CN102033186A - 接地检测装置 - Google Patents

接地检测装置 Download PDF

Info

Publication number
CN102033186A
CN102033186A CN201010263197XA CN201010263197A CN102033186A CN 102033186 A CN102033186 A CN 102033186A CN 201010263197X A CN201010263197X A CN 201010263197XA CN 201010263197 A CN201010263197 A CN 201010263197A CN 102033186 A CN102033186 A CN 102033186A
Authority
CN
China
Prior art keywords
ground connection
circuit
detection device
ground
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010263197XA
Other languages
English (en)
Other versions
CN102033186B (zh
Inventor
吉田毅
野内隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of CN102033186A publication Critical patent/CN102033186A/zh
Application granted granted Critical
Publication of CN102033186B publication Critical patent/CN102033186B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本发明提供能够容易地检测交流侧的接地的接地检测装置。接地检测装置包括:检波电路(41),其通过耦合电容器(43)与电池(30)的电源线连接,对包含电动机(10)在内的交流侧发生接地时产生的振幅波进行检测,提取该振幅波的包络线;和测定包络线的电压电平的测定电路(42)。接地测定电路(42)将测得的电压电平与接地判定值进行比较,判定交流侧是否发生接地。由此,在将来自电池(30)的直流电转换成交流电,并利用交流电驱动电动机(10)的驱动系统的交流侧中,即使发生了接地,也能够容易地检测出来。

Description

接地检测装置
技术领域
本发明涉及接地检测装置。
背景技术
在电动汽车和混合动力汽车中,由于安装有用于使电动机或逆变器(inverter)等设备动作的高压电池,必须具备用于保护乘车人员免受高压的危害的接地检测机构。因此,制定了用于保护乘车人员免受高压的危害的技术标准。例如,必须安装进行如下动作的装置,即,监视通电部与电底盘之间的绝缘电阻,当绝缘电阻值下降到每1V工作电压100Ω时,向驾驶员发出警告。
现有的接地检测装置主要检测在高压电池侧即直流电侧发生的接地(例如,参考专利文献1)。专利文献1所述的接地检测方法中,通过检测电阻和耦合电容器向直流电源电路供给接地检测信号。然后,对检测电阻和耦合电容器的连接点即接地检测点的电压振幅,以作为周期波形(接地检测信号)的周期的1/2的采样周期加以采样,求取在采样周期的第奇数个周期与第偶数个周期所检测出的电压振幅值的差,从而对接地进行判定。
然而,因为专利文献1中公开的方法是检测电池侧(直流侧)的接地的结构,所以难以进行电动机侧(交流侧)的接地的检测。此外,在交流侧发生接地时,由于与电动机的转速相应的振幅波经由Y电容器叠加到周期波形上,上述接地判定可能会变得困难。
专利文献1:专利第3678151号公报
发明内容
本发明是一种驱动系统的接地检测装置,该驱动系统将来自直流电源的直流电转换为交流电,利用该交流电来驱动电动机,该接地检测装置的特征在于,包括:提取电路,其通过耦合电容器与直流电源的电源线连接,对包含电动机在内的交流侧发生接地时产生的振幅波进行检测,提取该振幅波的包络线;测定包络线的电压电平的测定电路;和判定电路,其将由测定电路测得的电压电平与接地判定值进行比较,判定交流侧是否发生接地。
通过本发明,能够容易地检测交流侧的接地。
附图说明
图1是说明本发明的接地检测装置的第一实施方式的图。
图2是说明交流侧发生接地的情况的图。
图3是说明振幅波的图。
图4是表示检波电路的第一例的图。
图5是表示检波电路的第二例的图。
图6是说明本发明的接地检测装置的第二实施方式的图。
图7是表示第二实施方式中的检波电路41的一个例子的图。
图8是表示电池侧接地检查中的检查信号的波形、响应波形以及包络线的图。
图9是表示电动机侧接地检查中的检查信号的波形、响应波形以及包络线的图。
图10是表示接地检测动作的一个例子的流程图。
附图标记说明:
1、主控制器
10、三相交流电动机
11、转速传感器
20、逆变器
30、电池
50、旁路(line-bypass)电容器
61、正母线
62、负母线
40、接地检测装置
41、检波电路
42、接地测定电路
43、耦合电容器
44、波形输出电路
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
第一实施方式
图1是用于说明本发明的接地检测装置的第一实施方式的图。在此,以利用电池对电动机进行逆变驱动的车辆驱动系统中的接地检测装置为例进行说明。并且,在第一实施方式中,对电动机侧(交流侧)的接地检测进行说明。
驱动系统具备主控制器1、三相交流电动机(以下称为电动机)10、逆变器20、作为直流电源的电池30以及接地检测装置40。电池30是作为高压直流电源(例如输出电压VB=340V)设置的电池组,与车体(未图示)电绝缘。电池30与逆变器20由作为直流正极输电线的正母线61和作为直流负极输电线的负母线62连接。逆变器20是将直流电转换成交流电的电力转换装置,由电池30向逆变器20供给直流电,逆变器20将直流电转换成交流电供给到电动机10。
电容器51用以构成对因开关动作而产生的直流电压的变动进行抑制的平滑电路。此外,在正母线61和负母线62设置有用于消除叠加在直流电源上的噪声的旁路电容器(Y电容器)50。逆变器20对电动机10的交流供电通过U相线63、V相线64和W相线65进行。电动机10的转速由转速传感器11测得,检测信号输入至主控制器1中。
正母线61上连接有接地检测装置40。另外,亦可将接地检测装置40与负母线62连接。接地检测装置40具备检波电路41和接地测定电路42。检波电路41是从电动机接地时电源线中产生的振幅波中提取包络线的电路,通过耦合电容器43与正母线61连接。由耦合电容器43阻断正母线61的直流成分。接地测定电路42监视检波电路41所测得的包络线的电压电平,在电压电平超过阈值时,判定电动机侧发生了接地。
图2是说明交流侧发生接地的情况的图。在此表示了电动机10的W相线发生接地的情况,接地导致在W相线与接地电位之间等效地产生接地电阻70。又因电动机10旋转时定子绕组中会产生感应电压,所以旋转的电动机10能视为电压源。因此,当电动机负荷的交流侧发生接地时,在该电压源的影响下,在电源线中产生作为电压电平的变动的振幅波。
例如,当如图2所示电动机10的W相发生接地时,电压源成为在其他相(U相、V相)中产生的二相交流电。图2中,如符号80的箭头所示,所产生的振幅波经由接地电阻70~Y电容器50的接地位置~耦合电容43这一路径,输入到接地检测装置40中。
图3是说明电动机接地时产生的振幅波的图。纵轴表示电压电平。图3(a)表示电动机10未发生接地时的波形示例图。在此情况下,由于没有产生振幅波,通过耦合电容器43连接的接地检测装置40侧的电压电平V100恒定。另一方面,当电动机10发生接地时,上述振幅波叠加到电源线的电压上,检测到如图3(b)、(c)所示的振幅波V101、V102。
振幅波V101、V102的频率根据电动机10的特性(转速、极数等)而变化。具体来说,振幅波的频率与公式f=NP/120(N:转速,P极数)算得的值相关联。图3(b)表示转速较低的情况,图3(c)表示转速较高的情况。此外,振幅波不但具有与转速N相关联的频率成分,并且转速N越高则振幅值越低。
本实施方式中,通过监视这样的电压电平的变动,即自图3(a)的线100所示的基准电平的变动ΔV,进行发生接地的判定。线111、112分别是振幅波V101、V102的包络线。包络线111、112的电压电平相对基准电压电平高出ΔV1、ΔV2。例如,在这样的电压电平的变动ΔV1、ΔV2超过阈值时判定为接地发生,但由于转速N的变化会造成变动ΔV发生变化,因而阈值的设定要根据转速传感器11所测得的转速来进行。
例如,将与转速相对应的多个阈值作为表加以存储,根据所测得的转速和表来选择阈值。当接地判定由接地检测装置40进行时,将表存储在接地检测装置40内;当接地判定由主控制器1进行时,将表存储在主控制器1内。也可以代替表将转速代入计算式中从而设定阈值。
如上所述,检波电路41是提取振幅波的包络线的电路,具体而言,具有如图4或图5所示的结构。图4所示的第一例为所谓的包络线检波电路,在二极管检波(二极管D01)的后段具有组合电阻R01和电容器C01而成的时间常数电路。通过使时间常数与信号的周期一致,能够将信号波形的包络线提取出来。通过耦合电容器43输入的振幅波被二极管D01所整流。该输出的高频成分被电容器C01除去,低频成分被电容器C01平滑。
此外,如果电容器C01和电阻R01的时间常数过大,则电容器C01放电所致的电压下降的倾斜度变得比振幅波的包络线的倾斜度更平缓,从而无法得到正常的输出波形,因此,在检波电路41中适当地设定电容器C01和电阻R01的时间常数,使得输出波形成为与输入波形的包络线相近的波形。检波电路41的部件个数少,部件本身也低廉,因此能将成本控制得较低。
接地测定电路42检测由检波电路41得到的包络线的电压。通过计算该测得的电压与基准电压电平的差值,可得到ΔV1、ΔV2。接地测定电路42基于ΔV1、ΔV2进行接地判定,例如,在ΔV1、ΔV2超过阈值时判定为发生接地。此时,变动ΔV因转速的不同而不同,因此接地判定的阈值根据转速来设定。
如图5所示的第二例中,检波电路41由具有4个二极管D02~D05的全波整流电路所构成。输入的振幅波由二极管桥全波整流,其输出由电阻R02和电容器C02的并联电路所承受。
像这样,在第一实施方式中,通过具备检波电路41,提取因电动机侧的接地而产生的振幅波的包络线,基于该包络线的电压电平的变动来检测电动机侧是否发生了接地。因此,能够容易地检测电动机侧的接地。此外,虽然包络线的电压电平根据电动机的转速而变化,但由于接地判定的阈值根据电动机的转速设定,因而能够更可靠地进行接地检测。另外,由于采用判定包络线的电压电平的结构,所以检测包络线的电路变得简单,能够实现低成本。
第二实施方式
图6是用于说明本发明的接地检测装置的第二实施方式的图。接地检测装置40具备检波电路41、接地测定电路42、耦合电容器43和波形输出电路44。第一实施方式中针对检测电动机侧的接地的接地检测装置进行了说明,而第二实施方式是能够既能够检测电动机侧(交流侧)的接地又能够检测电池侧(直流侧)的接地的结构。因此,检波电路41具备对应电动机侧的接地的电路和对应电池侧的接地的电路。
图7是表示检波电路41的一个例子的图。电路411是对应电动机侧的接地的电路,与第一实施方式的检波电路41同样地提取振幅波的包络线。具体地,具有如图4或图5所示的结构。另一方面,电路412是对应电池侧的接地的电路,具备电阻R32、电容器C33和稳压二极管D34。电路412与波形输出电路44所组成的结构,构成了一般的交流电压分压型的接地检测电路。
波形输出电路44输出具有周期波形的接地检查用的信号(以下称为检查信号)。例如,将频率10Hz、具有0-5V振幅的占空比50%的矩形波信号作为检查信号输出。检查信号叠加在作为测定对象电路的正母线61上。
交流电压分压型的接地检测中,通过检测电阻R31和耦合电容器43来施加波形输出电路44的检查信号(交流信号),根据检测电阻R31与耦合电容器43的连接点A的响应波形的振幅变化来检测绝缘电阻的变化。图8(a)表示通过耦合电容器43叠加在正母线61上的检查信号的一个例子。图8(b)和图8(c)表示在施加了如图8(a)所示的矩形波信号时连接点A处的响应波形。此外,上升时和下降时的波形失真是由延迟等引起的。
图8(b)的响应波形表示电池侧和电动机侧都未发生接地的正常时的波形。令此时的振幅为Vr1。另一方面,当电池侧发生接地时,由于车辆侧的阻抗中增加了接地电阻,所以图8(c)所示的响应波形的振幅Vr2比未发生接地时的振幅Vr1小。接地测定电路42通过捕捉该响应波形的振幅的变化来判定电池侧是否发生接地。实际上,可以预先将等同于接地时的振幅值设定为阈值,当响应波形的振幅值小于该阈值时,判定直流侧发生了接地。
图9是说明电动机侧发生了接地时的响应波形的图。图9(a)与图8(a)相同,是表示检测信号(输出波形)200的图。此外,图9(b)表示正常时的响应波形,与图8(b)相同。而图9(c)表示电动机侧发生接地时的响应波形。当电动机侧发生接地时,在图8(b)所示的波形上会叠加频率与电动机10的转速相关的振幅波。
当图9(c)所示的波形202的信号(响应波)通过用于提取振幅波的包络线的电路412时,能够提取出如图9(d)的符号203所示的包络线。图9(d)同时表示了未接地时的波形201、振幅波叠加在检查信号上而得的波形202、以及包络线203。若以未发生接地时的波形201的电压电平作为基准电平,则根据振幅波得到的包络线203的电压电平相对于基准电压产生ΔV的变动。当该电压电平的变动ΔV超过阈值时,判定为发生了接地。
接地检测动作
图10是表示图7、图8所示接地检测装置中的接地检测动作的一个例子的流程图。在此说明由主控制器来进行该控制的情况,但也可由接地测定电路42进行该控制。例如,该流程图的处理从车辆的总开关接通时开始。在步骤S100中,判定电动机10处于停止状态还是动作状态。即、当电动机的转速N为N=0时判定为停止状态,前往步骤S110。另一方面,当转速N为N>0时判定为动作状态,前往步骤S130。
当前进至步骤S110时,因为电动机10不旋转,所以即使电动机侧发生了接地也因未产生振幅波而无法得到包络线。因此,发出禁止包络线检波功能的指令,禁止利用包络线检波来进行接地检测的功能。然后,在步骤S120中,发出使DC线接地检测功能动作的指令。即,进行图9的使用了电路412的电池侧的接地检测。即,将由接地测定电路42测得的响应波形的振幅值(图8的Vr1和Vr2)与接地判定的阈值进行比较。接地判定的阈值是将绝缘电阻值换算为电压电平而得的值。
在从步骤S120前进至步骤S140时,根据步骤S120的比较结果判定电池侧是否发生接地。当振幅值低于阈值时,判定发生了接地,前往步骤S150。反之,当振幅值为阈值以上时,认为未发生接地,前往步骤S160。
当在步骤S140中判定为发生了接地、前进至步骤S150时,停止驱动系统,结束一连串的接地检测动作。另一方面,当判定未发生接地、前进至步骤S160时,使驱动系统的动作继续进行,返回步骤S100。
另一方面,当在步骤S100中判定电动机10的转速N为N>0、前进至步骤S130时,在步骤S130中,利用对电动机侧的接地加以检测的检波电路412进行接地检测动作。即、接地测定电路42对由检波电路412所得的包络线的电压电平进行测定,将其相对于基准电平的电压电平的变动ΔV与阈值进行比较。在从步骤S130前进至步骤S140时,根据步骤S130的比较结果判定电动机侧是否发生了接地。如果判定为发生了接地则前进至步骤S150,如果判定为未发生接地则前进至步骤S160。
如上所述,在第二实施方式中,除了对电池侧(直流侧)的接地进行检测的现有的接地检测装置外,还设置有用于求取因电动机侧(交流侧)的接地而产生的振幅波的包络线的电路412。而且,通过在电动机10不旋转的状态下进行电池侧的接地的检测,能够不受振幅波的影响地可靠地进行电池侧的接地的检测。若通过该检测确认电池侧未发生接地,则在电动机10旋转的状态下进行电动机侧的接地检测。若确认电动机侧未发生接地,则由电路411进行的直流侧的接地检测结果也有足够高的可信度。即、通过第二实施方式的结构,能够可靠地检测电池侧和电动机侧两者的接地,实现了安全性的提高。
上述各实施方式可以分别单独使用或组合起来使用。因为各实施方式的效果能够单独发挥或组合发挥。此外,只要不丧失本发明的特征,本发明并不限于上述实施方式。例如,虽然上述实施方式中施加矩形波脉冲作为检查信号,但只要是周期性变化的信号,即使不是矩形波亦可。

Claims (9)

1.一种驱动系统的接地检测装置,该驱动系统将来自直流电源的直流电转换为交流电,利用该交流电来驱动电动机,该接地检测装置的特征在于,包括:
提取电路,其通过耦合电容器与所述直流电源的电源线连接,对包含所述电动机在内的交流侧发生接地时产生的振幅波进行检测,提取该振幅波的包络线;
测定所述包络线的电压电平的测定电路;和
判定电路,其将由所述测定电路测得的电压电平与接地判定值进行比较,判定交流侧是否发生接地。
2.如权利要求1所述的接地检测装置,其特征在于:
所述判定电路,将由所述测定电路测得的电压电平和预先设定的基准电压电平的差与所述接地判定值进行比较。
3.如权利要求1所述的接地检测装置,其特征在于,还包括:
检查信号输出电路,其通过所述耦合电容器将具有周期波形的接地检查信号施加到所述直流电源的电源线上;和
直流侧接地检测电路,其检测接地检查信号施加时的响应波形,基于该响应波形的变化对包含所述直流电源在内的直流侧的接地进行检测,
所述提取电路提取与所述接地检查信号叠加的所述振幅波的包络线。
4.如权利要求3所述的接地检测装置,其特征在于:
当具有周期波形的所述响应波形的振幅值小于预先设定的接地等同振幅值时,所述直流侧接地检测电路判定直流侧发生了接地。
5.如权利要求1所述的接地检测装置,其特征在于:
具备进行如下控制的控制单元:当所述电动机停止时利用所述直流侧接地检测电路进行直流侧的接地检测;当所述电动机动作时,利用所述提取电路进行提取、利用所述测定电路进行测定并利用所述判定电路进行判定,由此进行交流侧的接地检测。
6.如权利要求5所述的接地检测装置,其特征在于:
当交流侧和直流侧的至少一方检测出接地时,所述控制单元输出使所述驱动系统停止的指令。
7.如权利要求1所述的接地检测装置,其特征在于:
所述接地判定值根据所述电动机的转速来设定。
8.如权利要求1所述的接地检测装置,其特征在于:
所述提取电路是包络线检波电路。
9.如权利要求1所述的接地检测装置,其特征在于:
所述提取电路是全波整流电路。
CN201010263197.XA 2009-10-06 2010-08-25 接地检测装置 Expired - Fee Related CN102033186B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-232283 2009-10-06
JP2009232283A JP5401250B2 (ja) 2009-10-06 2009-10-06 地絡検出装置

Publications (2)

Publication Number Publication Date
CN102033186A true CN102033186A (zh) 2011-04-27
CN102033186B CN102033186B (zh) 2014-06-25

Family

ID=43466632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010263197.XA Expired - Fee Related CN102033186B (zh) 2009-10-06 2010-08-25 接地检测装置

Country Status (4)

Country Link
US (1) US8355226B2 (zh)
EP (1) EP2309280B1 (zh)
JP (1) JP5401250B2 (zh)
CN (1) CN102033186B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865909A (zh) * 2012-09-12 2013-01-09 安徽江淮汽车股份有限公司 一种用于汽车仪表的检测电路
CN103424696A (zh) * 2012-03-28 2013-12-04 乔伊·姆·特拉华公司 关于变频驱动系统的接地故障检测方法
CN104094127A (zh) * 2012-02-29 2014-10-08 松下电器产业株式会社 车载用充电装置
CN104113263A (zh) * 2014-06-27 2014-10-22 联合汽车电子有限公司 新能源车用电驱动系统
CN105277836A (zh) * 2014-05-30 2016-01-27 本德尔有限两合公司 用于监控保护接地连接的方法和装置
CN105548798A (zh) * 2016-02-29 2016-05-04 珠海格力电器股份有限公司 直流母线的接地检测方法和装置
CN105738749A (zh) * 2014-12-30 2016-07-06 本德尔有限两合公司 用于监视保护导体连接的方法和装置
CN108139437A (zh) * 2015-08-25 2018-06-08 伊顿智能动力有限公司 用于自动高电阻接地脉冲激活和检测的系统和方法
CN110072737A (zh) * 2016-12-16 2019-07-30 日立汽车系统株式会社 车载控制装置
CN110754034A (zh) * 2017-07-18 2020-02-04 东芝三菱电机产业系统株式会社 接地检测器以及功率调节器
CN110967651A (zh) * 2018-09-30 2020-04-07 广东威灵汽车部件有限公司 电动汽车及其对地短路检测装置
CN112327207A (zh) * 2020-10-31 2021-02-05 贵州电网有限责任公司 一种便携式直流系统接地故障判断装置及其使用方法
CN113453943A (zh) * 2019-02-19 2021-09-28 三洋电机株式会社 漏电检测装置、车辆用电源系统
CN114144687A (zh) * 2019-06-28 2022-03-04 三洋电机株式会社 漏电检测装置、车辆用电源系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1585205B1 (en) * 2004-04-09 2017-12-06 Regal Beloit America, Inc. Pumping apparatus and method of detecting an entrapment in a pumping apparatus
US8133034B2 (en) * 2004-04-09 2012-03-13 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
WO2010039580A1 (en) * 2008-10-01 2010-04-08 A.O. Smith Corporation Controller for a motor and a method of controlling the motor
JPWO2012157036A1 (ja) * 2011-05-13 2014-07-31 トヨタ自動車株式会社 車両の電源システム
US9606163B2 (en) * 2012-04-09 2017-03-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ground fault detecting circuit and power converting device including the same
US9160161B2 (en) 2012-05-04 2015-10-13 Eaton Corporation System and method for ground fault detection and protection in adjustable speed drives
CN104049169B (zh) * 2013-03-15 2016-12-28 艾默生网络能源有限公司 接地检测装置和方法
US9093240B2 (en) 2013-05-15 2015-07-28 International Business Machines Corporation Direct current ground fault interrupter
CN103399571B (zh) * 2013-07-31 2015-09-23 东方电气集团东风电机有限公司 用于电动车电机控制器高压回路的检测装置及方法
CN103698703B (zh) * 2014-01-08 2016-03-23 中煤能源黑龙江煤化工有限公司 直流电机电枢故障检测装置
JP5788538B2 (ja) * 2014-01-08 2015-09-30 ファナック株式会社 絶縁劣化検出機能を備えたモータ駆動装置及びモータの絶縁抵抗検出方法
DE102014207478A1 (de) * 2014-04-17 2015-10-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung eines Isolationswiderstandes sowie Hochvoltbatteriesystem mit einer solchen Vorrichtung
US9599651B2 (en) * 2015-02-19 2017-03-21 Nec Energy Solutions, Inc. Systems and methods of detecting ground faults in energy storage and/or generation systems that employ DC/AC power conversion systems
US9859085B2 (en) 2015-09-23 2018-01-02 Hamilton Sundstrand Corporation Fault protection devices and methods for power systems
DE102015223387A1 (de) * 2015-11-26 2017-06-01 Robert Bosch Gmbh Verfahren zum Erkennen eines Zustands eines Bordnetzes
CN108749579B (zh) * 2018-06-04 2020-07-24 北京新能源汽车股份有限公司 一种高压系统的接地自检方法、装置、高压系统及汽车
EP3929021A4 (en) * 2019-02-19 2022-04-13 SANYO Electric Co., Ltd. ELECTRICAL FAILURE DETECTION DEVICE AND VEHICLE POWER SUPPLY SYSTEM
EP3820031A1 (en) 2019-11-05 2021-05-12 Hamilton Sundstrand Corporation Power device health monitoring utilising a bridge arrangement
KR102395570B1 (ko) * 2020-11-25 2022-05-06 서울대학교 산학협력단 가변 운행 환경에서 모터의 고장 발생 여부를 판단하는 장치 및 방법
CN112526405B (zh) * 2020-12-03 2022-02-15 广东电网有限责任公司电力科学研究院 一种用于电容器切出系统时的故障诊断方法及相关装置
DE102022208878A1 (de) * 2022-08-26 2024-02-29 Siemens Mobility GmbH Verfahren und Anordnung zum Identifizieren eines Erdschlusses in einer Antriebseinheit eines Fahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868445A (en) * 1988-06-20 1989-09-19 Wand Saul N Self tuned ultrasonic generator system having wide frequency range and high efficiency
US20020121902A1 (en) * 2001-01-11 2002-09-05 Nissan Motor Co., Ltd. Ground detection apparatus for electric vehicle
JP2003255012A (ja) * 2001-12-26 2003-09-10 Toyota Motor Corp 負荷駆動装置、インピーダンス判定方法、およびインピーダンスの判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
CN101223681A (zh) * 2005-07-12 2008-07-16 株式会社小松制作所 车载用电力供给系统的漏电检测装置
US20090134881A1 (en) * 2006-08-04 2009-05-28 Toyota Jidosha Kabushiki Kaisha Insulation resistance detection system, insulation resistance detection apparatus and insulation resistance detection method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200897A (en) * 1978-05-15 1980-04-29 Dawley Robert E Ground leakage current interrupter
JPH07128387A (ja) * 1993-10-29 1995-05-19 Kawaju Bosai Kogyo Kk 非接地配線方式の電路の絶縁監視装置
JP2933490B2 (ja) * 1994-08-30 1999-08-16 株式会社デンソー 電気自動車の地絡検出回路
US5945802A (en) * 1996-09-27 1999-08-31 General Electric Company Ground fault detection and protection method for a variable speed ac electric motor
JP2000013902A (ja) * 1998-06-26 2000-01-14 Nissan Motor Co Ltd 電気自動車の交流側漏電検知装置
JP3783633B2 (ja) * 2002-02-26 2006-06-07 日産自動車株式会社 車両用地絡検出装置
JP4098069B2 (ja) * 2002-12-04 2008-06-11 株式会社デンソー モータ回路系の絶縁不良検出回路
JP4133601B2 (ja) * 2003-06-06 2008-08-13 株式会社日本自動車部品総合研究所 モータ駆動装置
JP4186887B2 (ja) * 2004-07-07 2008-11-26 国産電機株式会社 漏電検出装置
CN101228447A (zh) * 2005-08-29 2008-07-23 丰田自动车株式会社 绝缘电阻降低检测器和绝缘电阻降低检测器的故障自我诊断方法
JP5085206B2 (ja) * 2007-07-05 2012-11-28 株式会社東芝 可変磁束ドライブシステム
JP2009017964A (ja) * 2007-07-10 2009-01-29 Hoya Corp 超音波内視鏡
JP5181579B2 (ja) * 2007-08-23 2013-04-10 日本精工株式会社 モータの制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868445A (en) * 1988-06-20 1989-09-19 Wand Saul N Self tuned ultrasonic generator system having wide frequency range and high efficiency
US20020121902A1 (en) * 2001-01-11 2002-09-05 Nissan Motor Co., Ltd. Ground detection apparatus for electric vehicle
JP2003255012A (ja) * 2001-12-26 2003-09-10 Toyota Motor Corp 負荷駆動装置、インピーダンス判定方法、およびインピーダンスの判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
CN101223681A (zh) * 2005-07-12 2008-07-16 株式会社小松制作所 车载用电力供给系统的漏电检测装置
US20090134881A1 (en) * 2006-08-04 2009-05-28 Toyota Jidosha Kabushiki Kaisha Insulation resistance detection system, insulation resistance detection apparatus and insulation resistance detection method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094127B (zh) * 2012-02-29 2017-04-12 松下知识产权经营株式会社 车载用充电装置
CN104094127A (zh) * 2012-02-29 2014-10-08 松下电器产业株式会社 车载用充电装置
US9579978B2 (en) 2012-02-29 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. In-vehicle charger
CN103424696B (zh) * 2012-03-28 2019-03-29 久益环球地下采矿有限责任公司 关于变频驱动系统的接地故障检测方法
US11329589B2 (en) 2012-03-28 2022-05-10 Joy Global Underground Mining Llc Ground fault detection methods on variable frequency drive systems
CN103424696A (zh) * 2012-03-28 2013-12-04 乔伊·姆·特拉华公司 关于变频驱动系统的接地故障检测方法
CN102865909B (zh) * 2012-09-12 2014-07-16 安徽江淮汽车股份有限公司 一种用于汽车仪表的检测电路
CN102865909A (zh) * 2012-09-12 2013-01-09 安徽江淮汽车股份有限公司 一种用于汽车仪表的检测电路
CN105277836A (zh) * 2014-05-30 2016-01-27 本德尔有限两合公司 用于监控保护接地连接的方法和装置
CN105277836B (zh) * 2014-05-30 2019-11-01 本德尔有限两合公司 用于监控保护接地连接的方法和装置
CN104113263A (zh) * 2014-06-27 2014-10-22 联合汽车电子有限公司 新能源车用电驱动系统
CN105738749A (zh) * 2014-12-30 2016-07-06 本德尔有限两合公司 用于监视保护导体连接的方法和装置
CN108139437A (zh) * 2015-08-25 2018-06-08 伊顿智能动力有限公司 用于自动高电阻接地脉冲激活和检测的系统和方法
CN108139437B (zh) * 2015-08-25 2021-02-09 伊顿智能动力有限公司 用于自动高电阻接地脉冲激活和检测的系统和方法
CN105548798A (zh) * 2016-02-29 2016-05-04 珠海格力电器股份有限公司 直流母线的接地检测方法和装置
CN110072737A (zh) * 2016-12-16 2019-07-30 日立汽车系统株式会社 车载控制装置
CN110072737B (zh) * 2016-12-16 2022-06-10 日立安斯泰莫株式会社 车载控制装置
CN110754034B (zh) * 2017-07-18 2021-07-16 东芝三菱电机产业系统株式会社 接地检测器以及功率调节器
US11177647B2 (en) 2017-07-18 2021-11-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Ground fault detector and power conditioner with input-side ground fault detection
CN110754034A (zh) * 2017-07-18 2020-02-04 东芝三菱电机产业系统株式会社 接地检测器以及功率调节器
CN110967651A (zh) * 2018-09-30 2020-04-07 广东威灵汽车部件有限公司 电动汽车及其对地短路检测装置
CN110967651B (zh) * 2018-09-30 2021-11-05 广东威灵汽车部件有限公司 电动汽车及其对地短路检测装置
CN113453943A (zh) * 2019-02-19 2021-09-28 三洋电机株式会社 漏电检测装置、车辆用电源系统
CN114144687A (zh) * 2019-06-28 2022-03-04 三洋电机株式会社 漏电检测装置、车辆用电源系统
CN112327207A (zh) * 2020-10-31 2021-02-05 贵州电网有限责任公司 一种便携式直流系统接地故障判断装置及其使用方法
CN112327207B (zh) * 2020-10-31 2022-09-16 贵州电网有限责任公司 一种便携式直流系统接地故障判断装置及其使用方法

Also Published As

Publication number Publication date
US8355226B2 (en) 2013-01-15
EP2309280A1 (en) 2011-04-13
CN102033186B (zh) 2014-06-25
JP5401250B2 (ja) 2014-01-29
US20110080676A1 (en) 2011-04-07
EP2309280B1 (en) 2019-04-10
JP2011080823A (ja) 2011-04-21

Similar Documents

Publication Publication Date Title
CN102033186B (zh) 接地检测装置
JP3678151B2 (ja) 電気車両の地絡検出装置
US8164298B2 (en) System and method for detecting loss of isolation while an AC motor is operating
US7759888B2 (en) AC motor controller
JP2933490B2 (ja) 電気自動車の地絡検出回路
CN102043127A (zh) 用于执行电机转子的故障诊断的方法和系统
JP2017530672A (ja) グリッドタイインバータ安全検出装置及び方法
KR101601405B1 (ko) 모터 구동시스템의 고장 검출 방법
CN109459651A (zh) 机车变流器接地故障检测电路及方法
CN109188230B (zh) 一种检测电源绝缘性的电路、方法及车载充电机
WO2020262083A1 (ja) 漏電検出装置、車両用電源システム
CN109459618A (zh) 电动汽车电驱动系统直流母线电容的准在线容值检测方法
KR20160122832A (ko) 차량탑재용 전력 공급 시스템의 누전 검출 장치 및 유압 셔블
CN103278776A (zh) 一种电动汽车电池绝缘检测系统
JP5300349B2 (ja) モータ制御装置およびモータ地絡検出方法
CN104597367A (zh) 一种变频器驱动感应电机定子匝间短路故障诊断方法
Wang et al. Detection and evaluation of the interturn short circuit fault in a BLDC-based hub motor
CN110275082B (zh) 一种变流器主电路的接地诊断方法、系统及装置
Wang et al. A feature based frequency domain analysis algorithm for fault detection of induction motors
CN111736071A (zh) 一种基于电流相序分解的永磁同步电机缺相检测方法
CN105634352A (zh) 发电机控制器过电压保护方法及系统
CN110161395B (zh) 逆变器驱动电机的绝缘状态在线监测方法及其监测系统
JP2010239837A (ja) 地絡検出装置、電動車両用充電器、および地絡検出方法
CN111381187A (zh) 一种电机断线的检测方法、系统及装置
JP2004361309A (ja) モータ駆動装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140625

Termination date: 20210825