气、空气的方法
DE102009060842A1 (de) * 2008-12-29 2010-07-01 Linde Ag Luftzerlegungsanlage und Verfahren zum Betreiben derselben
CN201653068U (zh) * 2010-04-06 2010-11-24 浙江大学 基于lng卫星站冷能利用的倒灌式空气分离系统
CN101832696A (zh) * 2010-04-29 2010-09-15 中国海洋石油总公司 液化天然气冷能储蓄用于空气分离的方法

Also Published As

Publication number Publication date
CN104019629A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
CN101886871B (zh) 一种空气分离制取压力氧气的方法及装置
CN105783424B (zh) 利用液化天然气冷能生产高压富氧气体的空气分离方法
CN101571340B (zh) 利用液化天然气冷能的空气分离方法
CN202675796U (zh) 利用lng冷能生产液体空分产品的装置
CN105444523B (zh) 采用bog自身压缩膨胀液化bog的再液化系统及工艺
CN204115392U (zh) 带补气压缩机的全液体空分设备
CN104019629B (zh) 一种可与接收站冷能供应相匹配的空气分离方法
WO2021043182A1 (zh) 一种利用lng冷能的空分装置和方法
CN108061428A (zh) 一种纯氮制取装置和工艺
CN101943512B (zh) 一种利用液化天然气冷能的空分方法
CN106091574B (zh) 一种带压缩热回收的气体液化装置及其液化方法
CN103175381A (zh) 低浓度煤层气含氧深冷液化制取lng工艺
CN104807290A (zh) 单塔双返流膨胀制取低压氮气的装置和方法
CN109341193A (zh) 一种峰谷电生产液氧液氮装置及方法
CN203478839U (zh) 一种lng冷能梯级利用系统
CN106369935A (zh) 一种利用高压天然气管网压力能的空气分离系统及方法
CN108759311A (zh) 大液体量制取的空分装置及方法
CN104390427B (zh) 高低温双膨胀节能型制氮装置及制氮方法
CN201532078U (zh) 利用液化天然气冷能的空气分离系统
CN104110940A (zh) 一种利用液化天然气冷能的高效空分装置
CN201852409U (zh) 一种利用液化天然气冷能的空分系统
CN208751137U (zh) 一种利用液化天然气冷能的空分系统
CN101915495B (zh) 利用液化天然气冷能的全液体空气分离装置及方法
CN103712417B (zh) 一种空气增压返流膨胀内压缩空气分离的方法和装置
CN203824225U (zh) 一种可与接收站冷能供应相匹配的空分装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant